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Abstract—Due to advancing technological processes, many-
core systems integrate an ever-growing number of cores on
one silicon die. At the same time, shrinking circuit geometries
cause a higher susceptibility for hardware faults. This paper
proposes a novel approach to detect defective cores in a many-core
system which are showing an increased occurrence of intermittent
faults. In contrast to transient faults caused by environmental
phenomena, intermittent faults occur due to stressed resources
and often are a precursor of permanent faults. The proposed
early fault diagnosis allows the use of precautionary measures
before a permanent fault can durably damage a component in
a many-core system. In this paper, we present a multi-objective
approach that can implicitly detect an affected core by diagnosing
its intermittent faults and taking distributed applications and
their dependencies into account. The implicit approach allows the
waiving of explicit tests which considerably reduces the number of
plausibility test functions and, thus, leads to a saving of resource
load. We propose four different implementations of our early
fault diagnosis which are compared and evaluated in terms of
runtime and detectability. The experimental results give evidence
of the feasibility and good scalability our approach.

I. INTRODUCTION

Today, the multi- and many-core paradigm is not an exclu-
sive characteristic of servers or workstations any more. Due
to a higher performance at lower energy consumption, CPUs
with multiple cores find their way into embedded System-
on-a-Chip (SoC) architectures and, thus, into domains where
safety aspects are of high relevance such as avionics and
automotive. However, to fulfill the corresponding reliability
requirements of safety-critical applications, efficient fault de-
tection and fault tolerance mechanisms are inevitable. At the
same time, Very Large Scale Integration (VLSI) processes with
shrinking geometries and decreasing supply voltages result in
devices which are increasingly susceptible to transient faults
and, hence, might have a negative impact on the system
reliability [1]. In many-core systems, a failure of one core
can influence the behavior of the running application and,
in the worst-case, lead to the failure of the entire system.
It is therefore desirable to obtain knowledge about poten-
tial permanent faults before they actually happen, and apply
precautionary measures, which can vary from restarting the
affected task on a different (redundant) core to a controlled
shutdown of the complete system. For such an early fault
detection, an increased number of non-permanent faults is a
suitable indicator to determine stressed cores.

Contributions of the paper. In this paper, we propose an
approach to implicitly detect cores in a many-core system
that show an increased number of non-permanent faults, i.e.,
the presence of so-called intermittent faults shall be verified.
Assuming that in the course of the aging process deficient
hardware causes the presence and accumulation of intermittent
faults, a potential imminent permanent fault of a specific core
can be projected by analyzing the results of a set of plausibility
tests' running within regular tasks or as discrete applications.
A major goal of the proposed approach is to perform such
a detection implicitly in order to keep the additional resource
utilization low. In contrast to an explicit detection which would
require additional tests for each component, the proposed fault
detection relies on existing plausibility tests being part of the
many-core applications. Moreover, in a heterogeneous archi-
tecture we might often only be able to check the consistency
of test results on specific cores. For this purpose, we will take
the distribution of applications, the runtimes of tasks, and their
data-dependencies into account to implicitly determine the core
that shows an increased number of intermittent faults.

We propose four different implementations for an implicit
intermittent fault detection in many-core systems. Two of
these methods analyze linear dependencies within the system
model and the other two use Integer Linear Programming
(ILP) formulations to model confidence intervals or statistical
tests, respectively. Additionally, the number of plausibility tests
needed for the fault detection shall be as low as possible in
order to, ideally, only use tests designed for the applications.

As the number of cores in many-core systems quickly
increases and might reach ranges of 10% and higher within
the next decade [2], the scalability of our approach is crucial.
Based on this, we aim at optimizing two conflicting objectives:
on the one hand, our method shall improve the detectability
of faulty cores and on the other hand, it shall reduce the
runtime of the detection. In the experimental results, we
show the general feasibility of the proposed approach and
compare the methods in terms of runtime and success rate
of the detection. For the sake of simplicity, we consider a
system with at most one stressed core in this paper. However,
ILP approaches innately support the detection of multiple
stressed resources and linear dependencies approaches might
be adapted appropriately. Consequently, the extension of our
approach to a concurrent detection of multiple faulty cores is
part of future work.

