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ABSTRACT
This paper proposes a virtual communication layer for time-
triggered networks, enabling a policy-based message schedul-
ing as well as preemption which in turn simplifies real-time
verification. The introduced layer is particularly advanta-
geous in the automotive domain since it reduces the complex-
ity of scheduling time-triggered communication systems and
simplifies incremental changes of existing schedules. We pro-
pose a framework to schedule event-triggered messages based
on a predefined policy in time-triggered communication slots,
improving the network utilization while logically separating
messages from different devices. Furthermore, we enhance
the versatility of the system, allowing to transmit data that
exceeds the size of one time-triggered slot. The proposed
policy-based scheduling with fixed priorities enables the in-
tegration of mixed criticality applications in time-triggered
networks, while ensuring hard deadline constraints. A pro-
totypical implementation is provided for FlexRay, comply-
ing with the existing protocol and, thus, making it possible
to coexist with the standard transmission scheme. Our ex-
perimental results demonstrate the advantages of the virtual
layer, showing an increase in flexibility and significantly lower
message latencies in case of asynchronous communication.

Categories and Subject Descriptors: C.3 [Special-purpose and

application-based systems]: Real-time and embedded systems
General Terms: Algorithms, Design

Keywords: FlexRay, scheduling

1. INTRODUCTION
The amount of software and Electronic Control Units

(ECUs) in cars is continuously increasing. New Advanced
Driver Assistance Systems (ADASs) are one of the major sell-
ing points of vehicles and rely heavily on the use of software
to achieve the required functionality. These applications are
not implemented on one single ECU, but distributed over
multiple ECUs. To achieve the desired functionality, com-
munication between the ECUs is required. When defining a
communication system for this, either an event-triggered or
a time-triggered architecture needs to be selected.

In time-triggered, or Time Division Multiple Access
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Figure 1: Framework for policy-based scheduling in time-
triggered networks. A design time scheduling approach
determines a slot to ECU assignment for a set of mes-
sages. During runtime our scheduler then assigns the
event-triggered messages created in the application layer
to communication slots depending on their priority.

(TDMA), systems, each message is assigned a time slot in
which it is transmitted. The assignment of messages to time
slots is called a schedule. This schedule is usually repeated
infinitely. TDMA allows easy calculation of the Worst Case
Response Times (WCRTs), as the schedule is fixed at time of
implementation and usually not changed at runtime. These
WCRTs rely on the assignment of messages to time slots. A
message always has to wait until the assigned time slot re-
peats, before it can be sent. This can lead to high WCRTs,
if a message misses its slot. TDMA schedules do not allow
preemption. A TDMA system might lead to oversampling,
when a message cycle time is not equal to, or a multiple
of, the schedule duration. Additionally, as the sizes of time
slots are fixed, it is usually not possible to transmit messages
longer than one slot length.

By contrast, event-triggered systems transmit messages as
required, allowing more flexibility in message transmissions
and a higher utilization of the underlying bus system. An ar-
bitration process is used to avoid collisions of messages trans-
mitted on the bus. Due to the option to transmit messages
at any point in time and the arbitration process of an event-
triggered system, it can be difficult to calculate the WCRTs.
For example, the generally accepted WCRT calculations for
the widely applied Controller Area Network (CAN) bus have
been shown to be incomplete only after 13 years [1, 2].

This paper proposes a virtual communication layer which
enables policy-based scheduling in time-triggered networks.
Figure 1 presents our framework, consisting of a design time
scheduling determining a slot to ECU assignment, and a
priority-based runtime scheduler, supporting message pre-
emption. It enables incremental changes and significantly
decreases the complexity of time-triggered systems. As the
introduced virtual communication layer complies with the
underlying time-triggered transmission scheme, it enables
mixed criticality systems supporting concurrent time- and
event-triggered communication.
FlexRay. We have implemented our framework for the time-
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Figure 2: FlexRay schedule with n slots in the static seg-
ment, dynamic segment, Network Idle Time (NIT), sym-
bol window and repetitive schedule containing c commu-
nication cycles.

triggered segment of the FlexRay bus. FlexRay is an auto-
motive communication system with a bandwidth of up to
10 Mbit/s, incorporating TDMA and an event-triggered seg-
ment into one schedule. In FlexRay, TDMA is called the
static segment and the event-triggered segment is called the
dynamic segment. A FlexRay schedule is organized into a
fixed number of cycles c. Each cycle is divided into static
and dynamic segment, as well as synchronization segments
(see Figure 2). Over the runtime of a FlexRay system, the
schedule is repeated infinitely.

Each cycle of the static segment is further subdivided into
time slots. The time-triggered communication in the static
segment allows for a straight-forward calculation of response
times. The priority-based arbitration in the dynamic seg-
ment, however, makes it difficult to calculate response times
[3]. By contrast, policy-based scheduling ensures strict pri-
orities per ECU and easy to compute WCRTs.
Contributions. This work proposes (1) an architecture for
policy-based scheduling of event-triggered messages in time-
triggered communication systems, (2) a set of scheduling al-
gorithms to schedule policy-based messages to time-triggered
slots, and (3) a prototypical implementation of this schedul-
ing approach for FlexRay.

Policy-based scheduling is achieved by adding a virtual
event-triggered layer on top of a time-triggered communi-
cation system. This virtual communication layer allows a
higher flexibility in message sizes and lower latencies than
the underlying time-triggered system through message pre-
emption. Application layer messages can be scheduled event-
triggered, based on predefined policies such as priority-based
scheduling, and guarantees for message deliveries can be
given. Worst-case response times can be calculated for all
messages and the schedulability of the system can be easily
verified.

The proposed approach is fully compatible with time-
triggered communication systems and can be used side-by-
side on the same physical bus, without interference. Changes
to and addition of new messages to the communication sys-
tem are simple, as recomputation of the time-triggered sched-
ule can be avoided.

