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ABSTRACT
Large battery packs consisting of a high number of cells
are essential in electric vehicles as well as in smart grids as
stationary energy buffers. In this context, active cell balanc-
ing techniques improve the lifetime and capacity of battery
packs significantly by equalizing charge at runtime. Mod-
ern balancing circuits rely on switching schemes to transfer
charge between cells via energy storage elements such as in-
ductors or capacitors. Verifying correct functionality of com-
plex architectures can become a non-trivial task where cir-
cuit and control have to be considered concurrently. For this
purpose, we provide a framework for the verification of bal-
ancing architectures, using a methodology that takes advan-
tage of graph search algorithms. While this paper focuses on
inductor-based architectures, the proposed approach might
also be extended to other storage elements such as capac-
itors or transformers. The experimental results based on
several case studies give evidence that a manual verification
becomes impractical and our framework is capable of either
proving correctness or delivering a counter-example.

Categories and Subject Descriptors
B.7 [Integrated Circuits]: Design Aids—verification

General Terms
Design,Verification

Keywords
Battery,Architecture,Cell Balancing

1. INTRODUCTION
Environmental changes and shortage of fossil energy

sources are main reasons for an increased interest in elec-
tric power solutions. Renewable energy from solar or wind
might be directly converted into electric power and fed into
the electricity grid. However, due to the volatility of renew-
ables, electric energy buffers become necessary. While there
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Figure 1: Illustration of a battery pack with series-
connected cells. In order to equalize the SoC of cells,
charge is transferred via inductors (as energy storage el-
ements) using the balancing circuit with MOSFETs that
control the current flow.

are many approaches to buffer electric energy, stationary
batteries are considered as important components in decen-
tralized smart grids. To further reduce the dependency on
fossil fuels, electric vehicles are a sustainable transportation
solution where efficient and cheap battery packs are a crucial
component.

Battery packs for smart grids and electric vehicles often
consist of a high number of cells. These might range from
small cylindrical cells that are commonly used in notebook
computers to pouch cells that can weigh more than 1kg.
To achieve a high power and energy density, Lithium-Ion
(Li-Ion) cells are used in electric vehicles while Nickel-Metal
Hydride (NiMH) cells might be used in stationary storage
systems. Independent of the underlying chemistry, cells are
commonly connected in series to provide a desired power
output of battery packs, see Figure 1b. Note that cells in
parallel increase the pack capacity and mutually equalize
charge by default such that they are considered in the re-
mainder of the paper as one single cell (which is also known
as brick).

One major challenge in battery pack design with series-
connected cells is charge balancing. Among the cells exists
a certain variation in terms of capacity that depends on the
production process. This variation might even increase over
operation time as the cells age due to uneven heat distribu-
tion along the pack. In case the cell with the lowest capacity
is discharged, the entire battery pack cannot be used any-
more even if other cells still have charge. In this case, the
capacity of the entire battery pack is reduced significantly.
See Figure 1a, where the third cell with the lowest SoC might
become a bottleneck.

As a remedy, active cell balancing solutions implement



additional electric circuits, see Figure 1c, that are capa-
ble of transferring charge in order to equalize the State-of-
Charge (SoC) between cells and increase the usable capacity
of a battery pack. While there exist many variants for ac-
tive cell balancing, this paper focuses on inductor-based so-
lutions which are more efficient than other approaches but
also require a more complex control. Using sophisticated
architectures, the balancing efficiency can be significantly
increased, enabling also, for instance, direct charge transfer
between cells that are not adjacent. However, with growing
complexity, correctness of the architecture cannot be deter-
mined manually in an efficient manner.
Contribution of the paper. A verification of cell balanc-
ing architectures becomes necessary to guarantee the cor-
rect functionality. This correct functionality ensures also
that, for instance, hazardous configurations like short cir-
cuits will never occur during operation. In case of growing
complexity of balancing circuits and control schemes, man-
ual verification becomes infeasible due to the high amount
of scenarios. Note that a manual verification is tedious and
might be error-prone, preventing the rapid development of
new cell balancing architectures with specific requirements.
As a remedy, this paper proposes a framework for the auto-
matic verification of active cell balancing architectures.

The proposed methodology performs the verification in
four steps: (1) First, the circuit is transformed into a graph,
capturing all necessary characteristics of electric compo-
nents. (2) The graph is then modified for each phase of
the charge transfer. (3) Using the modified graphs, current
flows in each phase are determined by a graph search algo-
rithm. (4) Finally, the flows are compared with a set of rules
that determine whether the circuit satisfies all requirements
or certain violated constraints exist. Such a verification is
carried out for a predefined set of scenarios, making it possi-
ble to extend the verification results to large battery packs,
consisting of a high number of cells.

Using the proposed methodology, a framework was devel-
oped that enables the fast design and verification of new
cell balancing architectures. Using the framework, experi-
mental results show the verification of existing architectures
from literature. For instance, for the architecture in [1],
the framework reveals a design flaw. Finally, we propose a
development board for inductor-based charge transfer that
might be used as platform for the design of novel balancing
architectures. Using our framework, we successfully verify a
complex non-neighbor transfer control scheme for the devel-
opment board.
Organization of the paper. The remainder of the paper
is organized as follows. Section 2 discusses related work, giv-
ing an overview of cell balancing architectures. In Section 3,
functionality of balancing architectures is explained and the
model for a proper specification of these architectures is in-
troduced. Section 4 proposes the verification methodology.
Finally, Section 5 outlines the developed software framework
and shows experimental results before the paper is concluded
in Section 6.