This work was financially supported in part by the Singapore National
Research Foundation under its Campus for Research Excellence And Techno-
logical Enterprise (CREATE) programme.

'In the following, fest and plausibility test refer to the plausibility tests
as part of the system to be analyzed, whereas fest case and test run refer to
the different system specifications used for the experimental results.



Organization of the paper. The remainder of the paper is
organized as follows: Section II discusses the related work.
Section III proposes the system model, including a formal
definition of the problem. The detection methods are described
in Section IV and the experimental results are presented and
discussed in Section V. Section VI concludes the paper.

II. RELATED WORK

In the considered many-core systems, one core can have
several periodic tasks assigned to it, but it only executes
one task at a time. Nevertheless, the tasks might have data-
dependencies across different cores, i.e., by using a Network-
on-Chip (NoC) or shared memory for communication. Thus,
efficient mapping of tasks to cores is an important factor to
satisfy high performance and safety requirements. A survey
and categorization of mapping methodologies for multi- and
many-core systems is presented in [3], where the analysis
differentiates between design-time and run-time optimization
methods. In [4], static task mapping for embedded many-core
SoCs is using an ILP-based and a greedy algorithm-based
approach, respectively, in order to find the optimal number
of cores for each task. To increase the reliability of a system,
the most common fault tolerance strategies are, on the one
hand, re-mapping of tasks as discussed in [5] and [6] for the
use of NoC-based Multiprocessor System-on-Chips (MPSoCs).
On the other hand, when intact cores are not able to take over
tasks of the affected cores, a graceful degradation mechanism
is necessary as for example described in [7]. Our approach is
set at the level of fault detection and, thus, before potential
fault tolerance mechanisms come into action. For that reason,
it builds on an existing schedule and a given distribution of
tasks to system cores.

A number of approaches have been presented for analyzing
the reliability and providing fault diagnosis in distributed
systems. In [8] three on-line self-testing policies for multi-
processors are investigated in terms of performance and detec-
tion probability. Approaches to the problem on a system level
are proposed in [9] and [10], where the system is modeled
by a Data Flow Graph (DFG) and the authors maximize the
reliability by exchanging the resources until the defined con-
straints are met. In contrast, [11] considers not only reliability
but also all other design objectives simultaneously. In [12],
a lifetime reliability estimation of homogeneous many-core
systems is presented, which analyzes different configurations
and redundancy schemes. However, that paper mainly regards
system faults that manifest in permanent faults.

None of these approaches considers the problem that an
accumulation of transient faults might finally lead to a perma-
nent fault of a resource or, in the worst case, the entire system.
Our work analyzes and compares test failure rates in order to
implicitly detect cores in a many-core system tending to fail
through an increase of intermittent faults.

III. SYSTEM MODEL

Our system model regards NoC-based many-core archi-
tectures on a higher level of abstraction as a number of
interconnected resources processing tasks which are capable of
exchanging data across the resources. In general, a resource,
i.e., a core in a many-core system, can be affected by two
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Fig. 1. The figure illustrates the occurrence of non-permanent faults on a

resource, €.g., one core in a multi-core system. At first the resource is affected
by transient faults only. Then, gradually, more and more intermittent faults
occur which finally result in a permanent fault. The probabilistic distribution
of the intermittent faults depicts an early (A\p = 3) and a late (A\p = 8) stage
of the fault period.

types of faults: permanent and non-permanent. Permanent
faults can durably damage the corresponding resource and non-
permanent faults, which can further be divided into transient
and intermittent faults only temporarily affect the system [13].
Although permanent faults are going along with enduring
physical changes of the affected hardware, they are often
preceded by an increased number of intermittent faults, which
themselves are caused by malfunctioning hardware and occur
with a high arbitrary frequency, see [1]. Similar but not equal
to intermittent faults are transient faults, which are mostly
caused by temporary environmental phenomena, like cosmic
rays, electromagnetic interference, electrostatic discharge or
radiation from lightning.

