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ABSTRACT. We consider a backward stochastic differential equation with jumps (BSDEJ)
which is driven by a Brownian motion and a Poisson random measure. We present two
candidate-approximations to this BSDEJ and we prove that the solution of each candidate-
approximation converges to the solution of the original BSDEJ in a space which we specify.
We use this result to investigate in further detail the consequences of the choice of the
model to (partial) hedging in incomplete markets in finance. As an application, we consider
models in which the small variations in the price dynamics are modeled with a Poisson
random measure with infinite activity and models in which these small variations are
modeled with a Brownian motion. Using the convergence results on BSDEJs, we show
that quadratic hedging strategies are robust towards the choice of the model and we derive
an estimation of the model risk.

1. INTRODUCTION

In the present paper we aim at studying the time-discretisation of forward backward
stochastic differential equations (FBSDEs) driven by cadlag martingales. That is FBSDEs
of the form

(1.1)
S(t) = 5(0) +/S(s)a(s) ds +/S(s—) dM(s),
V) = WS + [ s, S(6), VL TE) M)~ [ 16 A () = LT) + L),

where M is a cadlag martingale, (M) is the predictable compensator of the quadratic
variation of M, and L is a martingale orthogonal to M. h, ¢, and a have to fulfill certain
conditions that we specify later in the paper. A solution to the backward equation in (1.1)
is a triplet (V,Y,L). We refer to Carbone et al. [6] for the study of the existence and
uniqueness of this solution.

Such equations were first derived by Chitashvili [7] as a stochastic version of the Bellman
equation in an optimal control problem. They naturally appear for example in quadratic
hedging problems (see e.g. Jeanblanc et al. [10] and Di Nunno et al. [8]). They can also
characterize solutions of optimal portfolio problems based on utility functions (see e.g. Ma-
nia et al. [14], Mania and Tevzada [16], and Mania and Schweizer [15]).

Bouchard and Touzi [5] studied the problem of discretisation of classical BSDEs driven
by a Brownian motion using an Euler type scheme. Bouchard and Elie [4] extended this
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approach to classical BSDEs with jumps and studied the induced L?-error. They showed
that the L2-norm of the error is of the order of the time step.

In the present paper, we first specify the martingale M in (1.1) to be driven by a
Brownian motion and by jumps with finite activity. In this case the discretisation of the
forward equation S is well studied in the literature and we refer to Platen [19] for a good
overview. For the backward equation, we obtain an Euler backward scheme (V, T, z) which
is presented as a solution to a time-discrete BSDE. Then we study the induced L2-error.

In this context we mention a paper by Lejay et al. [12] in which the authors presented a
numerical scheme for solving classical BSDEs with jumps. They consider a time-continuous
BSDE driven by a Brownian motion and by jumps. Then they construct a time-discrete
BSDE driven by a complete system of three orthogonal discrete time-space martingales,
the first being a random walk converging to a Brownian motion; the second being another
random walk, independent of the first one, converging to a Poisson process. The third
martingale is added to ensure the existence of the solution to the time-discrete BSDE.
Thus, this martingale converges to zero for a small time step. In our case Lisa martingale
that represents both a time-discretisation of the orthogonal continuous-time martingale
L and an additional term necessary for the existence of the solution to our time-discrete
BSDE (see (3.3)). Note that the time-discrete backward scheme in Section 2.2 in Bouchard
and Elie [4] does not contain an orthogonal martingale since it is not presented as a solution
to a time-discrete BSDE.

Our approach allows us to approximate the process L in (1.1) by a discrete-time process
L. This is important in applications in finance. For example in the case of the study of
quadratic hedging strategies, the process L represents the remaining risk in the hedging
strategy and hence it is important to study the approximation and the simulation of this
process L. Finally, we mention that the study of the approximation in the paper by
Lejay et al. [12] was considered in the weak sense. In the present paper, we study the
L?-convergence.

For the study of the convergence, we first investigate a relation of the backward equation
in (1.1) to classical BSDEs by applying an [té representation to the martingale L. Then
we exploit the results by Bouchard and Elie [4]. This allows us to prove that under
certain conditions imposed on the parameters of the forward equation, the Euler scheme
we consider converges to the continuous BSDE (1.1) in the L?-sense. Moreover, we show
that the L?-norm of the error is of the order of the time step.

To complete our study we consider in a second step martingales M driven by a Brow-
nian motion and by jumps with infinite activity. We approximate the small jumps by a
Brownian motion scaled with the standard deviation of the small jumps. Then we study
the discretisation of the approximation and by exploiting the results in Di Nunno et al. [§],
we prove that the L?-norm of the error is of the order of the time step plus the vari-
ance of the small jumps. Same type of results hold when ignoring the small jumps in the
approximation before performing a discretisation.

The paper is organised as follows. In Section 2 we present the continuous-time FBSDE
and in Section 3 its time-discretisation.The convergence of the discrete-time scheme to the
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continuous-time BSDE is studied in Section 4. We also compute the convergence rate. In
Section 5 we complete the analysis by including jumps with infinite activity in the study
of the discretisation. Section 6 concludes.

