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Abstract—This paper presents a methodology for simulating
and automatically optimizing distributed cyber-physical systems
using reconfigurable hardware. By mapping an entire system
of distributed devices including the buses onto a single Field
Programmable Gate Array (FPGA), it becomes possible to make
changes to the architecture, including the topology, using re-
configuration. This approach enables accurate rapid prototyping
of distributed architectures, while also closing the gap between
early simulation results and the final design, leading to a more
robust optimization. Furthermore, the system can be simulated
and optimized within a Hardware-in-the-Loop (HIL) setup due
to its cycle- and bit-accurate execution in real-time. We introduce
the general concept and building blocks that enable a faster and
more accurate simulation and optimization: (1) The details of our
approach for mapping devices, network interfaces, and buses onto
an FPGA are presented. (2) An optimization model is proposed
that encodes the topology, task distribution, and communication
in a very efficient representation. Finally, the implementation and
integration of the methodology is presented and discussed.

I. INTRODUCTION

Designing cyber-physical systems under stringent cost and
safety constraints is challenging in many domains. In the auto-
motive domain, for instance, the reduction of cost is a major
objective while safety, on the other hand, cannot be compromised.
The complexity of cyber-physical systems is growing rapidly while
time-to-market is constantly reducing. This leads to the need for
novel simulation and optimization methods for distributed cyber-
physical systems that are efficient, fast, and accurate.

Presently, simulations in the early stages of design are carried
out at the system-level, with several implementation details masked
in order to reduce simulation complexity and time. This, however,
may mean important details of the implementation are not factored
in and emerge only after the integration and testing of these
systems. This leads to a gap between simulation results and
behavior of the system in the actual implementation. In a worst-
case scenario, this mismatch might require a redesign of one or
more aspects of the distributed system.

Besides simulation and optimization, validation of cyber-
physical systems in safety-critical domains is essential using HIL
testing. Here, the distributed cyber-physical architecture is tested
either with a real plant or a real-time simulator (of the physical
environment). However, simulating a distributed cyber-physical
system accurately in real-time is often impossible due to the
complex computation involved, prohibiting testing in a HIL setup.
Therefore, design flaws are typically only determined at a late
stage, once a prototype has been integrated. This is in itself a
tedious task involving the correct configuration and wiring of the
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distributed devices. In such a scenario, a structural or topologi-
cal change of the distributed architecture becomes a very time-
consuming task. As a result, investigations are typically limited to
a few possible arrangements out of the many possible.

As a remedy, we propose a methodology that enables an
efficient, fast, and accurate design of distributed cyber-physical
systems. Simulation, optimization, and HIL testing benefit from
the proposed approach that maps the entire system onto an FPGA.
Related Work. FPGAs are widely used for prototyping in the
embedded systems domain. This is particularly the case for
System-on-Chip (SoC) and Application-Specific Integrated Circuit
(ASIC) design, see [1], [2], [3], [4]. Here, FPGAs are used to
validate and test the designed hardware/software systems. On the
other hand, FPGAs are also used for compute-intensive designs
where the systems benefit from dynamic/run-time reconfiguration,
such as in specific video processing applications, see [5]. In this
paper, we aim at combining the advantages of FPGAs in the field
of prototyping of networked embedded systems, modeling a set
of interconnected devices instead of SoCs or ASICs. At the same
time, we take advantage of the reconfigurability of FPGAs in our
optimization process.

