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Generalization of force control policies from demonstratons
for constrained robotic motion tasks

A regression-based approach

Vasiliki Koropouli - Sandra Hirche - Dongheui Lee

Abstract Although learning of control policies from demonstratidras been thoroughly

investigated in the literature, generalization of pokcie new contexts still remains a chal-
lenge given that existing approaches exhibit limited pennce when generalizing to new
tasks. In this article, we propose two policy generalizatpproaches employed for gener-
alizing motion-based force control policies with the viefperforming constrained motions

in presence of motion-dependent external forces. The kegegi of the proposed methods
is using, apart from policy values, also policy derivatieeslifferences which express how
the policy varies with respect to variations in its input amnbine these two kinds of in-

formation to generalize the policy at new inputs. The firstgmsed approach learns policy
and policy derivative values by linear regression and coemithese data into a first-order
Taylor-like polynomial to estimate the policy at new input$e second approach learns

policy and policy difference data by locally weighted resgien and combines them in a
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superposition fashion to estimate the policy at new inplite. policy differences in this ap-
proach represent variations of the policy in the directibmmimizing the distance between
the new incoming and average-demonstrated inputs. Thegedmapproaches are evaluated
in real-world robot constrained motion tasks by using adirectuated, two degrees-of-

freedom haptic device.

Keywords learning by demonstrationforce control policies policy learning- policy

derivative- policy generalization

1 INTRODUCTION

Robots need to exhibit skillful force regulation skills whimanipulating objects of the
environment in order to efficiently achieve the desired giah task. Given that humans
exhibit exceptional skills in manipulating their enviroant by regulating arm force and
impedance [1-3], learning from human demonstrations ioefing route to transferring
advanced force tuning skills to robots. The prominent emaglé in learning from demonstra-
tion lies in the ability to generalize learned skills to damitasks in the future. Let us here
illustrate a generalization paradigm which is treated éndtenario of this article. Let us con-
sider a robot end-effector which has learned how to perfa@rtagy movements inside a de-
formable and homogeneous environment while experien@ngio state-dependent forces
from the environment. Given that the environment is homeges, the external forces only
depend on the task’s motion states. To illustrate this,idenshat following a motion path in
short depth from an object’s surface is a different task fodlawing the same path deeper
inside the object where the manipulating mass increasa#isantly and imposes different
constraints on the end-effector, see Fig. 1(a). In caseatingv movement, different than
those demonstrated, has to be realized in the same envinbhnesv visited states give rise
to new state-dependent counteraction forces and adjuswhepplied force is required in
order for the end-effector to follow the new path. The prabtef computing the force which
is required such that a desired motion is realized is widalywkn as inverse dynamics [4].
If the inverse dynamics model of a plant can be acquired onéh this model can serve

as a feedforward control policy for the plant [3], see Fig)1(n case that the dynamics
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of a task cannot be exactly modelled and serve as an idedbfeedd controller, a wise
alternative is to learn these dynamics from demonstrateki data. In [4], robot’s inverse
dynamics are learned by Locally Weighted Projection Regjoes(LWPR), support vector
regression and Gaussian process regression and the geaerfiormance of these methods
is compared. LWPR is also employed in [5] for inverse dynafriearning where a priori
knowledge about robot’s rigid body dynamics is incorpadatelearning with the view of
efficient generalization. Use of robot'’s rigid body dynasino learning inverse dynamics
is also performed in [6] where a Gaussian-process semigdriannegression approach is
employed. In our present work, we focus on generalizatioatesjies of robot’'s feedfor-
ward force control policies from motion-task demonstnasiowith the view of successfully

generalizing to new motions which impose different moté@pendent disturbances.

Learning of force skills for robotic manipulation tasks masently received large atten-
tion. Learning of force and torque data is performed in [7[dBussian Mixture Regression
(GMR) for a container-emptying task and in [8] by Hidden MarkModels (HMM) for a
ball-in-ball and a pouring task. In [9], positional and feigkills are separately demonstrated
and learned in the form of mixtures of dynamical systems. i@, in dynamic interaction
tasks, position and force cannot be viewed independentlyiastead, the dynamics of the
task has to be learned. In [10], the end-effector is repteseny a spring-damper system
whose position, velocity, acceleration and applied forpettee environment are demon-
strated and used as input data to learn the reference posttithe spring-damper system
by Gaussian Mixture Modeling (GMM) for cooperative trangption tasks. [11] proposes
the modulation of dynamic movement primitives [12] by canglterms enclosing sensory
feedback, in order to assign to the robot a desired dynanhiavier for manipulation tasks
where the coupling terms are learned from demonstrated lateerative learning con-
trol. Furthermore, in [13], interaction force patterngnesented by dynamical systems, are
learned by regression from single demonstrations while #gi®lity to generalize is limited
to changing the final goal of the force pattern. Given thatead-world scenarios, both mo-
tion and force information matters, a manipulation framewis presented in [14] where

motion and force primitives are combined with force con&mtl optimization for grasping.
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For the purpose of learning and generalizing graspingsski#monstrated motion and force
data are employed in [15] to estimate the desired positindsraeraction forces of grasping

fingertips by using GMM and HMM.