2. RELATED WORK
In the following, related work in the domain of design au-

tomation for battery packs as well as balancing architecture
design is presented. Finally, verification and simulation ap-
proaches in battery pack design are presented.
Battery Pack Design Automation. Battery packs re-
quire complex monitoring and control which is carried out
at run time by a Battery Management System (BMS). An
overview of BMSs and their tasks such as cell balancing is
given in [2]. In [3], a modular cell-array is proposed, includ-
ing intelligent management and exploiting several battery-
related characteristics.

Recently, several design automation techniques deal with

hybrid energy storage systems. These hybrid systems consist
of different storage elements such as battery packs or super-
capacitors. A major challenge is to design an algorithm that
efficiently distributes charge between the elements. This
has been applied to photo-voltaic systems [4], electric ve-
hicles [5], and grid applications [6, 7]. A further direction
of research is the optimization of hybrid battery packs by
choosing an optimal configuration [8]. These works consider
each battery pack as a black-box, i.e., cell balancing at bat-
tery pack level is not considered.
Balancing Architectures. Cell balancing is an important
task performed by BMSs in order to equalize the charge
levels of individual cells in a series-connected battery pack.
A review of the various cell balancing approaches is done in
[9, 10, 11]. Architectures are broadly classified into passive
and active cell balancing.

Passive cell balancing involves dissipation of excess energy
of an overcharged cell across a resistor until the charge levels
are equalized. The approach might be implemented with a
fixed resistor as in [12] or as a controlled shunting where
the balancing is performed with a switch or relay [13]. The
advantage of this technique is its ease of implementation
and low cost in comparison with the active cell balancing
techniques. However, the major disadvantage of passive cell
balancing is the low efficiency since energy is dissipated as
heat across the resistors.

In contrast to passive cell balancing, active approaches in-
crease the energy efficiency of battery packs significantly by
transferring excess charge from cells with high SoC to cells
with low SoC. This is done via temporary energy storage
elements such as capacitors, transformers, or inductors.

Capacitor-based cell balancing techniques use capacitors
to transfer charge between cells, see [14, 15, 16, 17]. This
method is characterized by simple control requirements and
low installation space. However, the major disadvantage
of this method is the inherent energy loss associated with
charging capacitors from cells.

Transformers might be used for transferring energy be-
tween cells as proposed in [18, 19, 20, 21]. Fast equalization
speed and non-neighbor charge transfers are main advan-
tages of transformer-based active cell balancing techniques.
However, transformers can be expensive, heavy, and might
require large installation space as well as complex control.

Inductor-based balancing is energy efficient compared to
capacitor-based approaches since there is practically no en-
ergy loss while charging. Compared to the transformer ap-
proach, inductors also require less installation space and are
lighter. Thus, inductor-based architectures are good candi-
dates for sustainable active cell balancing. Single-inductor
balancing architectures use only one inductor in order to
equalize the entire battery pack, see [22]. Cell pairs for
balancing are selected by the control algorithm and corre-
sponding switches associated with the cells are controlled
in order to exchange charge. This method lacks modularity
and does not allow concurrent charge transfers. In contrast,
architectures using more than one inductor are a promis-
ing approach, see [1, 23]. The main advantage of this ap-
proach is its energy efficiency and modular nature of the ar-
chitecture. Approaches range from simple architectures that
can perform charge transfers only between neighboring cells,
see [23], to complex architectures that enable non-neighbor
transfers and cell bypassing [1]. Due to their modularity,
inductor-based approaches are furthermore well-suited for
application in emerging smart cell architectures [24].
Verification Techniques. Besides the energy storage ele-
ments, a major component in active cell balancing architec-
tures are power MOSFETs that control the transfer. Contin-
uous advances in MOSFET design and development result in
improvements in terms of costs, size, and energy-efficiency.
As a consequence, complex active cell balancing architec-
tures with specific features such as non-neighbor transfers



become economical. On the other hand, complex balancing
circuits in combination with a sophisticated control scheme
prohibit a manual verification. Verification techniques for
active cell balancing mainly deal with low level electrical
properties as presented for instance in [25]. Like many other
works, this approach considers SoC models at cell-level in
case of balancing and does not consider the balancing ar-
chitectures. Other approaches from the domain of design
automation deal with the optimal design of balancing archi-
tectures [26], but do not focus on their verification.

The approach in [27] comes closest to the proposed work
in this paper. In [27], the model-checker SAL [28] is used to
verify a module-based balancing architecture that is based
on transformers. In contrast, we propose a framework that
uses graph search and, thus, might result in a better scala-
bility. In fact, early implementations of our framework used
a satisfiability (SAT) solver [29], resulting in a too large de-
sign space for the verified inductor-based architectures.

