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Generalization of force control policies from demonstrations

for constrained robotic motion tasks

A regression-based approach

Vasiliki Koropouli · Sandra Hirche · Dongheui Lee

Abstract Although learning of control policies from demonstrationshas been thoroughly

investigated in the literature, generalization of policies to new contexts still remains a chal-

lenge given that existing approaches exhibit limited performance when generalizing to new

tasks. In this article, we propose two policy generalization approaches employed for gener-

alizing motion-based force control policies with the view of performing constrained motions

in presence of motion-dependent external forces. The key concept of the proposed methods

is using, apart from policy values, also policy derivativesor differences which express how

the policy varies with respect to variations in its input andcombine these two kinds of in-

formation to generalize the policy at new inputs. The first proposed approach learns policy

and policy derivative values by linear regression and combines these data into a first-order

Taylor-like polynomial to estimate the policy at new inputs. The second approach learns

policy and policy difference data by locally weighted regression and combines them in a
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superposition fashion to estimate the policy at new inputs.The policy differences in this ap-

proach represent variations of the policy in the direction of minimizing the distance between

the new incoming and average-demonstrated inputs. The proposed approaches are evaluated

in real-world robot constrained motion tasks by using a linear-actuated, two degrees-of-

freedom haptic device.

Keywords learning by demonstration· force control policies· policy learning· policy

derivative· policy generalization

1 INTRODUCTION

Robots need to exhibit skillful force regulation skills while manipulating objects of the

environment in order to efficiently achieve the desired goalof a task. Given that humans

exhibit exceptional skills in manipulating their environment by regulating arm force and

impedance [1–3], learning from human demonstrations is a promising route to transferring

advanced force tuning skills to robots. The prominent challenge in learning from demonstra-

tion lies in the ability to generalize learned skills to similar tasks in the future. Let us here

illustrate a generalization paradigm which is treated in the scenario of this article. Let us con-

sider a robot end-effector which has learned how to perform certain movements inside a de-

formable and homogeneous environment while experiencing certain state-dependent forces

from the environment. Given that the environment is homogeneous, the external forces only

depend on the task’s motion states. To illustrate this, consider that following a motion path in

short depth from an object’s surface is a different task thanfollowing the same path deeper

inside the object where the manipulating mass increases significantly and imposes different

constraints on the end-effector, see Fig. 1(a). In case thata new movement, different than

those demonstrated, has to be realized in the same environment, new visited states give rise

to new state-dependent counteraction forces and adjustment of applied force is required in

order for the end-effector to follow the new path. The problem of computing the force which

is required such that a desired motion is realized is widely known as inverse dynamics [4].

If the inverse dynamics model of a plant can be acquired or learned, this model can serve

as a feedforward control policy for the plant [3], see Fig. 1(b). In case that the dynamics
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of a task cannot be exactly modelled and serve as an ideal feedforward controller, a wise

alternative is to learn these dynamics from demonstrated task data. In [4], robot’s inverse

dynamics are learned by Locally Weighted Projection Regression (LWPR), support vector

regression and Gaussian process regression and the learning performance of these methods

is compared. LWPR is also employed in [5] for inverse dynamics’ learning where a priori

knowledge about robot’s rigid body dynamics is incorporated in learning with the view of

efficient generalization. Use of robot’s rigid body dynamics in learning inverse dynamics

is also performed in [6] where a Gaussian-process semiparametric regression approach is

employed. In our present work, we focus on generalization strategies of robot’s feedfor-

ward force control policies from motion-task demonstrations, with the view of successfully

generalizing to new motions which impose different motion-dependent disturbances.

Learning of force skills for robotic manipulation tasks hasrecently received large atten-

tion. Learning of force and torque data is performed in [7] byGaussian Mixture Regression

(GMR) for a container-emptying task and in [8] by Hidden Markov Models (HMM) for a

ball-in-ball and a pouring task. In [9], positional and force skills are separately demonstrated

and learned in the form of mixtures of dynamical systems. However, in dynamic interaction

tasks, position and force cannot be viewed independently and, instead, the dynamics of the

task has to be learned. In [10], the end-effector is represented by a spring-damper system

whose position, velocity, acceleration and applied force on the environment are demon-

strated and used as input data to learn the reference position of the spring-damper system

by Gaussian Mixture Modeling (GMM) for cooperative transportation tasks. [11] proposes

the modulation of dynamic movement primitives [12] by coupling terms enclosing sensory

feedback, in order to assign to the robot a desired dynamic behavior for manipulation tasks

where the coupling terms are learned from demonstrated databy iterative learning con-

trol. Furthermore, in [13], interaction force patterns, represented by dynamical systems, are

learned by regression from single demonstrations while their ability to generalize is limited

to changing the final goal of the force pattern. Given that, inreal-world scenarios, both mo-

tion and force information matters, a manipulation framework is presented in [14] where

motion and force primitives are combined with force controland optimization for grasping.
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For the purpose of learning and generalizing grasping skills, demonstrated motion and force

data are employed in [15] to estimate the desired positions and interaction forces of grasping

fingertips by using GMM and HMM.

Apart from force, impedance-based behaviors are also investigated. PI2 reinforcement

learning is employed in [16] to learn variable impedance control and in [17] to learn desired

end-effector impedance to execute tasks in presence of stochastic force fields. In addition, in

[18,19], motion primitives are learned and kinesthetically modulated by controlling the robot

joints’ stiffness for physical interaction tasks while in [23] motion learning is combined

with optimal feedback control for haptic assistance. Motion and interaction primitives are

also learned and combined with impedance control for human-humanoid physical contact

tasks in [22]. In [21], impedance behaviors are encoded in terms of task force and visual

information. In [20], a neuroscience-based controller which adjusts impedance, feedforward

force and position to perform various contact tooling taskssuch as cutting, drilling and

surface exploration is proposed and evaluated in simulations.