Apart from force, impedance-based behaviors are alsotigagsd. P# reinforcement
learning is employed in [16] to learn variable impedancetimdmand in [17] to learn desired
end-effector impedance to execute tasks in presence dfastic force fields. In addition, in
[18,19], motion primitives are learned and kinestheticalbdulated by controlling the robot
joints’ stiffness for physical interaction tasks while i23] motion learning is combined
with optimal feedback control for haptic assistance. Motamd interaction primitives are
also learned and combined with impedance control for humamanoid physical contact
tasks in [22]. In [21], impedance behaviors are encodedrimgeof task force and visual
information. In [20], a neuroscience-based controlleralitadjusts impedance, feedforward
force and position to perform various contact tooling tasksh as cutting, drilling and

surface exploration is proposed and evaluated in simulstio

In this work, we learn generalization of force control p@i for constrained motion
tasks inside homogeneous and deformable environmentougdh learning of control poli-
cies from data has been widely treated in the literaturdécypdeneralization still remains
a challenge and necessitates further methodical invéistigad review on learning control
policies is presented in [24]. Learning of force controlipiels has been treated in [25,26] by
using Reinforcement Learning (RL). As an advancement tetide-of-the-art RL methods,
a highly efficient probabilistic inference algorithm is pased in [27] for fast policy search
from scratch. However, RL and other policy search algorithrequire multiple execution
trials for success and are not suitable for manipulationefbrnable objects where suc-
cessful task generalization is desired within a single @ettex to avoid non-desired object
deformation caused by many trials. From the viewpoint ofesgion, techniques such as
Linear Regression (LR) [28] and Locally Weighted Regres$iaVR) [29] as well as incre-
mental techniques such as Receptive Field Weighted Regng$&FWR) [29] and Locally
Weighted Projection Regression (LWPR) [30] can be empldgetéarning and generaliza-
tion of control policies. RFWR and LWPR are advanced tealesqwhich allow for policy
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Fig. 1: (a) lllustrating an engraving task at different desahside a sufficiently homogeneous
plasticine object. Different environmental disturbafdg,, fy) } is experienced in each case
due to the changing manipulating mass. Engraving in a (alpkpth, (a2) high depth. (b)
An inverse dynamics model can be viewed as a feedforwaraalqulicy which outputs a
force estimate for a desired motion to be executed. If thewdeel motion is identical to the
desired motion, the inverse dynamics model is considereal iof, alternatively, the policy
generalization problem has an ideal solution.

generalization by incrementally modifying their learnistgucture based on new incoming

data.

Despite the powerful capabilities of the previous appreacim policy learning, the
problem of policy generalization from data still remainshaltenge. Although existing ap-
proaches achieve to efficiently generalize to regions véagecto the demonstrated data,
this generalization ability degrades as the distance fl@emonstrated data increases. In
this article, we wish to learn force generalization skilishathe view of performing motion
tasks under varying motion-dependent disturbances. Atgbint, let us define a policy as
the mapping from a set of inputs to a set of outputs and a pdkcivative as the mapping
from a set of differences between inputs to a set of diffezsretween outputs. In addition,
let us define a policy difference as a variation of a policyspaoit in response to a varia-
tion of its input. The keypoint to our approach is learningai from policy values, also
policy derivatives or policy differences and combininggldwo kinds of information for

approximating a policy in new regions of the input space. &fg®licy derivatives has been
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previously proposed for identification of unknown systems3aussian processes [31, 32].
In [31], policy and policy derivative values are employedrindelling of nonlinear dynamic
systems using Gaussian processes and in [32], Gaussiasproodels are built for predic-
tive control based on derivative observations.

When using derivative/difference information for policjentification, two general is-
sues arise. The first issue consists of how to extract theypderivative/difference infor-
mation from given data, given that policy derivatives anifiedences cannot be measured.
The second issue consists of how to exploit this derivatiffetence information for pol-
icy approximation. In this article, we propose two apprascfor generalizing force control
policies. The first approach combines policy and policy\agive information learned by
Linear Regression (LR) for generalization. Preliminaisules of this approach are presented
in [33]. The second approach combines policy and policyedéfice information learned by
Locally Weighted Regression (LWR) for policy generalipati We evaluate the proposed
approaches in real-world constrained robot motion taskkampare their performance
with the performance of LWR and LWPR.

This article is structured as follows. First, in Section 2,aefine our problem. In Section
3, we present LR and LWR which are employed for learning am&gction 4, we present
two methods for policy generalization based on LR and LWRSégtion 5, we evaluate the

approaches in experiments and, finally, in Section 6, we raakiscussion.

2 Problem formulation

Our goal consists of developing a method for generalizingef@ontrol policies given a
set of task demonstrations, with the view of executing qains¢d movements inside de-
formable and homogeneous environments where only staerdent external forces exist.
We consider policies whose output is force and input is nmotiata. As we explain in the
introduction, this is, in essence, an inverse dynamicslproland consists of estimating the
force which is responsible for a certain motion to be redljzee Fig. 1(b). A constrained
movement can, in general, be realized by applying diffecentrol policies which may con-

sist, for example, of high-, fixed-gain position controlaative control or a human-inspired
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force control policy. Different policies, though, generdlifferent forces to accomplish the
same movement by imposing, in this way, different stressherehd-effector and the envi-
ronment. Control-engineering schemes such as high-gaitiggnand adaptive control may
lead to the generation of high forces or overshoots which Imegyarmful to the environment
or the end-effector or cause a non-desired effect in terntBeofask goal. For this, in this
article, we propose to learn force control policies from exxmlemonstrations, which ex-
press how humans control applied force during tasks. Bygithiis, a robot can be endowed
with high-standard motor control skills which are impottandelicate manipulation tasks
whereby the environment needs to be cautiously treated ighdfdrces are not desired or

are even prohibited.