The efficient optimization of distributed systems needs a model
that is capable of capturing resource allocation, task distribution,
and communication, see [6]. In [7], a basic model that follows
the Y-chart approach was introduced: An application is mapped
to a target architecture where specific resources can be allocated.
This model and the underlying optimization suffer from two
shortcomings which are the restriction to single-hop communi-
cation as well as an optimization that relies on Evolutionary
Algorithms that might deliver many infeasible solutions. To over-
come these drawbacks, [8] extended the model towards multi-
hop communication and translated the model into a set of linear
constraints that are interpreted by a Pseudo-Boolean (PB) solver
that ensures that all iteratively determined solutions are feasible.
In this paper, we extend the model of [8] significantly by taking
links in the architecture template into account, leading to a higher
expressiveness of the model. At the same time, we provide a more
compact representation, relying on significantly fewer variables.
Contributions of the paper. We present a methodology for the
simulation and optimization of distributed cyber-physical systems
using reconfigurable hardware. For this purpose, the entire system
is mapped onto an FPGA, leveraging the flexibility and computa-
tional power of reconfigurable hardware. This approach has major
advantages in various domains: (1) Simulations can be significantly
improved in terms of both accuracy and runtime. It is possible
to emulate an entire system comprised of multiple devices with
different clock frequencies that communicate via shared buses in
a cycle- and bit-accurate manner. The concurrent execution of
system nodes on a single hardware device also accurately mirrors
a real implementation. Due to the inherently parallel architecture
of FPGAs, simulations can be carried out in less time and might
be further accelerated by using multiple devices in parallel that
evaluate different scenarios, investigating the same system. (2) It
is possible to use the FPGA within a HIL test since it is now
feasible to simulate the system in real-time (if the node frequencies



do not exceed the device limitations, which is often the case for
many distributed systems). Furthermore, it is possible to model
field buses like FlexRay on the fabric of an FPGA. As a result,
HIL tests can be conducted very efficiently, avoiding the need to
set up the entire distributed system before a valid configuration is
found. (3) The ability to change the distributed architecture through
reconfiguration makes it possible to implement an efficient and
accurate optimization. Hence, various designs can be evaluated in
sequence or in parallel on multiple FPGAs. At the same time, it
becomes possible to employ automatic optimization within a HIL
setup, since even changes to the topology of the system are possible
through a reconfiguration of the hardware.

In this paper, we introduce the general concept how simula-
tion, HIL testing, and optimization of distributed systems can be
improved using FPGAs. We discuss in detail our prototypical
mapping framework of Electronic Control Units (ECUs) and
buses (using FlexRay) onto reconfigurable hardware in Section II.
In Section III, we propose a very compact system model that
enables the efficient optimization of distributed systems in terms of
resource allocation, task distribution, and communication. Finally,
we present our integration approach for the proposed methodology
in Section IV.

II. SYSTEM ON FPGA MAPPING

In order to ensure cycle- and bit-accurate emulation of a
networked cyber-physical system on an FPGA, it is necessary to
faithfully represent the computational modules (ECUs) as well as
the communication infrastructure (buses) of the distributed system.
Computational Modules — ECUs. Within the system, each ECU
performs computational tasks on a predefined hardware archi-
tecture. It comprises one or more processing cores that execute
the software-based algorithms, compute accelerators that are used
to speed up complex computations, and the network interfaces
used to communicate with other elements of the system. In our
implementation, the processing core is implemented using one
or more instances of the Microblaze soft processor from Xilinx.
Supporting logic, like accelerators, memories, sensor interfaces and
the network interface are integrated with the processing core using
standard high performance bus protocols like Advanced Microcon-
troller Bus Architecture (AMBA) Advanced eXtensible Interface
(AXI). The application software/real-time Operating System (OS)
interacts with the supporting components and interfaces, using
standard function calls provided by the OS layer, which are taken
care of by the driver functions generated by the Xilinx Embedded
Development Kit (EDK) tool chain.

To provide seamless migration in a HIL test environment and
to interface with a wide range of possible input/output modules,
we have designed a generic Sensor/Actuator Interface Module
(SAIM) that uses a burst-capable 32-bit communication protocol
to the external sensors and actuators, modeled around the AXI
specification. Clock domain crossing circuits are built into the
SAIM so that the sensors/actuators can be clocked independently of
the processing logic. Streaming interfaces are used at the processor
end to facilitate high throughput communication and drag-and-drop
functionality during the design phase.