Policy-based scheduling has been implemented for the
time-triggered FlexRay static segment. This is achieved by
assigning slots to ECUs, instead of messages. Messages are
then scheduled per ECU at run-time, based on priority and
arrival time. To integrate the policy-based scheduling with
existing FlexRay toolchains, standardized FIBEX input and
output is employed. Finally, the developed framework has
been evaluated regarding bandwidth utilization and WCRTs.
Organization of this paper. This paper is organized as
follows. Section 2 gives an overview over existing literature
on the combination of time- and event-triggered systems, as
well as scheduling for the FlexRay static and dynamic seg-

ment. Furthermore, the differences of policy-based schedul-
ing to all existing approaches are discussed. Section 3 in-
troduces the architecture of policy-based scheduling and dis-
cusses possible runtime scheduling algorithms. In Section 4, a
heuristic algorithm and an Integer Linear Program (ILP) ap-
proach to policy-based scheduling for FlexRay are proposed.
Section 5 presents several tests to evaluate the performance
of policy-based scheduling on FlexRay, in comparison to con-
ventional scheduling algorithms. Section 6 summarizes the
proposed approach and concludes.

2. RELATED WORK
In the following, an overview of existing time-triggered ar-

chitectures and their approaches to scheduling, is given. Ad-
ditionally, timing analysis and scheduling algorithms for the
static and dynamic segment of conventional FlexRay are dis-
cussed. Other approaches for event-triggered scheduling in
TDMA systems are illustrated and differences to the pro-
posed approach are clarified.
Time-triggered architectures. A basic time-triggered ar-
chitecture is presented in [4]. Based on this time-triggered
architecture, scheduling algorithms have been developed, al-
lowing reliable and predictable transmission of data. Some
of these approaches consider the message transmission itself
[5, 6], while others follow a holistic approach and view the
message transmissions in context with the message generat-
ing tasks [7]. All of these approaches employ fixed timeslots,
as described in [4], and are thus limited in message lengths
and asynchronous scheduling capabilities.
FlexRay static segment. The analysis of time-triggered
systems concerning response times and scheduling has also
been conducted for the time-triggered static segment of
FlexRay. Multiple approaches have been proposed to sched-
ule messages in the conventional FlexRay static segment.
Based on the AUTOSAR standard, [8] proposes a heuris-
tic approach for scheduling messages, maximizing the band-
width utilization. This assumes, however, that all message
lengths equal the slot length and only one message is sent
in every frame. The problem of message fragmentation is
addressed in [9]. There, a heuristic and an ILP are used
to optimize the bandwidth utilization in the form of a bin
packing problem.

The optimization of message jitter and the number of
frames used in the system is the primary target in [10] and
[11]. As a measurement for the efficiency of the approach, jit-
ter and bandwidth utilization are employed. For optimiza-
tion of bandwidth, a Non-linear Integer Program (NIP) is
employed, while the jitter is optimized with an ILP.

A combination of task and message scheduling is addressed
in [12]. As a measure for efficiency, the control performance
of an example system is used, incorporating latencies and
jitters.
FlexRay dynamic segment. In addition to the analysis of
the FlexRay static segment, scheduling in the dynamic seg-
ment has been researched. The calculation of the WCRT for
the FlexRay dynamic segment, as proposed in [13], is highly
complex. A scheduling approach for the FlexRay dynamic
segment is proposed in [3]. There, the required number of
frame IDs and the message jitter is to be minimized. An ad-
ditional analysis of the FlexRay dynamic segment has been
presented in [14]. It considers cycle multiplexing as a method
to further reduce the number of required frame IDs. In con-
trast to the approaches above, this paper focuses on the static
segment and uses preemption for lower response times, as
well as introduces possibilities for multi-mode messages.
Event-based messages over TDMA. In [15], an event-



triggered layer that is virtually placed on top of the time-
triggered architecture from [4] is described. The approach
divides every time slot into two segments for time- and event-
triggered messages. This achieves a slightly higher flexibility
than a conventional time-triggered system, but assumes fixed
message lengths. The approach proposed in [16] adds arbi-
tration points to every slot of the time-triggered protocol in
[17]. Based on these approaches, response time evaluations
have been proposed in [18]. There, a set of parameters is pro-
posed, allowing a good estimation of the worst- and best-case
response times for an event-triggered communication layer in
a time-triggered system.

An approach to integrate event-triggered communication
with the FlexRay static segment is shown in [19]. How-
ever, this approach assumes one message per frame and a
message length equal to the frame size. Additionally, it is
assumed that the message deadline is always equal to the
interarrival time of the message. Interarrival times smaller
than the length of the schedule are not considered. This de-
pendency leads to an inversion in design. The static segment
needs to be modeled after the requirements of the event-
triggered layer, as both layers are not independent. In case
the parameters of the event-triggered layer are changed, the
time-triggered layer needs to be regenerated, or guarantees
might be lost.
Hierarchical Scheduling. With the rising complexity of
real-time systems, compositional design becomes increasingly
important. By dividing a system into subsystems and arrang-
ing these in a scheduling hierarchy, the scheduling of such
complex systems can be simplified. An approach for hierar-
chical scheduling has been proposed in [20] and a comparison
of different hierarchical scheduling techniques is presented in
[21]. In comparison to hierarchical scheduling, policy-based
scheduling does not require a scheduling hierarchy. The given
communication system is scheduled in the traditional, flat
scheduling manner. In policy-based scheduling, the time-
triggered schedule is generated at design time, but filled with
event-triggered messages at runtime.
Our work. In this paper we present an approach to flex-
ibly schedule messages in a virtual event-triggered layer on
top of a time-triggered communication infrastructure. The
virtual event-triggered layer allows to transmit messages flex-
ibly, while the underlying time-triggered communication sys-
tem allows us to guarantee message deadlines. In contrast to
the work above, we support messages of any length, as well as
multiple messages per slot. Furthermore, interarrival times
of messages can be chosen freely and multiple messages can
be sent per schedule repetition. Oversampling of messages is
reduced and preemption can be utilized for faster response
times. The proposed approach offers flexibility, as messages
can be changed easily, without the need for reconfiguration of
the complete system. The FlexRay static segment has been
used to implement the approach and to verify its feasibility.
Additionally, the system proposed in this paper can be used
in parallel with a conventional FlexRay system, sharing the
same physical bus, without interference.

