
HW/SW Trade-offs in I/O Virtualization
for Controller Area Network

Christian Herber1, Dominik Reinhardt2, Andre Richter1, and Andreas Herkersdorf1

1Insitute for Integrated Systems, Technische Universität München, Munich, {firstname.lastname@tum.de}
2BMW AG, Munich, dominik.reinhardt@bmw.de

Invited

ABSTRACT
Automotive embedded systems are highly complex and his-
torically grown networks of single-core based control units.
Due to space limitations and wiring complexity, the scal-
ability of current architectures is limited. It can be over-
come by consolidating multiple currently distributed func-
tions onto shared multi-core platforms. Additionally, virtu-
alization can be used to isolate these functions in separate
virtual machines (VMs). However, access to peripherals like
Controller Area Network (CAN) communication interfaces
must be shared among these partitions, a task that is usually
associated with high overheads.

In this paper, we present and quantitatively compare two
approaches to enable sharing of CAN controllers among VMs.
First, we use a software-based paravirtualization, in which
I/O requests are moderated by a privileged software com-
ponent. Second, we offload I/O virtualization tasks into the
CAN controller itself, thus providing direct I/O access for
VMs.

Categories and Subject Descriptors
C.3 [SPECIAL-PURPOSE AND APPLICATION-
BASED SYSTEMS]: Real-time and embedded systems

General Terms
Design, Measurement, Performance

Keywords
Controller Area Network, Virtualization, Automotive Elec-
tronics

1. INTRODUCTION
Automotive embedded systems consist of up to 100 dis-

tributed computing nodes. They are referred to as electronic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org
DAC’ 15 June 07 - 11, 2015, San Francisco, CA, USA
Copyright is held by the authors. Publication rights licensed to ACM.
ACM 978-1-4503-3520-1/15/06 ...$15.00
http://dx.doi.org/10.1145/2744769.2747929.

control units (ECUs) and traditionally realize one electronic
function within the vehicle. This approach leads to a linear
scaling of ECUs with the number of realized functions and
thus, has limited scalability.

Multi-core processors are a promising technology to over-
come the scalability issues of today’s automotive architec-
tures [13]. Compared to current single-core ECUs, they of-
fer significantly increased computational density. Multi-core
based ECUs are suited to reduce the total number of nodes
by integrating multiple previously distributed functions on
a shared platform. Therefore, the total number of nodes
can be reduced and scalability for future architectures can
be enabled [2].

Multi-core processors feature physically isolated compu-
tation cores, but share major parts of on-chip resources like
caches, interconnects, co-processors, and network-I/O inter-
faces. To guarantee safe operation of functions running on a
shared platform, isolation and cooperation among the par-
titions is required [1].

Virtualization is an established technology in server envi-
ronments, which enables safe and secure sharing of a com-
mon physical platform among multiple partitions. Virtual
machines (VMs) represent an isolated and abstracted ver-
sion of the underlying hardware. Within VMs, operating
systems can be executed in a similar fashion as on the non-
virtualized system. Virtualization allows concurrent exe-
cution of multiple (different) operating systems, while the
functional integrity the partitions is decoupled.

In the context of automotive embedded systems, virtu-
alization can be used to safely consolidate previously dis-
tributed functions [12, 15]. Its intrinsic isolation and the
ability to run multiple legacy functions concurrently makes
it a suitable candidate to solve current multi-core issues.

A major challenge in virtualized systems is sharing of
network-I/O among multiple VMs. To avoid collisions, VMs
must not directly access shared hardware components. There-
fore, a privileged software component, called hypervisor,
(de-)multiplexes and forwards I/O requests between VMs
and the respective hardware component.

Because Virtualization is usually used in server environ-
ments, most I/O virtualization solutions are focused at Eth-
ernet, where the main optimization target is throughput
maximization. In contrast, automotive systems are also
time-sensitive, meaning low-latency operation is equally im-
portant.

We introduce two I/O virtualization approaches for CAN,
the most widely used automotive networking technology.