The main purpose of this work is to identify intermittent
faults early before a permanent fault occurs in order to apply
appropriate precautions. Besides this, an important aspect is
the implicit nature of the detection of intermittent faults to
avoid additional testing overhead. The occurrence of these
faults can be detected with the help of plausibility tests which
are evaluating the outcome of particular tasks. According to
the hypothesis of the Resilience Articulation Point (RAP), all
faults originating from a physical phenomenon, if not masked,
will manifest as a permanent or transient single- or multi-bit
flip [14]. We assume that the errors caused by these bit flips
are propagated between data-dependent tasks and finally result
in plausibility test failures, with the probabilistic distribution
of the intermittent faults remaining unaltered. Thus, a failed
plausibility test indicates a fault in a preceding task originally
caused by an intermittent fault on a resource. As, ideally,
our approach shall only use already existing plausibility tests,
the overhead introduced by additional tests is not considered
within the scope of this paper, but might be taken into account
for future work.



To model the probability of fault occurrence, the Poisson
distribution is used. However, our approach is flexible enough
to adopt other probabilistic fault models if required. As shown
in Figure 1 a mere observation of faults affecting a resource
allows no conclusion about their origin. However, with knowl-
edge about the probabilistic distribution of the faults, it is
possible to split the non-permanent faults on a resource into
a transient and an intermittent part, with the latter becoming
more and more predominant over time as illustrated by a higher
mean value Ap of the Poisson distribution. It is important
to consider transient faults as possible noise in our analysis
approach to avoid the detection of false positive faults.

Unlike in single-core architectures, the system performance
in many-core systems arises from the number of cores rather
than their complexity, which results in an absence of hardware-
based fault tolerance mechanisms on each core [15]. Conse-
quently, it becomes inevitable to implement this functionality
in software, for which the computational overhead should
be kept as low as possible. We use an implicit approach to
determine task failures and, thus, resources with an increased
number of intermittent faults. For this purpose, we run a
number of plausibility tests at the end of particular task
sequences and compare the expected and observed results of
several tests. Ideally, this shall give us the right conclusions
about the fault-causing resource. In a motivating example in
Figure 2, an excerpt of four cores in a larger NoC-based many-
core system is shown, where an increased rate of intermittent
faults occurs on coreg. The mapping of eight application tasks
Tz, /y; and two tests t,/, to the four cores is indicated by the
gray background areas and dashed arrows. Depending on the
particular assignment and utilization of the tasks, a higher rate
of intermittent faults on one core can be detected by analyzing
the failure ratio of the tests. Given an equal utilization of the
cores by all application tasks, a consistent fault propagation
towards the tests, and a sufficient observation time, a faulty
coreg will cause a failure ratio between t, and ¢, of %, since
it is running two tasks from the ¢,-task chain and only one
from the t,-task chain. Note that correspondingly a failure
ratio of % indicates a faulty core;, whereas the occurrence
of failures of just one test ¢, or t, shows a faulty cores and
cores, respectively.

In our system model, we consider a resource as one core in
a many-core architecture. However, by adapting the expected
fault rates, our fault diagnosis can also be used for other system
granularity levels where a resource is regarded, for example,
as a whole tile comprising a computation core, cache memory
and router in a NoC or, in a fine grained model, just one of
these elements.

Formal Problem Definition In the following, a formal defi-
nition of the problem is presented, which is mainly based on
the sets listed below.