3. ARCHITECTURE
This section outlines how time- and event-triggered sys-

tems are integrated in policy-based scheduling. While policy-
based scheduling is applicable to time-triggered systems in
general, we use FlexRay terminology to describe our system.
No definitions and parameters from the FlexRay standard
have been altered, thus achieving full compatibility to con-
ventional FlexRay systems. Instead, we reserve time slots
in the static segment and assign these to ECUs. We call

the messages used to reserve a time slot in the static seg-
ment wrapper Protocol Data Units (PDUs). In the proposed
approach, a wrapper PDU always fills the static slot in its en-
tirety. These wrapper PDUs are coordinated by the commu-
nication layer introduced for policy-based scheduling. This
additional layer is logically placed between the application
layer and the conventional FlexRay communication layer of
every ECU (see Figure 1).

At runtime, messages from the application layer can arrive
at any point in time, i.e. event-triggered, and the policy-
based communication layer is sorting these messages into
wrapper PDUs and thus FlexRay static slots. This way, a
virtual event-triggered layer is created on top of the time-
triggered FlexRay static segment. To reserve sufficient time
slots for all messages to be transmitted, the time-triggered
schedule needs to be calculated, based on the message param-
eters of the application layer. This calculation is described
in Section 4. With this calculation and the correct mapping
of event-triggered messages to time slots, it can be ensured
that every deadline in the system is satisfied.

3.1 Runtime Scheduling Algorithm
In the following, the scheduling of messages into timeslots

at runtime is explained. The additional communication layer
is required to add application layer messages to slots of the
static segment. This is performed according to a fixed al-
gorithm on the ECU at runtime. Many suitable scheduling
algorithms are available in literature, such as First Come
First Serve (FCFS), Round Robin (RR), Shortest Message
First (SMF), Priority-based, Multi-Level Queues and Multi-
Level Feedback Queues. Based on the requirements existing
in vehicles, a suitable scheduling algorithm needs to be found.

In vehicles, some messages always have a higher priority
than others. Consider an Anti-lock Braking System (ABS)
system versus a park distance sensor. Even when parking,
the vehicle brakes need to be able to react reliably. This
makes schemes like FCFS, RR and SMF unsuitable. These
schemes would not represent the priorities in vehicles ac-
curately. As multi-level feedback queues are also changing
this priority behavior, they do not fulfill the requirements
for vehicles. A multi-level queue could be used if the indi-
vidual queues are served in a strict priority-based fashion.
This, however, equals priority-based scheduling. Thus, the
scheduling of event-triggered messages to timeslots is chosen
to be strictly priority-based with FCFS, if two messages of
the same priority are queued. The priorities for messages can
be determined in any fashion, as required by the user.

For the application shown in the following, priorities are
generated based on Earliest Deadline First (EDF) scheduling,
with longer messages having higher priority, if two deadlines
are equal. The strict adherence to priorities in the policy-
based scheduling allows for mixed criticality applications to
be implemented and to guarantee the delivery of all messages
within their required deadline.

3.2 Multi-Mode Applications
The proposed framework is designed such that different

priorities per message can be considered at various times.
This allows to integrate multi-mode applications for differ-
ent situations the vehicle experiences very efficiently. For
example, the automatic parking assistant has a higher pri-
ority when parking the vehicle, than when driving on the
highway. By contrast, adaptive cruise control has a higher
importance on the highway than in parking situations. The
proposed approach allows to define multiple modes for dif-
ferent situations the vehicle experiences. These modes are



required to be exclusive and non-overlapping. The algorithm
automatically selects the minimum set of messages required
to transmit all data without deadline violations. Due to the
inherent flexibility of policy-based scheduling, this results in
a smaller amount of messages for the overall schedule than
in a conventional scheduling approach where oversampling is
required.

3.3 Wrapper PDUs
When placing application layer messages into wrapper

PDUs and, consequently, into time slots, the borders of time
slots are factored out. The sum of all wrapper PDUs for
one ECU appears as one continuous communication chan-
nel to the application layer. This allows the transmission
of messages longer than the length of one static slot, e.g.
for diagnosis or programming of ECUs, by continuing mes-
sages in following timeslots. However, the loss of time slot
boundaries also leads to two issues. First, receiving ECUs
can not identify separate messages anymore, as there are no
time slots or other start/end indicators for messages inside a
wrapper PDU (Segmentation). Second, the implicit address-
ing scheme which is inherent to TDMA slots is lost (Address-
ing). Receiving ECUs have no possibility to identify which
type of message is transmitted or to which ECU a message
is addressed. To solve these two issues, an additional header
is introduced to be transmitted with every application layer
message. As this header introduces overhead into the system,
it needs to be as small as possible.