2. CONTINUOUS-TIME MODEL

Let (2, F,P) be a complete probability space. Fix T > 0. Let S be a locally square
integrable semimartingale under P adapted to a filtration F = (F;)o<i<r satisfying the
usual conditions of right continuity and completeness (see Chapter I in Protter [19]). We
denote by [X,Y] the quadratic covariation of two given semimartingales X and Y and by
(X,Y) the compensator of the quadratic covariation also called predictable compensator.
Let W = W(t) and B = B(t), t € [0,T], be two independent standard Wiener processes and
N = N(dt,dz), (t,z) € [0,T] x R be a centered Poisson random measure, i.e. N(dt,dz) =
N(dt,dz) —¢(dz) dt, where £(dz) is the Lévy measure and N (dt,dz) is the Poisson random
measure such that E[N(dt¢,dz)] = ¢(dz)dt. Define B(R) as the o-algebra generated by the
Borel sets U C R. We assume that the Lévy measure has a finite mass in the tail, i.e.
{(]z| < 1) < oo and that the jump measure has a finite second moment, i.e. [, 2> £(dz) < oco.
We specify the P-augmented filtrations F = (F;)o<i<1, G = (G¢)o<i<T, respectively by

Fi—o W(s),//N(du,dz), s<t, AeBR) S VAN,
0 A

Gi=o0 W(s),B(s),//N(du,dz), s<t, AeB(R),VN,
0 A

where AV represents the set of P-null events in F . We introduce the notation H = (H;)o<i<r
such that H,; will be given by the o algebra F; or G; depending on our analysis later.
Let [M] := [M, M] and (M) := (M, M) be respectively the quadratic variation and the
predictable compensator associated with a given square integrable martingale M. We
define the following spaces;

e LZ: the space of all Hy-measurable random variables X :  — R such that
|X|* = E[X?] < oco.
o [ [207T]: the space of all H-predictable processes ¢ : 2 x [0,T] — R, such that

A
ol =E | [ lo0)Pat| <oc.
0 -

° S[%ﬂ: the space of all H-adapted, cadlag processes v : 2 x [0,7] — R such that

Il = | sup 0] < o
; 0<t<T |
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o I [207T]: the space of all H-predictable mappings 6 : Q x [0,7] x R — R, such that

T

01, = | [ [ bR adz) de| <oc.

0 R

) f{[%),T]: the space of all H-adapted processes ¢ : Q x [0,7] — R, such that

T
ol =& | [160F day | <o
0
e [2(R,B(R),(): the space of all B(R)-measurable mappings 1/ : R — R such that

16124 ) = / 9(2)[2 (dz) < oo

R
o E[QOT]: the space of L?*-bounded martingales M such that

T

E!/wwt<m.

Consider three functions f, ¢, and h to which we impose the following assumptions:

Assumptions 1. A
(A) f:10,T) x R® x L*(R, B(R), ) — R is such that
® f(0,0,0,0) € Hff 1,
o f satisfies a uniform Lipschitz condition in (-, u,v,w,I"), i.e. there exists a constant
C such that for all (u;,v;,w;, ;) € R3 x L*(R,B(R),{), i = 1,2 we have

|f(t ur, v, wi, ) = f(E uz, v, w2, o))
< C'<|u1 — ug| + |vg — vo| + |wy — wsy| + [Ty — F2||>, for all t €10,T].

(B) ¢ :[0,T] x R® — R is such that

L @(7 07 07 O) € F[[%),T];
e © satisfies a Lipschitz condition in (t,u,v,w), i.e. there exists a constant C' such
that for all (t;,u;, v, w;) € [0,T] x R®, i = 1,2 we have

lo(t1, ur, v, wy) — P(te, Uz, v, Wo)
S O(’tl — t2| + |U1 - u2| + |Ul — U2| + |U}1 - U)Q’) .

(C) h: R — R is Lipschitz and h(0) = 0.
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In Sections 2 - 4, we consider H = F. We define a process M as follows

(2.1) M(t) ::/tb(s) dW(s)—i—/t/’y(s,z)N(ds,dz),

where b(t),v(t,z) € R, for t > 0, z € R. Moreover, we assume that

(2.2) V(t 2) = g(2)7(1).

In order to ensure that the process M has a finite second moment, we impose for some
e >0,

(2.3) G?(e) := / g*(2) (dz) < 00
|2|<e

We consider the following classical stochastic differential equation

t t

(2.4) S(t)=5(0) + /S(s)a(s) ds + /S(s—) dM(s),

where a(t) € R and S(0) is a positive constant. For S to be positive, we assume (¢, z) > —1
for (t,2) €[0,T] x R.
We then consider the associated backward stochastic differential equation

T T

(2.5) V(t) =h(S(T))+ /go(s, S(s),V(s), Y(s))d(M)s — /T(s) dM(s) — L(T) + L(t),

t t

where ¢ and h satisfy respectively Assumptions 1 (B) and (C). A solution to the BSDE
with jumps (BSDEJ) of type (2.5) is a triplet (V,Y,L) € Hp ;X Hp X L} such
that T is predictable and [M, L] is a local P-martingale. The existence and uniqueness
of the solution to (2.5) are well studied in Carbone et al. [6] for general square integrable
martingales M not necessarily of the form we impose. We mention that their study does
not include the dependence on S in the functions kA and ¢ . However its generalisation to
the FBSDE (2.4)-(2.5) is straightforward.

