The Automotive CASE

P. Braun, M. Broy, M.V. Cengarle, J. Philipps,
W. Prenninger, A. Pretschner, M. Rappl, R. Sandner

Institut fiir Informatik, TU Miinchen
Boltzmannstr. 3
85748 Garching, Germany

Abstract

The increasing functionality and complexity of modern automotive embedded
systems demand new ways of mastering their intricacies. The standard response
to this challenge is the use of abstractions, of appropriate structuring concepts,
and, related, but less important, of suitable description techniques. Such ideas
materialize in CASE tools. We shed light on CASE in the context of complex em-
bedded systems, taking into account the different activities and phases of a devel-
opment process. Clearly, integrated tool support is desirable for issues as different
as requirements engineering, deployment, code generation, and validation. How-
ever, this is far from being simple since different levels of abstraction need to be
interrelated. For instance, the embedding of generated code into its context of
legacy systems, hardware, and operating systems requires dealing with both ab-
stract models and an actual environment. We give our assessment of current and
future CASE tools.

1 Introduction

With as many as 80 micro controllers in modern vehicles, engineers see themselves
confronted with an ever increasing level of complexity. This comprises both the prod-
uct and the development process. In addition to the definition of suitable, domain-
specific processes, a lack of serious alternatives renders machine support for prod-
uct development desirable. We will refer to this kind of machine support as CASE
tools. Among other features, CASE tool functionality includes integrated support for
all kind of specification activities including reuse, verification and validation, code
generation and tracing as well as configuration and version management. Machine
support for some of these aspects seems to be independent of the application domain,

while for others—e.g., modeling—, there is obviously a need for domain specific en-
tities.

Our understanding of CASE tools exceeds classical IDEs. It is impossible to imagine
the development of modern vehicles without machine support—just consider CAD
for shaping parts of the vehicle, FEM simulation for flow analyses, and simulations
of the driving behavior of entire cars. However, such tools are not the subject of this
paper.

One desirable property of CASE tools is the integration of the different phases of a
software development process, the integration of different levels of abstraction within
each of the phases, and tracking facilities for the various stages of development of the
system under development. The silver bullet, the all-inclusive CASE tool that allows
the convenient handling of all difficulties, seems unrealistic. Integration of several
CASE tools is therefore mandatory.

For a subset of the above desirable properties, the market offers solutions. Model-
ing mixed discrete-hybrid systems with tools like Matlab or ASCET-SD (ETAS) with
associated (production) code generators like Beacon (ADI) or TargetLink (dSpace) is,
for single control units and heavy restrictions on the modeling languages, success-
fully done in practice. However, there is a plethora of unsolved problems—such as
the integration of different levels of abstraction, support for different communication
buses in distrubuted systems, support for hardware platforms, etc.—that we sketch
together with potential solutions in this paper. One of the key problems seems to be
the following: demanding high levels of abstraction on the one hand and demanding
support for code generation on the other hand, which includes aspects like commu-
nication with operating systems and hardware, seems to be contradictory.

CASE for automotive systems. The use of electronic control units in automobiles
has a tradition of about thirty years now. The first electronic control unit was in-
troduced to control fuel injection of a motor. This control unit came up with great
expectations which were set with regard to the enhancement of the engine’s perfor-
mance, while reducing the fuel consumption at the same time. About ten years later,
a programmable microprocessor based control unit was deployed for the first time:
the Anti Blocking System (ABS). At that time nobody could expect that microproces-
sor based control units would be used in all kinds of application domains, including
powertrain, chassis electronic, body car electronic, infotainment and driver assistance
nowadays. In upper class cars, a vast number of control functions are executed on a
network of about 80 control units, each fulfilling a dedicated task—a situation that
is slightly different in avionic control systems where redundant full fledged micro
processors like 68030 take care of different tasks at the same time.

Though innovative functions are key potentials for competitive advantage, their merit
will be limited if they are not subject of a permanent cycle of innovation and change.
Recent studies [24] show that the interest of the electronic content in the net product
of a car will double till 2005. Further, to meet customers” wishes and requirements
formerly isolated functions are growing together to car wide applications executed

on a distributed network of control units. Of course, despite this integration of func-
tions and the growing complexity of the systems the car wide applications have to be
easily maintainable, changeable and customizable according to the drivers” demands.

Along with the evolution of automotive embedded systems, the development pro-
cesses of car vendors had to be refined. With the growing complexity of the realized
systems, some well used practices exhibited some severe drawbacks. In the begin-
ning, functions were developed in isolated development teams within one company.
This worked well as long as the functions fulfilled their task in isolation. With the
increasing number of functions and the growing amount of interactions, the integra-
tion of these functions failed. Problems like side effects and timing latencies arised. To
overcome the difficulties of a distributed development of a system, the different de-
velopment artifacts had to be communicated across the different development teams
in order to gain a understanding of the mutual dependencies between subsystems.
But most of the developed systems were not properly documented. In most cases,
only the source code of realized functions could be exchanged, which was not suf-
ficient to gain a deeper systems understanding. Abstract models which could help
to constitute an improvement were used extremely rarely. The problems of a dis-
tributed development were reinforced when the purchase of components from third
party suppliers started. In addition to the difficulties of integrating these components
into existing systems, car vendors complained about a progressing lack of knowledge
of their own systems.