In the following, the issues are addressed and the fields of
the message header are introduced:
Segmentation. To distinguish two messages, a length field
is introduced into the header. This 8 bits long field allows to
specify the length of the following payload up to a maximum
of 255 bytes. This header can be placed in multiple positions,
such as in the beginning of every wrapper PDU, allowing a
higher bandwidth efficiency by combining the headers of all
included messages. This placement, however, reduces flexi-
bility, as all messages transmitted in one wrapper PDU need
to be known at the start of the wrapper PDU. Messages ar-
riving late could not be added. Placing the header in front of
every application layer message (see Figure 3) allows a higher
flexibility, as high priority messages arriving late can still be
added while the slot transmission is in progress.
Addressing. In a time-triggered system, the assignment
of messages to time slots also contains an implicit address-
ing scheme. Due to the placement of application layer mes-
sages into the continuous communication channel generated
by wrapper PDUs, this implicit addressing information is
lost. In TDMA, every transmitting ECU knows where each
message is to be transmitted and each receiving ECU knows
how to interpret a received message in a timeslot, as only one
type of message is allowed for transmission at any one posi-
tion in the schedule. To compensate for this, a message type
field is introduced into the header of every application layer
message. This is a 16-bit field, describing the type of the
message. The addressing is similar to the approach as it is
done in the FlexRay dynamic segment. A message type field
of 16-bit allows 65536 different message types. This amount
is sufficient for most FlexRay communication. It is the same
value as used in the FlexRay dynamic segment. With the in-
troduction of this field, the addressing information is restored
and the receiving ECUs are able to process the message.

In addition to the header in front of every application layer
message, a header of 8 bits length, called preemption indica-
tor (PI), is added to every wrapper PDU. This header allows
to implement preemption in a time-triggered system. In case

virtual communication layer:

m1 m3...m2 m2P
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m1

m3
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message arrival times:
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Figure 3: Preemptive scheduling of application layer mes-
sages for the proposed approach with continuous virtual
communication channel. The arrows mark arrivals of mes-
sages. Message m3 arrives after message m2, but the prior-
ity of m3 is greater than the priority of m2. The messages
do not need to be placed in consecutive slots.

a high priority message arrives, while a low priority message
is transmitting, the high priority message may interrupt the
lower priority message at the beginning of the next timeslot.
The preemption indicator is used to signal the number of
preempting messages at the beginning of a timeslot. The
preempting messages are transmitted first, afterwards, the
lower priority message is continued as illustrated in Figure 3.
This work does not consider non-preemptive scheduling. As
preemptive scheduling yields significantly lower latencies at
the cost of only minimal overheads in the waiting queues of
ECUs and slightly less net bandwidth on the bus, the non-
preemptive case does not add any advantages.

4. DESIGN-TIME SCHEDULING
In the following, a scheduling algorithm is developed which

allows the transmission of application layer messages in
event-triggered fashion. The scheduling algorithm creates a
time-triggered schedule for the policy-based communication
layer. This is based on the application layer messages to be
scheduled in the policy-based approach.

For the time-triggered layer, a schedule needs to be gen-
erated, incorporating all wrapper PDUs. This scheduling is
performed at time of implementation. Two approaches have
been developed for this contribution, a heuristic and an ILP.
While it is well established to use a heuristic for FlexRay
scheduling, the developed ILP shall serve as a benchmark
for the heuristic, showing the optimal solution to the given
problem. Both approaches are described in the following.

For both approaches, heuristic and ILP, minor differences
exist for the different FlexRay versions. While FlexRay 2.1A
requires that each slot in every cycle contains the same mes-
sage type, FlexRay 3.0.1 allows to assign different message
types to slots in different cycles (see Figure 4). The devel-
oped algorithms account for these differences.

In the following, the terms message and application layer
message refer to a message descriptor, including length, pe-
riod and deadline, not a specific message with content to be
sent on the bus.

The expected input to the scheduler is a set of application
layer messages to be scheduled. Additionally, the parame-
ters of the schedule need to be defined. These include the
number of static slots, the slot size, the number of cycles
and the cycle length, among others. A reservation for prede-



e1 e2 e3 e1 ... e2
dynamic 

segment
NIT

symbol 

window

e1 e2 e3 e1 ... e2
dynamic 

segment
NIT

symbol 

window

e1 e2 e3 e1 ... e2
dynamic 

segment
NIT

symbol 

window

..
.

FlexRay 2.1A:

1

2

c

1 2 3 4 5 6 n...

e1 e3 e1 e1 e3 ... e2
dynamic 

segment
NIT

symbol 

window

e2 e2 e2 e3 e2 ... e2
dynamic 

segment
NIT

symbol 

window

e2 e3 e3 e1 ... e2
dynamic 

segment
NIT

symbol 

window

..
.

1

2

c

1 2 3 4 5 6 n...

cy
cl

es
static slots

static slots

cy
cl

es

FlexRay 3.0.1:

Figure 4: Comparison of FlexRay 2.1A and 3.0.1 schedul-
ing. For FlexRay 2.1A we only consider one cycle to assign
an ECU. For FlexRay 3.0.1 the whole schedule is consid-
ered, as multiple ECUs can share one slot. The basis of
assignment is one frame.

fined time-triggered messages, which are transmitted within
the conventional FlexRay static segment can be added as
well. The slots occupied by these messages will not be used
to schedule wrapper PDUs, thus achieving coexistence with
conventional FlexRay.

The deadline of every message is used as a priority indica-
tor, with a shorter deadline equaling a higher priority. This
ensures that all deadlines are satisfied, as the message queues
are ordered along message deadlines.

The set M of application layer messages m to be scheduled
is described by the following tuple:

m = (N, s,R, lm, tmp , tmd ),m ∈M (1)

with

• N : name of m, a unique string in the FlexRay cluster,

• s: sender, name of the ECU sending m,

• R: receivers, list of receiving ECUs,

• lm: length of m in bytes,

• tmp : period of m in milliseconds,

• tmd : deadline of m in milliseconds.

All messages are sent and received by an ECU e, with e
being part of the set of all ECUs in the cluster, e ∈ E.

A schedule is defined by the following parameters:

• c: number of cycles, required,

• n: number of static slots per cycle, required,

• tdc: duration of cycle in milliseconds, required,

• tds: duration of static slot in milliseconds, required,

• b: length of one static slot in bytes, required,

• Mp: set of predefined messages, optional.