In this work, we learn generalization of force control policies for constrained motion

tasks inside homogeneous and deformable environments. Although learning of control poli-

cies from data has been widely treated in the literature, policy generalization still remains

a challenge and necessitates further methodical investigation. A review on learning control

policies is presented in [24]. Learning of force control policies has been treated in [25,26] by

using Reinforcement Learning (RL). As an advancement to thestate-of-the-art RL methods,

a highly efficient probabilistic inference algorithm is proposed in [27] for fast policy search

from scratch. However, RL and other policy search algorithms require multiple execution

trials for success and are not suitable for manipulation of deformable objects where suc-

cessful task generalization is desired within a single execution to avoid non-desired object

deformation caused by many trials. From the viewpoint of regression, techniques such as

Linear Regression (LR) [28] and Locally Weighted Regression (LWR) [29] as well as incre-

mental techniques such as Receptive Field Weighted Regression (RFWR) [29] and Locally

Weighted Projection Regression (LWPR) [30] can be employedfor learning and generaliza-

tion of control policies. RFWR and LWPR are advanced techniques which allow for policy
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(a)

(b)

Fig. 1: (a) Illustrating an engraving task at different depths inside a sufficiently homogeneous
plasticine object. Different environmental disturbance{ f(x), f(y)} is experienced in each case
due to the changing manipulating mass. Engraving in a (a1) low depth, (a2) high depth. (b)
An inverse dynamics model can be viewed as a feedforward control policy which outputs a
force estimate for a desired motion to be executed. If the executed motion is identical to the
desired motion, the inverse dynamics model is considered ideal or, alternatively, the policy
generalization problem has an ideal solution.

generalization by incrementally modifying their learningstructure based on new incoming

data.

Despite the powerful capabilities of the previous approaches in policy learning, the

problem of policy generalization from data still remains a challenge. Although existing ap-

proaches achieve to efficiently generalize to regions very close to the demonstrated data,

this generalization ability degrades as the distance from the demonstrated data increases. In

this article, we wish to learn force generalization skills with the view of performing motion

tasks under varying motion-dependent disturbances. At this point, let us define a policy as

the mapping from a set of inputs to a set of outputs and a policyderivative as the mapping

from a set of differences between inputs to a set of differences between outputs. In addition,

let us define a policy difference as a variation of a policy’s output in response to a varia-

tion of its input. The keypoint to our approach is learning, apart from policy values, also

policy derivatives or policy differences and combining these two kinds of information for

approximating a policy in new regions of the input space. Useof policy derivatives has been
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previously proposed for identification of unknown systems by Gaussian processes [31, 32].

In [31], policy and policy derivative values are employed inmodelling of nonlinear dynamic

systems using Gaussian processes and in [32], Gaussian process models are built for predic-

tive control based on derivative observations.

When using derivative/difference information for policy identification, two general is-

sues arise. The first issue consists of how to extract the policy derivative/difference infor-

mation from given data, given that policy derivatives and differences cannot be measured.

The second issue consists of how to exploit this derivative/difference information for pol-

icy approximation. In this article, we propose two approaches for generalizing force control

policies. The first approach combines policy and policy derivative information learned by

Linear Regression (LR) for generalization. Preliminary results of this approach are presented

in [33]. The second approach combines policy and policy difference information learned by

Locally Weighted Regression (LWR) for policy generalization. We evaluate the proposed

approaches in real-world constrained robot motion tasks and compare their performance

with the performance of LWR and LWPR.

This article is structured as follows. First, in Section 2, we define our problem. In Section

3, we present LR and LWR which are employed for learning and, in Section 4, we present

two methods for policy generalization based on LR and LWR. InSection 5, we evaluate the

approaches in experiments and, finally, in Section 6, we makea discussion.

2 Problem formulation

Our goal consists of developing a method for generalizing force control policies given a

set of task demonstrations, with the view of executing constrained movements inside de-

formable and homogeneous environments where only state-dependent external forces exist.

We consider policies whose output is force and input is motion data. As we explain in the

introduction, this is, in essence, an inverse dynamics problem and consists of estimating the

force which is responsible for a certain motion to be realized, see Fig. 1(b). A constrained

movement can, in general, be realized by applying differentcontrol policies which may con-

sist, for example, of high-, fixed-gain position control, adaptive control or a human-inspired
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force control policy. Different policies, though, generate different forces to accomplish the

same movement by imposing, in this way, different stress on the end-effector and the envi-

ronment. Control-engineering schemes such as high-gain position and adaptive control may

lead to the generation of high forces or overshoots which maybe harmful to the environment

or the end-effector or cause a non-desired effect in terms ofthe task goal. For this, in this

article, we propose to learn force control policies from expert demonstrations, which ex-

press how humans control applied force during tasks. By doing this, a robot can be endowed

with high-standard motor control skills which are important in delicate manipulation tasks

whereby the environment needs to be cautiously treated and high forces are not desired or

are even prohibited.

During motion inside a deformable environment, motion dynamics between different

directions are physically coupled and this coupling imposes interconnection between force

control policies of different directions. Based on this, wedefine a task-space force control

policy in thei-th direction as

fd(i) = π(sd(i)) (1)

where fd(i) is a demonstrated force andsd(i) a vector of demonstrated motion variables which

is defined assd(i) = [xd(i) ẋd(i) ẍd(i) c(i)]. Thexd(i) , ẋd(i) , ẍd(i) represent position, velocity and

acceleration respectively in thei-th direction andc(i) is a vector-valued function which rep-

resents the coupling between thei-th and the otherj 6= i directions. The coupling function is

c(i) = c(i)(xd( j)
, ẋd( j)

), ∀ j 6= i and establishes a dependence of the forcefd(i) on the position

and velocity states of the remaining directionsj 6= i.