During motion inside a deformable environment, motion dgita between different
directions are physically coupled and this coupling imgaséerconnection between force
control policies of different directions. Based on this, define a task-space force control

policy in thei-th direction as

fd(i) = T[(Sd(i)) (1)

where fd(i) is a demonstrated force aaqi) a vector of demonstrated motion variables which
is defined asy, = [xd(i) Xd(i) kd(i) C(D}' Thexd(i), Xd(i), ).('d(i) represent position, velocity and
acceleration respectively in theh direction anct) is a vector-valued function which rep-
resents the coupling between thih and the othef # i directions. The coupling function is
Ciy = c(i)(xd(j), >'<d(j)), Vj # i and establishes a dependence of the fdag)eon the position
and velocity states of the remaining directigng i.

Notation: In the remainder of this article, we denote the time indexdwyer case numbers
()i, index of motion direction by lower case numbers inside pdueseq-) ;) and demon-

stration index by upper case numbers inside parentheses

In the remainder of this section, for reasons of simpliciiyg avithout loss of generality,
we restrict our analysis to a single direction of movemeidt\aa omit the directional index
(*)()- Based on this, the problem we wish to solve can be definedlag/o
Problem: Given data{sy, fq} where{sg} = {ss®}, {fa} = {fa™}, k=1,....K is the

demonstration indeX € N, K > 2 whereK is the number of demonstrations,
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— learn the control policyT. {sq} = {f4},

— givens =[x X X ¢/] ¢ {sy}, estimate the value of the poligys') at the new inpus’.

Let us consideK demonstrations of a task witthdatapoints per demonstration. To learn the
force control policy in either direction, data pairs frothd@monstrations are concatenated
as ({sd;, fa, }+---» {Sd.ens fa .y 1) Where the motion vector of demonstratirat timei is

sg'i‘) = St Nk 1) and the corresponding force elemenfj}é) = deN(kfl).

Fig. 2 illustrates our system during demonstration of a tasksingle direction of move-
ment. The system consists of the human, end-effector, mikaipn tool and environment.
The end-effector behaves as an admittance and is postianetled. The demonstrated
signals which are measured are the end-effector fé§cend-effector positionxy and ve-
locity 4. Ty and T; are some unknown transformation matrices of position anckfoe-
spectively. The force which is measured by the sensor atrileeffector, while the tool
interacts with the environment, i = f, + fc — fo where f,, is the human force inputfe
some force sensed from the environment é&nd force due to the presence of the position

controller. The tool tip positions is not measured. In addition, the forcks f,, and f; are

not measurable.

. X, <3
Xg. % s ] fe
End-effector Environment  |—

Tool

|7 |

Fig. 2: The robot end-effector interacting with the envir@mt, in a single direction of
movement, during the task demonstration phase.

3 Background theory

In this section, we analyze two non-incremental regregsiomiques, LR [28] and LWR [29],

which are employed by the proposed generalization appesach
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3.1 Linear Regression

In Linear Regression, a control policy is representedrby w' ¢(sy) wherew € RP*1is a
parameter vector angl(sy) = [sq 1]7 is a basis-function model whesg € R**P is a state

vector. The policyrtis learned by minimizing the cost [34]

KxN

R= 3 lfa - (sy)|? ey
which becomes
KxN 2
R= Zl (fq —WTo(sq))". ®3)

By minimizing (3) with respect tov, we receive

KxN KxN

fo @ (sa)=w" 5 o(s1)0" (s4)
2 2
and, thus, the estimated parameter veatds given by

w=w]H1 (4)

wherew; = 31N fg o(sq) and H = 31N o(s4) 97 (sq))-

The least-square risk function (2) can be modified by assggdifferent weightsvi to

different observations as
K xN

R= 3 wity —1i(sq) 1% (5)
=
Thew; determines how much ttieth observation influences the final parameter estimates.
The parameters estimated by minimizing (5) are called Wejheast-Square (WLS) esti-
mates. A common application of WLS is in the case where therobsionsfy, have different
variancess; where the weights should be optimally setdis= Uilz so that the smallest stan-
dard error of the estimation is achieved. In general, th@ltsiv; can be determined upon

the special characteristics of the estimation setting.
3.2 Locally Weighted Regression

In LWR, the policy is represented as the normalized weighkted of a set of linear models.

The linear models represent receptive fields with cerdgran=1,...,M whereM is the
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number of fields [29]. The policy is defined as

M
ms) = Il () = $Tby, (6)

zrrhIWm

where$ = [(s—cm) 1T andcy, € RY*P. The weightsvi, are defined by Gaussian functions

as

1 2
Wm = eXF(*EHS*CmH )-
The regression parametdsg are estimated by

_ 2|K:'\i Wim fdi §di

bmi
KN T2
2 i=1WimSq, Soi

where

1 .
Wim = exp(fﬁllsdi —cml]?), i=1,...,KN.

4 Policy generalization techniques based on LR and LWR

In the previous section, we present two non-incrementakesjon techniques, namely LR
and LWR, for learning control policies. Apart from non-ieanental techniques, incremen-
tal techniques are also developed [29, 30] aiming at geimat@n. Despite this progress,
generalization problems and primarily extrapolation séilmain a challenge and the ques-
tion of whether further approaches can be developed to ixgpid do the best with the data
available for learning toward the goal of efficient genezatiion in specific contexts, still

awaits an answer. Here, we propose two policy generalizé¢iohniques based on LR and

LWR.
4.1 Policy generalization by Weight Differential Learni(@WDL) based on LR

This approach is inspired by differential calculus and apjnates a function at a point
by a first-order polynomial expansion which resembles thdofgpolynomial. However, in
contrast to Taylor polynomials whose weighting coefficteaite represented by the deriva-

tive of the function at a known point, in GWDL the weight of tfiest-order term of the
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expansion expresses the mapping from a set of differendesére demonstrated inputs to
a set of differences between demonstrated outputs as itilgzaul later, and this mapping
is learned by LR from demonstrated data. This coefficientlged weight differential, is
symbolized byAw and expresses the rate of change of the policy with respets itrgput.