Since L(T') is an Fp-measurable square integrable random variable, then applying the
representation theorem (see Kunita and Watanabe [11]) and the fact that E[L(T)] =
E[L(0)] = 0, we get the following representation for the process L

L) = [ Pls)aw(s) + / [ a0 s, dz).

0

where P € H, [207T] and Q € H [20,T] (see Section 3 in Di Nunno et al. [8] for more details).
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In the sequel we aim at rewriting the BSDEJ (2.5) as a classical BSDEJ. Thus we
consider first the following classical BSDEJ
(2.6)

_AUW) = f(t,S(),U®), Y (1), Z(t,-)) dt — Y(£) AW () — / Z(t—, 2) N(dt, dz) |
U(T) = K(S(T)). ’

where f and h fulfill Assumptions 1 (A) and (C). A solution to (2.6) is a triplet (U,Y, Z) €
St * Hig g X H[0 - From Tang and Li [20], we know that this solution exists and is
unique.

In the following proposition we rewrite (2.5) as a BSDEJ of type (2.6). We do not

present the proof since it follows similar lines as the proof of Lemma 4.1 in Di Nunno et
al. [8].

Proposition 2.1. Define

(2.7) k(t) == b*(t) + /WQ(t, 2)l(dz), tel0,7].

Assume that

(28) C < v/ Ii(t) < 02, fOT‘ all t € [O, T] ,

where Cy and Cy are positive constants. Let V' be given by (2.5). Recall the processes P
and @ in the decomposition of L (5.2). Then V satisfies a BSDEJ of type (2.6), where

Y(t) = Y(t)b(t) + P(t),
Z(t,z) = T@)’Y@ﬂ Z) + Q(t, Z) )
(2'9) f(ta u, v, w, F()) = (t7 u, v, ¢ (tv w, I ())) R(O )
with ¢ : [0,T] x R x L*(R, B(R), ) — R is such that
(2.10) 6(t,w,T()) = (L T(2)(t, 2) £(dz)

Let C}! denote the space of continuously differentiable functions with bounded derivatives
and m, be the regular time grid

Tn={0=to,....ti,....t, =T}, t;=—, neN.

We introduce the following estimate which we need for our convergence study later.
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Theorem 2.2. Let V and T be as in (2.5). Assume (2.8) holds, a, b, and 7 defined in
(2.2) are Lipschitz, and the functions h in (2.5) and f in (2.9) are C}. Then

n—1 tita
max B | swp V(O - V)R] +E | S [ 116 - T@wPas| < 7,
i<n teftitiri] i=0 ! n

where C'is a positive constant.

Proof. Introduce the short hand notation

Z7(t) = /Z(t,z)’y(t, 2)4(dz) .

R

The estimate for V follows immediately from Theorem 2.1 in Bouchard and Elie [4] and
Proposition 2.1 in the present paper. For the estimate for T, we deduce from (2.10) that

1 1

K(t:)
1 Y s) —
@Z (s)

(b(ti)Y(ti) + Z’Y(ti))‘

Z7(t:)

1
K(t:)

b(ts)

b(s)k(ti) — b(ti)k(s)
r(s)k(ti)

SO (s) =Y (L)l + C[Y(s)|[b(s) = b(ts)| + C Y ()] |1(s) — r(t:)] ,

Y (s) =Y ()| +[Y(s)|

where in the latter we used the fact that x(¢) is bounded below and above uniformly in ¢
by a constant and that b(¢) is bounded above uniformly in ¢ by a constant. Using the fact
that b and 7 are Lipschitz and bounded above uniformly in ¢, which implies that x is also
Lipschitz, we further get

Ys) ) -

< CIY(s) =Y () +C Y () b(s) = b(ta)|* + C [V ()” [K(s) — s(t:) |
< ClY(s)=Y(t:)]* + % Y (s)]* .
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Integrating, summing up, and taking the expectation, we obtain

ﬁ _b(t) ’ 8-
J |n) )= Y W) d
(2.12) < CE Z/|Y(s)—Y(ti)|2 ds +§E /|Y(s)|2 ds
C i _ 0
=%

In the last step we invoked Proposition 4.5 and Remark 2.7 in Bouchard and Elie [4], and
we relied on the boundedness by a positive constant of the expectation in the second term
n (2.12) (for a proof we refer to Lemma 3.3 in Di Nunno et al. [8]). For the second term in
the last inequality of (2.11), we find using the boundedness below and above of x uniformly
int

1 2

m(ti)ZW(t")
< C(|k(s) = w(t:) P |Z7(s)* + |1 27(s) — 27 (1))
< CG(o0) (I3(s)? |K(s) — m(t)[* + [7(s) — 3(t:) ) / |Z(s,2)|” £(dz)

Z”/(S) —

1
K(S)

R
+ CG(c0 /|Z s,2) — Z(t;, 2)|* [ £(dz),
where G(00) = [, 9%(2) £(dz) and the function g is as in (2.2). By the Lipschitz property
of 4 and of k and the boundedness of 7, we get
1 2

7(s) - %Zw

/\Zsz[ 0(dz) +C/\Zsz Z(t;, 2))? | £(dz).