Notation: In the remainder of this article, we denote the time index by lower case numbers

(·)i, index of motion direction by lower case numbers inside parentheses(·)(i) and demon-

stration index by upper case numbers inside parentheses(·)(i).

In the remainder of this section, for reasons of simplicity and without loss of generality,

we restrict our analysis to a single direction of movement and we omit the directional index

(·)(i). Based on this, the problem we wish to solve can be defined as follows.

Problem: Given data{sd, fd} where{sd} = {sd
(k)}, {fd} = {fd

(k)}, k = 1, ...,K is the

demonstration index,K ∈ N, K ≥ 2 whereK is the number of demonstrations,
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– learn the control policyπ: {sd}
π
−→ { fd},

– givens′ = [x′ ẋ′ ẍ′ c′] /∈ {sd}, estimate the value of the policyπ(s′) at the new inputs′.

Let us considerK demonstrations of a task withN datapoints per demonstration. To learn the

force control policy in either direction, data pairs from all demonstrations are concatenated

as ({sd1, fd1}, ...,{sdK×N , fdK×N}) where the motion vector of demonstrationk at time i is

s(k)di
= sdi+N(k−1)

and the corresponding force element isf (k)di
= fdi+N(k−1)

.

Fig. 2 illustrates our system during demonstration of a taskin a single direction of move-

ment. The system consists of the human, end-effector, manipulation tool and environment.

The end-effector behaves as an admittance and is position-controlled. The demonstrated

signals which are measured are the end-effector forcefd, end-effector positionxd and ve-

locity ẋd. Tx andTf are some unknown transformation matrices of position and force re-

spectively. The force which is measured by the sensor at the end-effector, while the tool

interacts with the environment, isfd = fh+ fc− fe where fh is the human force input,fe

some force sensed from the environment andfc a force due to the presence of the position

controller. The tool tip positionxs is not measured. In addition, the forcesfe, fh and fc are

not measurable.

Fig. 2: The robot end-effector interacting with the environment, in a single direction of
movement, during the task demonstration phase.

3 Background theory

In this section, we analyze two non-incremental regressiontechniques, LR [28] and LWR [29],

which are employed by the proposed generalization approaches.
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3.1 Linear Regression

In Linear Regression, a control policy is represented byπ = wTφ(sd) wherew ∈ R
D+1 is a

parameter vector andφ(sd) = [sd 1]T is a basis-function model wheresd ∈ R
1×D is a state

vector. The policyπ is learned by minimizing the cost [34]

R=
K×N

∑
i=1

‖ fdi −π(sdi )‖
2 (2)

which becomes

R=
K×N

∑
i=1

( fdi −wTφ(sdi ))
2
. (3)

By minimizing (3) with respect tow, we receive

K×N

∑
i=1

fdi φ
T(sdi ) = wT

K×N

∑
i=1

φ(sdi )φ
T(sdi )

and, thus, the estimated parameter vectorw is given by

w = wT
1 H−1 (4)

wherew1 = ∑K×N
i=1 fdi φ(sdi ) and H = ∑K×N

i=1 φ(sdi )φ
T(sdi ).

The least-square risk function (2) can be modified by assigning different weightsw∗
i to

different observations as

R∗ =
K×N

∑
i=1

w∗
i ‖ fdi −π(sdi )‖

2. (5)

Thew∗
i determines how much thei-th observation influences the final parameter estimates.

The parameters estimated by minimizing (5) are called Weighted Least-Square (WLS) esti-

mates. A common application of WLS is in the case where the observationsfdi have different

variancesσi where the weights should be optimally set asw∗
i =

1
σ2

i
so that the smallest stan-

dard error of the estimation is achieved. In general, the weightsw∗
i can be determined upon

the special characteristics of the estimation setting.

3.2 Locally Weighted Regression

In LWR, the policy is represented as the normalized weightedsum of a set of linear models.

The linear models represent receptive fields with centerscm, m= 1, ...,M whereM is the
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number of fields [29]. The policy is defined as

π(s) = ∑M
m=1 wmπm(s)

∑M
m=1 wm

, πm(s) = s̃Tbm (6)

wheres̃= [(s−cm) 1]T andcm ∈ R
1×D. The weightswm are defined by Gaussian functions

as

wm = exp(−
1

2σ 2 ||s−cm||
2).

The regression parametersbm are estimated by

bm =
∑KN

i=1 wim fdi s̃di

∑KN
i=1 wims̃T

di
s̃di

where

wim = exp(−
1

2σ 2 ||sdi −cm||
2), i = 1, ...,KN.

4 Policy generalization techniques based on LR and LWR

In the previous section, we present two non-incremental regression techniques, namely LR

and LWR, for learning control policies. Apart from non-incremental techniques, incremen-

tal techniques are also developed [29, 30] aiming at generalization. Despite this progress,

generalization problems and primarily extrapolation still remain a challenge and the ques-

tion of whether further approaches can be developed to exploit and do the best with the data

available for learning toward the goal of efficient generalization in specific contexts, still

awaits an answer. Here, we propose two policy generalization techniques based on LR and

LWR.

4.1 Policy generalization by Weight Differential Learning(GWDL) based on LR

This approach is inspired by differential calculus and approximates a function at a point

by a first-order polynomial expansion which resembles the Taylor polynomial. However, in

contrast to Taylor polynomials whose weighting coefficients are represented by the deriva-

tive of the function at a known point, in GWDL the weight of thefirst-order term of the



Generalization of force control policies from multiple demonstrations 11

expansion expresses the mapping from a set of differences between demonstrated inputs to

a set of differences between demonstrated outputs as it is analyzed later, and this mapping

is learned by LR from demonstrated data. This coefficient is called weight differential, is

symbolized by∆w and expresses the rate of change of the policy with respect toits input.