Let us define the rate of change of the policas

An
Asy 255 Afy, 2 Aw @)

an
Asy
whereA symbolizes a finite differencey is the demonstrated force arﬁ denotes the
derivative of the policyrr with respect to the stagy. We observe that the derivative of the
policy is a new policy with input datdsq and output data\ fy. LR is employed to learn
this new policy and the weight vector which is learned by LRassidered the differential
of the weighting vectow, see (4). More specifically, to learn tllewv, a new observation

dataseD is generated, which consists of the differences betweeapdatts of every two

demonstrations. Let us assume the dataset
Dk — { (Sgkl) 75((;(2)), (fc(ikl) B f(;(qk2)) }

which consists of the input and output differences of allagatnts between every two
demonstration&; andky. Finally, all dataset®k¥2 are concatenated into a single dataset
D as

D={DX* ki, ky=1,...,K}. (8)

By applying LR on the datasél, the parameter vectdrw is estimated. Following learning

of the Aw, the force control policy is approximated as follows:

(i) The observed motion vectors from &ldemonstrations are concatenatet{iséjg yeens s&m}

and the average over demonstrations mo#iéi is computed as

and has time length equal kb
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(i) Given a new motion inpus’j, the point of the average motion pattesd¥) which lies

closest to the query pOiIS" is computed as:

Smin = argmins — |, i =1,...N ©)
s
where|| - || denotes the Euclidean distance.
(iif) The policy at the new input is approximated by the fiostder expansion

f] = 7(s)) = W Snin-+ AW () — i) (10)

where 3nin = [smin 1J7, 8 =[s; 1]T andw is learned by LR on the datasésq, fu}.
In (10), we observe that the average input data act as knoimtsgnd the policy varies

with respect to the average demonstrated behavior in codgerieralize to new inputs.

The proposed algorithm has a strong intuitive meaning it tbgredict future actions, we
need to know the difference of the new task goal from prevgmads and how this difference
is mapped onto the action space represented, here, by tee fiestead of estimating tizen
once from the whole sdd of demonstrated data, one could alternatively estimateithe
locally in a region around thenin for every newsnin. However, by trying this, we notice
that the estimated forc® becomes noisy due to the different value/of for each nevus’j.

For this, theAw is estimated only once globally from the whole set of demarst data.

An important point of the present algorithm is that it take®iaccount the average over
demonstrations motion trajectory and compares each newt injh this average trajec-
tory in order to find thesyn. There are several reasons why the average motion trajector
can serve here as good reference for generalization. Incemasio, demonstrated motions
lie fairly close to each other and, thus, their average isiclamed to be representative of
the visited motion domain and enclose the important comsgraf the task. However, if
demonstrated motions lie far from each other and span a fagjen of the input space,
simple averaging would fail to enclose all the importantdieas of the task because the mo-
tion average would derive from largely different data. Rarmore, in our scenario, we do

not aim at reaching some goal positions but rather follovédrgertain motion pattern and,
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given this, the average can serve as a representative ofdtiennnoute of the task. Even in
cases where goal positions have to be reached, by makidgealemonstrated motions pass
from these goal points, the corresponding average woutdoaésserve this goal information.
An alternative to comparing with the average trajectory Mtdae to compare with all the
demonstrated input points. By doing this, we do not notice @nsiderable improvement
in the generalization ability of the algorithm but mostlyianreased computational cost of
the approach. The reason for this is because demonstratazhsim our setting lie close to
each other and comparing with each demonstrated motior jpsitead of the average did
not offer further noticeable information about the taskatidition, comparison with each
demonstrated input point increases the search space andegememorization of the whole
set of demonstrated inputs. Another alternative to moti@raging is to encode the motion
data in time space by a probabilistic model such as GMR anthesmotion estimate of the
model as reference which to compare the new incoming motipats with. Such a prob-
abilistic approach estimates the relevance of the inpuiamst[35] and may prove more
successful in extracting the main features of a task in ¢egedemonstrated motions span a
large domain. However, we should notice that even protsiigilapproaches learn from the
whole set of demonstrated data and their estimates reprss®e kind of system’s average

behavior [35].

4.2 Policy generalization through estimation of policyfeliénces by LWR (DLWR)

A plausible question which emerges is whether the use ofmeesnl models for learning the
relationship between inputs and outputs and differencexots and differences of outputs,
instead of a global linear model as in LR, can allow for bgttdicy approximation accuracy.
Based on this notion, we develop here an alternative apprbased on LWR for policy
approximation. The derivation of this approach is as foHlolt is evident that the force
policy at a new inpus; can be written ad;(s;) = f{(Smin+ (Sj — Smin)). By representing

this policy by LWR, we write

3 th—1 WenThn(Smin+ (S} — Smin))