One approach uses SW-based paravirtualization and one
uses HW-assisted virtualization with direct device access.
We prototyped the solutions using an Infineon AURIX Tri-
Core TC27x and an Intel Core i-73770T, respectively.

The paper is structured as follows: Section 2 introduces
background regarding I/O virtualization. Following, the
concepts based on paravirtualization (Section 3) and HW-
assisted virtualization (Section 4) are presented. In Sec-
tion 5, we conduct two experiments to asses and compare
latencies experienced in either solution.

2. RELATED WORK
I/O virtualization is one of the major challenges in vir-

tualization and has been an active research area for over a
decade. Usually, research focuses on Ethernet network in-
terface controllers (NICs). Main design goal is to maximize
throughput while providing secure and isolated access to-
wards the NIC for a scalable number of VMs.

Originally, I/O access was provided to VMs using device
driver emulation [16]. Here, VMs use an unmodified device
driver. Privileged instructions are moderated by the hyper-
visor using trap-and-emulate. Because traps are costly in
terms of execution time, this method introduces significant
overhead.

To reduce the overhead experienced in emulation, par-
avirtualization was introduced for network-I/O [8]. The
device driver is only placed within the hypervisor, or prefer-
ably, a dedicated driver VM. VMs can access the physical de-
vice by communicating with the driver domain using a front-
end back-end driver model. VMs use a front-end driver,
which provides basic data path functionalities. The driver
domain receives these requests through a back-end driver
and forwards them to the actual device driver. By using
modified drivers within the VM, no traps are needed, thus
reducing the overhead. Also, device drivers only need to be
available to the operating system running in the driver do-
main. Placing device drivers within a dedicated driver VM
is preferred, as it reduces safety risks within the hypervisor.

However, also paravirtualized I/O introduces overheads
that lead to throughput degradation. Menon et al. [7] de-
veloped a profiling toolkit for XEN, with which they were
able to demonstrate a throughput degradation of 20%, if
driver domain and VM are executed on the different cores,
and up to 66% if they share the same core. The overhead
is mainly constituted by data copy operations and context
switches between guest and host mode.

To reduce overheads associated with paravirtualization,
Raj et al. introduced self-virtualized I/O devices [9].
They used a network processor board to offload major I/O
virtualization tasks into hardware close to the Ethernet NIC.
The self-virtualized NIC achieves approximately double the
throughput of a baseline implementation using paravirtual-
ization.

Currently state-of-the-art with respect to I/O virtualiza-
tion is Single Root I/O Virtualization (SR-IOV) [3].
Using SR-IOV, the address space of an I/O device is di-
vided into multiple virtual functions (VF) and one physical
function (PF). VFs are directly assigned to VMs and offer
data path operations similar to the function of a front-end
driver. Privileged management options are only accessible
through the PF, which is mapped into the hypervisors’ ad-
dress space. Therefore, data path operations are possible
for VMs without hypervisor involvement, thus minimizing

virtualization overheads. Dong et al. [3] demonstrated a
throughput of 94.8% using a 10 Gbit/s Ethernet NIC with
SR-IOV support.

Few work focusing on I/O virtualization has been con-
ducted in the domain of embedded systems. In [10], a con-
cept for a virtualized Ethernet NIC for embedded applica-
tion is presented, which uses caching of context information
to reduce latencies.

Kim et al. [6] proposed a paravirtualization based solution
for sharing CAN controllers in Integrated Modular Avionics.
Their experiments show added latencies of around 200 µs in
an interference-free scenario compared to a native solution.

Reinhard et al. [11] and Herber et al. [4, 5] have presented
paravirtualized and HW-assisted I/O sharing solutions for
CAN in an automotive setting. These solutions form the
basis of this paper. The work is extended by conducting a
common experiment that allows a quantitative comparison
of both approaches.

3. SW-BASED VIRTUALIZATION OF CAN
CONTROLLERS

Automotive ECUs are small and cheap hardware devices,
optimized for series production. There are additional re-
quirements for energy awareness and the resistance for op-
eration in rough environments like high differences in tem-
peratures or strong vibrations. Furthermore, most current
automotive ECUs lack a Memory Management Unit. This
fact causes severe problems for the integration of state-of-
the-art hypervisors. Software systems within vehicles are
statically configured before build time. Memory protection
can be achieved by using a statically configured Memory
Protection Unit.