Based on these inputs, both scheduling algorithms, heuristic
and ILP, described in the following, calculate an assignment
of static slots to ECUs. To ensure compatibility to conven-
tional FlexRay, a minimal set of placeholder messages is gen-
erated from these assignments that is used to reserve slots in

the FlexRay schedule. These place holder messages are the
described wrapper PDUs.

4.1 Heuristic
This section describes the heuristic approach to policy-

based message scheduling. An algorithm has been developed,
using the application layer messages and schedule parame-
ters as input to calculate the assignment of static slots to
ECUs. The required number of slots per cycle and frames
for the complete schedule are determined for FlexRay 2.1A
and FlexRay 3.0.1, respectively. The heuristic processes the
input data in two steps:

1. slot distance calculation

2. slot allocation

In the first step, the maximum distance between two slots for
every application layer message of an ECU is calculated, such
that the deadline for every message is met. The second step
allocates all slots into the schedule with the given parameters,
adjusting message and slot distances, such that all messages
fit the schedule.
1) Slot distance calculation. The first part of the heuris-
tic calculates the required number of slots and frames for
the schedule, based on the bandwidth requirements of each
ECU. The bandwidth is determined by the periods, sizes and
lengths of messages, as well as their deadlines. A value diste
is calculated for every ECU e, describing the distance two
consecutive slots can be allocated apart, such that all band-
width and deadline requirements are fulfilled.

The upper bound of the WCRT rdiste(m) for a message in
terms of slot lengths needs to be calculated. This calculation
is based on the distance between two slots (see Equation 6)
for an ECU and the WCRT rhp(m) of all higher priority
messages on this ECU:

∀e ∈ E,∀m ∈Me : rdiste(m) = diste + (diste · rhp(m)) (2)

The utilization of all higher priority messages describes
the delay rhp(m) caused to a message and is based on the

deadline tmd of message m, as well as the period tm̃p and the

length lm̃ of all higher priority messages m̃ of message m.
This delay is normalized to the slot length b:

rhp(m) =
1

b
·

( ∑
m̃∈hp(m)

(
tmd
tm̃p
· lm̃
))

(3)

The response time rdiste(m) for every message m needs to
be shorter than the deadline tmd and the distance diste be-
tween two slots needs to be lower than the maximum distance
between two slots for one ECU:

rdiste(m) ≤ tmd (4)

diste ≤ diste,max (5)

The maximum distance is computed from the available
number of slots n in a cycle and the required number of
slots sc,e for an ECU e.

diste,max =
n

sc,e
(6)

The required number of slots sc,e is determined by the
overall number of slots slotse for one ECU, divided by the



number of cycles c. As only complete slots can be allocated,
this number needs to be an integer value. To ensure a suf-
ficient number of slots in the cycle, this value is rounded to
the next higher integer number:

sc,e =

⌈
slotse

c

⌉
(7)

The required number of slots per ECU slotse is based on
the duration of the schedule tdc · c, the periods tmp of all
messages m ∈Me and the lengths lm of these messages:

slotse =
1

b
·
∑

m∈Me

tdc · c
tmp

· lm (8)

This describes the bandwidth requirement of the ECU. The
bandwidth is normalized to one slot length b.

Based on these equations, the maximum distance between
two consecutive slots of one ECU is defined by the maxi-
mum distance that satisfies the deadline requirement of all
messages m ∈Me for this ECU:

arg max
diste∈N

{rdiste(m) ≤ tmd ∀m ∈Me} (9)

2) Slot allocation. After the distances between messages
have been determined for each ECU, the allocation of slots
is described in the following, as depicted in Figure 5 for
FlexRay 2.1A. These steps are executed for all ECUs in
ascending order of their previously calculated slot distance
diste. The slot allocation starts with the first free slot in the
cycle (1). Based on this slot, all other slots are allocated
in distance diste apart (2). This placement also adjusts for
the dynamic segment, Network Idle Time (NIT) and symbol
window. The slot allocation completes when sufficient slots
are placed throughout the complete schedule in distance diste
(3). This also considers the distance between the last slot and
the first slot of every schedule to adjust for the final dynamic
segment, NIT and symbol window. Should any of these steps
fail for any ECU, because the shortest available slot distance
is too long, a deadline violation may occur and the system
is considered not schedulable (4). In case all steps succeed,
the algorithm terminates with the correctly allocated results
(5).

The slot allocation for FlexRay 3.0.1 is performed similarly
to the calculations for FlexRay 2.1A. In contrast to FlexRay
2.1A, FlexRay 3.0.1 supports the assignment of identical slots
in different cycles to different ECUs (see Figure 4). This al-
lows more flexibility in allocating the slots. To accommodate
this flexibility, the algorithm has been adjusted to calculate
the slots over one complete schedule (c · n slots), instead of
one cycle (n slots). This results in a few additional checks to
cover the dynamic segment, NIT and symbol window at the
end of every cycle. As FlexRay 3.0.1 does not require the as-
signment of a slot in every cycle, diste might be longer than
the shortest deadline for an ECU. To accommodate this, the
algorithm continuously checks the deadline constraint when
allocating slots. Additionally, the end condition (see Figure 5
(3)) has been adjusted to incorporate a full schedule instead
of one cycle.

4.2 ILP
In the following, an ILP formulation which determines an

optimal slot to sender, or frame to sender, assignment for
FlexRay 2.1A or 3.0.1, respectively, is presented. While an
ILP allows to find the optimal solution to a given problem,
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Figure 5: FlexRay 2.1A scheduling algorithm for slot allo-
cation. Based on the initial slot found in the first part of
the algorithm, other slots are allocated a maximum of diste
slots apart. The function isFree(x) determines if slot x is
in use by another ECU and the function start(x) returns
the start time of slot x. These calculations are performed
for every ECU.

it does not scale well. Thus, the proposed ILP shall be used
as a benchmark, evaluating the performance of the heuristic,
wherever possible.