About 15 years ago model based techniques were employed with great expectations
to overcome recognized difficulties of current development processes. Especially in
other engineering disciplines like electrical and mechanical engineering, model based
techniques, such as CAD, FEM and hardware design tools were employed with a
great success. Therefore various tools supporting visual modeling languages, con-
figuration management tools, requirements management tools, and test tools were
introduced. But the great heterogeneity of model based techniques, their abstract-
ness and the strict focus of these tools on usually just one aspect of the development
process limited the success and the effort of these tools. As a consequence car ven-
dors started expensive integration projects to enhance the model based support of the
overall development process. But all of these projects ended with an uncertain result.
Step by step car manufacturers got a new awareness of their systems” architectures
[10]. Partitioning the system’s architecture in different abstraction levels, the intro-
duction of a domain specific ontology, concepts for the formation of variants, and
the understanding of model based configurations today seems a first step towards a
successful deployment of model based techniques.

Notions such as signals, functions, electronic control units, real time operating sys-
tems, communication infrastructure, and processors now build up the automotive
specific ontology that characterizes automotive embedded systems. Each of these
notions constitutes a fragment of the architectural model at a certain level of abstrac-
tion. Signals, for instance, are elementary entities which can be exchanged between
actors, sensors and control units. Each signal can be measured or computed from a

physical context. For the construction of architectural models, model based manage-
ment of all signals occurring in a car is essential since their number goes far beyond
ten thousand. Another important aspect of architectural models is the specification
of data dependencies between control functions. Since functions are potentially dis-
tributable units that can be deployed on different control units, the consistent and the
complete capture of model information in terms of data dependencies between func-
tions supports the collaboration of distributed development teams. This happens by
stating the required and offered signal interfaces which are the basis for the descrip-
tion of potential interaction patterns. Last but not least, the model based deployment
of functions to different control units, and the model based connection of functions
and control units to the technical infrastructure (processors, real time operating sys-
tems, communication infrastructure) are essential for an automotive specific support
of the development process.

The attentive reader might argue that the listed notions of the automotive specific on-
tology are not unique in the automotive domain and that they are transferable to fur-
ther application domains, e.g. avionics. And he might be right with this observation.
Case Studies we have carried out in both application domains underpin this tight
correlation. But each application domain owns characteristic factors which make
them well distinguishable. In the automotive domain non-functional constraints ex-
ist, which limit the design space spanned by all possible architectural models. These
constraints stem from political, economical, quality and technical requirements for
automotive systems and imply automotive specific architectural models.

Technical constraints, for instance, may restrict the deployment of functions. Deploy-
ment of functions depends to a large extent on the availability of signals. Because
most of the sensors and actuators do not have any logic for a linkage to a bus system,
they are directly connected to the control unit. The deployment is therefore restricted
w.r.t. the availability of signals. Their transmission is generally impeded by geomet-
ric restrictions due to the installation of the harness.

Quality constraints, as another example, can be discussed in relationship with up-
coming X-by-wire systems. These safety relevant systems replace mechanically con-
trolled processes by electrically controlled processes. On the one hand, these tech-
nologies allow the realization of comfortable driver assistance systems. On the other,
hand these systems have to satisfy strict requirements on availability since there are
no mechanical backup solutions. The requirements on availability affect the forma-
tion of architectural models with regard to a redundant realization of these safety
critical systems.

Economical constraints are imposed according to the great amount of cars which are
manufactured. Therefore, the cost of the used hardware has to be reduced. This
leads to the installation of old-fashioned control units with low memory and proces-
sor resources. Sometimes these control units are not capable of executing all of the
deployed functions. This again has influences on the specification of an architectural
model.

Last but not least, political constraints such as road traffic acts influence the use of

technologies or require the implementation of certain systems. At this point, the con-
troller for the regulation of the lightening distance can serve as an example.

Organization. The remainder of the paper, a critique of current CASE tools and a
discussion of their future, is organized as follows. In section 2, we sketch the prob-
lems CASE tool developers have to face. This includes technical as well as economical
and political aspects, and sometimes, these lead to conflicting conclusions. We out-
line an assessment of which problems appear solvable in the near future and which
difficulties are likely to pose major obstacles. Section 3 is the core of the paper. It
contains a survey of the state of the art, taking into account the challenges that have
been identified in the previous Section. Section 4 concludes. Related work is cited in
the context.

2 CASE Tool Challenges

CASE tool vendors—not only in the domain of automotive embedded systems—have
a tendency to praise their tools as a response to the demands of increasing complexity
in software and systems design. Conversely, there are a number of challenges that
CAGSE tools must meet. In this section, we discuss two major streams of challenges,
technical and political or economic ones.

2.1 Technical Challenges

Abstractions. Advances in programming languages are bound to the use of suit-
able abstractions [25]. Among others, this is illustrated by the invention of structured
programming constructs, structured data types and type systems, modules, excep-
tions, monitors—and their equivalents—, automatic garbage collectors, communica-
tion infrastructure like CORBA[1], and, more recently, model-driven approaches to
architecture like the OMG’s MDA [30] initiative.

One of the most common misconceptions is that CASE tools for embedded systems
should be general and equally well-suited for the development of internet appliances,
signal processing in cellular telephones, switching systems for telecommunication
and monolithic or distributed controllers in avionics or automotive electronics. Con-
sequently, CASE tools typically have graphical description techniques that tend to
focus on domain-unspecific description techniques for the different aspects of a sys-
tem, like data, behavior, structure, or communication. It is, however, by no means
certain that the abstractions behind these description techniques are better-suited for
embedded systems than those of programming languages. There is, for instance, the
danger that the various flavors of state machines found in CASE tools are used as an
ill-structured graphical notation for the control flow in common programming lan-
guages (“spaghetti code”). In that case, modern IDEs for C, C++ or Ada are likely to
offer higher productivity.