The network interface (using FlexRay in this case) is an FPGA-
optimized implementation with an enhanced set of features that
enable tight coupling with the processing core with minimal
resource utilization for a compact ECU implementation on the
FPGA fabric [9]. Configurable features like time-stamping, data-
layer header insertion, and processing capabilities built into the
interface logic are used to debug and monitor communication
within the test setup.

Communication architecture and buses. The communication
architecture is built using multiple dual-channel FlexRay buses
within the FPGA fabric. Individual ECUs are then integrated
onto the respective bus segment(s), as defined in the system
architecture. Each ECU is treated as an isolated computing unit,
with independent control signals and isolated clocks (HCx and
ICx). A scheme for a single bus architecture is shown in Fig. 1.
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Fig. 1. Communication infrastructure on the FPGA. Both the communication
bus (FlexRay) as well as auxiliary buses for configuration and debugging are
included.

Bus driver modules are excluded since the network is completely
contained within the FPGA logic. Over this shared medium, the
ECUs post/subscribe to communications and synchronize with
each other, as defined by the FlexRay protocol. Because of the
reliable closed environment, we are able to take advantage of the
8-bit serial redundancy of the FlexRay standard by using a byte-
wide bus structure to achieve lower sampling and transmission
frequencies for the peak data rates supported by FlexRay, enabling
a higher acceleration ratio. Multiple FlexRay bus segments are built
as modular blocks, allowing them to be configured and connected
in any fashion dynamically, without requiring a reconfiguration of
the FPGA. This modular mechanism enables us to model multiple
topologies and explore a large configuration space within the
optimization framework.

In addition to the computational modules, management and
debug modules are also integrated into the system for controlling
and monitoring the performance of the ECUs, network and the
hardware platform. The bridge_node is a debug ECU which
monitors bus transactions and mirrors them on a debug console
in a workstation over a high speed Ethernet interface in real-
time. It also features configurable error injection capabilities to
introduce common system errors like network faults, timing errors
and others, which can be used to test system robustness. The
xil_debug interface provides access to individual ECUs for debug-
ging purposes using the Xilinx debugger tools, while config/debug
is used to configure and control the entire platform and the fault-
injection capabilities on the bridge_node. The platform features are
configured in the global register space of the platform, which can
be altered at runtime. We have also designed high level software
Application Programming Interfaces (APIs) to communicate with
these interfaces from a workstation. The APIs modify the behavior
of the individual ECUs or the platform by modifying ECU config-
urations or the global register space that configures the platform
features. These APIs are also indirectly used by the optimization
framework to control, observe, and evaluate the performance of
the ECU/system architecture and communication schedules along
with information from the control plants. Further details of the
platform can be found in [10].

III. SYSTEM MODEL FOR OPTIMIZATION

To enable an efficient optimization that leverages the proposed
mapping of a system onto FPGAs, it becomes necessary to intro-
duce a model that captures all aspects that need to be optimized,
i.e., the topology, task distribution, and communication. Corre-
sponding to [8], the proposed approach uses a graph-based model
which is transformed into a set of constraints that are used within
an iterative optimization framework. However, in contrast to [8],



Fig. 2. Illustration of a graph representation of a distributed architecture
where an application is mapped to an architecture. The routing of messages
(c1 and c2) is carried out over busj.

our model also considers architecture links (network interfaces)
explicitly, resulting in a significantly more compact representation.
In summary, the advantages are (1) the higher expressiveness and
flexibility of the model by taking architecture links into account
as well as (2) a more efficient encoding with less variables. We
present our model and the encoding scheme below, and make it
available at [11].

Model. The model relies on an architecture graph, applications,
and the mapping edges between these.

o The architecture graph G (R, L) contains the components R
and communication links L. The components might be ECUs
or buses, while network interfaces are represented by links.

o The application graph G 4(T', D) consists of tasks ' = PUC
and data-dependencies D where the tasks might be either
processes P or messages C.

o The mapping edges E); with m = (p,r) € Ep; and p € P,
r € R indicate on which resource a certain process task can
be implemented.

o For each message ¢ € C, the subgraph of the architecture
Ge¢(Re, L) indicates on which resources and links it can be
routed.