@

The statement of the theorem follows using Lemma 3.3 in Di Nunno et al. [8] and Corollary
4.1 and Remark 2.7 in Bouchard and Elie [4]. O
3. DISCRETE-TIME MODEL

We consider the set up (2.4), (2.5) but now in discrete time. Throughout this paper we
shall use the notation

AH(tiyr) = H(tin) = H(t;), i=0,....n—1,

for any process H.
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Time-discretisation of the forward equation. The discrete-time version of the process S

is denoted by S and defined as
(3.1) S(tiy1) == S(t;) + S(t)a(t;) At; + S(t;) AM(t;) i=0,....n—1, 5(0)=S(0),

where

tit1

(3.2) AM%ﬂ:/ f/ t;) N(dt,dz),

t;
for a,b, and 7 as in (2.1)-(2.4)
Time-discretisation of the backward equation. A discrete-time version of the process V'
in (2.5) is given by
(3.3)
{ Vi(ti) = V(tiys) + (s, S(t:), V (L), Y(t:) A(M)s,,, — T(t:s) AM (tiy1) — AL(tiy1)
V(T) = h(S(T)),

where ¢ and h verify respectively Assumptions 1 (B) and (C). The solution to the latter
BSDEJ is a triplet of discrete processes (V (t;), Y(t:), L(t;)) € H[o 7 % ]:I[Qoﬂ X Lo 1=
0,...,n — 1, such that (T(ti)){ogign} is predictable, [M, L] is a local P-martingale, and the
mentioned spaces are meant in a discrete setting. Existence and uniqueness of the solution
0 (3.3) follows from Carbone et al. [6]. Notice that the process L in (3.3) is necessary for
the existence of the solution since the predictable representation property does not hold
in the discrete case (see e.g. Chapter 4 in Protter [18]). Moreover we cannot write this
BSDEJ as a time-discrete BSDEJ driven only by a Brownian motion and jumps as we did
in the continuous case in Proposition (2.1).

To derive an algorithm from the Euler scheme (3.3), we first take the expectation condi-
tionally on F;, on both sides in (3.3) to arrive at the expression for V (t;) (second equation
n (3.4)). Then we multiply both sides in (3.3) by AM (t;;1), take conditional expectation
with respect to F, , and solve for T(t;) using (3.3) and the fact that [M,L] is a local
P-martingale, to find the system fort=n—1,...,0
(3.4)

N n ~
T(tl) = T/i(tl)E V<ti+1> b( z+1 +/7 tl,Z tz;t1+1] dZ) |ftz )
R
),

V(t) = B[V (i) | F] + Atipag(ts, S(t:), V(t), T(t:))s(t),

where  is as in (2.7). As for L, being zero at zero, we have from (3.3)

(3.5)
L(T) = V(T) — 4 Y(t;) AM (ti1) + Z ® (ti, S(t:), V(t:), T@z)) K(t;) Aty — V(0).
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Observe that this algorithm involves the computation of conditional expectations. For a
numerical computation or approximation we refer e.g. to Daveloose et al. [9] and Longstaff
and Schwartz [13].

4. L?>-CONVERGENCE OF THE DISCRETISATION SCHEME

Convergence of the forward equation. In the following theorem we state the discretisation
error of the approximation of (2.4) by (3.1). We refer to Platen [17] for a proof.

Theorem 4.1. Recall the dynamics of S and S as in (2.4) and (3.1) respectively. Assume
that the adapted processes a, b, and v are Lipschitz continuous in t. Then we have

2]§€

max E

sup
<n

tE[ts,tiv1]

Y

S(t) — S(t:)

n

for a positive constant C' independent of the number of steps.

Convergence of the backward equation. To study the convergence of the time-discrete
scheme, we consider a continuous-time version of the process M (3.2) as follows
t

My(t) = Mi(t:) + / b(t:)dIV (s) + / / Yt 2)N(ds,dz),  M(0)=0.

Now consider the F;, . -measurable random variable

i+1
tit1
€ltier) == Vit + [ (650, V(0 Tt ds.
t;
We know from the GKW decomposition (see, e.g., Ansel and Stricker [1]) that there exists
a predictable process T € H [2ti,ti+1] such that
tit1
Elties) = E[€(tinn) 7o) + [ Vi) dM(s) + ALt
123
where L; is a square integrable P-martingale such that [Mi, Ly] is a local P-martingale.
From the latter equation and the second equality in (3.4), we deduce

(4.1)
Vitisr) = V(t;) — / o(ti, S(t:), V (&), T(t:))k(t:) ds + / Ty (s) dM;(s) + ALy (tisq) .

