
An Experiment in Automatic Design

of Robot Swarms

AutoMoDe-Vanilla, EvoStick, and Human Experts

Gianpiero Francesca1, Manuele Brambilla1, Arne Brutschy1,
Lorenzo Garattoni1, Roman Miletitch1, Gaëtan Podevijn1,

Andreagiovanni Reina1, Touraj Soleymani1, Mattia Salvaro1,2,
Carlo Pinciroli1, Vito Trianni3, and Mauro Birattari1

1 IRIDIA, Université Libre de Bruxelles, Belgium
{gianpiero.francesca,mbiro}@ulb.ac.be

2 Università di Bologna, Italy
3 ISTC-CNR, Rome, Italy

Abstract. We present an experiment in automatic design of robot
swarms. For the first time in the swarm robotics literature, we perform an
objective comparison of multiple design methods: we compare swarms de-
signed by two automatic methods—AutoMoDe-Vanilla and EvoStick—
with swarms manually designed by human experts. AutoMoDe-Vanilla
and EvoStick have been previously published and tested on two tasks. To
evaluate their generality, in this paper we test them without any modifi-
cation on five new tasks. Besides confirming that AutoMoDe-Vanilla is
effective, our results provide new insight into the design of robot swarms.
In particular, our results indicate that, at least under the adopted exper-
imental protocol, not only does automatic design suffer from the reality
gap, but also manual design. The results also show that both manual and
automatic methods benefit from bias injection. In this work, bias injec-
tion consists in restricting the design search space to the combinations
of pre-existing modules. The results indicate that bias injection helps to
overcome the reality gap, yielding better performing robot swarms.

1 Introduction

Automatic design is an appealing way to produce robot control software. So far,
evolutionary robotics [1] has been the approach of choice for the automatic design
of robot swarms [2,3]. In evolutionary robotics, robots are controlled by a neural
network, whose parameters are obtained via artificial evolution in simulation.
The main issue of this approach is its difficulty to overcome the reality gap [4],
that is, the unavoidable difference between simulation and reality.

Recently, Francesca et al. [5] proposed a novel approach: AutoMoDe, au-
tomatic modular design. AutoMoDe synthesizes control software in the form
of a probabilistic finite state machine by selecting, assembling, and fine tun-
ing pre-existing parametric modules. The rationale behind AutoMoDe lies in
the machine learning concept of bias–variance tradeoff [6]: Francesca et al. [5]

M. Dorigo et al. (Eds.): ANTS 2014, LNCS 8667, pp. 25–37, 2014.
c© Springer International Publishing Switzerland 2014

26 G. Francesca et al.

conjectured that the difficulty experienced by evolutionary robotics in overcom-
ing the reality gap bears a resemblance to the generalization problem faced by
function approximators in supervised learning. They argued that such difficulty
derives from an excessive representational power of the control architecture that
is typically adopted in evolutionary robotics to be able to fine-tune the dynam-
ics of the robot–environment interaction. Thus, Francesca et al. [5] proposed
a solution that is reminiscent of the bias injection advocated in the machine
learning literature [7] to reduce the representational power of approximators
and increase their generalization ability. By synthesizing control software on the
basis of pre-existing modules, AutoMoDe reduces the design space. This corre-
sponds to injecting bias, thus decreasing the variance of the design process. As
a result, AutoMoDe is expected to overcome the reality gap successfully.

Francesca et al. [5] defined, implemented, and tested AutoMoDe-Vanilla
(hereafter simply Vanilla) and EvoStick, two specific versions for the e-puck
platform [8] of AutoMoDe and evolutionary robotics, respectively. Results ob-
tained on two tasks, aggregation and foraging, indicate that AutoMoDe is a
viable and promising approach: Vanilla produced better robot control software
than EvoStick, and appeared to better overcome the reality gap [5].

In this paper, we use exactly the same implementations of Vanilla and
EvoStick that have been previously published in [5], and we test them on five
new tasks. In our analysis, we include also swarms designed manually by human
experts and swarms synthesized manually starting from the same modules used
by Vanilla. We perform all tests with a swarm of 20 e-puck robots.