The ILP determines a schedule with minimal bandwidth
utilization. The ILP approach is based on the following con-
stants and variables:

• nall =
⌈

tdc
tds

⌉
: theoretical number of slots fitting in one

cycle including the dynamic segment.

• Pe: set containing all message periods tmp for an ECU
e.

• xk,e: binary variable indicating if slot/frame k is occu-
pied by ECU e (1) or not (0).

To support both FlexRay 2.1A and 3.0.1, the constant ntot

is introduced, defining the number of frames the ILP consid-
ers. For FlexRay 2.1A ntot equals the number of slots for one
cycle, as slots might not be shared between senders:

ntot = nall (10)

For FlexRay 3.0.1 ntot equals the number of frames for all
cycles allowing to divide the slot among multiple ECUs:

ntot = c · nall (11)

The objective of the ILP formulation is to minimize the
number of occupied frames:

min
∑
∀e∈E

∑
k∈{0,1,..,ntot−1}

xk,e (12)

For a certain message period tmp , a minimal number of
slots has to be assigned to fulfill the bandwidth and deadline
requirements of all messages m with periods of tmp . This is
considered for every message m of every ECU e in Equation
13. The number of slots required is determined by the length
of the message lm, normalized to one slot length b. The



right-hand side also considers preemption of messages m by
higher priority messages m̃ with a deadline tm̃p shorter than
the message deadline tmp . The deadline requirement is en-
sured on the left-hand side by placing at least one slot within
every period tmp . To ensure that the first and the last frame
also keep the maximal distance, the modulo operation % en-
sures that also the first element in the schedule is considered:

∀e ∈ E, i ∈ {0, 1, .., ntot − 1}, tmp ∈ Pe:∑
k∈{i,...,i+

⌊ tmp
tds

⌋
−1}

xk%ntot,e ≥

⌈ ∑
m̃∈{m̃|tm̃p ≤tmp ,m̃∈Me}

tmp
tm̃p
· l

m

b

⌉ (13)

For all ECUs, no frames shall be placed outside the static
segment:

∀e ∈ E, k ∈ {0, 1, .., ntot − 1}, ∃k%nall > n:

xk,e = 0 (14)

For every frame in the schedule, it needs to be ensured
that two ECUs cannot occupy the same frame:

k ∈ {0, 1, .., ntot − 1}, ∃k%nall < n:∑
∀e∈E

xk,e = 1 (15)

The solution of the ILP delivers the assignment of slots
and frames to ECUs for FlexRay 2.1A and FlexRay 3.0.1,
respectively. This is used to reserve timeslots in the FlexRay
static segment, in the form of wrapper PDUs.

5. EXPERIMENTAL RESULTS
In this section, the policy-based scheduling is evaluated

and compared against the conventional approach from [9].
For this purpose, a FlexRay scheduling framework, includ-
ing the policy-based heuristic and ILP scheduling, has been
implemented in Java, allowing to compare the scheduling al-
gorithms to the framework from [9]. The developed schedul-
ing framework is connected to the development toolchain via
Field Bus Exchange Format (FIBEX). FIBEX is a standard-
ized data format for the exchange of data related to bus
systems between tools. It is based on eXtensible Markup
Language (XML) and is the standard data exchange format
for FlexRay systems. The proposed system supports import
and export for FIBEX versions 2.0.1 and 3.1.

To evaluate the performance of the developed algorithms
for FlexRay, the input parameters are varied and the output
is surveyed. The performance is measured in terms of band-
width and WCRT. Additionally, the computational perfor-
mance of the different approaches is evaluated. The input
to all algorithms consists of externally generated and ver-
ified FlexRay parameters, as well as a set of messages to
be scheduled. To accommodate for statistical variations in
the message sets, multiple sets have been generated for every
test. The FlexRay system is defined by a cycle duration tdc of
5ms, 62 static slots per cycle (n), a slot size b of 42 bytes and
64 cycles per schedule (c). The set of messages is generated
randomly from a set of given parameters. The parameters
are varied for the different testcases and described below.

The metrics for comparison are the average number of
slots and frames of the scheduling runs, for FlexRay 2.1A

and FlexRay 3.0.1, respectively. As the number of slots and
frames represent the bus utilization, a lower number of slots
and frames is better. In addition to the average number of
slots and frames, error margins are given in the form of the
standard deviation from the average value over the set of
generated schedules.

It is important to note that the conventional scheduling
approach assumes an AUTOSAR architecture, requiring one
byte at the beginning of every slot for administrative infor-
mation and is thus working on a slot length of b = 41 bytes.
Similarly, the policy-based approach requires one byte as pre-
emption indicator and thus also works with b = 41 bytes
available for payload.

For all testcases, multi-mode messages have been em-
ployed. The messages have been generated such that 50%
of all messages in a testcase have two modes. For all multi-
mode messages, the period and size of a message may vary
for the modes. However, it is guaranteed that a longer or
equal period always contains a longer or equal message size.

5.1 Size Variations
To determine the performance of policy-based message

scheduling under different message lengths, the average size
of all messages in the system is varied. This is achieved by
adjusting the distribution of message sizes, starting from the
distribution used in [9]. The test is repeated multiple times,
as the set of messages is generated in a statistical process.
The results for this test are shown in Figure 6. The size dis-
tributions of all messages in the system are varied and sorted
by increasing average message size. The last two sets of
messages include messages with length longer than one slot.
This can be used for future applications, such as a combina-
tion with Ethernet and Audio Video Bridging (AVB)/Time-
Sensitive Networking (TSN). The message length used here
is 64 bytes, the minimum length of an Ethernet frame.