We define a continuous version of V as follows

V(t) = V(tiﬂ)—l—/go(ti,g(ti),f/(ti),T(ti))/i(ti)ds—/Tl(s)dMl(s)
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(4.2) — Li(tiv1) + Lq(2).

The latter is an “intermediate” time-continuous BSDEJ which is needed for the convergence
study later on. Since we are in a time-continuous setting, we can apply the classical
martingale representation to L; to find

tit1 tit1

La(tin)) = Lu(t) + /Pl( //lez (ds,d2) |

t

where P, € H [%ivti+1] and Q, € H [?ti,tm]' Substitution the latter in (4.2) for the continuous

version of V leads to

tit1 tit1

~

V() = V(tip) + / o(ti, S(t:), V(t;), T(t:))k(t;) ds — / Yi(t;, s) AW (s)

(4.3) //Zl ti, S, 2) ds ,dz),
where
(4.4) Yi(ti,s) = Ti(s)b(t;) + Pi(s),

Zi(ti,;s,2) = Ta(s)y(ti, z) + Qu(s, 2).
Using the fact that [M;, L] is a local P-martingale, we deduce
(4.5)
1
Tl(S) = W b(tz)yl(tz,8>+/Zl(tl,8,2)’y<tz,2)£(d2) 3 tl S S StHl,i:O,...,n— 1.
N2
R

Multiplying by AM;(¢;41) in both sides in (4.1) and taking conditional expectation with
respect to F;,, we obtain

tit1
B[Vt M 1) |72 | = B | [ Tilo)ds |7 ||
t;
where & is as in (2.7). Comparing the latter to the first equality in (3.4), we get
tit1
n
t;

In the following two propositions, we compute estimates which we use later in the proofs
of the convergence results.
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Proposition 4.2. Let T and Y, be respectively as in (2.5) and (4.1). Assume (2.8) holds
and a, b, and v are Lipschitz. Introduce the notation

(4.6) Y (t) =Y(t) — Yi(ts, t), 0Z(t,z) = Z(t,z) — Zy1(ti, t, 2),
where Y, Z are as in (2.6) and Y1, Zy are as in (4.4). Then
tit1 tit1 tit1
K
E[|T(s) — Yi(s)[*] ds < —+C / E [|0Y(s)]*] ds+C / /E [16Z(s,2)|*] £(dz) ds,
t; t; t; R

where K and C' are positive constants.

Proof. Introduce the short hand notation

211, 1) = / Zutirt, )yt 2) £(d2)

R

From (2.10) and (4.5), we have

[T (s) = Ta(s)]
1 1
- | Y _ . ) Y(t.
5 Y () + 2(0)) = s QY1) + 27 (13) |
Then proceeding as in the proof of Theorem 2.2, we get
b(s) b(t;) ? , K 2
227 _ . < _ . -
/ﬂZ(S) Y(S) /ﬁ)(tl)}/l(t“ ‘9) — C |Y(S> le(tlv S)| + ng |Y(S)| )
LZ”(s) — ——7Z](t;,s) 2 < C’/ 1Z(s,2) — Z(t;, 5, 2)|* | (d2) + £/|Z(s 2)[* 0(dz)
l{(s) I{'/(tz) 1 79 —_ 7 (3 7 n2 7 Y
R R
which implies
t¢+1 t'H—l

E[|T(s) = Ti(s)]’] ds < C / E [|5Y( ds+C’ / /E |0Z(s, 2) E(dz)d

T
K
+— /E ds+//E 1Z (s, 2))?] £(dz)ds
n
0 R

0

The statement follows from the boundedness by a positive constant of the integrals in the
third and fourth term in the right hand side of the latter inequality (for a proof we refer
to Lemma 3.3 in Di Nunno et al. [8]). O
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Proposition 4.3. Let T and Y be respectively as in (2.5) and (3.3). Assume (2.8) holds
and a, b, and v are Lipschitz. Then we have

tit1 tit1 tit1
Eﬂﬁm—T@Wcbgg+c/ﬁm&mwhb+c//ENM@@ﬂema@
t; t; t; R

+C / E[|T(s) — T(t;)[*] ds,

where K and C' are positive constants and 0Y and §Z are as in (4.6).

Proof. We introduce T* as follows

tit1

T*(t;) ::%E /T(s)ds|.7:ti :

t;

where T is as in (2.5). Then we have
E||T(t) - T(s)P]
3(E[IT(t) — 0P| + B[ 7"(6) = T@)P] +E[[7(t:) = T(s)]) -

As for the first and second terms in the latter equation, we get using Jensen’s and Cauchy-
Schwartz inequalities
tit1
A n
B[1%(0) - v (0F] < 7 [ BIMi) - Y(o)F]ds
t;

tit1
n

BT () - TP < 7 [ BT - T(t)P] ds,

t;

C’ tit1 tit1 Lit1 titn
SL//MMWWMdm+—// (1 (s) — Y(t,)2] dsdr
ti  t;
tit1
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tit1 tit1
=C / E [|T1(s) — T(s)|2] ds + / E [|T(s) — T(ti)|2] ds
ti t;
Applying Proposition 4.2, the statement follows. O

In the following theorem we compute the rate of convergence of the solution of (4.3) to
the solution of (2.5) in a space we specify.