T set of available tests

R set of resources (i.e., cores) to be considered
T- set of periodic tasks on a resource r € R

e, execution time of a task 7 € 7,

h,  period of a task 7 € T,
O; observed failures of a test t € T in A
FEy expected failures of a test £ € T in A

A time interval for a test failure observation
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Fig. 2. The example illustrates the principle of our detection approach on
four cores of a NoC-based many-core system. The application tasks Tz, , Tz,
Ty, are mapped to coreg and T4, Ty,, Ty, are mapped to corer, whereas
the remaining 7o, and t, as well as the 7y, and t, are assigned to cores
and cores, respectively. The increased intermittent fault rate on coregp results
in a test failure ratio between ¢, and ¢y of 2 : 1 .

To detect a faulty resource in a non-trivial system with less
tests than resources, as illustrated in the example in Figure 2,
mere quantitative analysis of plausibility test failures is not
sufficient. We regard the fault rate (i.e., number of faults
per time interval) for a specific resource as being subject
to the Poisson distribution with a known average value (see
Figure 1). In Equation (1) it is defined as an independent
random variable X, following the Poisson distribution with
an expected value E[X,]. The expected value is strongly
dependent on the resource’s susceptibility to intermittent faults
and must be investigated experimentally or determined from
the manufacturer hardware description. In the scope of this
work F[X,] shall be assumed as a known value.

X, ~ Poi(E[X,]) M

Furthermore, for each test ¢ € 7T and each resource
r € R, we introduce a A(¢,7) which represents the number
of expected test failures per time interval which are caused
by the respective resource. With e, describing the average
execution time of a periodic task 7 € 7, and h, describing
its period, A\(¢,r) is defined as in Equation (2). The equation
indicates whether the faulty resource runs any tasks whose
failure would lead to a failure of test ¢ which can be the test
itself, or any of its predecessors. Here, pred(t) represents the
set of tasks that are predecessors of test ¢.

At,r) = - E[X,] (2)

> i

TET-Npred(t) T

Finally, the allocation of each test to the resources which
can cause its failure leads to a test expectation matrix A which
comprises all A(¢,7) values as its elements, as defined in
Equation (3).

A= (&), 3)



According to our fault diagnosis approach, A describes
the expected fault rates under normal operation for transient
faults only. In case of intermittent faults, the observations will
deviate from this matrix and allow an implicit fault detection
as proposed in Section IV.

IV. FAULT DIAGNOSIS METHODS

The presented fault diagnosis is designed to indicate cores
in a many-core system (also referred to as resources) experi-
encing an increased occurrence of intermittent faults and the
goal to reach a good detectability at a reasonably low runtime
leads to a multi-objective problem. As a matter of principle,
the solution of this problem can be abstracted to an analysis
of the quantitative relation between observed and expected test
failures. Thus, based on the expectation matrix A introduced
in Section III, four realizations of the general fault diagnosis
principle shall be described and evaluated with respect to their
correctness and performance. The methods are summarized in
Table I and described below.

In the following, the sets O; and FE; are representing
observed and expected failures of a test ¢ € T, respectively,
which occur within a time interval A. We assume that at least
one resource r € R is faulty if the number of observed test
failures originating from all possible resources is significantly
higher than the number of the expected test failures within the
time interval A, as defined in Equation (4). The magnitude of
this inequality is depending on the considered fault distribution
in the tested system and was in the range of 10 for our
test cases. This range has been chosen in order to evaluate
and verify the general suitability and effectiveness of the four
detection methods. In reality, the rate of intermittent faults
caused by aging, rises slowly over time until a permanent fault
occurs. This behavior is not considered in the experimental
results and will be investigated in future work.

Or > A= A(t,7) @)

reR

A. Method 1

For the first two detection methods, we regard the expec-
tation matrix as a set of column vectors, where each vector
v, is assigned to one resource and contains the corresponding
utilization dependent expected test fault rates (Equation (52))%.
In addition, an observation vector v, which consists of
the observed failures of each plausibility test is used (Equa-
tion (5b)).