As long as commonly accepted abstractions—understood in terms of re-usable on-
tological entities—are not found, we deem domain specificity desirable. In fact, col-
laborating in a domain specific manner might well be the only way to identify gen-
erally applicable abstractions. It is unclear whether, for instance, the aspect of com-
munication can be concisely described by the same description techniques both for
CAN buses and time triggered architectures [30]. Common abstractions for the task
scheduling of real-time systems are somewhat in conflict with abstraction for mod-
ular system structures [16]. For other aspects of modern automotive systems, such
as fault tolerance, monitoring, auditing and maintenance, suitable abstractions are
under-developed and little understood; it is no surprise that suitable abstractions for
these aspects still remain to be found.

Code generation. A popular argument against the use of CASE tools is code qual-
ity, both in terms of memory requirements and execution speed; for automotive elec-
tronics, this argument is often accompanied by a reference to cost pressures that for-
bid the move to controllers with higher processing power. Although the code qual-
ity of modern tools has improved to a point that generated code has actually been
deployed, code generators will need further improvement (unfortunately, many op-
timizations work only for a given compiler and target platform, which somewhat
contradicts the use of high-level languages as a portable assembly language).

The problem of code generation from models in non-trivial. Models in CASE tools
are used because they are abstractions, because they hide details. On the other hand,
in order to become operational, code generation from models requires a degree of
precision that is akin to that of code. This approach is, for instance, implemented in
ASCET-SD (ETAS) for single ECUs or within Matlab with associated code generators
like Beacon or TargetLink. Models must thus integrate different levels of abstractions,
they must deal with both abstract descriptions as well as concrete interfaces with op-
erating systems or bus infrastructures. That this is at least feasible for some aspects
is, for instance, illustrated by ASCET-SD or the language Giotto [13]. Suitable de-
scriptions of platforms remain to be found; tailoring of CASE tools to specific needs
remains to be investigated.

Tool integration. Third, unless one is convinced of the possibility of one tool that
solves all problems, the integration of different tools becomes an issue. Building ex-
plicit meta models and integrating different meta models is a difficult challenge. This
is particularly if the issue of semantics is taken into account. The degree of formality
of a semantics does not seem to be point, rather, we consider its simplicity a necessary
prerequisite.

Note that a purely syntactic standardization as in the UML does not sulffice.

Certification. The development of X-by-wire technologies for automotives puts high
demand on the quality of code and development process. The field of avionics makes

use of elaborate certification processes, like DO-178B; it is likely that similar (albeit
streamlined) approaches will be established for automotive electronics.

The avionics standards in general require the entire tool chain to be certified, which
is a difficult problem. The short-term solution to this problem seems to be a focus on
support for the certification of generated code rather than certification of the tools.
Implications for the process are unclear. Certification of code also puts demands on
the readability and traceability of the generated code, which forbids many optimiza-
tion techniques.

In any case, it certainly is possible to integrate model-based code with code certifica-
tion processes. Preliminary work for avionics has been done in the project MOBASIS
[9]; it can easily be generalized for automotive electronics.

Traceability. Fifth, tracing the software development is yet unsolved by CASE tools.
While this is also true for traditional code-centered development, the issue obviously
becomes more prominent for systems of increasing complexity. This also includes
requirements tracing. Support by means of tools like DOORS only is a first, if pop-
ular, step. It remains insufficient, unless one is able to structure requirements in a
given domain in a consistent and reproducible manner, and unless the very nature of
requirements in automotive systems is understood.

2.2 Political and Economic Challenges

In addition to the more technical issues mentioned above, CASE tool vendors are
faced with a second kind of difficulties.

Vendor lifetime. The past years have seen the rise and fall of many tool vendors:
Typically, companies that use CASE tools have a much higher lifetime than compa-
nies which produce them. The fear of vendor lock-in is a major reason that CASE tools
are not used more widely. Small companies with uncertain prospects are not likely to
be appointed as partners for large projects. Note that a similar situation for compiler
vendors had been circumvented by standardization of programming language syn-
tax and semantics; such a process, however, is unlikely to occur for embedded system
description techniques in the near future.

Market size. In spite of the number of CASE tools currently available for embed-
ded systems design, both market penetration of each particular tool and tool accep-
tance by embedded systems engineers is still rather low. From the point of view of
the tool vendors, the CASE tool market—particularly for automotive systems—, cer-
tainly is not a mass market. The number of licenses is naturally restricted. This does
not improve when domain-specific tools and description techniques are advocated.
Building CASE tools, however, is a costly undertaking. There are two possibilities:

one can demand high prices for CASE tools which, in view of their currently limited
capabilities, does not increase their attractivity. Alternatively, tool vendors can try to
litigate expensive consulting and maintenance contracts. Outsourcing the mastery of
process-critical methods and tools clearly is a critical option.

Supplier management. Typically, automotive controllers do not come from a sin-
gle supplier; different controllers come from different suppliers, sometimes even the
supplier changes for different controller series. The distribution of controller require-
ments and the collection of the final controller software is difficult unless tools and
their description techniques are heavily standardized. Similar to the problem of tool
integration mentioned above, a purely syntactic standardization as in the UML does
not suffice.