To the best of our knowledge, there exists no approach
for cell balancing architecture verification at system-level as
proposed in this paper. While a Simulation Program with
Integrated Circuit Emphasis (SPICE) simulation [30] cov-
ers only a specific scenario in a specific configuration, the
proposed work is capable of quickly analyzing all possible
scenarios and configurations of a balancing circuit. At the
same time, the proposed framework performs a high-level
verification and further optimization steps of the architec-
tures and their components would have to be carried out at
lower levels with tools such as SPICE.

3. CELL BALANCING
In the following, the functionality of cell balancing archi-

tectures is introduced, using the example architecture from
Figure 1. To formalize cell balancing, a model is presented
that describes the circuit and control.

3.1 Balancing Architectures
Active cell balancing for battery packs relies on architec-

tures that are capable of transferring charge between cells.
Such an architecture, which is a combination of a balancing
circuit and control scheme, is illustrated in Figure 2. The
architecture consists of battery cells Bi, a set of MOSFETs

M j
i , and inductors Li. A MOSFET is controlled like a switch

and it always has a diode between the drain and source that
blocks current in one direction. Note that if current shall
be blocked in both directions, it is necessary to use two
MOSFETs with opposing diodes.

By controlling the MOSFETs, charge can be transferred
between cells via the inductors as temporary energy stor-
age elements. For this purpose, MOSFETs can be either
closed (1), open (0), or controlled by PWM signals. For the
example architecture in Figure 2a, charge is transferred if
all MOSFETs are open except two that are controlled by
non-overlapping PWM signals as illustrated in Figure 2b.
The PWM signals result in four phases φ1 to φ4 that are
occurring periodically and ensure the charge transfer.

In phase φ1, the inductor L1 is charged from B1 via Ma
1 ,

which is temporarily closed. The duration of this charging
phase has to be chosen in consideration of the inductance
and cell voltage to ensure an optimal utilization of the in-
ductor. Note that the current flow does not pass any diode
since this would dissipate energy and unnecessarily reduce
the efficiency of the transfer.

In phase φ2, Ma
1 is opened and the charging of the in-

ductor is discontinued. This freewheeling phase is necessary
to account for the time that MOSFETs require to change
between their open and closed state and vice versa. With-
out phase φ2, it could happen that both MOSFETs Ma

1 and
Mb

1 would be closed for a short amount of time and a short
circuit over B1 and B2 via these two switches could occur.
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Figure 2: Example of a balancing architecture that illus-
trates a charge transfer between neighboring cells via an
inductor. The transfer is carried out in four phases φ1
to φ4 where appropriate PWM signals are applied to the
MOSFETs. Note that the balancing circuit is identical
to the circuit in Figure 1.

At the same time, it has to be ensured that each charged
inductor in the freewheeling phase can discharge via a diode,
otherwise the voltage of the inductor would immediately in-
crease and all energy is dissipated via the inductor itself,
damaging components.

In phase φ3, Mb
2 is temporarily closed and the inductor

discharges its energy into cell B2. In this discharge phase,
the current flow does not go via any diode to ensure an
energy-optimal transfer.

In the final phase φ4, Mb
2 is opened and the discharging

of the inductor is carried out via the diode. This blocking
phase ensures that the inductor is fully discharged, but at
the same time B2 cannot start charging the inductor in the
opposite direction once the current flow stops.

3.2 Modeling
In the following, a model for balancing architectures is de-

fined. A battery pack consists of a set of N = {0, 1, .., |N | −
1} series-connected modules where each module n ∈ N con-
sists of

• the battery cell Bn,

• a set of MOSFETs M i
n,

• a set of diodes Di
n (which are part of the MOSFETs),

and

• an inductor Ln.

The set of elements might be extended by capacitors, trans-
formers, and other components.



A transfer scenario is defined by T where a single transfer
T = (TS , TD) ∈ T is defined by the source modules TS ⊆ N
and destination modules TD ⊆ N . For a transfer T , it holds
that sources and destinations are disjoint, TS ∩ TD = {}.
Additionally, each transfer defines a domain by

d(T ) = {min({n|n ∈ TS ∪ TD}), ...,max({n|n ∈ TS ∪ TD})}
(1)

and it holds that domains are disjoint:

∀T, T̃ ∈ T : d(T ) ∩ d(T̃ ) = {} (2)

To enable charge transfer, certain MOSFETs have to be
either statically open or closed, or controlled by predefined
PWM signals. The set of all signals is defined by Σ and for
each σ ∈ Σ the function

δ : Σ→ R× R (3)

determines the start and end time when the signal is active,
i.e., the respective MOSFETs are temporarily closed.

For a certain transfer scenario T , the configuration of each
MOSFET M is determined by the function

c(T ,M) ∈ {0, 1} ∪ σ. (4)

This function determines if the respective MOSFET is open,
closed, or controlled by one of the given signals σ ∈ Σ.