Vi, = [A(t1,73), Alt2, 73), -+ A, mi)]T (5a)

VOT = [Otl ) Ot27 e 7Otm]T (Sb)

TABLE 1. FOUR IMPLEMENTATIONS OF OUR FAULT DIAGNOSIS
Method | Implementation Test principle Section
1 Vector-based Cosine Similarity IV-A
11 Vector-based Singular Value Decomposition IV-B
I ILP-based Confidence Interval Iv-C
v ILP-based Pearson’s x 2-Test IV-D

Based on this, a cosine similarity analysis between the
observation vector and the expectation vectors can indicate,
if the corresponding resource is faulty. The closer the cosine
value is to 1, the higher is the certainty that the observed faults
stem from the resource belonging to the expectation vector.
This is shown in Equation (6), where 6 is the angle enclosed
by the examined vectors and €. is the maximum acceptable
deviation from 1.

< €cos = O from r;, 0 =2(vor,Vr,)
> €cos = Or not from r;, 0 = Z(voy,,Vy,)

(©)

11— cos(0)] {

B. Method II

Alternatively, the second method calculates the Singular
Value Decomposition (SVD) of a sub-matrix Ag = (Vvo,, Ve,)
to determine the linear dependence. This is shown in Equa-
tion (7)3, where the SVD of A, results in a product of the
orthogonal matrix U, the diagonal matrix 3 and the transposed
orthogonal matrix VT, The matrices U and V, whose columns
contain the eigenvectors of A AT and ATA,, respectively,
shall receive no consideration during the further detection
procedure. ¥ has the same dimension as A; (i.e., |T| x 2) and
consists of the singular values o1 and o2 on its diagonal and 0
otherwise. The observation Oy is thought of being caused by
resource 7;, if the rank of the diagonal matrix ¥ is less than 2,
as shown in Equation (8).

g1

A2 = VT, with © = [0

0
UJ and |T|>2 (7)

< 2 = O from r;,
= 2 = O not from r;,

if do < €gpq

8
if Vo > €4 ®)

rank(x) {

The performance and correctness of Methods I and II
are highly dependable on the proper choice of the tolerance
interval €. A too big value is not sensitive enough and may
cause false positive detections, whereas a too small value
would not consider the noise caused by transient faults and
might lead to false negative detections. Numerous test runs
proved €5 ~ 1073 and €5 ~ 1075 as good ranges for the
analyzed system sizes.

C. Method 111

Considering the non-deterministic nature of fault occur-
rences, a fundamentally different detection approach can be
applied. To mirror the stochastic uncertainty of the expected
intermittent faults caused by a resource, we can create a
confidence interval around F; inside which an observation is
thought to conform to its corresponding A-values. Assuming,
that the faults are following a Poisson distribution and that dur-
ing normal operation all observed failures O, lie within three

2Note, that the expectation vectors v, are not scaled with the observation
interval A, and hence do not represent the actual expected values F¢. This
has no influence on the analytical result of the cosine similarity analysis, as
it is magnitude independent.

3Note, that T represents the transpose of a matrix and should not be
confused with |7"] which stand for the number of tests in the set 7.



standard deviations from the expected value E;, we define the
interval according to the 3o-rule as seen in Equation (9). Here,
o represents the standard deviation and g the mean of the
Poisson-distributed variable x.

Po(j—30 < x < p+30) ~ 0.9973 ©9)

Given the Cumulative Distribution Function (CDF) of x
as F)\(z < k), the values )\, and \p; can be determined by
approximating the corresponding CDFs to the limits resulting
from the 3o-rule, as shown in Equations (10a) and (10b).
Accordingly, this leads to a confidence interval [A;,, Ap;] which
comprises the expected test failures E,; during the observation
time A.