In this paper, we give an original contribution to the swarm robotics litera-
ture because we perform the first objective assessment of an automatic method
for the design of robot swarms. This is indeed the first work in which an auto-
matic design method previously published and tested on some tasks is tested on
new tasks strictly without any modification. The new tasks were proposed by
researchers that had not been involved in the development of Vanilla and that,
at the moment of proposing the tasks, had only a vague idea of its functioning.
In particular, they knew that Vanilla assembles pre-existing modules, but they
did not have any knowledge of the modules made available to the method. As
a consequence, we can claim that the tasks have not been selected to favor or
disfavor Vanilla, or any of the other design methods under analysis. This work
is also the first one in the domain of swarm robotics in which automatic design
and manual design are compared under controlled conditions.

The results presented in this paper confirm that AutoMoDe is a viable ap-
proach to the automatic design of robot swarms. They highlight the strengths
of Vanilla and also a weakness, for which we suggest a possible solution.
More generally, these results provide a new insight into the design of robot
swarms. They show that, at least under our experimental protocol, manual design
suffers from the reality gap to an extent comparable to that of automatic de-
sign. To the best of our knowledge, this has never been discussed in the literature
and has never been observed in a controlled empirical study. Finally, contrary to

An Experiment in Automatic Design of Robot Swarms 27

Table 1. Reference model

Sensor/Actuator Variables

proximity prox i ∈ [0, 1], with i ∈ {1, 2, . . . , 8}
light lighti ∈ [0, 1], with i ∈ {1, 2, . . . , 8}
ground gnd i ∈ {black, gray,white}, with i ∈ {1, 2, 3}
range and bearing n ∈ N and rm,∠bm, with m ∈ {1, 2, . . . , n}
wheels vl, vr ∈ [−v̄, v̄], with v̄ = 0.16m/s

Period of the control cycle: 100ms

our original expectations, the results presented in the paper show that human
experts produce better swarms when they are constrained to use predefined
modules rather then when their creativity is unconstrained.

2 Design Methods Considered

We consider four design methods: Vanilla, EvoStick, U-Human, and C-Human.
These methods are intended to design control software for a swarm of e-puck
robots [8] with Gumstix Overo Linux board, ground sensor, and range-and-
bearing sensor—see [5] for a detailed description of the platform. To be more
precise, the design methods are allowed to use a subset of the capabilities of
this platform. Such subset of capabilities is formally described by the reference
model reported in Table 1. The control software designed by the four methods
can access sensors and actuators through suitable variables: prox i ∈ [0, 1] are
the readings of the eight proximity sensors; light i ∈ [0, 1] are the readings of
the eight light sensors; gnd i ∈ {black, gray,white} are the readings of the three
ground sensors; n is the number of neighboring robots perceived via the range-
and-bearing sensor; rm and ∠bm are respectively the range and bearing of the
m-th neighbor; finally, vl, vr ∈ [−v̄, v̄], with v̄ = 0.16m/s represent the speed of
the wheels. All these variables are updated with a period of 100ms.

Two of the design methods under analysis are automatic methods: Vanilla
and EvoStick. The other two are manual methods: U-Human and C-Human.
Vanilla and EvoStick have been introduced by Francesca et al. [5] and are an
implementation of AutoMoDe and evolutionary robotics, respectively. Concern-
ing U-Human and C-Human, their main difference is that in U-Human the designer
is unconstrained, that is, he is free to develop the control software in any way he
prefers, whereas in C-Human the designer is constrained to develop a finite state
machine using the same parametric modules available to Vanilla.

In the rest of this section, we introduce the four design methods featured in
the experiment. For a thorough description of Vanilla and EvoStick, we refer
the reader to the original publication [5].