Theorem 4.4. Assume the conditions of Theorem 2.2 hold and ¢(0,0,0,0) = 0. Let the
triplets (V,Y, Z) and (V,Y1, Zy1) be respectively the solutions of (2.6) and (4.3). It holds

) 9 n—1 tisa
maxE | sup [V(t)=V(#)| |+ _E /\Y(s)—Y’l(ti,s)Fds
1<n tE[ti,tiJrl] i—0 J
n—1 tita C
4.7 E Z — Z(t; 2 0(d2)ds| < =
w0 3| [ [176.9 - 200s9f taas) < T
= ti R

where C' s a positive constant.

Proof. Set 6V (t) = V(t) — V(t), dk(t) = k(t) — k(t;), dp(s) = @(s,S(s), V(s), T(s)) —
o(ti, S(t;), V(t;), T(t;)) . Recall the notations 6Y and 6Z in (4.6). In the sequel, C' denotes
a positive constant independent of ¢+ and n and may take different values from line to line.
Applying It6’s Lemma, we get

(4.8)
At) ==E[|6V ()]2] = E[|6V (t;41)]2] + E / 0Y (s)]?ds | +E /|(5Z(s,z)|2€(dz) ds
=K / 26V (s) (gp(s, S(s),V(s), Y(s))k(s) — @(t;, S(t;), V (ti),T(ti))n(ti)) ds

t

<E /25V(5)(5g0(5)/£(t¢)d3 +E /25V(s)g0(s,S(s),V(s),Y(s))ém(s)ds

Using 2ab < aa® + b*/a, for some o > 0, Assumptions 1 (B), the fact that s is bounded
above uniformly in ¢, and the fact that b and 4 are Lipschitz, we get

A(t) < aF /|6V(s)|2ds +%E /2|5V(s)<p(5,5(3),V(s),Y(s))yds
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t

+gE[/<ms2%ﬂﬁng+U4$V@V+’H@T%V)®]

tit1

< 20E /\(5V(s)]2ds —i—%E /go(s,S(s),V(s),Y(s))st]

t

C tit1 T 9 ) ) A , . ,
+—E [/ ((E) +15(s) = S)" + [V(s) = V(&) "+ |T(s) = T(t:) )dS]

t

/|5V 2ds] +—E
+ %E [/ ((%) H1S(s) = S+ V(s) = V()P + (s) — T(ti)|2> ds] |

Theorem 2.2 yields

(4.9)

T
< 20F / (1T +1S(s))* + [V(s)]* + |T(s)]) ds]
0

E V() = VIt)?] <2 (B[IV(s) - V()P +E|IV(L) - VE)?])
(4.10) < c( +E[|6V (%) ]) .

Hence, using the boundedness by a constant of the expectation in the second term in (4.9),
Theorem 4.1, and (4.10) we get
(4.11)

Z/!éV( )2ds]+0+9 ( +E [|5V(t )|}+E[ms)_~f(ti)|2}>ds.

t

A(t) < CaE

¢
Recall the expression of A in (4.8). We deduce from (4.11)

tiv1

(4.12) E[oV)Y) <E[sV(@®)] + E [/ |5Y(s)2ds] +E [/ /|5Z(s,z)|2€(dz) ds]

t
tit1

goa/E[W(s)ﬂ ds+ B;,

t
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where

n2

B; = % +E |6V (ti1)[] +g (i + 1k 1oV (t) 7] + /IE [\T(s) - ff(ti)ﬂ ds) .

~

Thus applying Gronwall’s lemma to (4.12), we get

C
E |:|(5V(t)|2} < Biexp{—a}, ti <t <tigr, 1=0,....n—1,
n

which plugged in (4.12), implies
(4.13)

E[|oV ()] + 7 E [|6Y (s)[2] ds + j/ E [|6Z(s, 2)[?] £(dz)ds < B; (1+a%) .

Taking ¢ = t; and applying Proposition 4.3, we get

tit1
+]E[//5Z322 (dz)d

< (1 + a%) (% +E [|6V (ti1)]?] + QE [16V(t:)°] +

2+1 7,+1
+—/ [16Y (s) ds—l——// [10Z(s, 2)|?

For « sufficiently larger than C', we deduce

tit1

E[ISV (1)) + [ / 16V () ds

123

QIQ

]+1E T(t;)[?] ds

1+1

71|5Y st]+ E[//523z2 (d2)d ]

t1+1

< <1+%) (% +E[|6V (tis1)]?] +C / E[|T(s) — Y(t;)[?] ds) :

t;

~E[|6V (t:)*] + E

Iterating the last inequality we get
1+1

71|5Y 2ds]+ E[//523z2 (dz)d ]

—E[|6V(t:)]}] + = E
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n_1 U+l

aw <o(1+9) [ Larpvnr+ X [ElTe - e

Jj=t tj

Using the estimates in Theorems 2.2 and 4.1 together with the Lipschitz property of h
leads to

141

7,+1
/|5Y 2ds] +E|://|5Zs,22 (dz)ds

Taking t = ¢; in (4.13), summing up, and using Proposition 4.3, we arrive at

71/|5Zsz|2 ((dz)d D

< {(1 + a%) (% F R[5V (ty)?] + %E [[6V/(¢:)[?]