To counteract the problem of missing hardware features
we use a type-1 hypervisor (supported by ETAS/Bosch),
which can handle E/E platforms without a Memory Man-
agement Unit [14]. All VMs use the paravirtualized RTA-
OS, which is supplied by ETAS, as well. The hypervisor is
built for TriCore processor designs and is ported to the Infi-
neon AURIX TriCore TC27X. All settings for the hypervisor
and integrated VMs can be configured offline.

Figure 1: SW architecture of a paravirtualized CAN
controller. Accesses from DomUs to CAN node 0
are moderated by the privileged DomM.

We use a one-to-one mapping of cores and VMs to avoid
further timing overheads (scheduling of multiple VMs on a



single core). An independent hypervisor instance is assigned
to every VM. To achieve a proper real-time behavior we use
paravirtualization instead of full virtualization. The inter-
action between VMs is controlled and processed hypervisor-
internally by using programmable interfaces, called Virtual
Device Emulators. These Virtual Device Emulators can also
be used to emulate hardware features like communication
controllers.

The adaption of hardware drivers by using the Infineon
AURIX TriCore can be realized in different ways. In case
there are sufficient registers within the Memory Protection
Unit available, it can be used to grant access to the registers
of specific communication controllers. No changes within
the already existing drivers’ source code are necessary. If ac-
cesses to the controllers’ space cannot be configured within
the hardware, read or write attempts to the controller’s
space must be paravirtualized and wrapped with hypercalls.
In our setup, hypercalls are realized through system calls,
which are typically a type of a trap. To save registers of the
Memory Protection Unit, the grant to memory space should
be configured consecutively in bigger address ranges.

If hardware devices like CAN controllers should be par-
avirtualized, we identified three technical possibilities to in-
tegrate hardware drivers into the system: Either the AU-
TOSAR MCAL and its drivers are integrated within each
VM (a) and run in user space, where concurrent accesses
can be avoided by using a concerted configuration. Or all
hardware drivers are integrated within the hypervisor itself
(b) and run within the trusted computing base. A third pos-
sibility is to integrate all drivers in an independent virtual
machine (c) and route all attempts for hardware access over
that central virtual instance.

To be prepared for many core systems, where probably
several virtual ECUs are integrated, we analyze the concept
to consolidate hardware drivers in an independent virtual
machine (c). This method is illustrated in Fig. 1. Here, the
AUTOSAR Memory Abstraction layer is integrated within
an privileged VM, which is assigned with special access rights
[11]. This approach is similar to Xen’s paravirtualization
technique using a Dom0, which is responsible to encapsulate
hardware drivers, controls the inter VM communication and
strongly interacts with the hypervisor. Here, the dedicated
driver domain is called DomM, while remaining VMs are
called DomU. DomUs are not allowed to interact directly.
Rather, all information must be routed over DomM, either
to other VMs or to a connecting fieldbus. The overall com-
munication flow between DomUs is routed over DomM by
using a Layer-2 CAN bridge [11]. The information exchange
between VMs is realized over shared ring buffers (Circular
Buffer Addressing Mode of the AURIX TriCore).

4. HW-ASSISTED VIRTUALIZATION OF
CAN CONTROLLERS

CAN is an interconnect technology used in real-time appli-
cations. Therefore, it benefits from predictability and low-
latency associated with HW-assisted virtualization in com-
bination with direct assignment of virtual functions (VFs)
into VMs. In this section, we present an architectural con-
cept and a prototypical implementation of a virtualized CAN
controller using HW offloading.

The architecture of the virtualized CAN controller (see
Fig. 2) is structured as follows: The controller has a mem-

Figure 2: Architecture of the HW-virtualized CAN
controller.

ory mapped interface connected to the host system, which
is divided into one physical function (PF) and multiple vir-
tual functions (VFs). The physical function is assigned to
the hypervisor and offers privileged management functions
like controlling the bitrate setting of the bus or configur-
ing VFs. Each VF is connected to a VM and offers access
to a virtual CAN controller, which provides abstract CAN
communication features.