Vanilla generates control software in the form of a finite state machine start-
ing from a set of twelve pre-existing parametric modules: states are selected
from a set of six low-level behaviors and transitions are defined on the ba-
sis of six parametric conditions. The low-level behaviors are: exploration, stop,

28 G. Francesca et al.

phototaxis, anti-phototaxis, attraction, and repulsion. With the exception of
stop, these behaviors include an obstacle avoidance mechanism. The conditions
are: black-floor, gray-floor, white-floor, neighbor-count, inverted-neighbor-count,
fixed-probability. All these modules are based on the reference model given in
Table 1. For a detailed description of the modules and their parameters, see [5].
Vanilla is constrained to create finite state machines composed of at most four
states, each with at most four outgoing transitions. As an optimization algo-
rithm, Vanilla adopts F-Race [9,10]. Specifically, it uses the implementation
provided by the irace package [11] for R [12]. F-Race can be essentially de-
scribed as a sample & select algorithm. As already pointed out by Francesca et
al. [5], F-Race has been adopted in Vanilla due to its simplicity: the authors
wished to keep the focus on the control architecture rather than on the opti-
mization process. Within the optimization process, control software candidates
are evaluated using the ARGoS multi-robot simulator [13].

EvoStick generates control software in the form of a feed-forward neural net-
work without hidden nodes. Inputs and outputs of the network are defined on
the basis of the variables given in the reference model of Table 1. To optimize
the parameters of the neural network, EvoStick adopts a standard evolution-
ary algorithm. Within the optimization process, candidate parameter sets are
evaluated using ARGoS.

U-Human is a manual method in which the human designer is left free to
design control software as he deems appropriate. Within the control software,
sensors and actuators are accessed via an API that implements the reference
model given in Table 1. Within the design process, the designer tests his control
software using ARGoS.

C-Human is a manual method in which the human designer is constrained to
use Vanilla’s control architecture and modules. The designer does not directly
write the control software: rather, he employs a software tool that allows him
to specify a finite state machine, visualize it, and test it using ARGoS. In other
words, the human designer takes the role of Vanilla’s optimization algorithm.
As in Vanilla, the human is constrained to create finite state machines com-
prised of at most four states, each with at most four outgoing transitions.

3 Experimental Protocol

In the protocol we adopt, five researchers, hereinafter referred to as experts, play
a central role. The experts are active in swarm robotics, have about two years of
experience in the domain, and are familiar with ARGoS. These experts have not
been involved in the development of Vanilla and EvoStick and, at the moment
of participating in the experiment, they had only a vague idea of Vanilla: they
knew that Vanilla operates on pre-existing parametric modules, but they were
unaware of what modules are available.

The role of each expert is threefold: i) define a task; ii) solve a task acting as
U-Human; and iii) solve a task acting as C-Human. Table 2 summarizes the role

An Experiment in Automatic Design of Robot Swarms 29

Table 2. Role of the experts, anonymously indicated here by the labels E1 to E5

task defined by U-Human C-Human

SCA shelter with constrained access E1 E5 E4
LCN largest covering network E2 E1 E5
CFA coverage with forbidden areas E3 E2 E1
SPC surface and perimeter coverage E4 E3 E2
AAC aggregation with ambient cues E5 E4 E3

played by each expert. The criteria and the restrictions that the experts had to
follow in the definition of the tasks are presented in Sect. 4. When solving a task
either as U-Human or C-Human, each expert worked for four consecutive hours.
The involvement of each expert spanned two days: on day one, the expert acted
as U-Human on the first task assigned to him; on day two, he acted as C-Human
on the second task. In both cases, the expert came to know the definition of the
task he had to solve only at the beginning of the four hours. During these four
hours, the expert could test the control software in simulation using ARGoS,
but was not allowed to test it in reality on the e-pucks.

Regarding the automatic design methods, Vanilla and EvoStick have been
allowed a design budget of 200,000 simulations for each task. The design process
has been conducted on a high performance computing cluster comprised of 400
opteron6272 cores. Vanilla and EvoStick produced the control software for
each task in about 2 hours and 20 minutes.

To summarize, all methods under analysis i) produce control software for the
same robotic platform formally described by the reference model given in Table 1;
ii) complete the design process within 4 hours; and iii) use the same simulator
to assess candidate control software during the design process. The protocol of
the experiment does not allow any modification of the control software on the
basis of its performance in reality on the e-pucks.