7=l

(4.15) E[|oV(t)]*] +E

C
<=,
n

tiy1

</

123

E[JoV (t:)[*] +

|6Y (s)|? ds] +E

tit1

16Y (s)|* ds
t;

1+1

+ E[//(szszﬁ (dz)d ]

+ %E [/ T@)T(ti)?ds])] ,

which implies
i+1

{1%(1+%>}:( 71|5Y 2ds]+E{//5Zsz€dz) )

+ +C (1 + a%) E [§V(T))?] + [(1 + a%) a—Cn — 1} E [0V (to)[?]
JOeaS) (4 &) A Sepvir

i=1

+c<1+a ) ZE[[ T(ti)2ds}

+ Yk
a
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Using (4.15) and again the Lipschitz property of h, the latter implies that for a sufficiently
larger than C, we obtain

n—1 tig1 n—1 tit1
SR /](5Y(s)|2ds Y E //|5Z(s,z)|2€(dz)ds
=0 t; =0 ti R
1 1 n—1 n—1 tiga
2 2
(4.16) <C E+E;E[5V(ti)| } +;E /|T(s)—T(ti)| ds

ti

and the statement for the last two terms in (4.7) follows using (4.15) and Theorem 2.2.
Finally, observe that

B| sw V() - V0P|

ti<t<t;i1

<K (IE [\V(EH) - V<ti+1)’2]

tit1

. . . 2
45 | [ [l 509 V() X)) = olt 800, V(6. Tt s
t;
tit1 2 tit1 2
+E | sup /(5Y(3)dW(s) +E | sup //\5Z(s,z)\2N(ds,dz)
t;<t<t;i11 t;<t<t;11 A

Then using Burkholder’s inequality, the Lipschitz property of ¢, and iterating as we did
to get (4.14), we deduce the result applying (4.16). O

In the following theorem we compute a rate for the L2-convergence of T to Y.
Theorem 4.5. Assume the conditions of Theorem 2.2 hold and ¢(0,0,0,0) = 0. Let T
and Y be respectively as in (2.5) and (3.3). Then

n—1 tit1

> [ B[ - Tr] as <

=0

C
o
ti

Proof. Summing up both sides of the inequality in Proposition 4.3, the statement follows
by invoking Theorem 2.2 and Theorem 4.4. U

We state a rate of convergence for the process L to L in the following theorem.

Theorem 4.6. Assume the conditions of Theorem 2.2 hold and ¢(0,0,0,0) = 0. Let the
processes L and L be defined as in (2.5) and (3.3). Then we have for all0 <i<n—1,

C
n

)

E UL(tm) - i(tz‘+1)’2} <
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where C' 1s a positive constant.

Proof. Applying the recursion in (3.3), we get

[A/( z—l—l) ‘A/ H—l + ZQO tk? tk ) T<tk))ﬂ<tk> Atk+1

— Y(tk)b(tk)AW tk+1 /T tk tk, ((tk,tk+1] dZ)

k=0 k=0 R

while differentiation and integration over [0, t] in (2.5) gives

t t

L(t) =V(t)—V(0) —/ (s,5(s),V(s), Y(s))k(s)ds — /T(s)b(s) dW (s)

//T N(ds,dz).
Hence, we find
E[|L(ti1) = L(tia) ]
< CE Uv(tiﬂ) — V(tin) 2] + CE UV(O) - V(@ﬂ
(4.17) ]
+ CE / ©(s,5(s),V(s),Y(s))k(s)ds — Z o(tr, S(te), V(te), T(tr))k(te) Atyiy
9 k=0
(418)
+ CE / T()b(s) AW () — S~ Tt )b(ts) AW (tiss)
9 k=0
(419)
+ CE T (s)y(s, z) N(ds,dz) (tx, 2) N ((tg, tysq],dz
R
Define
T(s) =D Tt Lt () b(s) = D b(tR) Lyt (5) -
k=0 k=0
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After applying the It6 isometry, we estimate the expectation in (4.18)
tit1 2

E /T( Vb(s) ATV (s) ka (1) ATV (f4.1)

[ i1 tit1

<R / T2(s) (b(s)—z}(s) ds| +2E / <T )282(s)ds

=2E kzl/ b(s) —b(tp)) > ds| +2E ;1/( T(tk))QbQ(tk)dS

The Lipschitzianity and boundedness of b leads to

tit1 2

E /T( Vb(s) ATV (s) ka (1) ATV (f4.1)

<c (%)Z]E UOT \T(s)]st} + C;;ZE Ut:kﬂ T(s) — Tt)[2 ds
<<

where in the last step we applied Theorem 4.5 and the boundedness of the expectation in
the first term. Using similar arguments, we can prove that the expectations in (4.17) and
(4.19) are bounded above by C/n. Finally, the result follows invoking Theorem 4.4. [

5. A NOTE ON THE INFINITE ACTIVITY OF THE JUMPS

In the previous section we imposed that the jumps have finite mass in the tail. In this
section we aim at completing this analysis by considering jumps with infinite activity.
Therefore before discretising, we introduce an approximating FBSDJ where we replace the
small jumps by an independent Brownian motion appropriately scaled. Then we introduce
a discretisation of the approximating FBSEDJ and we study the convergence of the time-
discrete equation to the original one in an L?-sense.