As it can be seen from Figure 6, the conventional schedul-
ing fails to process messages longer than one slot length, thus
failing to schedule the given sets of messages. All shown test-
cases with size variations are based on 58 different periods.
Policy-based scheduling can schedule any message length, in-
dependent from the slot length in the static segment.
FlexRay 2.1A. As can be seen in Figure 6a, for smaller mes-
sage sizes, the policy-based scheduling performance about
matches the performance of conventional scheduling. For
larger message sizes of more than one slot length, the conven-
tional scheduling fails to perform its task, while the policy-
based approach can continue to schedule messages. The min-
imum difference between the two approaches is 2%, while the
maximum difference is 8.7%. However, for larger message
sizes, a comparison is not possible, as the conventional al-
gorithm fails to schedule these messages. This is due to the
fact that in a conventional FlexRay scheduling algorithm, the
maximum allowed message size is equal to the slot length. By
contrast, the policy-based message scheduling can schedule
messages of arbitrary lengths. While the FlexRay system is
not fully utilized, the policy-based scheduling will always be
able to accommodate messages, even if the longest message
length is larger than one slot length.
FlexRay 3.0.1. Figure 6b shows the scheduling results
for FlexRay 3.0.1. For smaller message sizes, the policy-
based scheduling performance almost matches the conven-
tional scheduling. For larger message sizes of more than one
slot length, the conventional scheduling fails to find a solu-
tion, while the policy-based approach can continue to sched-
ule messages.

Due to the structure of FlexRay 3.0.1, being able to as-
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Figure 6: Number of slots and frames required for schedul-
ing with FlexRay 2.1A and FlexRay 3.0.1 for different av-
erage message sizes. The system contains 100 different
messages and 5 ECUs.

sign frames instead of slots, the complexity of the problem
size increases significantly. The increase in complexity of the
problem leads to an exponential growth of the constraints
and variables in the ILP. Thus, the comparison for FlexRay
3.0.1 is based on the heuristic approach for conventional and
policy-based FlexRay, as the ILPs for both approaches can
not be calculated with reasonable resources (see Section 5.4).
For small messages, the performance difference between the
two approaches varies between 0.4% and 13%. Additionally,
like in FlexRay 2.1A, the conventional approach is not ca-
pable of scheduling messages larger than one slot size, leav-
ing the larger message sets as not schedulable. Again, the
policy-based approach can utilize its continuous communi-
cation channel to also schedule messages with length longer
than one slot and thus is able to schedule all given message
sets.

5.2 Latency
Besides the higher flexibility in message lengths, the policy-

based scheduling also allows lower WCRTs for all messages
in the system than a purely time-triggered system. To verify
policy-based scheduling with regard to deadlines and to cal-
culate WCRTs, we employ Real-Time Calculus (RTC) [22].

RTC is an extension of network calculus, tailored to real-time
systems [23]. Similar to network calculus, real-time calculus
allows to compute the arrival and service curves for a commu-
nication system. Based on the Modular Performance Anal-
ysis [24], implemented in the RTC Toolbox, the proposed
approach is analyzed, to verify that the deadlines of all mes-
sages are met. The service and arrival curves are generated
from the slot and frame assignment determined per ECU
by the proposed algorithm and the set of messages supplied
by the user, respectively. Based on the slot and frame as-
signment from the proposed algorithm, RTC calculates the
WCRTs for all messages on all ECUs. These WCRTs are
compared to the message deadlines. This way, it can be en-
sured that all messages meet their deadlines at any point in
time.

Additionally, the WCRTs are compared to those of a con-
ventional FlexRay system. The results for FlexRay 2.1A
and FlexRay 3.0.1 are shown in Figure 7. In conventional
FlexRay scheduling, a message can only be transmitted at
a fixed place in the TDMA scheme. Thus, the WCRT of
any message is equal to its period, or the oversampling re-
quired by the scheduling algorithm. As we are using a set
of periods which does not require oversampling, the WCRTs
for conventional FlexRay are equal to the message periods,
which in turn, are equal to the message deadlines, for both
heuristic and ILP. From Figure 7a, it can be seen that in
policy-based scheduling, the latencies for all messages are
significantly shorter than the deadlines achievable in the con-
ventional scheduling approach. This holds for all messages
on all ECUs, regardless of their size or deadline. This is due
to the flexible EDF scheduling and the implemented preemp-
tion capabilities. As messages are not bound to timeslots, far
lower worst-case latencies can be achieved. Messages with
short deadlines always have a higher priority and can be
transmitted first, while messages with longer deadlines are
queued. As slots can be allocated more flexibly in FlexRay
3.0.1, compared to FlexRay 2.1A, the differences in latency
between policy-based scheduling and conventional schedul-
ing are smaller (see Figure 7b). However, in absolute terms,
improvements of policy-based scheduling over conventional
FlexRay are still significant, especially for longer message
deadlines. Figure 7 omits the ILP approach to policy-based
scheduling. The results are in the same range as the results
for the heuristic approach.

5.3 Period Variations
The second relevant parameter of the message distribu-

tions is the set of periods used for the message generation. A
higher set of periods allows more flexibility, as the applica-
tion developer does not require to adjust his application to
the communication system, but can freely schedule the ap-
plication, as required. This can make control algorithms and
networks more efficient, as less oversampling and messages
are required to reach stable operation. The size distribution
used for this testcase is taken from [9]. The number of pe-
riods has been increased for different message sets, to verify
the influence of this parameter on the performance of policy-
based scheduling, compared to conventional scheduling.