P.o+1

minimize A, subjectto Fy, (z < O;) < (10a)
Ao €RY
maximize Ap;, subjectto F),,(z < Oy) > 5 (10b)

Ani€RY

Introducing a stress factor z, allows us to formulate an
optimization problem with the confidence interval as one
constraint (Equation (11b)). The expected test failures E; are
defined as sum of weighted \-values over all resources, where
the weight factor is x, (Equation (11c)). We use y,- as switch
variable to decide whether x, is significantly large (y, = 1)
or still in an acceptable range (y, = 0) in order to keep E,
inside the confidence interval (Equations (11d) and (11e)). The
threshold for this decision is set by the variable d,.. Based
on these constraints, the objective function searches for cases
where a minimal number of stressed resources is responsible
for observed test failures (Equation (11a)).

minimize Yr (11a)
yr€{0,1} TZE;%
subject to:
E
VEeT:  M\o(Oy) < Kt < Mi(Oy)  (11b)
VteT: Et:Zx,,.~/\(t,r)-A (11c)
reR
Vr € R: Tr > dp - Yy (11d)
VreR: oz, <d.+10° .y, (11e)

The optimization algorithm considers A(t,r) and O; to
be constants from the set of positive rational numbers R .
Similarly, the variables E; and x, contain values from R{,
whereas y,. is defined in {0, 1}, respectively. The threshold d,
is crucial for the goodness of the fault diagnosis so that several
different values have been selected for the experimental results.
To rule out additional resources being responsible for the failed
tests, the optimization algorithm must be started a second time
with the first solution excluded from the test. Only if the latter
test reveals no solution, one can be sure about the correctness
of the first run.

D. Method 1V

The fourth implemented method is based on a statistical
hypothesis test. To determine how well the expectation fits an

observation the Pearson’s x2-Test shall be used as a statistical
model to describe the goodness of fit (Equation (12)).

BEORY:
=3 (O — Ey) (12)

E;
=

The null hypothesis H for the test is defined in Equa-
tion (13). It indicates that all observed test failures O; result
from the expected test failures FE.

HO : Et — Ot (13)

Hy shall be accepted if the p-value of the x2-Test is higher
than a predefined significance level and rejected otherwise.
Equation (14) denotes this inequality where F(x2,|T| — 1) is
the CDF of the y2-distribution with |T|—1 degrees of freedom.

1—F(x3|T|—1)>0.05 (14)

To find solutions for the y2-test we can formulate an
optimization problem analogue to that, used for the confidence
interval approach. Again, we are trying to find cases, where
the sum of all switch variables y, is minimal. However, the
x2-Test puts F; in a quotient term and hence, leads to a non-
linear problem. In order to still be able to use linear solvers, the
variable R; serves as a binary representation of the reciprocal
value E; ! This is defined in the Equations (15b) and (15¢)
for the optimization problem formulated below.

minimize Yrr (15a)
y-€{0,1} TEZR
subject to:

VteT: XQ:ZOE~Rt—2-Ot+Et (15b)
teT

VieT: FE-Ri=1 (15c¢)

VteT: E =Y a-Atr)-A (15d)
reR

VreR: x.>d, y, (15¢e)

VreR: x, <d,+10' .y, (15f)

Similarly to Method III, the test has to be repeated to rule
out alternative solutions.

V. EXPERIMENTAL RESULTS

In the following, the implementation details and test cases
are explained, followed by a comprehensive presentation and
discussion of experimental results. All experiments were car-
ried out on an Intel Core i5 with 2.6 GHz and 8GB RAM. For
the ILP-based optimization, GUROBI [16] was used as solver.

Implementation and Test Case Modeling. The expected test
failure rates for cores in a many-core system are represented
as A-values of a Poisson distribution and implemented in a
A-matrix, as defined in Section III. To specify a stressed core,
its A\-value is weighted with a factor s in the range of 103,
which is equivalent to an increase of its initial (transient)
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Fig. 3. The figure illustrates an exemplary system specification consisting of
three application functions (fz, fy, f2), cores (co - cg) and mappings between
tasks and cores (--+). The expectation matrix derived from the specification
shows weighted A-values for the faulty core c3.

fault rate during correct operation. The implementation of the
application, which consists of interdependent tasks, and the
architecture, which consists of interconnected cores, is based
on a previously presented graph-based model [17]. Figure 3
shows an exemplary system specification with three functions
and a many-core system with nine cores as well as the
corresponding expectation matrix. In this example, core cj is
considered faulty, which affects the highlighted A-values in the
expectation matrix.