From the signals, phases Φ are determined such that a
single phase φ ∈ Φ is defined by a subset of signals φ ⊆ Σ.
Corresponding to the signals, each phase has a start and end
time determined by

δ : Φ→ R× R. (5)

Two phases φ, φ̃ ∈ Φ are consecutive if there exists a t ∈ R
such that δ(φ) = (t′, t) and δ(φ̃) = (t, t′′). The requirement
for consecutive phases

|(φ ∪ φ̃)\(φ ∩ φ̃)| = 1 (6)

ensures that only a single signal changes. When the du-
ration of each phase is longer than the off/on times of the
used MOSFETs, this ensures that there will not exist any
inconsistent state.

4. VERIFICATION
In the following, our verification methodology is proposed

which is outlined in Figure 3. In a first step, the circuit
is transformed into a graph, capturing all specific elements
such as cells, inductors, MOSFETs, and diodes. In the next
step, this graph has to be modified for each charge transfer
and phase, depending on the switching rules. Here, vertices
are removed that represent MOSFETs which are open dur-
ing the respective phase. In the following, possible charge
flows on the graphs are identified by an introduced graph
search algorithm. Finally, the flows are evaluated using a
predefined rule set that ensures the correctness of the de-
signed circuit.

4.1 Circuit Transformation
In the first step of the verification methodology, the circuit

is transformed into a graph G(V, E) where V is the set of
vertices and E represents the set of directed and undirected
edges, respectively. In order not to lose information about
the original circuit, different types of edges and vertices have
to be introduced.

The vertices are defined as follows:

• Each MOSFET of the original circuit is transformed
into a corresponding vertex. The set of MOSFET ver-
tices is given as VM ⊂ V where each MOSFET M i

n

corresponds to a vertex in VM .
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Figure 3: Illustration of the proposed verification
methodology. (1) The circuit is transformed to a graph,
(2) open MOSFETs are removed for each phase, (3) cur-
rent flows are determined using graph search algorithms,
(4) and, finally, the current flows are checked to deter-
mine whether the charge transfer is feasible.

• Each battery cell is transformed into two vertices (and
one edge). The vertices are given as VB ⊂ V with
VB = VB+ ∪VB− where VB+ represents the set of pos-
itive terminals and VB− the set of negative terminals,
respectively.

• All remaining vertices V\(VB∪VM ) are used for linking
elements and correspond to connecting terminals in the
circuit.

The edges are defined as follows:

• Each inductor of the original circuit is transformed into
a corresponding edge. The set of inductor edges is
EL ⊂ E where each inductor Ln corresponds to an
undirected edge in EL.

• Each battery cell is transformed into an undirected
egde that is connected by the respective positive and
negative vertices. The set of battery edges is defined
as EB ⊂ E .

• Each diode is transformed into a directed edge. The
set of diodes is given as ED ⊂ E .
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Figure 4: Graph for the circuit in Figure 2a. MOSFETs,
cells, inductors, and diodes are transformed into vertices
(v ∈ V) and edges (e ∈ E), respectively.

• All remaining edges E\(EB∪EL∪ED) represent electri-
cal connections that correspond to the original circuit.

Given a circuit in a suitable netlist format such as
SPICE [30], the corresponding graph can be obtained with
an appropriate parser. It is also possible to model the circuit
manually with the transformation rules given above. Exem-
plary, the circuit in Figure 2a is transformed to the graph
in Figure 4.

4.2 Phase Application
Depending on the phase, the circuit graph is modified by

removing MOSFET vertices and their incident edges. Re-
moving a MOSFET vertex equals to the case the respec-
tive MOSFET is in the open state (0). The verification
is performed at various levels in order to identify counter-
examples in different stages. The first stage is invariant of
signals to identify flaws that are independent of the PWM
signals. In the next stage each transfer is considered sepa-
rately (local) before the architecture is verified for all possi-
ble concurrent transfers (global).

Given the configuration function c, the invariant version
is defined by:

c∅(T ,M) =

{
0 if c(T ,M) ∈ Σ
c(T ,M) otherwise

(7)

Here, each MOSFET that is controlled by a PWM signal
is assumed to be permanently open (0). Such an invariant
configuration can be checked for invariant rules such as short
circuits and is particularly helpful to determine flaws in the
configuration that are independent of the PWM switching.

In case of a local transfer analysis, only a single transfer
T ∈ T is verified. In this case, the modified configuration
function is defined as follows:

cT (T ,M) =

{
0 if c(T ,M) ∈ Σ ∧ d(M) /∈ d(T )
c(T ,M) otherwise

(8)
Here, each MOSFETs that is controlled by a PWM signal in
another domain is set to be permanently opened (0). Note
that d(M) returns the module of a MOSFET. This local
transfer configuration is used to check for flaws in a single
transfer independent of PWM signals outside its domain.

Finally, a global verification becomes necessary in case
of concurrent transfers. Here, the configuration function
remains unchanged and the actual behavior of the balancing
circuit and its control is modeled. Note that in case there
exists no concurrent transfer, the local transfer configuration
equals the original configuration function.

Depending on the phase φ ∈ Φ, the respective configura-

tion is applied to the graph as follows:

c(T ,M, φ) =

{
1 if c(T ,M) ∈ {1} ∪ φ
0 otherwise

(9)

If the result of this function is 0, the vertex is removed from
the circuit graph. That means that all MOSFET vertices
that are either closed (1) or controlled by a signal that is
active in the current phase, remain in the graph and can,
therefore, be used for a current flow.