Conventional FlexRay is optimized for a set of periods de-
fined in the FlexRay standard. This set has been used as a
starting point and further periods have been added for other
sets. For a cycle time tdc of 5ms, the basic set of periods
is defined as 5ms, 10ms, 20ms, 40ms, 80ms, 160ms, 320ms.
All periods are integer multiples of one cycle length, as the
conventional scheduling algorithm, in contrast to the policy-
based scheduling, is not capable of scheduling fraction pe-
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Figure 7: Exemplary worst-case response time (WCRT)
analysis for FlexRay 2.1A and FlexRay 3.0.1 for heuris-
tic scheduling of policy-based approach and conventional
scheduling. The policy-based scheduling shows a signifi-
cant improvement in latencies for both FlexRay versions
and all messages in the system.

riods. The results for this test are shown in Figure 8 and
discussed in the following.
FlexRay 2.1A. When comparing the policy-based approach
to the conventional FlexRay scheduling, the performance for
a low number of periods is expectedly lower, as the conven-
tional algorithm is optimized for this application (see Figure
8). However, when crossing a threshold of 30 different peri-
ods in the system, the policy-based approach performs only
slightly worse than the conventional algorithm. Although
having a smaller net bandwidth, due to overhead in the mes-
sage headers, performance is nearly equal for a high amount
of different periods. It is to note that this testcase is limited
to integer periods, as fraction periods cannot be processed by
the conventional scheduling algorithm and thus have no basis
for comparison. This limits the policy-based approach in its
performance. As it is common in combined time- and event-
triggered systems, the policy-based approach is a trade-off
between the bus utilization on the one hand and lower la-
tencies and increased flexibility, manifesting e.g. in larger
messages, on the other.
FlexRay 3.0.1. Due to the complexity of computations,
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Figure 8: Number of slots and frames required for schedul-
ing with FlexRay 2.1A and FlexRay 3.0.1 for different
numbers of periods. Based on the shown performance dif-
ferences, the typical use cases for the policy-based schedul-
ing would start at 30 different periods and beyond.

this comparison focuses on the heuristic approaches of con-
ventional and policy-based scheduling. The ILP for policy-
based scheduling could only be performed for the first three
sets of messages, which have a lower count of periods.

Figure 8b shows the comparison between the two ap-
proaches for FlexRay 3.0.1. The more flexible slot assign-
ment in FlexRay 3.0.1 allows the policy-based scheduling an
increase in performance, compared to FlexRay 2.1A. The dif-
ference in performance between the conventional and policy-
based scheduling falls from 19.1% for the set of periods opti-
mized for conventional FlexRay to 5.7% for a larger selection
of periods. These testcases show the potential of the policy-
based algorithm. With policy-based scheduling, the user can
select any set of periods and is not limited by the commu-
nication system. Even non-integer periods are supported by
policy-based scheduling, which is not shown here for the sake
of comparison to conventional FlexRay.

The flexibility gained by employing the policy-based
scheduling approach reduces the design effort for a commu-
nication system significantly, as it can be adjusted to the
applications. Additionally, the latency is lowered and larger
messages sizes can be transmitted. Policy-based scheduling



can also be used in prototyping, when messages in a system
change often, as it is not required to always generate a new
TDMA schedule, whenever one single message changes.

5.4 Computational Performance
As the runtime scheduling of application layer messages to

the virtual communication layer is limited to a priority queue,
the computational and memory overhead on the ECUs at
runtime is minimal. By contrast, the design time scheduling
solves the algorithms presented in the previous sections and
exhibits varying performance, depending on the FlexRay ver-
sion and testcase involved. The heuristic approach to policy-
based scheduling achieves results in a short amount of time,
with the given number of messages per cluster. A FlexRay
2.1A cluster, as shown in this section, can be calculated in
about 10 milliseconds, a FlexRay 3.0.1 cluster requires 570
milliseconds on average. The computations have been per-
formed on a workstation with an Intel Xeon quad-core pro-
cessor with 3.2 GHz and a 64-Bit Java Virtual Machine.

As solver for all policy-based ILPs, SAT4J has been em-
ployed [25]. The runtime of the ILP has been limited to
15 minutes for one FlexRay cluster. In case no solution is
found within this time frame, the results have been discarded.
Due to the higher complexity and exponentially higher num-
ber of variables in the ILP for FlexRay 3.0.1 computations,
the requirements, especially on the available main memory,
are much higher. A high performance computing cluster
has been employed to solve these computations, including
4 nodes with 2 Intel Xeon octa-core processors with 2.6 GHz
each. The nodes are networked over a 60 Gbps InfiniBand
connection and each node contains 192 GB of main mem-
ory, allowing to parallelize the computations and boost the
main memory available per ILP. We allowed up to 22 GB
of main memory for each ILP to achieve the results in this
section. This sets the bound for scheduling at 21 periods,
as shown in Figure 8. To schedule a larger set of periods, a
larger amount of main memory per ILP process is required.
While the performance requirement for the ILP seems high,
it is to note that the ILP is only used as a benchmark in this
paper. As shown, the performance of the developed heuristic
almost matches the performance of the ILP. Thus, in a pro-
duction environment, the heuristic would be used, being able
to process FlexRay clusters on standard computer equipment
within milliseconds.

6. CONCLUSION
This paper proposes a policy-based scheduling architecture

to integrate a virtual event-triggered communication layer
into time-triggered communication systems. The policy-
based layer is designed to provide asynchronous message
transmissions with preemption. In this context, simplified
verification of worst-case response times (WCRT) for appli-
cation layer messages is enabled. A set of algorithms is pro-
posed to schedule policy-based messages in time-triggered
systems while ensuring coexistence with existing TDMA
communication. An implementation to integrate the pro-
posed approach into the FlexRay static segment has been de-
veloped. Based on this implementation, multiple tests have
been carried out to evaluate the performance of policy-based
FlexRay. The results illustrate a higher flexibility in message
size and period selection as well as lower end-to-end latencies
with an acceptable trade-off in bandwidth utilization.

Future work comprises the integration of AVB and TSN
into our framework for seamless combination of different bus
systems in future in-vehicle communication architectures.
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