Let us define the rate of change of the policyπ as

∆sd

∆π
∆sd−−→ ∆ fd,

∆π
∆sd

, ∆w (7)

where∆ symbolizes a finite difference,fd is the demonstrated force and∆π
∆sd

denotes the

derivative of the policyπ with respect to the statesd. We observe that the derivative of the

policy is a new policy with input data∆sd and output data∆ fd. LR is employed to learn

this new policy and the weight vector which is learned by LR isconsidered the differential

of the weighting vectorw, see (4). More specifically, to learn the∆w, a new observation

datasetD is generated, which consists of the differences between datapoints of every two

demonstrations. Let us assume the dataset

Dk1,k2 = { (s(k1)
d −s(k2)

d ), ( f (k1)
d − f (k2)

d ) }

which consists of the input and output differences of all datapoints between every two

demonstrationsk1 andk2. Finally, all datasetsDk1,k2 are concatenated into a single dataset

D as

D = {Dk1,k2, k1, k2 = 1, ...,K}. (8)

By applying LR on the datasetD, the parameter vector∆w is estimated. Following learning

of the∆w, the force control policy is approximated as follows:

(i) The observed motion vectors from allK demonstrations are concatenated as{s(1)d , ...,s(K)
d }

and the average over demonstrations motions(av) is computed as

s(av) =
K

∑
k=1

s(k)d /K.

and has time length equal toN.
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(ii) Given a new motion inputs′j , the point of the average motion patterns(av) which lies

closest to the query points′j is computed as:

smin = argmin
s(av)
i

‖s′j −s(av)
i ‖, i = 1, ...,N (9)

where‖ · ‖ denotes the Euclidean distance.

(iii) The policy at the new input is approximated by the first-order expansion

f ′j = π(s′j) = wTs̃min+∆wT(s̃′j − s̃min) (10)

where s̃min = [smin 1]T, s̃′j = [s′j 1]T and w is learned by LR on the dataset{sd, fd}.

In (10), we observe that the average input data act as known points and the policy varies

with respect to the average demonstrated behavior in order to generalize to new inputs.

The proposed algorithm has a strong intuitive meaning in that, to predict future actions, we

need to know the difference of the new task goal from previousgoals and how this difference

is mapped onto the action space represented, here, by the force. Instead of estimating the∆w

once from the whole setD of demonstrated data, one could alternatively estimate the∆w

locally in a region around thesmin for every newsmin. However, by trying this, we notice

that the estimated forcef ′ becomes noisy due to the different value of∆w for each news′j .

For this, the∆w is estimated only once globally from the whole set of demonstrated data.

An important point of the present algorithm is that it takes into account the average over

demonstrations motion trajectory and compares each new input with this average trajec-

tory in order to find thesmin. There are several reasons why the average motion trajectory

can serve here as good reference for generalization. In our scenario, demonstrated motions

lie fairly close to each other and, thus, their average is considered to be representative of

the visited motion domain and enclose the important constraints of the task. However, if

demonstrated motions lie far from each other and span a largeregion of the input space,

simple averaging would fail to enclose all the important features of the task because the mo-

tion average would derive from largely different data. Furthermore, in our scenario, we do

not aim at reaching some goal positions but rather followinga certain motion pattern and,
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given this, the average can serve as a representative of the motion route of the task. Even in

cases where goal positions have to be reached, by making all the demonstrated motions pass

from these goal points, the corresponding average would also preserve this goal information.

An alternative to comparing with the average trajectory would be to compare with all the

demonstrated input points. By doing this, we do not notice any considerable improvement

in the generalization ability of the algorithm but mostly anincreased computational cost of

the approach. The reason for this is because demonstrated motions in our setting lie close to

each other and comparing with each demonstrated motion point instead of the average did

not offer further noticeable information about the task. Inaddition, comparison with each

demonstrated input point increases the search space and requires memorization of the whole

set of demonstrated inputs. Another alternative to motion averaging is to encode the motion

data in time space by a probabilistic model such as GMR and usethe motion estimate of the

model as reference which to compare the new incoming motion inputs with. Such a prob-

abilistic approach estimates the relevance of the input motions [35] and may prove more

successful in extracting the main features of a task in case that demonstrated motions span a

large domain. However, we should notice that even probabilistic approaches learn from the

whole set of demonstrated data and their estimates represent some kind of system’s average

behavior [35].

4.2 Policy generalization through estimation of policy differences by LWR (DLWR)

A plausible question which emerges is whether the use of nonlinear models for learning the

relationship between inputs and outputs and differences ofinputs and differences of outputs,

instead of a global linear model as in LR, can allow for betterpolicy approximation accuracy.