4.3 Flow Determination
To determine the current flows in each phase, the obtained

and modified circuit graphs are used. Here, each current
and voltage source has to be taken into account. A battery
cell is a voltage source, i.e., the voltage is constant while
the current is determined based on the resistance. On the
other hand, charged inductors are current sources where the
voltage is adapting to enable the current flow.

Using the Dijkstra algorithm on the graphs with appro-
priate weights that reflect the resistance of certain elements
is a feasible method to determine the path of least resis-
tance. However, current flows might be taking various paths
and this has to be taken into account. In the following, an
algorithm is presented that is capable of determining the
flow between two vertices in the graph. The flow between a
source vertex s and destination vertex d is defined by a set
of paths Π(s,d) such that each path π has at least one edge
that is not used by other paths:

∀π ∈ Π(s,d) : ∃e ∈ π : ∀π̃ ∈ Π(s,d)\{π} : e /∈ π̃ (10)

This ensures that each path in the flow contributes at least
one edge, i.e., non-redundant information. In contrast, a k-
shortest paths algorithm could result in a very high number
of paths and, thus, redundant information that would have
to be taken into account in the subsequent rule checking
phase.

Algorithm 1 is capable of determining the flow as defined
in Eq. (10). It requires a circuit graph (at a certain phase)
and a function that defines edge weights (lines 1,2). These
edge weights are determined based on the source of the cur-
rent flow which is explained subsequently. The function
in(v) contains the shortest path from the source to the ver-
tex v and correspondingly win(v) determines the distance of
this path. The function in(v) is initialized with an empty set
for each vertex except the source while the distances are set
to∞ except for the source that has a distance of 0 (lines 3,4).
Correspondingly, the function out(v) contains the shortest
path to the destination vertex and wout(v) determines the
distance (lines 5,6).

Initially, the set of paths Π(s,d) is empty (line 7). In each
iteration, the next shortest path π is determined. This is
done iteratively by considering all possible sub-paths from

s̃ to d̃ that are within a path from the source or to the
destination, respectively (line 11-18). In case such a path
exists, it is added to the flow and its edges are removed from
the graph (line 19-21). In case no further path exists, the
algorithm is stopped. Finally, the functions in(v), out(v),
win(v), wout(v) have to be updated with the recent obtained
path (line 25-34).

To determine the current flow Π(s,d), appropriate edge
weights w have to be chosen. This function depends on
whether the source is a battery cell or an inductor as ex-
plained in the following.
Voltage source edge weights. To determine the current
flow of a battery cell, the source is set to be the correspond-
ing positive terminal vertex in VB+ and the destination is
the corresponding negative terminal vertex in VB− . At the
same time, the respective edge of the battery cell is tem-
porarily removed from the circuit graph. The current flow
is determined by consideration of resistances along possible



1 G(V, E);
2 w : E → R;

3 in(v) =

{
{s} if v = s
∅ otherwise

;

4 win(v) =

{
0 if v = s
∞ otherwise

;

5 out(v) =

{
{d} if v = d
∅ otherwise

;

6 wout(v) =

{
0 if v = d
∞ otherwise

;

7 Π(s,d) = {};
8 while true do
9 π = ∅;

10 wπ =∞;

11 foreach s̃, d̃ ∈ V, win(s̃) 6=∞, wout(d̃) 6=∞ do
12 determine shortest path π̃(s̃,d̃) in G(V, E);

13 wπ̃ = win(s̃) + w(π̃(s̃,d̃)) + win(d̃);

14 if wπ̃ < wπ then
15 wπ = wπ̃;

16 π = (in(s̃), π̃(s̃,d̃), out(d̃)) ;

17 end
18 end
19 if wπ 6=∞ then
20 Π(s,d) = Π(s,d) ∪ {π};
21 E = E\{e|e ∈ π};
22 else
23 break ;
24 end
25 foreach ex = (v, ṽ) ∈ π = (e1, .., en) do
26 if win(v) =∞ then
27 in(v) = (e1, .., ex−1);
28 win(v) = w(in(v));
29 end
30 if wout(v) =∞ then
31 out(v) = (ex, .., en);
32 wout(v) = w(out(v));
33 end
34 end
35 end

Algorithm 1: Graph search algorithm that determines
the current flow by determining a set of shortest paths
in the circuit graph.

paths. Therefore, the edge weights w resemble the resistance
of elements as follows:

w(e) =


RB if e ∈ EB
RD if e ∈ ED
RL if e ∈ EL
10−12 otherwise

(11)

Here, RB is the inner resistance of a battery cell, RD the
resistance of a diode, and RL the resistance of an inductor.
These resistances depend on the used components and peak
current. However, in general we can make the assumption
that RL � RD � RB . It is therefore not necessary to
know the detailed components at design time to determine
all current flows as it is possible to assume values that satisfy
the stated assumption.

It might be necessary to remove several paths from the
flow if these paths contain a very high amount of diodes
as the voltage drop might be higher than the cell voltage.
However, for realistic scenarios this is not necessary since
such paths should never exist.