Vertically, the virtualized CAN controller is composed of
the Host-Controller Interface, the Virtualization Layer and
the Protocol Layer. The Protocol Layer offers basic CAN bit-
stream processing and protocol handling. We implemented
it using an OpenCores CAN controller that is equivalent
to an NXP SJA1000. It offers only little message buffering
capabilities, which are extended in the Virtualization Layer.

The Virtualization Layer is a hardware extension that re-
alizes multiplexing, demultiplexing, buffering, and forward-
ing of communication requests from and towards multiple
VMs. These tasks are equivalent to the ones implemented
in the hypervisor or a dedicated driver domain when us-
ing paravirtualization. Hardware components and registers
within this layer are shared by all virtual CAN controllers
to guarantee and efficient and scalable architecture. Every
time a different virtual CAN controller is accessed, its asso-
ciated register values have to be loaded from the memory.
Such a context switch is a costly operation on CPUs, but
can be done within few cycles in the hardware.

The Virtualization Layer maintains a logically separate
transmit buffer for each virtual CAN controller in a shared
memory. These buffers are realized as priority queues, in
which messages are sorted with respect to their CAN prior-
ity. The Arbitration module selects the globally highest pri-
ority message just before a CAN bus arbitration starts. This
mechanism ensures that arbitration among virtual CAN con-
trollers is equivalent to the arbitration that would be possi-
ble using separate physical CAN controllers.

While CAN is a broadcast medium, applications do not
require to receive all messages. Therefore, a mapping be-



tween virtual CAN controllers and desired messages is stored
within the Rx Memory. New mappings can only be added by
through the PF. Using this information, the Filtering mod-
ule decides whether to store or discard received messages.

We prototypically implemented the presented architecture
using a Xilinx Virtex-7 VC709 development board. While
smaller boards would be sufficient to fit the design, this
board is one of the few to feature an SR-IOV capable PCIe
endpoint.

5. EXPERIMENTS & RESULTS
To compare the approaches introduced above, we con-

ducted four experiments on two different platforms, which
compare native and virtualized performance. Paravirtual-
ization was evaluated using an automotive multi-core plat-
form. Because such platforms lack dedicated hardware sup-
port for virtualization, HW-assisted I/O virtualization was
evaluated using a general purpose Intel x86 platform.

5.1 Paravirtualization
SW-based virtualization allows to integrate different soft-

ware systems on a common hardware platform, independent
of the needed technologies or hardware features like several
CAN communication controllers. However, the overheads
to process additional software parts must be taken into ac-
count. The measurement setup is depicted in Fig. 3. Be-
cause CAN is an asynchronous bus, end-to-end timing mea-
surements using multiple platforms are hard to carry out, as
they would require an additional synchronization channel.
Therefore, all experiments send and receive CAN messages
on the same platform. The AURIX TriCore has multiple
CAN nodes, which we connected using a shared CAN bus.

(a) Native

ETAS
Hypervisor

A
U

R
IX

T
riC

o
re CAN

Node

DomUDomM

CAN bus

2

3

CAN
Node

1
4

(b) Virtualized

Figure 3: Assessment of latencies to measure round
trip times of CAN messages using a paravirtualized
CAN controller.

Fig. 3a represents the native case, where we use direct de-
vice assignment to assign an exclusive CAN node to each VM
within the platform. The hypervisor acts as a monitoring
function, and only intervenes in case of an exception. In case
a VM transmits messages over the CAN bus, communication
controllers are addressed directly (1). Upon receiving these
messages (2), a second VM replies by looping this message
back (3). This is similar to the ICMP echo request (ping).
Messages are sent back to the second CAN node (3) and are
routed by the hypervisor to the VM (4), where the message
transfer started.