M
Zrn:le

f{ (Smin+ (S — Smin)) = - (11)
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Based on (6), it is
Tn(Smin+ (S/] —Smin)) = (NSmin)Tbm-F (§/] — §min)Tbm = Thn(Smin) + 77}71(5/] — Smin),

and, thus, (11) becomes

_ zmzlwmrﬁn(smn) n Zmzlwmmn(slj — Smin)

f/(Smin+ (S — Smin)) = 71(S 12
](Smn ( | Smn)) ( j) z:\T/Lle szlwm ( )
T A
which is also written as
fj/(s/j) = T3 (Smin) +A7Tj(5/j — Smin)- 13)

In LWR, the policyr(s;) is once learned from the input-output dataisgt fq}. However, in
our current approach, the polic;(s’j) is decomposed into two different policies andArr
and it is proposed that these policies are separately lédram different datasets. More
specifically, therr; is learned by LWR from the datasfdy, fq} as described in Section 3.2
while A is learned from the datasBtdefined in (8). In addition, thev, of i and ATy
are separately defined based on the different training elataBhe concept of learning sep-
arately ther; and Ay is straightforward in that thé i receives as arguments differences
of inputs and has to be learned from differences of inputsels Whe A7 determines the
policy increment with respect to the known policy valagin the direction of minimizing

the distance between the new inp’yandsmn, see (9).

The performance of the two estimation laws, namely (10) off@Vénd (13) of DLWR,
cannot be analytically compared because the two genetalizaws are based on differ-
ent concepts and there is not an explicit analytic corredpoce between them. Although
DLWR is based on LWR which can represent higher-complexiput-to-output mappings
compared to LR, the DLWR generalization law is not any morer@ pWR representation
but combines, in a superposition fashion, representatidnsh are learned by LWR. In the
same way, the GWDL generalization law combines informakéamned by LR in a 2-term

Taylor polynomial and is not any more a linear as LR but a ma&ar law. On one hand,
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the algebra of LR provides a strong intuition for learning ffolicy and policy derivative
values from a known dataset since the input-to-output nmapfs represented by a single
vector which plays the role of the rate of change of the ppbeg (7). In turn, the fact that
the policy derivativeAw is available motivates for applying Taylor expansion foligyoap-
proximation at new inputs. On the other hand, the DLWR gdizatézon law resembles the
concept of gradient-based policy update, as prescribed ®)y \here for each new input,
the policy is updated in the direction of minimizing the diste between the new inpqt
and the closest poirgy, of the average demonstrated trajectory. The differencerdest
gradient-based policy search and estimation law (13) ishtbth terms in (13) are updated
based on the new input and no information from previous timiatp is employed. Com-
parison between GWDL and DLWR is performed in an experimdatal as presented in

Section 5.

5 Experimental evaluation

In this section, we evaluate GWDL and DLWR and compare theth WR and LWPR in

real-world robot constrained motion tasks.

5.1 Setup

Force control policies are learned from demonstrations wie goal of executing con-
strained motions by using a 2-degrees-of-freedom linearaded haptic deviceTfrust-
Tub@, see Fig. 3. The motions are executed on a plasticine objeich is sufficiently ho-
mogeneous in practice. The end-effector of the device miovego directions, one normal
and one parallel to the object’s initially planar surfaces@ilpting tool is firmly attached
on the end-effector for engraving the plasticine object thiedsystem end-effector-tool be-
haves as a rigid body which only realizes translational omtPrior to demonstration, the
end-effector is placed such that the tool tip just touchesthject’s surface. During demon-
stration, the user moves the handle of the end-effectordriwtlo directions while the tool

moves inside the plasticine material. Three demonstraitoa executed by first moving the
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end-effector in the direction normal to the object’s suefaip to a certain depth and then
moving it in the direction parallel to the object’s surfageto a certain length. The demon-
strated motion depths and lengths slightly differ acrosaatestrations. During demonstra-
tion, a force/torque sensodR3) measures the end-effector forég while the device’s
encoders measure end-effector positignand velocityxg in both directions, see Fig. 2.
During task demonstration and generalization, the hamiiceé behaves as an admittance
and is position-controlled. The parameters of the adnittaare stiffness 10/m, damping

30Ns/mand mass 4Rg and the sampling rate is equal to 1KHz.

The experimental scenario of learning force control skdlsconstrained motions in-
side deformable materials is exciting and, at the same titemanding because when a
complex-shaped end-effector dynamically interacts withénvironment: (i) physical cou-
pling of task dynamics between different directions exigtgch makes generalization chal-
lenging, (ii) the task dynamics are highly nonlinear duehi® ¢complex physics at the place
of interaction, and (iii) the applied force rigorously degs on the motion states and, thus,
the motion-to-force mapping policy is highly sensitive totion variations. This policy’s
sensitivity helps to reveal the generalization precisibthe proposed approaches. Thus,
the considered experimental scenario is able to revealffloéeacy and accuracy of the
proposed algorithms in learning complex nonlinear mappiwgich are sensitive to input

variations.