We used ARGoS to cross-compile the control software for the e-puck. We then
uploaded it to the robots without any modification. We evaluated the control
software generated by the four methods for each of the five tasks via 10 runs on
the robots. We computed the performance of the robot swarm in an automatic
way using a tracking system [14] that acquires images via a ceiling-mounted
camera and records the position and orientation of all robots every 100ms. To
assess the impact of the reality gap on the four design methods, we performed
also a set of 10 runs per task in simulation.

For each task, we report a notched box-and-whisker plot that summarizes
the results: wide boxes represent data gathered with robots, narrow boxes data
obtained in simulation. If notches of two boxes do not overlap, the observed
difference is significant. We report also the results of a Friedman test [15] that
aggregates the data gathered with the robots over the five tasks.

30 G. Francesca et al.

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

Vanilla EvoStick

O
bj

ec
tiv

e
fu

ct
io

n

Wide boxes: robots Narrow boxes: simulation

th
e

hi
gh

er
, t

he
 b

et
te

r

Fig. 1. SCA – arena and 20 e-pucks (left); results of the analysis (right). Robots should
aggregate in the white shelter.

4 Tasks and Results

Each of the tasks has been independently defined by one of the experts. Each
expert has been provided with the reference model of Table 1 and has been
asked to conceive a task that he would be able to solve with a swarm of 20
robots characterized by the given reference model. The expert has also been
provided with a list of constraints that the task definition must satisfy: The
arena is a dodecagonal area of 4.91m2 surrounded by walls. The floor of the
arena is gray. The arena can contain up to 3 colored regions in which the floor
can be either black or white. These regions can be either circular, with diameter
of up to 0.6m, or rectangular, with sides up to 0.6m. The setup might include
a single light source positioned outside the arena, at 0.75m from the ground. It
might include also up to 5 cuboidal obstacles of size 0.05m× 0.05m×L, where
0.05m ≤ L ≤ 0.80m. The swarm comprises 20 e-puck robots in the configuration
described in Sect. 2. The duration of each run is T = 120 s. At the beginning
of the run, the robots are randomly distributed in the arena. The task must be
formally described by an objective function, which must be either maximized or
minimized. The objective function must be defined on the basis of the position
of the robots, evaluated with a period of 100ms.

In the rest of this section, we describe the five tasks and we report the results
obtained by the four design methods. For a more detailed description of the tasks
and of their objective functions, see the online supplementary material [16].

SCA – Shelter with Constrained Access

In SCA, the goal of the swarm is to maximize the number of robots on an
aggregation area. The aggregation area has a rectangular shape, is characterized
by a white ground, and is surrounded by walls on three sides. The environment
presents also a light source and two black regions that are positioned in front
and aside the aggregation area, respectively—see Fig. 1.

An Experiment in Automatic Design of Robot Swarms 31

0.
5

1.
0

1.
5

2.
0

Vanilla EvoStick

O
bj

ec
tiv

e
fu

ct
io

n

Wide boxes: robots Narrow boxes: simulation

th
e

hi
gh

er
, t

he
 b

et
te

r

Fig. 2. LCN – arena and 20 e-pucks (left); results of the analysis (right). Robots should
cover the largest possible area while maintaining connection with one another.

Formally, the problem is defined as the maximization of FSCA =
∑T

t=1 Na(t),
where Na(t) is the number of robots in the aggregation area at time t, and T is
the duration of the run.

Results. C-Human and Vanilla perform better than the other methods. In par-
ticular, Vanilla is significantly better that EvoStick—this is indicated by the
fact that, in Fig. 1, the notches of the respective boxes do not overlap. An inter-
esting result is the inability of EvoStick to overcome the reality gap. The same
observation can be made also for U-Human, even though to a far minor extent.
In contrast, C-Human and Vanilla overcome the reality gap satisfactorily.

LCN – Largest Covering Network

In LCN, the robots must maintain connection with each other, while trying
to cover the largest possible area—see Fig. 2 for a picture of the experimental
setting. We assume that i) two robots are connected when their distance is less
than 0.25m, and ii) each robot covers a circular area of radius 0.35m.