Developer education. Most of the benefits of development with CASE tools come
from the higher abstraction level of their description languages; consequently, the
pure size of the descriptions is reduced, and—in theory—so is the size of the devel-
opment team. However, in practice abstraction works only up to a point; then it is
difficult to find developers that have the necessary education to skillfully work with
the abstractions. This effect can be observed with the highly abstract functional pro-
gramming languages Haskell [32] and ML [20]; although they are taught as a first
programming language in many universities world-wide, their actual use is limited
mainly to universities and research institutions —a phenomenon, which in view of
the development of the Java language, cannot simply be blamed on the assumed “in-
efficiency” of these languages.

For CASE tools, this means that increasing the degree of abstraction requires engi-
neers to be able to see a system at a high level, while, at least currently, they must not
forget the implications at the level of the actually deployed system. Of course, this
problem is not inherently bound to the use of tools but also applies to code-centered
processes. However, structuring complex systems is a demanding activity, and ex-
perts are scarce. Less excellently educated engineers are unlikely to embrace CASE if
they do not see the need nor understand the underlying design principles.

3 State of the art of CASE tools

Case tools provide a valuable support for the presentation and analysis of models.
Their characteristics as listed above have been tackled to a certain extent by different
existing CASE tools. In this section we schematically present these tools by address-
ing which concepts have been developed so far as well as the current solutions in the
market, and discuss their strengths and weaknesses.

3.1 Developed concepts

The tasks and characteristics of (potential) CASE tools can be gathered in concepts as
detailed below.

Graphical modeling techniques

Today’s CASE tools, in particular those applied in the automotive domain, are dom-
inated by graphical description techniques, and this not just only because of the im-
pact of object orientation. The goal of using diagrams is to have at one’s disposal a
language-neutral modeling instrument without being tied to the intricacies of a pro-
gramming language. This makes it easier to present a system under development to
(potential) customers and discuss with them their visions, needs, and critics. Most
used techniques are class or block diagrams for structure modeling, state based tech-
niques such as Petri nets or statecharts for behavior and control flow modeling, and
message sequence charts or sequence diagrams for interaction modeling.

Views and model management

A major approach of CASE tools to reduce the complexity of system development
is the decomposition of a system description in views described by the modeling
techniques discussed above. Views concentrate on aspects relevant for particular de-
velopment taskts or provide abstractions suitable for specific development phases or
tasks.

Almost all CASE tools provide at least views for modeling the logical structure and
behavior of a system. Further views frequently provided are diagrams for the specifi-
cation of component interaction, use cases, deployment, and related implementation
specific structures.

Because of dependencies between development steps, it is natural that these views
are not orthogonal: For example, a behavior model belongs to a component in the
structure view, or an interaction refers to a component also specified in the behavior
view. This redundancy requires mechanisms for ensuring consistency, either by con-
sistency checks or by an appropriate propagation of changes. Such mechanisms are
either based on explicit consistency conditions between the internal representation
of its model elements in the tool or by a mapping of the views into an abstract meta
model which avoids redundant representation.

Most CASE tools provide model management functionalities for versioning, further
configuration management, and group work support such as change logs and access
control.

Model analysis

Once a software system, be this prototypical or not, has been developed, a deep com-
prehension of the generated system and also tuning of the model might be advisable.
By comprehension we mean an understanding of the system such that the designer
knows to what extent the system is correct and fulfills its requirements.

Given an object-oriented model expressed for instance with the help of UML, there
are tools that can generate package dependency diagrams, recover and display in-
heritance trees, or track any other kind of relation as a method parameter or a return
value, such as dependencies, associations, realizations, and class usage. Tools exist
that claim to have the ability to use integrated simulator for performance analysis of
real-time systems or to provide export facilities (e.g. based on XML) in order to use an
external simulator. To export structure of a model is relatively easy, a major challenge
is to export behavior as well.

Quality assurance features, like for instance audits that help detect when the design
is poor and metrics, spare developers from searching code for errors. Built-in unit
testing, moreover, helps uncover problems during the coding process.

Automation of development

Ideally, once a model is constructed, a program is generated automatically. As a mat-
ter of fact, parts of the model can indeed be generated automatically by several CASE
tools that moreover conform a specific architecture. For instance, the user can select
an object and generate the classes necessary to make it conform to a Design Pattern,
make an executable component out of it or convert it to the class that can be accessed
remotely in accordance with the Java RMI specification. In this context, the designer
usually abstracts from the communication paradigm that underlies the connection
(i.e., the bus) between model and simulator.

Automatic code generation from a model is also termed forward engineering. Some-
times changes or even development are undertaken directly on the program code.
There are tools that support reverse engineering, they e.g. attempt to automatically
generate class and sequence diagrams from source code. A CASE tool supporting
both forward and reverse engineering is said to provide a means for round-trip engi-
neering. Simultaneous round-trip engineering eliminates code and model mismatch;
changes to the model or the code can be made and both stay consistent with each
other, no extra steps are needed.! A further concept is that of re-engineering, which
denominates the task of changing an existing system in order to meet new require-
ments.

Also, as an important feature in order to increse the level of automation in the de-
velopment process, many CASE tools provide facilities for reporting, e.g. for analysis
and documentation.