Based on the system implementation described above, 240
test cases of realistic sizes and topologies have been generated
with architectures ranging from 3x3 to 48x48 cores. Thus, the
test cases comprise various system specifications with 9-2304
cores executing 3, 5 and 10 tasks on a resource on average,
respectively. Here, the ratio of plausibility tests to cores varies
between % and %6. For each test case, the observation time
was as well varied and we assume that only half of the test
cases have actually a stressed core in order to detect also false
positive results.

The four fault detection methods presented in Section IV
have been applied to all test cases in three different sensitivity
levels each. For this purpose, the values of the parameters €.qs
and €gq, in case of the two linear approaches, and d,., in case
of the ILP approaches, have been varied. Table II shows the
parameter values used for the test cases.

Results and Discussion. First, we investigate the absolute
detection rates of all methods, which are illustrated in Figure 4.
Here, according to the labels on the y-axis, each bar represents
one detection method with one specific parameter value. As
each test outcome can be assigned to one of four different
results, the bars are subdivided into four segments: correct,
false positive, false negative and timeout, which correspond to
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Fig. 4. The graph compares the numbers of different test case results with

each bar representing the outcome for a fault detection method with one
specific parameter value. False positive and false negative results comprise
test cases which could not be solved correctly. The timeout for finding a
solution for one single test case is 60 seconds.

a number of test cases between 0 and 240, as denoted on the
x-axis. Correct results include both the detection of a stressed
core and the proper diagnosis of a system without stressed
cores. In contrast, a false positive result indicates the detection
of a different than the stressed core as well as the detection
of several stressed cores, including the requested one. Finally,
for a false negative result, the actually stressed core has not
been detected. When a test case run has not been able to find
an unambiguous solution after 60 seconds, it is aborted and
marked as timeout.

Inspecting the absolute numbers of the test case results
shows a clear superiority of the two vector-based implementa-
tions as well as the Confidence Interval with at least half of all
test cases solved correctly. However, the results of the y2-Test
look comparably or even better, when not taking the timeout
into account, which makes this implementation still interesting
when used for an offline analysis on high-performance plat-
forms. Regarding the different parameter values, the Cosine
Similarity and the SVD show an increase of false positive
results with higher e.,s and egyq, respectively. This is, due
to an increased tolerance scope for the comparison of the
observed and expected vectors when the thresholds are higher.
As, on the other hand, with a lower threshold the number of
false negative results is increasing, these parameters must be
chosen carefully, as already mentioned in Section IV-B. For the
ILP-implementations this correlation is reversed and a higher
d, leads to more false negative detections, as this threshold
proportionally mirrors the level of the assumed system noise.

TABLE II. LIST OF THE PARAMETER SETS USED BY THE DETECTION
METHODS
Method ‘ Parameter ‘ Set 1 Set 2 Set 3
I €cos 3.0-107% | 6.0-1073 1.2-1072
Il €svd 4.3-107° | 850-107° | 1.70-107%
m & IV d, 1.1 1.5 1000
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method combines the results of all three parameter values.
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Fig. 6.  Average test case runtime as a function of the system size. The
outcome of each method combines the results of all three parameter values.

Besides the absolute test case results, we are interested in
the scalability of our approach and, hence, in the behavior
of the implementations with respect to different system sizes.
Figure 5 illustrates the detectability as a function of the number
of cores for all four methods, where the results from all three
parameter values are combined. The detectability represents
the percentage number of correct test results only and does
not include false positive results.