Based on this notion, we develop here an alternative approach based on LWR for policy

approximation. The derivation of this approach is as follows. It is evident that the force

policy at a new inputs′j can be written asf ′j(s
′
j) = f ′j(smin+(s′j −smin)). By representing

this policy by LWR, we write

f ′j(smin+(s′j −smin)) =
∑M

m=1 wmπm(smin+(s′j −smin))

∑M
m=1 wm

. (11)
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Based on (6), it is

πm(smin+(s′j −smin)) = (s̃min)
Tbm+(s̃′j − s̃min)

Tbm = πm(smin)+πm(s′j −smin),

and, thus, (11) becomes

f ′j(smin+(s′j −smin)) = π(s′j) =
∑M

m=1 wmπm(smin)

∑M
m=1 wm

︸ ︷︷ ︸

π j

+
∑M

m=1 wmπm(s′j −smin)

∑M
m=1 wm

︸ ︷︷ ︸

∆π j

(12)

which is also written as

f ′j(s
′
j) = π j(smin)+∆π j(s′j −smin). (13)

In LWR, the policyπ(s′j) is once learned from the input-output dataset{sd, fd}. However, in

our current approach, the policyπ(s′j) is decomposed into two different policiesπ j and∆π j

and it is proposed that these policies are separately learned from different datasets. More

specifically, theπ j is learned by LWR from the dataset{sd, fd} as described in Section 3.2

while ∆π j is learned from the datasetD defined in (8). In addition, thewm of π j and∆π j

are separately defined based on the different training datasets. The concept of learning sep-

arately theπ j and∆π j is straightforward in that the∆π j receives as arguments differences

of inputs and has to be learned from differences of inputs as well. The∆π j determines the

policy increment with respect to the known policy valueπ j in the direction of minimizing

the distance between the new inputs′j andsmin, see (9).

The performance of the two estimation laws, namely (10) of GWDL and (13) of DLWR,

cannot be analytically compared because the two generalization laws are based on differ-

ent concepts and there is not an explicit analytic correspondence between them. Although

DLWR is based on LWR which can represent higher-complexity input-to-output mappings

compared to LR, the DLWR generalization law is not any more a pure LWR representation

but combines, in a superposition fashion, representationswhich are learned by LWR. In the

same way, the GWDL generalization law combines informationlearned by LR in a 2-term

Taylor polynomial and is not any more a linear as LR but a nonlinear law. On one hand,



Generalization of force control policies from multiple demonstrations 15

the algebra of LR provides a strong intuition for learning the policy and policy derivative

values from a known dataset since the input-to-output mapping is represented by a single

vector which plays the role of the rate of change of the policy, see (7). In turn, the fact that

the policy derivative∆w is available motivates for applying Taylor expansion for policy ap-

proximation at new inputs. On the other hand, the DLWR generalization law resembles the

concept of gradient-based policy update, as prescribed by (13), where for each new input,

the policy is updated in the direction of minimizing the distance between the new inputs′j

and the closest pointsmin of the average demonstrated trajectory. The difference between

gradient-based policy search and estimation law (13) is that both terms in (13) are updated

based on the new input and no information from previous time points is employed. Com-

parison between GWDL and DLWR is performed in an experimental level as presented in

Section 5.

5 Experimental evaluation

In this section, we evaluate GWDL and DLWR and compare them with LWR and LWPR in

real-world robot constrained motion tasks.

5.1 Setup

Force control policies are learned from demonstrations with the goal of executing con-

strained motions by using a 2-degrees-of-freedom linear-actuated haptic device (Thrust-

Tube), see Fig. 3. The motions are executed on a plasticine objectwhich is sufficiently ho-

mogeneous in practice. The end-effector of the device movesin two directions, one normal

and one parallel to the object’s initially planar surface. Asculpting tool is firmly attached

on the end-effector for engraving the plasticine object andthe system end-effector-tool be-

haves as a rigid body which only realizes translational motion. Prior to demonstration, the

end-effector is placed such that the tool tip just touches the object’s surface. During demon-

stration, the user moves the handle of the end-effector in the two directions while the tool

moves inside the plasticine material. Three demonstrations are executed by first moving the
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end-effector in the direction normal to the object’s surface up to a certain depth and then

moving it in the direction parallel to the object’s surface up to a certain length. The demon-

strated motion depths and lengths slightly differ across demonstrations. During demonstra-

tion, a force/torque sensor (JR3) measures the end-effector forcefd while the device’s

encoders measure end-effector positionxd and velocity ˙xd in both directions, see Fig. 2.

During task demonstration and generalization, the haptic device behaves as an admittance

and is position-controlled. The parameters of the admittance are stiffness 10N/m, damping

30Ns/m and mass 40Kg and the sampling rate is equal to 1KHz.

The experimental scenario of learning force control skillsfor constrained motions in-

side deformable materials is exciting and, at the same time,demanding because when a

complex-shaped end-effector dynamically interacts with the environment: (i) physical cou-

pling of task dynamics between different directions existswhich makes generalization chal-

lenging, (ii) the task dynamics are highly nonlinear due to the complex physics at the place

of interaction, and (iii) the applied force rigorously depends on the motion states and, thus,

the motion-to-force mapping policy is highly sensitive to motion variations. This policy’s

sensitivity helps to reveal the generalization precision of the proposed approaches. Thus,

the considered experimental scenario is able to reveal the efficiency and accuracy of the

proposed algorithms in learning complex nonlinear mappings which are sensitive to input

variations.

Fig. 3: Experimental setup. The two directions of movement,normal and parallel, are visu-
alized by a red- and a green-color axis respectively.
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As explained in Section 2, the learned force is the end-effector force fd which is mea-

sured by a force sensor during demonstration. The noise of the force sensor is negligible,

which ensures that measured force is the same for exactly thesame task; same motion, en-

vironment, end-effector, demonstrator and demonstrator’s motor policy. The demonstrator

motor policy refers to the way the demonstrator executes thetask, who may, for instance,

apply high forces and move aggressively or move in a compliant manner by applying low

forces instead. Although the demonstrator motor policy maypresent slight variations ac-

cording to the difficulty of the task (harder environment maymotivate for more aggres-

sive motor policy), these variations can also be learned from data. Here, we consider that

the demonstrator employs the same motor policy across demonstrations. In addition, all

demonstrations are executed by the same end-effector, demonstrator and in the same ho-

mogeneous environment. Based on this, the only factor whichcan result in inconsistency

of force demonstrations is the intrinsic motor output variability of the human motor control

system [2]. However, in our scenario, the force variations due to human motor output vari-

ability are negligible compared to task-related forces andare neglected. Given that during

motion inside a deformable and homogeneous environment, applied forces meaningfully de-

pend on the motion states, even similar motion states may lead to different measured forces.