The measurement process includes two complete send and
receive cycles. Thus, we determine the end-to-end delay by

0 2 4 6 8

100

150

200

250

300

Payload (B)

L
a
te

n
cy

(µ
s)

native-mean

native-min
vm-mean

vm-min
can-tx

Figure 4: Latencies measured for a complete
transmit-receive loop for communication between
VMs and a connected CAN fieldbus on the AURIX
TriCore.

dividing the overall latency by two. To minimize inaccu-
racies, we repeat our measurements 100 times. Each mea-
surement is started only when the previous one has finished.
Thus, measurements cannot interfere with one another.

Fig. 3b illustrates the measurement conducted using the
DomM/DomU concept (paravirtualization). We create CAN
message within DomU and request its transmission through
DomM (1). Here, the CAN message is processed and routed
to the connecting CAN node (2) by usage of an appropriate
hardware driver [11]. Again, a second CAN node is con-
nected over a common CAN bus. The transmitted CAN
frame is received and forwarded by the hypervisor to DomM
(3). Now, DomM routes the message to the appropriate
DomU (4), where it is processed again.

The measured data path starts with the creation of the
CAN message within DomU. It stops, when the driver within
DomM has fully received the message. The timing behavior
measured here is equivalent to two distinct physical plat-
forms connected over a CAN bus, without the need of com-
plex time-synchronization.

Fig. 4 shows the results obtained from the latency mea-
surements of SW-based CAN virtualization on the Infineon
AURIX TriCore 275 (see Table 1). The transmission time
of the CAN messages on the bus for the respective pay-
load sizes (can-tx) represents a lower limit for the overall
end-to-end delay. The actual latencies for the native and
virtualized case are larger due finite processing and mem-
ory access times. In the native case, the added latencies are
produced by sending (around 8 µs) and receiving (around
11.5 µs) CAN messages within the software. To receive
CAN packages there is little routing overhead produced by
the hypervisor [14]. Again, the hypervisor acts as a moni-
toring function, and only intervenes in case of an exception.
To transmit CAN messages, the communication controllers
were addressed directly by the VMs, resulting in a native
transmission behavior.

If CAN messages must be routed over a central DomM (see
Fig. 3b), there is little routing overhead which is negligible.



There is a constant overhead to exchange CAN messages
between DomU and DomM (around 35 µs). The message
size dependency of the end-to-end latency is dominated by
the transmission time on the CAN bus, whereas processing
delays on the computing platform show little variation.

5.2 Hardware-Assisted Virtualization
HW-assisted virtualization provides near native I/O per-

formance for VMs. We designed an experiment to com-
pare latencies experienced in a native case with those seen
from within a VM. Because there is no platforms with HW-
virtualized CAN controllers available, we extended an Intel
Core i7 platform with a Virtex-7 FPGA board, featuring
a prototypical implementation of an SR-IOV-capable CAN
controller as described in Section 4. The setup is depicted
in Fig. 5.

(a) Native (b) Virtualized

Figure 5: Assessment of latencies using an SR-IOV
enabled virtualized CAN controller. The experi-
mented was conducted within the hypervisor to as-
sess native performance and within a VM.

Fig. 5a represents the native scenario. A message is send
via the virtualized CAN controller (1). After its complete
transmission, it is also received in the controller and an inter-
rupt is issued to the host system (2). Finally, the received
message is read from the controller (3). Steps (1)-(3) are
repeated 10,000 times to achieve reliable data.

When conducting the same experiment from within a VM,
the sequence is slightly different. Because x86 CPUs are
limited to either receive interrupts in host or in guest mode,
we cannot directly signal the reception of a message to the
VM. Rather, the interrupt triggers the hypervisor and is
then forwarded to the VM (step (3) in Fig. 5b).

Throughout the experiment CPU functions that lead to
performance variability are deactivated. This includes hyper-
threading, SpeedStep and Turbo Boost. As hypervisor, we
used KVM (3.8.13.6) and the VM is running Ubuntu 13.04.
The CAN bus has a bandwidth of 500 kbit/s.