Formally, the problem is defined as the maximization of FLCN = AC(T) where
C(T) is the largest group of connected robots at the end T of the run and AC(T)

is the surface of the union of the areas covered by the robots in C(T).
Results. C-Human and EvoStick achieve better performance compared to

the other methods, with Vanilla performing slightly better than U-Human. The
methods performing worse are those that encounter more difficulties in overcom-
ing the reality gap: U-Human and Vanilla.

CFA – Coverage with Forbidden Areas

In CFA, the goal of the swarm is to cover the entire arena except a few forbidden
areas characterized by a black ground—see Fig. 3.

32 G. Francesca et al.

0.
20

0.
22

0.
24

0.
26

0.
28

Vanilla EvoStick

O
bj

ec
tiv

e
fu

ct
io

n

Wide boxes: robots Narrow boxes: simulation

th
e

lo
w

er
, t

he
 b

et
te

r

Fig. 3. CFA – arena and 20 e-pucks (left); results of the analysis (right). Robot should
cover the arena except the forbidden black areas.

2
4

6
8

10
12

Vanilla EvoStick

O
bj

ec
tiv

e
fu

ct
io

n

Wide boxes: robots Narrow boxes: simulation

th
e

lo
w

er
, t

he
 b

et
te

rx xxx

Fig. 4. SPC – arena and 20 e-pucks (left); results of the analysis (right). Robot should
cover the surface of the white square and the perimeter of the black circle.

Formally, the problem is defined as the minimization of FCFA = E[d(T)],
where E[d(T)] is the expected distance, at time T , between a generic point of
the arena and the closest robot that is not in a forbidden area. Distances are
measured in meters.

Results. All methods perform more or less similarly. The results are all within a
range of few centimeters, that is, less that half of the e-puck’s diameter. Concern-
ing the reality gap, for all methods we observe differences between simulation
and reality, but these differences are small in absolute terms. Also in this case,
they are within a range of few centimeters.

An Experiment in Automatic Design of Robot Swarms 33

0
50

00
10

00
0

15
00

0
20

00
0

Vanilla EvoStick

O
bj

ec
tiv

e
fu

ct
io

n

Wide boxes: robots Narrow boxes: simulation

th
e

hi
gh

er
, t

he
 b

et
te

r

Fig. 5. AAC – arena and 20 e-pucks (left); results of the analysis (right). Robot should
aggregate in the black region.

SPC – Surface and Perimeter Coverage

In SPC, the goal of the swarm is to cover the surface of a white square region
and the perimeter of a black circular region—see Fig. 4.

Formally, the problem is defined as the minimization of FSPC = caE[da(T)]+
cpE[dp(T)], where E[da(T)] is the expected distance, at time T , between a
generic point of the white region and the closest robot positioned on the white
region itself; E[dp(T)] is the expected distance, at time T , between a generic
point of the perimeter of the black region and the closest robot positioned on
the perimeter itself; and ca and cp are normalization factors [16]. Failing to place
at least a robot on the surface of the white region and/or on the perimeter of the
black region is a major failure. In this case, E[da(T)] and E[dp(T)] are undefined
and we thus assign an arbitrarily large value to FSPC .

Results. The most notable element is that EvoStick is not able to overcome the
reality gap and achieves significantly worse results than the other methods. The
four Xs marked in the plot indicate four runs that resulted in a major failure.
Vanilla, U-Human, and C-Human perform comparably well.

AAC – Aggregation with Ambient Cues

In AAC, the goal of the swarm is to maximize the number of robots on an
aggregation area represented by a black region. Besides the black region, the
environment comprises a white region and a light source that is placed south of
the black region—see Fig. 5.

Formally, the problem is defined as the maximization of FAAC =
∑T

t=1 Nb(t),
where Nb(t) is the number of robots on the black region at time t.