In order to properly infer the force control policy of a task and successfully generalize to

new movements, we demonstrate motions which lie rather close to each other (motions of

similar normal depths and tangential lengths) and explore small regions of the input space.

From the proximity of the demonstrated motions, we ensure that the average motion tra-

jectory employed for generalization by GWDL and DLWR is characteristic of the visited

motion domain and encodes the important features of the task, see Section 4.1.

5.2 Representation of force control policies and task performance criterion

5.2.1 Force control policies

Following learning of a force control policy from a set of demonstrated movements, our

goal consists of generalizing this policy to new movements which are executed in the same
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environment with that of demonstrations but impose new motion-varying forces on the

end-effector. First, an engraving task is demonstrated three times as it is described in Sec-

tion 5.1. The force control policy in the two directions of movement is represented by

π = [π(n)(sd(n)) π(p)(sd(p))]
T ,

sd(n) = [xd(n) ẋd(n) ẍd(n) xd(p) ẋd(p) ],

sd(p) = [xd(p) ẋd(p) ẍd(p) xd(n) ẋd(n) ]

(14)

where the indices ’n’ and ’p’ stand for the ’normal’ and ’parallel’ direction respectively,

π(n)(sd(n)) = fd(n) andπ(p)(sd(p)) = fd(p) . Note that the normal and parallel control policies

are interconnected to each other. Multidimensional Dynamic Time Warping is applied to

align the force and motion data of different demonstrationsbefore learning [36].

The proposed generalization approaches do not aim at dealing with irrelevant input data.

In our scenario, relevancy of the input to the output is assumed such that a task-realistic

policy is estimated, which can efficiently generalize to newinputs in the future. Given that

physical coupling between motion dynamics of different directions is obvious to exist in

our scenario, we set as inputs of the control policy in each direction the set which contains,

apart from the motion states of this direction, the couplingposition and velocity states of the

other directions as well, see (14). When the task-relevant inputs cannot be inferred, Mutual

Information Analysis (MIA) can be employed to estimate the dependence of the output on

the input data and extract the relevant inputs. Applicationof MIA for a task learning scenario

is presented in [7]. Here, we analyze the relevancy of our inputs by computing the Pearson’s

correlation coefficient which is one of the simplest metricsin MIA and describes the linear

dependence between two datasets. Let us assume two variables X1 andX2. The Pearson’s

correlation coefficient is given by

P=
E[X1X2]−E[X1]E[X2]

σX1σX2

(15)

where E(·) denotes the expected value andσ the standard deviation. We compute the

Pearson coefficient between: (i) parallel positionX1 = xd(p) and normal forceX2 = fd(n) ;

P= 0.4113, (ii) parallel velocityX1 = ẋd(p) and normal forceX2 = fd(n) ; P=−0.1322,
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(iii) normal positionX1 = xd(n) and parallel forceX2 = fd(p) ; P=−0.3931, and (iv) nor-

mal velocityX1 = ẋd(n) and parallel forceX2 = fd(p) ; P=−0.6310. We observe that a non-

negligible dependence does exist between the normal force and parallel motion states and

the parallel force and normal motion states and, thus, the corresponding inputs are consid-

ered relevant to the task’s control policy.

5.2.2 Task performance criterion

We distinguish two main cases of generalization where: i) the new motions lie inside the

range of experienced motions and we call itpolicy interpolationand ii) the new motions lie

outside the range of experienced motions and we call itpolicy extrapolation. In the general-

ization phase, the generalized forcef ′ is applied and the corresponding realized positionxm

is measured, see Fig. 1(b). The generalization performancecriterion is represented by the

tracking error between the desired and measured position trajectory as

E(n) =
L

∑
i=1

(x(n),i −xm(n),i
)2, E(p) = ∑L

i=1(x(p),i −xm(p),i
)2 (16)

wherex(n) andx(p) represent the desired positions andxm(n)
andxm(p)

the measured positions

after execution by any generalization method whilei is the timepoint index andL the number

of datapoints of the desired trajectory.

5.3 Experiments

We demonstrate the generalization performance of GWDL and DLWR and compare it with

performance of LWR and LWPR. First, we show policy generalization in certain interpola-

tion and extrapolation cases and then we further evaluate GWDL within a larger range of

motions.

5.3.1 Test case 1: interpolation to new normal motion.

We test policy interpolation to a new movement which lies inside the range of the demon-

strated movements. The desired trajectories are

x(p) = x(3)(p), x(n) = 0.8×x(3)(n)
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wherex(3)(p) andx(3)(n) are position trajectories of the third demonstration whileẋ(n) andẍ(n) are

computed fromx(n). Generalization is realized by LWR, LWPR, DLWR and GWDL and the

results are shown in Fig. 4. The figure depicts demonstrated and generalized forces as well as

measured positions for all the four methods. The generalized force profiles of LWR, LWPR

and DLWR are overlapped by the force profile of GWDL in the figure due to the small

differences between their values. From Fig. 4, we observe that GWDL achieves accurate

execution of the desired normal trajectoryx(n) while LWR, DLWR and LWPR exhibit lower

performance and do not efficiently approximatex(n). On the other hand, we observe that

all the methods exhibit almost the same performance in the parallel direction of movement

where the tracking error is observed to be higher than that ofthe normal direction. Table 1

shows the values of the tracking errors (16) for all the methods. In this task, although the

desired parallel movementx(p) belongs to demonstrations, generalization performance inthe

parallel direction exhibits relatively high error which isprobably due to the normal position

and velocity components of the motion vectorsd(p) , which do not belong to demonstrations,

see eq. (14).