IThis is true with respect to structure. Regarding behavior, on the contrary, some adjustments have to
be done by hand. In the UML realm, code can be generated from both state diagrams and activity
diagrams, sequence diagrams can be generated from code and state diagrams from sequence diagrams.
All these functionalities composed, on the one hand, do not suffice for real mismatch elimination, and
on the other, to our knowledge they are not integrated in a single CASE tool.

10

3.2 Current solutions

The present and most well-known CASE tools and the support provided by them
can be characterized as detailed below. We restrict the description to representative
commercial tools. This summary is not intended to be complete: it provides a survey
on current CASE tool concepts and refers to representative tool implementations.

UML

The Unified Modeling Language (UML [21, 23, 22]) is a collection of notations used
to describe a software intensive system in its different stages of development as well
as from various perspectives. It is an object-oriented notation and meanwhile has
become a de facto standard. UML defines use cases, class, object, sequence, collab-
oration, activity, state, component, and deployment diagrams, and puts the Object
Constraint Language (OCL [35]) at disposal for the specification of additional condi-
tions that cannot be diagrammatically stated and are to be applied against a model-
ing element. In other words, UML has been designed as a universal notation for the
whole development process from requirements analysis to implementation, at least
for business applications (although many efforts are being undertaken in order to
make UML applicable in other fields).

However, the application of the different diagram types as well as the relationship of
them with each other is not clearly enough stated. Moreover, the semantics of UML
diagrams is not univocally defined. Thus, according to the numerous different inter-
pretations of behavior models, results in analysis for “seemingly equivalent models”
differ widely. Furthermore UML lacks a component concept that could serve as basis
for software architecture; see [12, 11].

As a result of these ambiguities, UML is so far mostly used only for documentation
purposes, unfortunately.

UML-RT

The UML and powerful modeling constructs originally developed for the modeling
of complex real-time systems in the Real-Time Object-Oriented Modeling language
(ROOM [27]), have been combined into UML for Real-Time (UML-RT [26, 18]). It is
directed at developers of complex real-time software systems (e.g., telecommunica-
tions, aerospace, defense, and automatic control applications).

The complexity of real-time systems arises from aspects like concurrency, dynamic
behavior, variable loading, and memory and processing limitations on target plat-
forms. In the continuously expanding area of telecommunications, and because the
business gets more and more competitive, to those aspects we may add the necessity
of a faster and cheaper development process of real-time applications.

The execution model of UML-RT focusses on high-level system modeling and leaves
open many implementation concerns like e.g. performance and efficient code gener-
ation.

11

ASCET-SD, Stateflow, and Betterstate

The tools ASCET-SD [2], Stateflow [8] and Betterstate [4] facilitate the development
of time discrete embedded systems by means of structure diagrams and a variant of
statecharts. Systems are specified at a rather detailed level of abstraction: commu-
nication between components is specified by means of shared variables, there are no
abstractions which ensure the reception of sent messages or avoid duplicate reading.
Behavior is modeled at an implementation-oriented level including implementations
of algorithms (in the programming language C) and the scheduling of the computa-
tion of components.

Betterstate and especially ASCET provide facilities for efficient code generation and
simulation. For Stateflow, the external code generators Target Link [6] and Beacon [3]
are availavle. Support in all these tools is mostly limited to sysetms with one elec-
tronic control unit (ECU). Though, limited Modeling extensions for distributed sys-
tems exist for Stateflow, and a as more general solution, the toolset TITUS [] is under
development but not available yet.

Matlab/Simulink and MartixX

Matlab [8] and MartixX [] enable the specification of both message and time discrete
and continuous embedded systems by means of block diagrams from control theory.
The system structure is specified in terms of control blocks and signal/information
flow. The behavior of each control block is specified by a control algorithm. Simi-
lar to discrete, state based descriptions, the specification includes the scheduling of
the execution of control algorithms: They can be activated periodically (specified by
sampling rates), continuously or triggered by events.

Both approaches provide a simulation environment which allow to analyze the be-
havior of a control system in “logical time”. This simulation abstracts from actual
consumption of resources by control blocks, and thus of schedulability problems. The
simulation is computed in discrete steps. The granularity of this discretization can be
specified in order to constrain the divergences between simulation and actual physi-
cal behavior to an appropriate measure.

Both tools include the integration of state based description techniques for discrete
system parts: Matlab is interconnected with Stateflow and MatrixX with Betterstate.

VCC

VCC [5] provides a rather detailed abstraction level in the specification of embedded
systems which focuses on the analysis of run time behavior and performance aspects
in the context of concrete hardware. VCC provides hierarchical structure diagrams
with components, connectors and ports similar to ASCET-SD or UML-RT. Compo-
nent behavior is specified by a variant of C programs.

VCC provides a mapping of the logical component structure to a hardware model
which includes the specification of clock cycle times of processors, the consumption
of clock cycles by algorithms and characteristics of communication busses. Based

12

on both models, a simulation environment enables both the logical analysis of the
systems functionality and performance analysis considering resource consummation
and timed behavior.

AutoFocus and Esterel

Verification support by the tools mentioned above is mainly restricted to simulation
environments. AUTOFOCUS [?, ?] and Esterel [7] tools provide a more elaborated
verification support:

AUTOFOCUS specifies the structure of embedded systems by means of system struc-
ture diagrams (SSDs) consisting of components, port interfaces and communication
channels, and the logical behavior by a syntactically restricted variant of Statecharts
(STDs). Based on a formal semantics for these techniques, AUTOFOCUS provides
support for the generation of test cases (in most other CASE tools only, if at all, the
execution of tests is supported) and model checking techniques, as well as a simula-
tion environment and code generators.