Rπ1

nπ1 mπ1

Rπ2

nπ2 mπ2

IL

Figure 5: Illustration of the threshold constraint in
Eq. (15). A current flow only exists on path π2 in the
presence of path π1 if the constraint is satisfied.

Current source edge weights. To determine the current
flow of an inductor, the source is set to the positive terminal
vertex and the destination to the negative terminal vertex
of the inductor. Since the inductor edge should be directed
(from the negative vertex to the positive vertex) after it is
charged, it is not necessary to remove it. The inductor is a
current source and, therefore, the voltage is increased until
the desired current flow is obtained. Thus, edge weights of
the circuit graph are determined by the voltage drop across
the components as follows:

w(e) =


VD if e ∈ ED
VB if e ∈ EB
10−12 otherwise

(12)

Note that the current ID through a diode is determined
by

ID = Is(e
VD

k·VT − 1) (13)

with reverse bias saturation current Is, the voltage across
the diode VD, the nonideality constant k and the thermal
voltage VT . Thus, the voltage drop is determined as follows:

VD = ln(
ID
IS

+ 1) · k · VT (14)

For our calculations, we choose typical values for silicon
diodes with Is = 2.52 · 10−12 A , k = 1 and VT = 0.026 V
at room temperature. For a peak current ID = Ipeak = 1 A,
the voltage drop is VD = 0.694 V.

Note that the nominal voltage range of most Lithium-Ion
battery cells ranges from VB,max = 4 V down to VB,min =
2 V. We choose VB = 3 V for our experiments.

Finally, a threshold is necessary to determine if a cer-
tain path is in the current flow. This threshold depends on
the path with the lowest voltage drop. For this purpose,
we determine the minimal and maximal voltage drop across
diodes. Using Eq. (14), we use the minimal voltage drop
VD,min = 0.395 V with 10µA and the maximal voltage drop
as VD,max = 0.694 V with 1 A. Thus, in case a path π1 ex-
ists, a current flow over π2 exists if the following requirement
is fulfilled (compare Figure 5):

nπ2 · VD,min +mπ2 · VB,min ≤
nπ1 · VD,max +mπ1 · VB,max +Rπ1 · Ipeak (15)

Let us assume there exists a path π1 without a diode and
a path π2 with a diode. This is the case in phase φ3 in our
example from Figure 2a where also a path via the diode in
module 2 exists which equals to the current flow in phase
φ2 and φ4, respectively. In this case, Eq. (15) becomes
VD,min ≤ Rπ1 · Ipeak and with a peak current of 1 A, the
resistance of path π1 would have to satisfy Rπ1 ≥ 0.395 Ω.
However, we know that the resistance along π1 is generally



much lower than this (otherwise too much energy would
be dissipated) and, therefore, there exists no current flow
through π2.

4.4 Rule Checking
The obtained flows have to be checked to determine

whether charge is transferred correctly. This is done by a
set of formal constraints that rely on the universal quantifier
∀ and the existential quantifier ∃. These constraints define
rules that check the determined current flows. In the follow-
ing, we use Vn ⊆ V and En ⊆ E as all vertices and edges,
respectively, of module n ∈ N .
Invariant. There are constraints that have to be satisfied
in all phases. The first constraint ensures that short circuits
do not occur at any time:

∀e = (v+, v−) ∈ EB : (16a)

∀π ∈ Π(v+,v−) : (16b)

∃e ∈ EL : e ∈ π (16c)

This constraint holds for each cell and ensures that for each
path in the flow there is at least one inductor that is passed.

Note that a closed circuit over a battery without an induc-
tor leads to a short circuit with theoretically infinite current,
also in case a forward-biased diode is in the closed circuit.
We calculate the current through ID for VC = 2V and the
previously introduced diode parameters:

ID = 2.52 · 10−12A(e
2V

0.026V − 1) = 6.44 · 1021A (17)

Such a high current flow equals a short circuit.
The second invariant constraint ensures that all cells that

are not sources of a transfer are not discharged:

∀n ∈ N\
⋃
T∈T

TS , e = (v+, v−) ∈ EB ∩ En : Π(v+,v−) = {}

(18a)

This constraint holds for each battery cell that is not a
source and ensures that there is no existing flow.
(1) Charging. Initially, it has to be ensured that the in-
ductors are charged by the source cells of each transfer:

∀T ∈ T : ∃EL,T ⊆ EL : (19a)

∀n ∈ TS , e = (v+, v−) ∈ EB ∩ En : (19b)

∀π ∈ Π(v+,v−) : π ∩ EL = EL,T (19c)

∀e ∈ EL,T : e ∈ EL ∩
⋃

n∈d(T )

En (19d)

For each transfer, we define EL,T as set of inductors that are
charged from the source cells. That means that each path in
a flow from the source cells passes exactly these inductors as
stated in (19c). For the sake of modularity, only inductors in
the domain of each transfer can be used as defined in (19d).

If an inductor is charged in a specific phase, the inductor
edge is transformed to a directed edge in the next phase
(with the same direction as the flow). Note that while an
inductor is charged from a battery, it cannot be discharged
over a reverse-biased freewheeling diode simultaneously as
illustrated in Figure 6. Hence, the current through the diode
is practically zero.