Parallel QN o e £

Normal

Fig. 3: Experimental setup. The two directions of movemeatmal and parallel, are visu-
alized by a red- and a green-color axis respectively.
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As explained in Section 2, the learned force is the end-&ffdforce fy which is mea-
sured by a force sensor during demonstration. The noiseedfotite sensor is negligible,
which ensures that measured force is the same for exacthatine task; same motion, en-
vironment, end-effector, demonstrator and demonstsataotor policy. The demonstrator
motor policy refers to the way the demonstrator executesasie who may, for instance,
apply high forces and move aggressively or move in a compii@nner by applying low
forces instead. Although the demonstrator motor policy pegsent slight variations ac-
cording to the difficulty of the task (harder environment nragtivate for more aggres-
sive motor policy), these variations can also be learneah fdata. Here, we consider that
the demonstrator employs the same motor policy across demations. In addition, all
demonstrations are executed by the same end-effector,mdgrator and in the same ho-
mogeneous environment. Based on this, the only factor wtéchresult in inconsistency
of force demonstrations is the intrinsic motor output Vitigy of the human motor control
system [2]. However, in our scenario, the force variations tb human motor output vari-
ability are negligible compared to task-related forces arelneglected. Given that during
motion inside a deformable and homogeneous environmeplieddorces meaningfully de-
pend on the motion states, even similar motion states mahtéedifferent measured forces.
In order to properly infer the force control policy of a tagkdasuccessfully generalize to
new movements, we demonstrate motions which lie ratheedmgach other (motions of
similar normal depths and tangential lengths) and explorallsegions of the input space.
From the proximity of the demonstrated motions, we ensuaé tte average motion tra-
jectory employed for generalization by GWDL and DLWR is c@mweristic of the visited

motion domain and encodes the important features of the sagkSection 4.1.

5.2 Representation of force control policies and task perdmce criterion

5.2.1 Force control policies

Following learning of a force control policy from a set of demstrated movements, our

goal consists of generalizing this policy to new movemertigivare executed in the same
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environment with that of demonstrations but impose new ometiarying forces on the
end-effector. First, an engraving task is demonstratezkttimes as it is described in Sec-

tion 5.1. The force control policy in the two directions of wement is represented by

nm= [an)(sd(n)) n{p) (Sd(p))}-r7
Sy = Xy Xy Ky Xy X (14)
Sy = Xy Xl Xy Xy X

where the indicesn” and 'p’ stand for the 'normal’ and ’'parallel’ direction respedly,
n(n)(sd(n)) = fd(n) and "{p)(sd@) = fd(p). Note that the normal and parallel control policies
are interconnected to each other. Multidimensional Dygahiine Warping is applied to

align the force and motion data of different demonstratioaf®re learning [36].

The proposed generalization approaches do not aim at deailin irrelevant input data.
In our scenario, relevancy of the input to the output is asglisuch that a task-realistic
policy is estimated, which can efficiently generalize to rnieputs in the future. Given that
physical coupling between motion dynamics of differentediions is obvious to exist in
our scenario, we set as inputs of the control policy in eacéctibn the set which contains,
apart from the motion states of this direction, the coupfingition and velocity states of the
other directions as well, see (14). When the task-relevgnits cannot be inferred, Mutual
Information Analysis (MIA) can be employed to estimate tlepehdence of the output on
the input data and extract the relevant inputs. Applicasidd|A for a task learning scenario
is presented in [7]. Here, we analyze the relevancy of ourtspy computing the Pearson’s
correlation coefficient which is one of the simplest metiitMIA and describes the linear
dependence between two datasets. Let us assume two vatkaltaed X,. The Pearson’s
correlation coefficient is given by

E[XiXo] — E[Xd]E[X]
Ox, 0X,

P= (15)

where E(-) denotes the expected value aadthe standard deviation. We compute the
Pearson coefficient between: (i) parallel positdén= Xdp) and normal forcexX, = fd(n);

P =0.4113, (ii) parallel velocityX; = >'<d(p) and normal forcex; = fd(n); P=-0.1322,
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(i) normal position Xy =Xq, and parallel forceX; = fd(p); P =-0.3931, and (iv) nor-

mal velocity X; = Xd(n) and parallel forceX; = fd(p); P = —-0.6310. We observe that a non-
negligible dependence does exist between the normal fordgarallel motion states and
the parallel force and normal motion states and, thus, thesponding inputs are consid-

ered relevant to the task’s control policy.

5.2.2 Task performance criterion

We distinguish two main cases of generalization where:@d)rtbw motions lie inside the
range of experienced motions and we caflaticy interpolationand ii) the new motions lie
outside the range of experienced motions and we cpdllity extrapolationIn the general-
ization phase, the generalized fortdés applied and the corresponding realized positign
is measured, see Fig. 1(b). The generalization performeritegion is represented by the

tracking error between the desired and measured positgettory as

L
En) = Zl(xm),i Xy )5 Ep) = S (X(p)i = X )? (16)

wherex, andx, represent the desired positions am{&ll) andxm(p) the measured positions
after execution by any generalization method whigethe timepoint index and the number

of datapoints of the desired trajectory.

5.3 Experiments

We demonstrate the generalization performance of GWDL diw® and compare it with
performance of LWR and LWPR. First, we show policy geneadian in certain interpola-
tion and extrapolation cases and then we further evaluat®GWithin a larger range of

motions.

5.3.1 Test case 1: interpolation to new normal motion.

We test policy interpolation to a new movement which liesdaghe range of the demon-
strated movements. The desired trajectories are

— 3 — (3)
X(p) = X(p)’ X(n) =0.8x X(m
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whereng))) andxgig are position trajectories of the third demonstration wkilg andx, are

computed from<<n). Generalization is realized by LWR, LWPR, DLWR and GWDL ahd t
results are shown in Fig. 4. The figure depicts demonstratédeneralized forces as well as
measured positions for all the four methods. The genedhifiaee profiles of LWR, LWPR
and DLWR are overlapped by the force profile of GWDL in the fegaiue to the small
differences between their values. From Fig. 4, we obserae @WDL achieves accurate
execution of the desired normal trajectoxw) while LWR, DLWR and LWPR exhibit lower
performance and do not efficiently approximatg. On the other hand, we observe that
all the methods exhibit almost the same performance in thalpkdirection of movement
where the tracking error is observed to be higher than thdteohormal direction. Table 1
shows the values of the tracking errors (16) for all the mashdn this task, although the
desired parallel movement, belongs to demonstrations, generalization performanttein
parallel direction exhibits relatively high error whichgsobably due to the normal position
and velocity components of the motion vecsgr , which do not belong to demonstrations,

see eq. (14).