Results. Vanilla performs slightly better than U-Human and C-Human, and sig-
nificantly better than EvoStick. Concerning the manual methods, C-Human per-
forms slightly better than U-Human. The greatest difference among the methods

34 G. Francesca et al.

rank

C-Human

U-Human

EvoStick

Vanilla

15 20 25

the lower, the better

Fig. 6. Friedman test on aggregate data from the five tasks

lies in their ability to overcome the reality gap. In particular, EvoStick is the
method that has the most severe difficulty in overcoming the reality gap, fol-
lowed by U-Human. Vanilla and C-Human still present problems, but to a minor
extent compared to the other methods.

5 Analysis and Discussion

To aggregate the results presented in Sect. 4, we perform a Friedman test [15],
using the task as a blocking factor and considering 10 replicates per task. The
outcome of the test is represented in Fig. 6. The plot represents the expected
rank obtained by a design method in the robot experiments, together with a
confidence interval. If the confidence intervals of two methods do not overlap, the
difference between the expected rank of the two is statistically significant. The
test indicates that C-Human perform significantly better than Vanilla, which, in
turn, perform significantly better than EvoStick and U-Human.

These results confirm those obtained by Francesca et al. [5]: Vanilla produced
swarms with significantly better performance than those produced by EvoStick.
However, the results also highlight that Vanilla has a limitation: as already
noted in Francesca et al. [5], F-Race, the optimization algorithm adopted in
Vanilla, is not particularly powerful and is unable to fully exploit the potential
of the available parametric modules—see the results of C-Human, which is based
on the same modules. The results clearly suggest that Vanilla can be improved
by adopting a more powerful optimization algorithm.

The analysis of the swarms produced by human experts are particularly in-
teresting and informative on their own. First of all, our results show that, when
it is not possible to modify the developed control software on the basis of its
performance in reality, manual design suffers from the reality gap, as automatic
design does. In other words, it is difficult for human experts to foresee whether
the developed control software will work in reality as expected or not.

Moreover, we observed that, under the protocol we adopted, human experts
produce better swarms when they are constrained to use predefined modules.
This result was unexpected and appears counter-intuitive. We expected that the
understanding and intuition of human experts would have produced excellent
results in case their creativity had been left unconstrained. We expected that
the restriction to use predefined modules would have prevented human experts

An Experiment in Automatic Design of Robot Swarms 35

from fully expressing their potential. Our results proved us wrong: although
the control software produced by U-Human scored well in simulation, it failed
to be effective in reality. Our results clearly indicate that the restriction to use
predefined modules enables C-Human to successfully overcome the reality gap.

Concerning the comparison between manual and automatic design, Vanilla
produced swarms that are significantly better than those produced by U-Human,
but worse that those produced by C-Human. This is a promising result. It proves
that the core idea of AutoMoDe is valid: by constraining the design space to
the control software that can be obtained assembling predefined modules, one
effectively increases the ability to overcome the reality gap. This insight is valid
for both automatic and manual design.

As the set of modules used by C-Human are the same used by Vanilla, the per-
formance advantage of C-Human over Vanilla is to be fully ascribed to the limita-
tions of Vanilla’s optimization algorithm, as already discussed above. The results
obtained by C-Human and by Vanilla show that the set of modules is generally ap-
propriate for tackling swarm robotics tasks with the robotic platform considered:
they enabled the synthesis of control software that performed satisfactorily across
all the five tasks.

6 Conclusions

In this paper, we presented an experiment in automatic design of robot swarms.
This experiment introduces a number of novelties with respect to the litera-
ture. In particular, the two automatic methods under analysis—Vanilla and
EvoStick—had been previously published [5] and have been used here strictly
without any modification. In swarm robotics, this is the first time that i) an
automatic design method is tested on as many as five tasks, without adapting it
to each of them; ii) the tasks considered are different from the one for which the
method has been originally proposed; and iii) the tasks are devised by researchers
that had not been involved in the development of the method. Moreover, this is
the first time that a comparison between automatic and manual design methods
is performed under controlled conditions.