As the diode is reverse-biased, the diode voltage VD is the
inverse of the cell voltage VC :

VD = −VC (20)

Therefore, we obtain:

ID = Is(e
−VC
k·VT − 1) (21)

VB

VD = −VB

Figure 6: While an inductor is charged from a cell B, it
cannot be discharged over a reverse-biased freewheeling
diode of an open MOSFET as determined in Eq. (22).
This ensures that inductors that are charged in a certain
phase cannot discharge at the same time.

By inserting values, this yields:

ID = 2.52·10−12A(e−
2V

0.026V︸ ︷︷ ︸
≈0

−1) = −2.52·10−12A ≈ 0 (22)

This is an important observation as it ensures that induc-
tors that are charging cannot simultaneously be discharged.
(2) Freewheeling. Freewheeling is necessary if an induc-
tor is charged and at the same time not discharging to any
cell. In case a charged inductor cannot be discharged over
any path, the inductor would increase the voltage until it
discharges itself, possibly damaging components. The free-
wheeling rule is defined as follows:

∀T ∈ T , e = (v+, v−) ∈ EL,T : (23a)

∃π ∈ Π(v+,v−) : π ∩ EL ⊆ EL,T (23b)

All charged inductors in EL,T have to have at least one path
to discharge. This path may only contain inductors that are
also charged as uncharged inductors would have an infinitely
high resistance in the initial moment of discharge.
(3) Discharging. In the discharging phase, the inductors
discharge via the destination cells.

∀T ∈ T , e = (v+, v−) ∈ EL,T : (24a)

∀π ∈ Π(v+,v−) : (24b)

π ∩ EB = {e|e ∈ EB ∩ En, n ∈ TD}∧ (24c)

π ∩ EL ⊆ EL,T (24d)

This constraint ensures that each charged inductor in EL,T
is discharged with the following requirements on the current
flow. Firstly, the current flow only passes exactly the desti-
nation cells as defined in (24c). Secondly, (24d) states that
only charged inductors (in the same direction) can be in the
current flow to avoid an infinitely high resistance along the
discharge path.
(4) Blocking. Finally, the blocking phase has to ensure
that inductors are not charged from the destination cells.

∀T ∈ T , e = (v+, v−)∃EL,T : (25a)

∀π ∈ Π(v+,v−) : π ∩ ED 6= {} (25b)

The constraint states that for each discharge path, there
is at least one diode in the discharge direction.
Checking order. To define the current flow in a certain
phase, the presented constraints have to be checked in a
specific order. First, the invariant rules have to be checked
before it is checked whether source cells are charging induc-
tors. Each inductor that was charged in some previous phase
has to be checked whether it is discharged to the destina-
tion cells and whether this discharge is blocking. Finally, for



Figure 7: Screenshot of the developed framework for active cell balancing architecture verification. It enables the
modification of signals, switching rules, circuit architectures, and scenarios. The verification results show flaws in the
design and the respective current flows for the architecture from [1].

each charged inductor, freewheeling has to be ensured if it
is not discharged via the destination cells.

5. RESULTS
In the following, experimental results using our verifica-

tion methodology are presented. The developed software
framework is introduced and applied to two architectures
from literature. Finally, a development board for cell bal-
ancing is proposed and a non-neighbor transfer scheme is
exemplary verified. All experiments were carried out on an
Intel Core i5 with 2.6 GHz with 8 GB RAM.

5.1 Software Framework
We implemented the proposed verification in a software

framework as illustrated in Figure 7. Using a Graphical
User Interface (GUI), it is possible to define signals and
phases, switching rules of MOSFETs, transfer scenarios, and
the circuit architecture. Each of these components may be
defined separately. By selecting specific components, the
verification checks the correctness by applying the proposed
methodology and determining the current flows. In case of
conflicts, the verification results show which constraint is
violated and it is possible to visualize the respective current
flows in each phase.

The framework enables a fast design of balancing archi-
tectures with a template-based approach and, thus, a rapid
prototyping is made possible. Also various design alterna-
tives can be compared within a short amount of time. At
the same time, design flaws can easily be visualized, allow-
ing also a fast re-design of balancing circuits and switching
rules.

5.2 Verification Results
We applied the proposed verification methodology to two

cell balancing architectures from literature. The architec-
ture in [23] is illustrated throughout this paper, see Figure 2,
and is capable of transferring charge between neighboring
cells. This architecture also enables concurrent charge trans-
fer, i.e., multiple neighboring cell pairs can transfer charge
at the same time. The second architecture is proposed in [1]

which further enables charge transfer between cells that are
not neighbors.
Architecture 1. The first architecture is verified to be
correct using 13 transfer scenarios for a series of five cells.
Note that five cells are necessary to enable a verification of
concurrent transfers where at least one module (between the
transfer pairs) is acting as buffer with all MOSFETs opened.
Each module of the architecture consists of two MOSFETs
and one inductor. The considered scenarios include all pos-
sible neighbor transfers in both directions in a battery pack
with five cells as well as concurrent transfers with a least
one module as buffer where all MOSFETs are opened. The
verification requires 4.6 seconds and gives evidence that the
resulting architecture is correct.