Table 1: Tracking errors of LWR, LWPR, DLWR and GWDL for teases 1, 2 and 3. Errors
are expressed imf].

Testcase| Error | LWR DLWR | LWPR | GWDL
Casel | Ey 0.0027 | 0.0027 | 0.0014 | 0.0004
Casel | Exp 0.1244 | 0.1310 | 0.1283 | 0.1398
Case2 | Ey 0.0066 | 0.0059 | 0.0172 | 0.0033
Case2 | Eq 0.1035 | 0.0602 | 0.1193 | 0.029
Case3 | Ey 0.004 | 0.0025 | 0.0016 | 0.000644
Case3 | E 0.0332 | 0.0356 | 0.0361 | 0.0374

5.3.2 Test case 2: extrapolation to new normal motion.

Here, we test extrapolation to a new normal positional ttajgy which lies outside the

experienced position range. The desired trajectories are
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Fig. 4: Test case 1. Top row: (blue dashed) demonstrated,fmagenta) generalized force
by GWDL. Bottom row: position (blue dashed) demonstratéarg(ioise) generalized by
LWR, (orange) generalized by DLWR, (red) generalized by [RYPmagenta) general-
ized by GWDL. Desired position trajectorigg, andx, are shown by a black-color line.
'Demo’ stands for the demonstrated trajectory.

wherex andX, are computed fronxy,. Fig. 5 visualizes the demonstrated and gener-
alized forces by LWR, LWPR, DLWR and GWDL as well as the cqomwling measured
position for each method. The force profiles of LWR, LWPR and\NIR are overlapped
by the force profile of GWDL in the figure due to the small diflece between their val-
ues. Table 1 shows the values of the tracking errors (16htfdur methods. We observe
that DLWR and GWDL have similar performance in the normaédiion and outperform
LWR and LWPR. LWPR and LWR exhibit lower performance in bottedtions of move-
ment. Note that the generalized position by LWPR closelyr@gmates the demonstrated
trajectoryxzﬁg. Although DLWR and GWDL outperform the two other method®tistill

exhibit limitation in following the desired position traj@ries. This is expected given that

extrapolation is harder than interpolation [37].
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Fig. 5: Test case 2. Top row: (blue dashed) demonstrated,f(r@agenta) generalized force
by GWDL. Bottom row: position (blue dashed) demonstratéarg(ioise) generalized by
LWR, (orange) generalized by DLWR, (red) generalized by [RYPmagenta) general-
ized by GWDL. Desired position trajectorigg, andx, are shown by a black-color line.
'Demo’ stands for the demonstrated trajectory.

5.3.3 Test case 3: generalization to new normal and paratietion.

In this task, we perform interpolation to a new normal trigeg same as in test case 1 and
extrapolation to a new parallel trajectory. The desiredtjurs are
X(p) =1.2x x%, X = 0.8 XEE;

while corresponding velocity and acceleration values dffi latirections are computed from
the position,) andx,p) . Fig. 6 shows the results of generalization by LWR, LWPR, IRW
and GWDL while Table 1 shows the values of the correspondiagking errors (16) for
each method. We observe that GWDL outperforms the otheradetin the normal direction
of movement and achieves to approximate the desired tosjeeith low error. On the other
hand, LWR exhibits the lowest performance in the normalddiiog. In the parallel direction,
we observe that all the methods exhibit almost the samenpeafice and they successfully

follow X,). Note that all the methods exhibit higher normal trackingecompared to the
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error of the test case 1. Given that the normal motion veggrgralso depends on the parallel
motion states which now lie outside the experienced datgeranis expected to notice some

higher normal error here compared to case 1.
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Fig. 6: Test case 3. Top row: (blue dashed) demonstrated,fimagenta) generalized force
by GWDL. Bottom row: position (blue dashed) demonstratéarg(ioise) generalized by
LWR, (orange) generalized by DLWR, (red) generalized by IRyYBnagenta) generalized
by GWDL. Desired positional trajectories, andxp, are shown by a black-color line.

5.3.4 Comparison of test cases 1, 2 and 3

By considering all the previous test cases, we notice sommrumise in performance of
GWDL between the normal and parallel direction of movemg&hts derives from the fact
that the motion vectorsy and Sd, are coupled through position and velocity and, thus,
generalization in one direction depends on the motion swft¢éhe other direction as well.
Someone would think of decouplirg(n) andsd(p) but, in that case, the input motion space
would not correspond to the true physics of the task. Givethaltest cases, we observe that
the GWDL approach performs in overall most successfullyagrell the tested approaches
within the range of examined tasks and proves a promisingntqae for approximating
unknown motor control policies from data. DLWR exhibits inecall lower performance
than GWDL. The low performance of DLWR could motivate foriteg modifications of the

algorithm in the following ways: (i) apart from learning grthe b, parameters in (12), the
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weigthswpy, should also be learned, and (ii) the increment-based layvrE8 have to be

modified in a certain way for better performance. Given thahans follow a computation-
ally complex strategy of endpoint force regulation whilefpeming constrained movements
under varying motion-dependent disturbances, expredbiagtrategy from few data and

also by employing relatively simple estimation techniqgises big challenge.