The results of the experiment are encouraging. First of all, they confirm previ-
ous results obtained on other tasks [5]: Vanilla performs better that EvoStick.
Second, they show that, under the protocol we adopted, human experts produce
better swarms when they are constrained to use pre-existing modules: C-Human
outperforms U-Human. Together, the superiority of Vanilla over EvoStick and of
C-Human over U-Human corroborate the core hypothesis behind AutoMoDe: by in-
troducing a bias in the design process—that is, by restricting the design space—
one obtains better robot swarms. Moreover, Vanilla outperformed U-Human, the
unconstrained manual design: this is the first clear empirical evidence that the
automatic design of robot swarms is a viable reality. On the other hand, we do
not consider it a failure that C-Human scored better than Vanilla. As C-Human
uses the same modules defined in Vanilla, differences are to be ascribed to
the limitations of Vanilla’s optimization algorithm. The results indicate that

36 G. Francesca et al.

Vanilla’s module set is appropriate to solve swarm robotics tasks with the plat-
form considered in our study.

Our short-term future work will focus on the development of an improved
version of Vanilla that, taking into account the indications emerged from our
results, will adopt a more powerful optimization algorithm. In the medium term,
we will develop an instance of AutoMoDe for a more complex reference model.

Acknowledgments. We thank Maria Zampetti and Maxime Bussios for their
help with the robots, and Marco Chiarandini for his implementation of the Fried-
man test. This research has received funding from the European Research Coun-
cil under the European Union’s Seventh Framework Programme—ERC grant
agreement n. 246939. It received funding also from the European Science Foun-
dation via the H2SWARM project. Vito Trianni acknowledges support from the
Italian CNR. Arne Brutschy and Mauro Birattari acknowledge support from the
Belgian F.R.S.-FNRS.

References

1. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and
Technology of Self-organizing Machines. MIT Press, Cambridge (2000)

2. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: A review
from the swarm engineering perspective. Swarm Intelligence 7(1), 1–41 (2013)

3. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463
(2014)

4. Trianni, V., Nolfi, S.: Engineering the evolution of self-organizing behaviors in
swarm robotics: A case study. Artificial Life 17(3), 183–202 (2011)

5. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe:
A novel approach to the automatic design of control software for robot swarms.
Swarm Intelligence 8(2), 89–112 (2014)

6. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance
dilemma. Neural Computation 4(1), 1–58 (1992)

7. Dietterich, T., Kong, E.B.: Machine learning bias, statistical bias, and statistical
variance of decision tree algorithms. Technical report, Department of Computer
Science, Oregon State University (1995)

8. Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In:
9th Conf. on Autonomous Robot Systems and Competitions, Portugal, Instituto
Politécnico de Castelo Branco, pp. 59–65 (2009)

9. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for
configuring metaheuristics. In: Proc. of the Genetic and Evolutionary Computation
Conference (GECCO 2002), pp. 11–18. Morgan Kaufmann, San Francisco (2002)

10. Birattari, M.: Tuning Metaheuristics. Springer, Berlin (2009)

11. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace
package, iterated race for automatic algorithm configuration. Technical Report
TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

12. R Development Core Team: R: A language and environment for statistical
computing. R Foundation for Statistical Computing (2008)

An Experiment in Automatic Design of Robot Swarms 37

13. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M.,
Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella,
L.M., Dorigo, M.: ARGoS: A modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intelligence 6(4), 271–295 (2012)

14. Stranieri, A., Turgut, A., Francesca, G., Reina, A., Dorigo, M., Birattari, M.:
IRIDIA’s arena tracking system. Technical Report TR/IRIDIA/2013-013, IRIDIA,
Université Libre de Bruxelles, Belgium (2013)

15. Conover, W.J.: Practical Nonparametric Statistics. Wiley, New York (1999)
16. Francesca, G., et al.: An experiment in automatic design of robot swarms. Supple-

mentary Material (2014), http://iridia.ulb.ac.be/supp/IridiaSupp2014-004

http://iridia.ulb.ac.be/supp/IridiaSupp2014-004

	An Experiment in Automatic Design of Robot Swarms
	Introduction
	Design Methods Considered
	Experimental Protocol
	Tasks and Results
	Analysis and Discussion
	Conclusions