To determine one feasible implementation, a resource allocation,
mapping, and routing have to be determined.

o The allocated architecture graph Go(Rea, La) contains the
subset of components R, C R and communication links
Lq C L that are part of the implementation.

o The mapping Eg C E)s contains the actual implementation
of each process task where each process task is mapped to
exactly one allocated resource.

o The routing G~,c(Ry,c, L~,c) is a graph on the allocated ar-
chitecture graph that determines the routing of the respective
message ¢ € C. The graph G is a tree that starts at the
mapping target of the preceding process task and contains all
target resources of the succeeding process tasks. This ensures
that all data-dependencies are fulfilled.

An example of the graph-based optimization model is given in
Fig. 2.
EI%coding. In the following, an encoding of the model into linear
constraints with binary variables is given. This encoding ensures
that each feasible solution of the constraints also represents a
feasible implementation of a system. The encoding relies on the
following set of variables.
r resource r is allocated in R, (1) or not (0)
1 link [ is allocated in Ly (1) or not (0)
m mapping m is used in Eg (1) or not (0)
cr message c is routed on resource r in R+, (1) or not

0)

Cl—(r,5) Mmessage c is routed on link [ in the direction from
resource 7 to 7 in L~ ¢ (1) or not (0)
cP message c is routed exclusively to process p on link [

in the direction from resource r to 7

The constraints that determine a feasible implementation are
defined in the following. We specify all constraints that deal with
mapping of process tasks.

VpeP:
z: m=1 1)
m=(p,r)EEM
Vm = (p,r) € Ep -
r—m>0 2)

Vp,p € P,(p,p) € D,m = (p,7) € Ep,in = (p,7) € Byl =

l-m-—m> -1 3)
Vp,p € P,(p,p) € D;m = (p,r) € Ey,n = (p,7) €
El\lv(nf)%[/ﬂn?'éf
m+m<l1 (4)
Vi=(r,7)€L:
—2:-14r+17>0 (5)

Constraint (1) states that for each process task exactly one
mapping is active. Constraint (2) ensures that a process task is
only mapped to allocated resources. For each pair of directly
communicating process tasks that are implemented on neighbor
resources, the link between the resources has to be allocated as
stated in Constraint (3). If resources are not neighbors or equal
as stated in Constraint (4), the mappings of these process tasks
onto these resource is prohibited. Constraint (5) ensures that the
allocation of a link requires the allocation of the source and target
resource.

In the following, all constraints that concern general message
routing are specified.

Vee C,r € Re:

r—cr>0 6)

Vee C)l = (r,7) € L¢ :
l—ci=(r5) 20 (7
—2-C=(r5 tert+cg 20 (®)
Ve e C,p € P,(p,c) € DV(c,p) € D,m = (p,r) € Epr,7 € Re :
cr—m>0 9
Vee C,p € P,(p,c) € DV(c,p) € D,m = (p,r) € Epr,rm ¢ Re
m=20 (10)

Ve e C,(p,c) € D,m = (p,7) € Ep,l = (Fy7) € L :

m+cCi—(zy) <1 an
Vee C,r € Re :
> ac@n <1 (12)
I=(7,r)EL.
—cr + > m+ Y o =0 (13)
(cp)EDm=(p,r)€Ey  I=(r.F)ELe
—cr + > m+ Y cgn =0 (14
(p,c)€D,m=(p,r)EEM I=(F,r)EL.

Constraint (6) and (7) ensure that a message can only be routed
on allocated resources and links. As stated in Constraint (8), a
message that is routed on a link from r to 7 also is routed on these
two respective resources. Constraint (9) specifies that input and
output messages of a process task have to be routed on the same
target resource as the process is mapped to. Correspondingly, if the
routing of one of these messages is not possible on the specific
target resource, the mapping is disabled as stated in Constraint (10).
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Fig. 3. Illustration of the integration of proposed approach using a HIL.

(In case of a simulation without HIL, the system on the FPGA is directly
observed and evaluated.)