Esterel specifies embedded systems by means of a synchronous, formally founded
programming language and provides facilities for verification using model checking
and testing, and test case and code generation (also state based graphical techniques:
Esterel studio)

Doors

The CASE tool doors focuses on the traceability aspect of requirements engineering.
Traceability is supported by linking interdependent artifacts in system development
specified in general purpose tools such as text editors and spreadsheets and special
purpose CASE tools through a hyper link structure.

This way, doors supports the navigation through artifacts of development. Further,
it provides facilities for automated generation of documentation. The feasibility of
doors’ link structures depends on two aspects: first, the granularity at which arti-
facts of special purpose CASE tools can be linked (this depends on interfaces of those
tools). Second, and most important, a clear model of requirements and their relations.
is necessary. This has to be provided by the user.

Others

As stated above, this survey is far from being complete. It focuses mainly on design-
oriented approaches which have been used or assessed in automotive development
projects. Beside them, there are a lot of other approaches:

These comprise tools based on Petri nets such as PEP [], tools successfully used in
related domains such as SDL (e.g. Tau [?]) in telecommunication, and numerous aca-
demic languages and tools focusing on specific aspects such as timed behavior (Timed
Automata [?, ?] and Giotto [?]), interface specification (Interface Automata [?]) and hy-
brid systems (e.g. [?, ?]). Also there are approaches for meta CASE tools (e.g. META-
CASE []) which provide facilities to customize general notions like state based de-

13

scriptions to application specific needs.

3.3 Strengths and weaknesses

The above addressed CASE tools show strengths as well as weaknesses. This section
is devoted to identify these.

Comprehensiveness and abstraction

A principal challenge to CASE tools in order for mastering complex development
projects is the support of appropriate, comprehensive abstractions for each develop-
ment task and the integration of different abstraction levels.

By far most of the CASE tools discussed above provide graphical description tech-
niques both for the specification of a system’s structure and behavior. The two dimen-
sional presentation eases comprehension of complex structures and behaviors com-
pared with the linear structure of programming languages, since artifacts like control
loops have a closed, intuitive representation. Graphical modeling languages are no
universal remedy for comprehensive models: As abuse of programming languages
can result in spaghetti code, abuse of the expressiveness of modeling techniques can
result in, say, ravioli structures.

Whereas modeling languages cannot be blamed for the possibility to abuse them in
general, there are weaknesses concerning their structuring mechanisms which pro-
lifer poorly structured modeling: For example, the UML does not enforce restrictions
on the entering and exiting substructures of statecharts, and the relation between state
based behavior and algorithmical and data aspects is often ill-fated.

Assessing today’s CASE tools concerning their support for abstractions requires con-
sidering individual aspects: some CASE tools provide abstraction from concrete com-
munication specifics such as to ensure message transfer. For example, the communi-
cation model guarantees that every message sent to a receiver is actually being read.
ROOM also allows for the abstraction of actual execution time of specific interactions.
Case tools like ASCET-SD and VCC enforce a much more detailed modeling because
they aim at the analysis of timed and communication aspects. Still, languages like
ROOM have severe shortcomings concerning abstraction: computation - and even
communication constructs - need to be specified at the level of implementation in
programming languages, and there exists, for example, no abstract construct for syn-
chronization tasks.

These examples reveal another serious problem: Each development phase has its own
needs for abstraction, appropriate abstractions for requirements analysis fundamen-
tally differ from design abstractions and implementation. The discussion of state
of the art CASE tools in the previous section shows that the level of abstraction in
those tools is manifested by language design decisions. For example, ROOM’s com-
munication paradigm is inadequate for time and performance modeling, whereas
the paradigm of ASCET-SD, VCC and others enforces over-specification if applied in

14

early phases of development.

Integrations of CASE tools in order to cover different development phases are mostly
not available yet. Only hyperlink structures (without semantical foundation, see be-
low) through the doors tool and a few linkages between modeling tools and code
generators and validation tools are available so far. Beside that, integration of CASE
tools is still a matter of research, e.g. in [?, ?].

Consistency of models

As stated in Section 3.1, consistency between views can be reached by explicit con-
ditions or else based on an integrated meta model. In general, the quality of mech-
anisms ensuring consistency depends on the completeness of consistency conditions
or, in the case of meta model based tools, the completeness of the meta model and the
extent to which it is free of redundancy.

Consistency in current case tools is, if at all, preserved only partially so far: For ex-
ample, many tools allow the specification statecharts with transitions not connected
to states or communication channels not connected to components. However, also
strict policies in order to preserve consistency can have their disadvantages: systems
development usually considers a rough sketch of the system an its requirements first,
bookkeeping mentality can severely hinder creativity. As an example, some CASE
tools require to have all datatypes already predefined when starting the specification
of an interaction scenarios by a MSC, i.e. force to specify details before the rough lines
of the considered protocol.

These examples show that there is a need for improving CASE tools both by more
elaborated consistency check mechanisms and in a way that the control of the process
of ensuring it is kept by the user.

Validation and code generation

Many of the CASE tools mentioned above support validation usually by way of ani-
mation (also called simulation and model-level debugging). However, in most cases
simulation is only supported at a very detailed abstraction level. Simulation of dy-
namic models is a tool for testing the behavior of design in advance, before spending
the time and budget on the cycle of coding-testing-coding. Higher quality in shorter
time is gained thanks to the ability to verify and validate design very early at the de-
velopment life cycle. For instance, multi-threaded objects are able to be checked for
deadlocks.