5.3.5 Further evaluation of GWDL

In many real-world scenarios, robots are expected to egaxmirtstrained motion tasks such
as writing or engraving on an object [38], sculpting [39] attzg of human tissue in robotic
surgery [40]. In all previous cases, execution of accuratéians in multiple directions of
movement simultaneously is required by ideally taking iat@ount the properties of the
environment and the end-effector. One route to solving swcistrained motion problems
is the application of feedback control such as stiff positiw adaptive control [41] or, for
instance, a force-controlled velocity planning approat2i.[A different route to executing
a motion task is learning of the task dynamics by imitatiostfand then employing the
learned skills to successfully reproduce the task in futtia¢és. One of the main advantages
of learning by imitation is that it allows to learn a humakeliforce tuning policy and treat
the environment as an expert task demonstrator would dontrasi to control schemes
which may apply higher than desired forces on the object @idte the physical constraints
of the system. It is obvious that, in constrained motionsaslkch as robotic surgery for hip
replacement where high-standard safety and absolutergearaf performance are required,
the ideal policy would consist of combining feedforward tohskills learned by imitation
with feedback control to efficiently deal with perturbatsorin the present article, we limit
our investigation to learning feedforward control poli&ley demonstration.

Here, we further evaluate the efficiency of GWDL by showingealization to con-
strained motions executed onto a plasticine object whogacsuis planar prior to the task.
Following learning from the three demonstrations as in tle@ipus test cases, learned force

control policies are generalized by GWDL to the followingtioas:

— Movement 1 (M1)Xy, = 0.8 XEES’ X(p) = XE?)'
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— Movement 2 (M2)X,) = 0.9 XEﬁia X(p) = XE?)'
— Movement 3 (M3)X, = 1.1x Xgﬁgv Xp = XE:;))'
— Movement 4 (M4)X, = 1.4 XEﬁia X(p) = XE?)))'

Fig. 7(b) shows the desired movements M1, M2, M3 and M4 andesponding general-
ized movements while Fig. 7(a) visualizes the effect of taeegalized movements on the
plasticine material. From Fig. 7(b), we observe that GWDficintly generalizes to new
normal movements while its generalization in the paraileation exhibits lower efficiency.
This may be due to increased task complexity in the paraillettion because of the larger
interaction surface of the tool with the environment in ttiiection, which makes the tool
encounter larger perturbations in that direction. We alsseove that interpolation exceeds

extrapolation performance.

(a)

15> Normal Position [m] Parallel Position [m]
8 0
6
M1, -0.01 \
i -0.02
0 1 2 3 4 0 1 2 3 4
x107°
. 0
M2 ¢ -001 \
g -0.02
0 1 2 3 4 0 1 2 3 4
x107°
10 0
M3 -0.01 \
. 002
0 1 2 3 4 0 1 2 3 4
x107°
0
10
M4 ~0.01 \
5
0 -0.02
0 1 2 3 4 0 1 2 3 4
Time [s] Time [s]
(b)

Fig. 7: (a) Generalizing to new motions by GWDL. (b) Blackeirdesired trajectory, red
line: generalized trajectory.
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6 Discussion

In this work, we are interested in learning force generé&tiraskills from task demonstra-
tions with the goal of executing constrained movementsisdeformable materials. In our
scenario, we assume that the environment is sufficientlydgemeous and external forces
only depend on the motion states of the task. Given that $ceice only state-dependent, by
estimating the mapping between applied forces and visitetibm states, the force control
policy of the task can be estimated and generalized to simitdions within the same en-
vironment in the future. Humans build force-motion mapgingnown as internal inverse
dynamics models, for feedforward motion control and trijgcplanning [3]. In this work,
we learn force-motion mapping policies from a finite set ofndastrated data in order to

endow robots with certain human-like adroitness.

To reveal the motion-to-force mapping policy from data, weestigate the role that
the policy’s derivatives and differences can play in repntisg this mapping. A policy’s
derivative expresses how fast the policy varies with resfegariations in its input. The
policy’s derivatives are learned by LR from data and comthinéth learned policy data in
a differential calculus-inspired fashion to give an estenaf the policy at new inputs. In
addition, policy’s differences express how much the poliagies from a baseline behavior
given a variation of its input from the demonstrated datédicl?’s differences are represented
and learned by LWR and combined with policy values, alsaledby LWR, to estimate the
policy at new inputs. LR and LWR are static in the sense thay tiepresent how a policy
varies with respect to some fixed input in contrast to increaeechniques which update
their learning structure given a new input. However, if we o@ke LR and LWR capable of
expressing how a policy varies with respect to variationisitnput, then the learned static
and dynamic characteristics of the policy can be appragyiantegrated in order to give an
estimate of the policy at new inputs. This notion constgute key concept of our proposed

approach.
From the experimental results, we observe that GWDL in dvewperforms DLWR,
LWR and LWPR both in interpolation and extrapolation casg®rpolation is observed to

be an easier task than extrapolation for all the tested rdstf&Y]. Although GWDL outper-
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forms LWR, LWPR and DLWR, it still exhibits limitations indtgeneralization performance
in extrapolation cases. We deduce that representing aretaemng motor control policies
from certain human data is a challenging issue which canttieefitinvestigated in the future
and in the context of regression theory in order to elucidaemotion-force associations
that humans employ in specific scenarios which are of greattipal importance for au-
tonomous systems. In conclusion, GWDL proves the most ssédetechnique for force
policy generalization among all the examined methods insocenario and can serve as a
well-aimed and competent feedforward force controllerimilar applications where input

to output mappings are able to be learned from demonstraitad d
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