Constraint (11) specifies the source of the message routing as the
resource of the sending process task. To ensure that the routing is a
tree, the degree of incoming message flows of a resource cannot be
more than 1 as stated in Constraint (12). Constraint (13) specifies
that a message is either received at a specific resource or forwarded
to the next one. Constraint (14) states that if a message passes a
resource, this resource either has to be the sender or there has to
exist an incoming message flow.

In case of a unicast communication (a single receiver of a
message), the following constraints are defined.

Vee C,r € Re :
> g <1 (15)
l=(r,7)EL.
Ve e C,(p,c) € D,(¢,p) € D,r € R :
Z Cl=(r,F) — Z Cl=(Fr) = Z m - Z m (16

I=(r,7)EL. I=(¥,r)€L. m=(p,r)€EEm m=(p,r)EEM

Constraint (15) states that a message cannot be forwarded to
more than one receiver. Constraint (16) ensures the message flow
conservation such that the flow starts at the target resource of the
predecessor task and ends the target resource of the successor
task. In all other cases, the incoming flow of a resource equals
the outgoing flow.

In case of a multicast communication (multiple receivers of a
message), the variables c}):(r 7) to determine the flow for each
receiver task and then map the communication onto all sub-flows.
Alternatively, the hop-based encoding from [8] might be applied.

IV. INTEGRATION

In the following, we give an overview of the entire optimization
flow of our methodology and discuss the scalability.
Optimization flow. Fig. 3 illustrates the integration of the proposed
approach, coupling our methodology of mapping a system on
FPGAs (Section II) with the optimization method (Section III).
The optimization is carried out in an iterative process such that
the system implementation is constantly modified, mapped to
the FPGA, and observed. Using the Opt4J framework [12], we
implemented our optimization model within a meta-heuristic algo-
rithm (Evolutionary Algorithm) such that it is capable of handling
multiple and non-linear objectives. To interface the optimizer, XML
representations of the system specification, system implementa-
tions, and observed objectives are used. The objectives might be

determined by observing the simulator or plant and deducing for
instance control quality measures. At the same time, it is possible
to directly observe the system on the FPGA to evaluate specific
objectives for the optimization such as worst-case communication
delays, etc.

Both the optimizer and FPGA are initialized once with the
system specification that contains the architecture template and
application as well as mapping and routing information as specified
in Section III. Since each architecture of an implementation (G«)
is a subgraph of the architecture template (Gr), we can avoid
recurrent synthesis operations which can be very time consuming.
In our setup, the synthesizer invokes the Xilinx tool chain using
tcl scripts to generate a bitstream corresponding to the seed
architecture. Bitstream generation is a time consuming process,
typically requiring 30 minutes to a few hours depending on the
complexity of the circuit and the chosen FPGA. Therefore, the
synthesis path can be thought of as a one-time process, representing
the initialization of the FPGA by the initialize operation. Once, the
system specification is mapped to the FPGA, each implementation
can be mapped by modifying (modify path) the architecture,
task mapping, and communication which does not require any
time consuming synthesis. As mentioned in Section II, high-level
APIs provide access to these enhancements for software-based
control, which is used in the optimization routine. Specifically, the
mod_platform() API is used to change the bus architecture, alter
the clock frequency, and enable/disable specific features on any
ECU without requiring a new bitstream to be generated. Similarly,
the init_processor() API can be used to load new software or task
profile to a specific ECU without affecting the others.
Scalability. In our present design, we can map up to six complete
Microblaze-based ECUs and four different bus segments on a
commercial Xilinx ML605 development board that incorporates a
Virtex-6 LX240T device. On a Xilinx VC707 development board
that incorporates a Virtex-7 X485T device, we can map up to ten
complete ECUs, thus capturing many subsystems in the automotive
domain.

From our implementations, we observed that the factors limiting
scalability on a single FPGA are the clocking requirements for
isolating ECUs as well as the logic/memory capacities of the
device. Using larger FPGAs and multi-FPGA boards, it will be
possible to integrate even more complex systems with more ECUs.
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