Table 1: Tracking errors of LWR, LWPR, DLWR and GWDL for test cases 1, 2 and 3. Errors
are expressed in [m].

Test case Error LWR DLWR LWPR GWDL

Case 1 E(n) 0.0027 0.0027 0.0014 0.0004

Case 1 E(p) 0.1244 0.1310 0.1283 0.1398

Case 2 E(n) 0.0066 0.0059 0.0172 0.0033

Case 2 E(p) 0.1035 0.0602 0.1193 0.029

Case 3 E(n) 0.004 0.0025 0.0016 0.000648

Case 3 E(p) 0.0332 0.0356 0.0361 0.0374

5.3.2 Test case 2: extrapolation to new normal motion.

Here, we test extrapolation to a new normal positional trajectory which lies outside the

experienced position range. The desired trajectories are

x(p) = x(3)(p), x(n) = 1.3×x(3)(n)
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Fig. 4: Test case 1. Top row: (blue dashed) demonstrated force, (magenta) generalized force
by GWDL. Bottom row: position (blue dashed) demonstrated, (turquoise) generalized by
LWR, (orange) generalized by DLWR, (red) generalized by LWPR, (magenta) general-
ized by GWDL. Desired position trajectoriesx(n) andx(p) are shown by a black-color line.
’Demo’ stands for the demonstrated trajectory.

whereẋ(n) and ẍ(n) are computed fromx(n). Fig. 5 visualizes the demonstrated and gener-

alized forces by LWR, LWPR, DLWR and GWDL as well as the corresponding measured

position for each method. The force profiles of LWR, LWPR and DLWR are overlapped

by the force profile of GWDL in the figure due to the small difference between their val-

ues. Table 1 shows the values of the tracking errors (16) for the four methods. We observe

that DLWR and GWDL have similar performance in the normal direction and outperform

LWR and LWPR. LWPR and LWR exhibit lower performance in both directions of move-

ment. Note that the generalized position by LWPR closely approximates the demonstrated

trajectoryx(3)
(n). Although DLWR and GWDL outperform the two other methods, they still

exhibit limitation in following the desired position trajectories. This is expected given that

extrapolation is harder than interpolation [37].
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Fig. 5: Test case 2. Top row: (blue dashed) demonstrated force, (magenta) generalized force
by GWDL. Bottom row: position (blue dashed) demonstrated, (turquoise) generalized by
LWR, (orange) generalized by DLWR, (red) generalized by LWPR, (magenta) general-
ized by GWDL. Desired position trajectoriesx(n) andx(p) are shown by a black-color line.
’Demo’ stands for the demonstrated trajectory.

5.3.3 Test case 3: generalization to new normal and parallelmotion.

In this task, we perform interpolation to a new normal trajectory same as in test case 1 and

extrapolation to a new parallel trajectory. The desired positions are

x(p) = 1.2×x(3)(p), x(n) = 0.8×x(3)(n)

while corresponding velocity and acceleration values of both directions are computed from

the positionsx(n) andx(p). Fig. 6 shows the results of generalization by LWR, LWPR, DLWR

and GWDL while Table 1 shows the values of the corresponding tracking errors (16) for

each method. We observe that GWDL outperforms the other methods in the normal direction

of movement and achieves to approximate the desired trajectory with low error. On the other

hand, LWR exhibits the lowest performance in the normal direction. In the parallel direction,

we observe that all the methods exhibit almost the same performance and they successfully

follow x(p). Note that all the methods exhibit higher normal tracking error compared to the
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error of the test case 1. Given that the normal motion vectorsd(n) also depends on the parallel

motion states which now lie outside the experienced data range, it is expected to notice some

higher normal error here compared to case 1.
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Fig. 6: Test case 3. Top row: (blue dashed) demonstrated force, (magenta) generalized force
by GWDL. Bottom row: position (blue dashed) demonstrated, (turquoise) generalized by
LWR, (orange) generalized by DLWR, (red) generalized by LWPR, (magenta) generalized
by GWDL. Desired positional trajectoriesx(n) andx(p) are shown by a black-color line.

5.3.4 Comparison of test cases 1, 2 and 3

By considering all the previous test cases, we notice some compromise in performance of

GWDL between the normal and parallel direction of movement.This derives from the fact

that the motion vectorssd(n) andsd(p) are coupled through position and velocity and, thus,

generalization in one direction depends on the motion states of the other direction as well.

Someone would think of decouplingsd(n) andsd(p) but, in that case, the input motion space

would not correspond to the true physics of the task. Given all the test cases, we observe that

the GWDL approach performs in overall most successfully among all the tested approaches

within the range of examined tasks and proves a promising technique for approximating

unknown motor control policies from data. DLWR exhibits in overall lower performance

than GWDL. The low performance of DLWR could motivate for future modifications of the

algorithm in the following ways: (i) apart from learning only thebm parameters in (12), the
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weigthswm should also be learned, and (ii) the increment-based law (13) may have to be

modified in a certain way for better performance. Given that humans follow a computation-

ally complex strategy of endpoint force regulation while performing constrained movements

under varying motion-dependent disturbances, expressingthis strategy from few data and

also by employing relatively simple estimation techniquesis a big challenge.