The verification results can be carried over to a battery
pack with significantly more than five cells as all possible
concurrent transfers are covered by the verification. That
means, also architectures with 100 or more cells are correct
since the verification results can be applied to any part of
the battery pack due to its modular architecture.
Architecture 2. The second architecture is investigated
using 103 transfer scenarios, also taking non-neighbor trans-
fers into account. We consider a configuration with seven
cells in series to enable also the verification of non-neighbor
and concurrent charge transfer. Each module consists of six
MOSFETs. Two of the MOSFETs (p and s) have to be
Insulated Gate Bipolar Transistors (IGBTs) in case of high
currents and voltages. Note that for an actual implementa-
tion, the number of power MOSFETs and IGBTs increases
to six and four, respectively, since it requires the implemen-
tation of two MOSFETs with opposing diodes. Due to the
increased complexity and higher number of scenarios, the
runtime increases to 40.5 seconds.

The results reveal a flaw in the design for some scenarios
in case charge is transferred between non-neighboring cells.
The flaw only appears in case the distance between neigh-
boring cells is even, e.g., a transfer from module 1 to module
3 as illustrated in Figure 8 (here we illustrate only four cells
for the sake of simplicity). The discharge takes place with an
additional inductor in the circuit and, thus, the architecture
violates constraint (23b). Such a discharge would increase
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Figure 8: Illustration of the design flaw for the architec-
ture from [1]. The charged inductor L1 is discharged over
the inductor L3. In this case, the voltage will increase
until inductor L1 discharges via an electrical spark.

the voltage over the inductor rapidly until it discharges itself
via an arc. Thus, the freewheeling requirement is violated.
At the same time, constraint (19c) is violated which corre-
sponds to the same requirement in the discharging phases.

This flaw can be resolved with the following strategies:

• Transfers between cells that have an even distance can
be forbidden. In case charge shall be transferred be-
tween these cells, the respective transfer can be split
into two transfers.

• An additional MOSFET might be added to the circuit
to bypass the inductor at the destination module.

Using our verification framework, we verified both solutions
to be correct.

5.3 Development Board
The proposed verification framework enabled the design

of a development board for active cell balancing. Figure 9
shows the circuit schematic as well as the corresponding
Printed Circuit Board (PCB) implementation. The circuit
is using an inductor and 12 power MOSFETs and by setting
some of these MOSFETs to the closed state permanently,
it is possible to model various architectures. Note that
the PCB implementation relies on overdimensioned discrete
components including individual gate drivers and DC/DC
converters, while a final production implementation would
be significantly smaller. Furthermore, additional sensor cir-
cuitry has been added to evaluate the performance of the
board.

We used the development board to implement a non-
neighbor charge transfer. In contrast to the architecture
from [1], no expensive and large IGBTs are required since
none of the MOSFETs is in the series-connected battery
string that would require to cope with high currents. The
configuration function is given in Table 1, where for each
module n one of the six defined states is satisfied and the
MOSFETs are controlled correspondingly. Here, a module
might be a charge source (state 1 and 2) and depending in
which direction charge is transferred, a certain configura-
tion is applied. Corresponding to the charge source rules,
the charge destination rules are defined (state 3 and 4). Ad-
ditionally, a module might be used between a source and
destination (state 5) or a module might be in no transfer
domain (state 6). An example for a non-neighbor charge
transfer with this scheme is given in Figure 10. Here, mod-
ule 0 is in state 6, module 1 in state 1, module 2 in state 5,
and module 3 in state 3.

The verification for seven cells and 103 scenarios requires
80 seconds. The results show that in all considered scenar-
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n

M4a
n

M4b
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(a) Circuit schematic

Inductor

MOSFETs

(b) PCB

Figure 9: Circuit schematic and Printed Circuit Board
(PCB) implementation of the development board for ac-
tive cell balancing. The battery cell is connected at the
pins on the right of the PCB.

ios the charge transfer is correct. Thus, the development
board can be used with the proposed switching scheme for
non-neighbor charge transfer. Moreover, due to the modu-
larity, the correct behavior can be carried over to the same
architecture with an arbitrary number of modules since the
verification captures non-neighbor and concurrent transfers
at the same time.

6. CONCLUSION
This paper proposes a verification methodology for cell

balancing architectures in battery packs. The methodology
is based on a transformation of the circuit to a graph repre-
sentation such that graph search algorithms can be applied
to determine current flows. Such a verification becomes in-
evitable in case of growing complexity of cell balancing ar-
chitectures. Exemplary, we show the verification of two ar-
chitectures from literature, revealing a flaw in one of them
and proposing potential solutions to fix it. Additionally, we
propose a development board for cell balancing and verify a
complex scheme for charge transfer between non-neighboring
cells.

The proposed methodology verifies balancing at system-
level. Future work will cover the automatic synthesis of
balancing architectures and determination of optimal dura-
tion of phases depending on the used electrical components.
Additionally, costs and efficiency of circuits shall be evalu-
ated at circuit-level to enable a design space exploration of
architectures.
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