Interestingly, the Cosine Similarity and the SVD which are
both showing good results for large system sizes are outper-
formed by the ILP-based methods when only few cores are
diagnosed. Here, the slightly scattered and unsteady developing
of the result values towards higher core numbers might be
improved by a system size specific choice of the parameter
values. In general, all implementations except for the y2-Test
provide a good detectability which lies clearly above 50% also
for large core numbers. Regarding the x2-Test, the almost
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Fig. 7. Tllustration of Pareto efficient points with respect to a high detection

rate at low test case runtimes. The pinned labels show the core numbers
considered by the particular results and two connected points represent a
Pareto-front. The results for the different parameter values are combined.

complete lack of detectability for more than 144 cores is
caused by the timeout, which can clearly be seen in Figure 6.
In this graph, the test case runtime on the y-axis is displayed in
a logarithmic scale, which indicates very short computational
times for the Cosine Similarity for all system sizes and still fair
results for the SVD and Confidence Interval. However, both of
them are approaching the timeout limit for high core numbers.

As mentioned before, in our work we are interested in
both improving the detectability and reducing the runtime
of the diagnosis. To analyze the Pareto efficiency of these
two objectives, we combine the results from the two previous
graphs in Figure 7. Here, the black markers represent optimal
results for a particular system size, with the number of cores
pinned to the corresponding marker. In the case, where two
detection methods are optimal for two different objectives,
their markers are connected and the resulting line forms the
Pareto-front for the corresponding system size. All grayed out
points are dominated by the black ones and, hence, Pareto
inefficient.

For the most system sizes, Cosine Similarity seems to
be the best implementation method, although the SVD shows
slightly better detection rates for 256, 400 and 1024 cores.
When considering small systems with 9 and 25 cores, than
the Confidence Interval is the better choice, as in this time
range the difference to the vector-based method is negligible.

Finally, as our detection approach is implicit, and hence,
shall utilize already existing tests, we want to investigate the
influence of the number of plausibility tests on the detectabil-
ity. In Figure 8 the y-axis represents the percentage number
of correct test results, whereas the x-axis shows the tests-to-
cores ratio. More precisely, the four values between 2~% and
21 stand for one test per 16 cores, 8 cores, 4 cores, and 2
cores, respectively. Like for the previous three plots, the results
for all parameters are combined in this graph.

As one might expect, the detectability is increasing with a
higher tests-to-cores ratio for all methods except for the -
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detection.

Test, where this correlation is reversed. The reason is that for
a higher number of tests the problem becomes more complex
and, thus, more XQ-Test test cases run into the timeout, which
is also responsible for the overall low detectability of this
method. For the remaining three implementations, however,
we can see that even a relatively low number of plausibility
tests enables the fault detection to still being able to find a
correct solution for every second test case.

Summary. In summary, we see that the experimental results
clearly give evidence of the feasibility of our intermittent
fault detection for many-core systems. Especially, regarding
the wide range of the system sizes, the approach shows a
good scalability and, hence, its suitability for SoCs with several
thousand cores. While the runtimes of the detection methods
are already satisfactory, when disregarding the x2-Test, it still
might be possible to increase the detectability. Here, as part of
future work, we want to investigate how the mapping of task
and tests to different cores influences the detection and how it
can be optimized.

VI. CONCLUSION

Today, we experience an unprecedented growth in the
technological development of many-core SoCs, of which more
and more are used in safety-critical domains, like automotive
and avionics. However, the growing number of cores on
a single die leads to new challenges in terms of system
reliability. This paper proposes an approach that enables an
early and implicit diagnosis of faulty cores in a many-core
system. For the detection of cores affected by intermittent

errors, two vector-based and two optimization-based methods
are evaluated. The experimental results give evidence of the
efficiency and effectiveness of the proposed approach. While
we present only results for at most a single faulty core, the
methods either support or can be extended to detect also
multiple cores. The investigation of multiple faulty cores and
optimal test distribution is a part of the future work. As a next
step, we want to investigate the behavior of the detectability for
different fault rates and also analyze different fault propagation
models, for which an instruction set simulator shall be used.
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