5.3.5 Further evaluation of GWDL

In many real-world scenarios, robots are expected to execute constrained motion tasks such

as writing or engraving on an object [38], sculpting [39] or cutting of human tissue in robotic

surgery [40]. In all previous cases, execution of accurate motions in multiple directions of

movement simultaneously is required by ideally taking intoaccount the properties of the

environment and the end-effector. One route to solving suchconstrained motion problems

is the application of feedback control such as stiff position or adaptive control [41] or, for

instance, a force-controlled velocity planning approach [42]. A different route to executing

a motion task is learning of the task dynamics by imitation first and then employing the

learned skills to successfully reproduce the task in futuretrials. One of the main advantages

of learning by imitation is that it allows to learn a human-like force tuning policy and treat

the environment as an expert task demonstrator would do in contrast to control schemes

which may apply higher than desired forces on the object and violate the physical constraints

of the system. It is obvious that, in constrained motion tasks such as robotic surgery for hip

replacement where high-standard safety and absolute guarantee of performance are required,

the ideal policy would consist of combining feedforward control skills learned by imitation

with feedback control to efficiently deal with perturbations. In the present article, we limit

our investigation to learning feedforward control policies by demonstration.

Here, we further evaluate the efficiency of GWDL by showing generalization to con-

strained motions executed onto a plasticine object whose surface is planar prior to the task.

Following learning from the three demonstrations as in the previous test cases, learned force

control policies are generalized by GWDL to the following motions:

– Movement 1 (M1):x(n) = 0.8×x(3)(n), x(p) = x(3)(p).
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– Movement 2 (M2):x(n) = 0.9×x(3)(n), x(p) = x(3)(p).

– Movement 3 (M3):x(n) = 1.1×x(3)(n), x(p) = x(3)(p).

– Movement 4 (M4):x(n) = 1.4×x(3)(n), x(p) = x(3)(p).

Fig. 7(b) shows the desired movements M1, M2, M3 and M4 and corresponding general-

ized movements while Fig. 7(a) visualizes the effect of the generalized movements on the

plasticine material. From Fig. 7(b), we observe that GWDL efficiently generalizes to new

normal movements while its generalization in the parallel direction exhibits lower efficiency.

This may be due to increased task complexity in the parallel direction because of the larger

interaction surface of the tool with the environment in thisdirection, which makes the tool

encounter larger perturbations in that direction. We also observe that interpolation exceeds

extrapolation performance.
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Fig. 7: (a) Generalizing to new motions by GWDL. (b) Black line: desired trajectory, red
line: generalized trajectory.
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6 Discussion

In this work, we are interested in learning force generalization skills from task demonstra-

tions with the goal of executing constrained movements inside deformable materials. In our

scenario, we assume that the environment is sufficiently homogeneous and external forces

only depend on the motion states of the task. Given that forces are only state-dependent, by

estimating the mapping between applied forces and visited motion states, the force control

policy of the task can be estimated and generalized to similar motions within the same en-

vironment in the future. Humans build force-motion mappings, known as internal inverse

dynamics models, for feedforward motion control and trajectory planning [3]. In this work,

we learn force-motion mapping policies from a finite set of demonstrated data in order to

endow robots with certain human-like adroitness.

To reveal the motion-to-force mapping policy from data, we investigate the role that

the policy’s derivatives and differences can play in representing this mapping. A policy’s

derivative expresses how fast the policy varies with respect to variations in its input. The

policy’s derivatives are learned by LR from data and combined with learned policy data in

a differential calculus-inspired fashion to give an estimate of the policy at new inputs. In

addition, policy’s differences express how much the policyvaries from a baseline behavior

given a variation of its input from the demonstrated data. Policy’s differences are represented

and learned by LWR and combined with policy values, also learned by LWR, to estimate the

policy at new inputs. LR and LWR are static in the sense that they represent how a policy

varies with respect to some fixed input in contrast to incremental techniques which update

their learning structure given a new input. However, if we can make LR and LWR capable of

expressing how a policy varies with respect to variations inits input, then the learned static

and dynamic characteristics of the policy can be appropriately integrated in order to give an

estimate of the policy at new inputs. This notion constitutes the key concept of our proposed

approach.

From the experimental results, we observe that GWDL in overall outperforms DLWR,

LWR and LWPR both in interpolation and extrapolation cases.Interpolation is observed to

be an easier task than extrapolation for all the tested methods [37]. Although GWDL outper-
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forms LWR, LWPR and DLWR, it still exhibits limitations in its generalization performance

in extrapolation cases. We deduce that representing and generalizing motor control policies

from certain human data is a challenging issue which can be further investigated in the future

and in the context of regression theory in order to elucidatethe motion-force associations

that humans employ in specific scenarios which are of great practical importance for au-

tonomous systems. In conclusion, GWDL proves the most successful technique for force

policy generalization among all the examined methods in ourscenario and can serve as a

well-aimed and competent feedforward force controller in similar applications where input

to output mappings are able to be learned from demonstrated data.

Acknowledgment

This research has been supported by the scholarships ”Bavarian Elite Aid Act (BayEFG)”

and ”TUM-Equal Opportunities for Women in Research and Academic Teaching” and par-

tially supported by the TUM-Institute for Advanced Study.

References

1. E. Burdet, K. P. Tee, I. Mareels, T. E. Milner, C. M. Chew, D.W. Franklin, R. Osu, M. Kawato, Stability

and motor adaptation in human arm motions,Biological Cybernetics, vol. 94, pp. 20-32, 2006.

2. E. Burdet, R. Osu, D. W. Franklin, T. E. Milner and M. Kawato, The central nervous system stabilizes

unstable dynamics by learning optimal impedance,Nature, vol. 414, pp. 446-449, 2001.

3. M. Kawato, Internal models for motor control and trajectory planning,Current Opinion in Neurobiology,

vol. 9, pp 718-727, 1999.

4. D. Nguyen-Tuong, J. Peters, M. Seeger and Bernhard Schölkopf, Learning Inverse Dynamics: a Compar-

ison,European symposium on artificial neural networks (ESANN), pp 13-18, 2008.
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