Simulation is especially feasible for deterministic models; for non-deterministic ones,
it is not clear if a simulation run covers all relevant behaviors. Thus in extreme cases,
the actual system may behave completely different from the behavior shown by the
simulator.

Use cases, sequence diagrams, statecharts or Petri nets can be animated. Some CASE
tools, e.g. SoftModeler [17] and ARTiSAN Real-time Studio [33], allow step by step
execution and animation of multi-threaded sequence diagrams. We find CASE tools,

15

e.g. ARTiSAN Real-time Studio and Rhapsody [15], that support statechart anima-
tion, in some cases both forwards as well as backwards. The user can interact with
the animation and even alter it. During animation, the actual state of the object can
be explored, and event occurrences can be executed, state transitions are visualized.
Petri net animation is available only in academia; see [19].

Whereas there are many examples for successful applications of simulation and code
generation for testing and rapid prototyping, code generators often fail to fulfill re-
quirements of specific domains to an extent that generated code could be used as the
actual implementation. Examples relevant for the automotive domain are the need
for sophisticated optimizations concerning code size and execution time.

A more formal approach to validation are the mechanisms put at disposal by tools like
e.g. AutoFocus [14], which integrates both a model checker and a theorem prover, that
support mathematically founded simulation and debugging of models. Also Esterel
Studio is a graphical modeling environment that offers formal verification facilities
and automatic generation of code, which supports interactive behavior simulation.

Traceability

Traceability in a development project is viewed as the problem of maintaining an
information system that keeps the relevant links between artifacts developed and
delivered by a development process, in particular implementation and dependency
relationships in the model. Traceability facilitates user requirements testing as well
as realization of requirements changes. There are CASE tools, e.g. doors/ERS, Mag-
icDraw (see [28]) and Enterprise Architect (see [31]), that let the designer capture this
information using realization links. Analysis diagrams associated with processes, use
cases, classes, etc., capture the realization relationships.

So far, a formal definition of how to specify a traceability relation between model
elements of different views or diagrams (be this within the same tool or spanning
across different CASE tools) and of its formal semantics is missing. A proposal to
overcome such difficulties with stress on change of requirements can be found in
[34]; the document structure defined therein is currently used in a research project
with DaimlerChrysler.

Reuse

Concerning the efficiency of systems development, a frequently uttered request is
to extend the potential of reusing artifacts, components and code. Most description
techniques used in state of the art CASE tools are labeled as object oriented, and
one of the major goals of object orientation was to improve the potential of reuse.
Nevertheless reuse is poorly supported in CASE tools:

Most case tools provide import and export functionality for parts of models. How-
ever, more elaborated mechanisms supporting e.g. renaming, instantiation, parame-
terization and adaptation of model elements (e.g. class diagrams enable the extension
of classes by subclasses, but what about the behavior?) are almost entirely missing so

16

far.

The necessity for more powerful solutions for reuse is witnessed for example by a
successful idea - design patterns: Although there is a fast growing literature on pro-
posed patterns in design, there is virtually no commonly used case tool for which a
library of patterns or standard model element is available?.

Real-time requirements

CASE tools are available, for instance Rapid RMA (see [29]), that contain multiple
analysis capabilities, which allow designers to test software models against various
design scenarios and evaluate how different implementations might optimize the per-
formance of their systems. In this way, potential scheduling bottlenecks in both soft
and hard real-time systems can be isolated. For instance Together ControlCenter is
able to use an integrated simulator for performance analysis of real-time systems or
to export to XML and use an external simulator.

Independence of tool vendors

The most notable approach to limit the mentioned threats by dependence of devel-
opers on single tool vendors is standardization. Concerning CASE tools, the most
relevant effort in this context is standardization of specification languages and their
representation.

The discussion of existing tools above shows that many specification languages in
current CASE tools are neither standardized nor conceptually integrated so far. There
are only a few import/export functionalities which allow to transfer models between
competing tools. Experiences from related fields like computer aided design (CAD)
suggest that we cannot expect much more than, at best, peer to peer exchange: Nu-
merous efforts have been made to establish feasible exchange formats for tools for
computer aided design but, until now, all approaches face the problem that model
exchange leads to severe loss of information.

Still there are specification language standards relevant for the automotive domain,
namely ITU MSC and SDL, and the UML. Since the UML is supported by numerous
tool vendors, especially for this language the exchange of models between tools from
different vendors became quite relevant. The most recent approach by the OMG is the
Meta Object Facility (MOF) [] as meta model for object oriented design and the XML
based representation standard XMI [] for MOF compliant models. Further relevant
exchange standards independent of the UML are CDIF [] and MSR [].

Most UML CASE tools claim to support XMIL. However, the feasibility of model ex-
change based on XMl is still rather limited until now: Due to weaknesses in the spec-
ification of both the UML and XMI and because of the ongoing development of both
stanards (partly without downward compability) model exchange works at best for
subsets of models. Experiences show that even the exchange between tools from the

2Well, this is a general remark on case tools. Actually, for embedded systems the literature on patterns is
rather poor ...

17

same vendor often leads to loss of information.

With the UML, the XML based exchange format XMI is defined. Due to continuing
changes in the meta model and weaknesses in the XMI specification, diagram inter-
change between different CASE tools is not possible so far, even between CASE tool
versions of the same tool vendor.