Fig. 6 shows minimum and average latencies measured
in a native scenario and within a VM using HW-assisted
virtualization. Plotted alongside is the transmission time
of the respective message on the CAN bus (can-tx). The
increase in overall latencies with the payload size is only
caused by the increase in the bus transmission time, while
CPU and I/O controller related latencies are constant.

Excluding the CAN transmission time, minimum latencies
range around 13 µs in the native case and between 20 µs
and 24 µs from within a VM. The difference in latencies can
mainly be attributed to the additional interrupt forwarding
necessary (step (3) in Fig. 5b).

0 2 4 6 8

100

150

200

250

300

Payload (B)

L
a
te

n
cy

(µ
s)

native-mean

native-min
vm-mean

vm-min
can-tx

Figure 6: Latencies measured for a complete
transmit-receive loop for native communication on
from a VM on the Intel i7.

Compared to minimum latencies, mean latencies are 11 µs
larger in the native case and 25 µs from within a VM. The
latency variation can be attributed to interfering tasks on
the CPU, cache and TLB pollution, and variable PCIe la-
tencies. Interference from other tasks is rather an artifact
within the measurement due to the lack of real-time support
of the operating system. It is larger within the VM, as here,
not only tasks within the VM but also the hypervisor can in-
terfere. We assume the increased mean latencies for the VM
compared to the native case are caused by the additional
source of interference in the measurement.

5.3 Discussion
Above, we presented experimental assessments of virtual-

ized CAN controllers using paravirtualized and HW-assisted
virtualization. Due to the lack of virtualization support
within current commercially available automotive CPUs, we
chose a general purpose x86 platform to evaluate HW-assis-
ted virtualization. When comparing results, it is important
to consider differences in these platforms. Table 1 shows key
properties of the platforms used in the experiments.

Table 1: Comparison of hardware platforms.

Property Platform 1 Platform 2

CPU Infineon AURIX TC275 Intel i7-3770T

# of Cores 3 4

CPU frequ. 200 MHz 2.5 GHz

Interconn. System Peripheral Bus PCIe 3.0

Price ∼$10 ∼$294

The most significant difference is the CPU frequency (fac-
tor 30) and the resulting performance discrepancy. How-
ever, the AURIX is less complex an therefore requires sig-
nificantly less cycles for many operations. For example, the
CAN nodes of the AURIX are connected through a special-
ized on-chip interconnect called System Peripheral Bus. It



is designed for predictable low-latency communication. On
the other hand, the virtualized CAN node used with the In-
tel platform is not directly connected to the CPU. Rather,
it connects through PCIe to the Platform Controller Hub,
which itself is connected through another PCIe to the Intel
Core i7. Here, further on-chip communication resources are
involved.

Latencies in the native cases are similar. On the AURIX,
we measured added latencies around 20 µs and 13 µs on the
Core i7. However, added latencies introduced in the virtual-
ized cases differ more significantly with 35 µs for the AURIX,
but only 7 µs for the Core i7. Nevertheless, send/receive
latencies are sufficiently small (smaller than CAN trans-
mission time) in both platforms to achieve line-rate perfor-
mance.

An aspect which was not covered by the experiments is
interference. If multiple VMs send messages simultaneously,
their requests have to arbitrated. The added latencies from
interference are also expected to be larger using software.

6. CONCLUSION
Current scalability issues of automotive embedded sys-

tems can be solved through the introduction of multi-core
CPUs and virtualization. However, this poses challenges for
shared network-I/O devices. Here, we addressed the prob-
lem of virtualization a CAN controller so that multiple con-
current VMs can access it collision free.

The evaluation of virtualized CAN controllers using par-
avirtualization and HW-assisted virtualization demonstrated
the applicability of both approaches. HW-assisted virtual-
ization is currently not possible in automotive multi-core
controllers, but seems desirable due lower latencies and bet-
ter predictability. Paravirtualization is a valid approach to
enable I/O sharing in current commercial platforms. In a
long-term perspective, it would be preferable if chip vendors
introduce dedicated HW support for virtualization and thus
improve the efficiency of such platforms.