4 Conclusion

While CASE tools for automotive applications have been used with partial success—
notably for rapid prototyping—they are not suited for an integrated application through-
out the software development process.

We believe that the main reason for this failure are the lack of suitable domain-specific
abstractions and description techniques for automotive software artefacts, the prob-
lems with traceability of these artefacts through the development process, and the
open question of certification of the controller software. In particular the lack of suit-
able abstractions, descriptions and semantics impairs the integration of heterogenous
tools by different vendors that is needed for flexible development processes and a
sustainable market for both tool vendors and tool customers.

That flexible tool integration and commercially viable markets for tools are indeed
possible, however, can be seen from the example of hardware design tools: Here com-
mon syntactical and semantical concepts allow the integration of tools for different
abstraction levels (analog level, register-transfer level, function block level, ASICs,
etc.), for different purposes (design, simulation, verification, power and chip area
estimation) and different vendors. Unfortunately, we do not have an answer to the
question of how a similar state of affairs might be reached for automotive CASE tools.

Acknowledgment.

References

[1] Common object request broker (corba).
[2] Ascet-sd product info. 2002.

[3] Beacon for simulink/stateflow. 2002.

[4] Betterstate product info. 2002.

[5] Cadence vcc product information. 2002.

[6] dspacs products. 2002.

18

[7] Esterel. 2002.
[8] The mathworks product family. 2002.

[9] A. Blotz, F. Huber, H. Lotzbeyer, A. Pretschner, O. Slotosch, and H.-P. Zangerl.
Model-based software engineering and Ada: Synergy for the development of
safety-critical systems. In Proc. Ada Deutschland Tagung,, March 2002. To be pub-
lished.

[10] Peter Braun, Michael von der Beeck, Martin Rappl, and Christian Schroeder.
Automotive Software Development: A Model Based Approach. In In-Vehicle
Software, SAE Technical Paper Series: 2002-01-0875. SAE, 2002.

[11] Manfred Broy and Johannes Siedersleben. Objektorientierte Programmierung &
Softwareentwicklung: Eine kritische Einschdtzung. Informatik Spektrum, pages
3-11, February 2002.

[12] Manfred Broy, Michael von der Beeck, Peter Braun, and Martin Rappl. A funda-
mental critique of the UML for the specification of embedded systems. 2001.

[13] Thomas A. Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsch. Giotto:
A time-triggered language for embedded programming. In Proceedings of EM-
SOFT 2001, LNCS 2211, 2001.

[14] F. Huber, B. Schitz, A. Schmidt, and K. Spies. Autofocus—a tool for distributed
systems specification. In FTRTFT96, LNCS 1135, 1996.

[15] I-Logix. Rhapsody. http://www.ilogix.com/products/rhapsody/index.cfm.

[16] Edward A. Lee. Embedded software. In M. Zelkowitz, editor, Advances in Com-
puters, volume 56. Academic Press, London, 2002. To appear.

[17] Softera Ltd. Softmodeler. http://www.softera.com/products.htm, 2002.

[18] A. Lyons. UML for Real-Time Overview. Objectime Ltd., April 1998. http:
//www.objectime.com/otl/technical/umlrt.html .

[19] University of Oldenburg Parallel Systems Group. Pep.
http:/ /parsys.informatik.uni-oldenburg.de/pep/, 2001.

[20] L.C. Paulson. ML for the Working Programmer. Cambridge University Press, 1991.
[21] Rational. UML Notation guide, version 1.4. 2001.

[22] Rational. UML Semantics, version 1.4. 2001.

[23] Rational. UML Summary, version 1.4. 2001.

[24] Christine Rosette. Elektronisch gesteuerte Systeme legen weiterhin zu. Elektronik
AUTOMOTIVE, pages 22-23, 2002.

19

[25] B. Schétz, A. Pretschner, F. Huber, and]. Philipps. Model-based development.
Technical Report TUM-10204, Institut fiir Informatik, Technische Universitat
Miinchen, 2002.

[26] B. Selic and J. Rumbaugh. Using UML for modeling complex real-time systems.
Available under http:/ /www.objectime.com/uml, April 1998.

[27] Bran Selic, Garth Gullekson, and Paul T. Ward. Real-Time Object-Oriented Model-
ing. Wiley Professional Computing. John Wiley & Sons, 1994.

[28] KAPITEC Software. Magicdraw. http:/ /www.kapitec.com/Produits/MagicDraw /en/presentation.htm,
2001-2002.

[29] Tri-Pacific Software. Rapid rma. http://www.tripac.com/html/prod-fact-
rrm.html, 1999.

[30] R. Soley. Model Driven Architecture. OMG white paper, 2000.

[31] Sparx Systems. Enterprisearchitect. http://www.sparxsystems.com.au/, 2000-
2002.

[32] Simon Thompson. Haskell: The Craft of Functional Programming. Addison-Wesley,
1999.

[33] ARTiSAN Software Tools. Artisan real-time studio.
http:/ /www.artisansw.com/products/professional_overview.asp, 2001.

[34] Antje von Knethen. Change-oriented requirements traceability support for evolution
of embedded systems. PhD thesis, Universitdt Kaiserslautern, Germany, 2001.

[35] Jos B. Warmer and Anneke G. Kleppe. The Object Constraint Language: Precise
Modeling With UML. Object Technology Series. Addison-Wesley, 1998.

20