Acknowledgments
This work was funded within the project ARAMiS by the
German Federal Ministry for Education and Research with
the funding IDs 01|S11035. The responsibility for the con-
tent remains with the authors.

7. REFERENCES
[1] C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund,

C. Maiza, J. Reineke, B. Triquet, and R. Wilhelm.
Predictability considerations in the design of
multi-core embedded systems. Proceedings of
Embedded Real Time Software and Systems, pages
36–42, 2010.

[2] M. Di Natale and A. L. Sangiovanni-Vincentelli.
Moving from federated to integrated architectures in
automotive: The role of standards, methods and tools.
Proceedings of the IEEE, 98(4):603–620, 2010.

[3] Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and
H. Guan. High performance network virtualization
with sr-iov. Journal of Parallel and Distributed
Computing, 2012.

[4] C. Herber, A. Richter, H. Rauchfuss, and
A. Herkersdorf. Self-virtualized can controller for

multi-core processors in real-time applications. In
International Conference on Architecture of
Computing Systems (ARCS), pages 244–255, 2013.

[5] C. Herber, A. Richter, H. Rauchfuss, and
A. Herkersdorf. Spatial and temporal isolation of
virtual can controllers. In Workshop on Virtualization
for Real-Time Embedded Systems (VtRES 2013),
pages 7–13, 2013.

[6] J. Kim, S. Lee, and H. Jin. Fieldbus virtualization for
integrated modular avionics. In Emerging Technologies
& Factory Automation (ETFA), 2011 IEEE 16th
Conference on, pages 1–4. IEEE, 2011.

[7] A. Menon, J. Santos, Y. Turner, G. Janakiraman, and
W. Zwaenepoel. Diagnosing performance overheads in
the xen virtual machine environment. In Proceedings
of the 1st ACM/USENIX international conference on
Virtual execution environments, pages 13–23. ACM,
2005.

[8] I. Pratt, K. Fraser, S. Hand, C. Limpach, A. Warfield,
D. Magenheimer, J. Nakajima, and A. Mallick. Xen
3.0 and the art of virtualization. In Linux Symposium,
pages 65–77, 2005.

[9] H. Raj and K. Schwan. High performance and scalable
i/o virtualization via self-virtualized devices. In High
Performance Distributed Computing: Proceedings of
the 16 th international symposium on High
performance distributed computing, volume 25, pages
179–188, 2007.

[10] H. Rauchfuss, T. Wild, and A. Herkersdorf. A network
interface card architecture for i/o virtualization in
embedded systems. In Proceedings of the 2nd
conference on I/O virtualization. USENIX
Association, 2010.

[11] D. Reinhardt, M. Güntner, and S. Obermeir.
Virtualized Communication Controllers in
Safety-Related Automotive Embedded Systems. In
Architecture of Computing Systems (ARCS), 2015
28th International Conference on, Mar. 2015.

[12] D. Reinhardt, D. Kaule, and M. Kucera. Achieving a
scalable e/e-architecture using autosar and
virtualization. SAE International Journal of
Passenger Cars-Electronic and Electrical Systems,
6(2):489–497, 2013.

[13] D. Reinhardt and M. Kucera. Domain controlled
architecture: A new approach for large scale software
integrated automotive systems. In Pervasive and
Embedded Computing and Communication Systems,
pages 221–226, 2013.

[14] D. Reinhardt and G. Morgan. An embedded
hypervisor for safety-relevant automotive
E/E-systems. In Industrial Embedded Systems (SIES),
2014 9th IEEE International Symposium on, pages
189–198, June 2014.

[15] M. Strobl, M. Kucera, A. Foeldi, T. Waas,
N. Balbierer, and C. Hilbert. Towards automotive
virtualization. In Applied Electronics (AE), 2013
International Conference on, pages 1–6. IEEE, 2013.

[16] J. Sugerman, G. Venkitachalam, and B.-H. Lim.
Virtualizing i/o devices on vmware workstation’s
hosted virtual machine monitor. In USENIX Annual
Technical Conference, General Track, pages 1–14,
2001.