The idea of approximating the small jumps by a properly scaled independent Brownian
motion is motivated by a paper of Asmussen and Rosinski [2]. Another choice would be to
truncate the small jumps or rescale the Brownian motion W such that the original process
and the approximating one would have the same variance. All these suggested approxima-
tions contain a Brownian motion and a compound Poisson process which are both easy to
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simulate. In the present paper we only consider the first mentioned approximation. How-
ever we claim that similar results hold for the other types of approximations. We refer to
Benth et al. [3] for the influence of the different approximations on the forward SDE (2.4)

and to Di Nunno et al. [8] for the study of the influence of the different approximations to
the BSDE (2.5).

5.1. Approximating continuous-time model. We consider M as in (2.1), but now
where we allow for infinite activity of the jumps. That is we allow the Poisson random
measure N to have an infinite mass in the tail, i.e. £(|z| < 1) = oco. We approximate
the small jumps in the martingale M by a Brownian motion B which we scale with the
standard deviation of the small jumps. We obtain

t t

M. (t) = /b(s) dW (s) —i—/tG(a)’y(s) dB(5)+/ / v(s,2) N(ds,dz).

0 0 |z|>e

From now on we enlarge the filtration F with the information of the Brownian motion
B and thus we consider H = G. We define the process S. as follows
¢ t

S:(t) = S-(0) +/Ss(s)a(s) ds + /SE(S—)dME(S),
0 0
where S.(0) = S(0). Notice that by scaling the Brownian motion with the standard
deviation of the small jumps, both processes S and S, have the same variance for ¢ tending
to 0. The associated BSDEJ is given by
(5.1)
T T
V) = R(S.T)) + [ o(s. .05, V(o). Tu(s) AOML), = [ Tu(s) AM(S) = L(T) + L),
t t
where (V., Y., L.) € ﬁ[zo’ﬂ X ]:][207:” X E%Oﬂ such that Y. is G-predictable and [M., L.] is
a local P-martingale. From Carbone et al. [6], we know that the solution to (5.1) exists
and is unique. Notice that L.(T') is an Gp-measurable square integrable random variable.
Then applying the representation theorem (see Kunita and Watanabe [11]) to the process
L, leads to
t t t

(5.2) L.(t) = /Pg(s) dW(s) + /Rg(s) dB(s) + //QE(S, z) N(ds,dz),
0 0 0 R
where P., R. € H [207T] and Q. € H [%)’T] (see Section 3 in Di Nunno et al. [8] for more details).
Let f. be a function that fulfills the following assumption
Assumption 1.
fo:[0,T] x R? x L*(Ry, B(Ry),¢) x R — R is such that for all e € [0,1],
o /(-,0,0,0,0,0) € H} ;.
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o f. satisfies a uniform Lipschitz condition in (-,u,v,w,T",().
We define the classical BSDEJ
_dUs(t) = f5<t7 Ss(t)a U&(t)a }/;(t)a Zs(ta ')7 Ca(t)) dt — }/;(t) dW(t)

(5.3) — / Z(t,z) N(dt,dz) — (.(t) dB(t),
R
Us(T) = h(S(T))-
Under Assumption 1 imposed on f., we know from Tang and Li [20] that the solution
to (5.3) given by (Ue,Ye, Ze, () € Sfyqy X Hg 7y X H[20 71 % Hj 7y exists and is unique. In
the following proposition we study the relation of (5.1) to classical BSDEJ’s. We do not

present the proof since it follows similar arguments as the proof of Lemma 4.1 in Di Nunno
et al. [§].

Proposition 5.1. Assume that (2.8) holds. Let V. be given by (5.1). Then V. satisfies a
BSDEJ of type (5.3), where

Yo(t)
Z:(t, 2)
(5.4) fe(t,u,v,w, I'(+), Q)

To()b(t) + Fe(t), (1) = T (t)G(e)(t) + Re(1)
To(O)v(t 2) ey (2) + Qe(t, 2)

w (t,u,0, e (8w, T(), Q) k(1) ,

with ¢. - [0,T] x R x L2(R, B(R), ) x R — R is such that

¢= (t,w,T(-),¢) = — | b(t)w + G()7(1)¢ + /F(Zh(ta 2) {56} (2) £(d2)

R

The following theorem is an adaptation of Theorem 2.1 in Bouchard and Elie [4] to
the BSDEJ (5.3). The proof follows similar lines as in their paper where we first use a
Malliavin derivative with respect to the Brownian motion W to find an estimate for the
integrand of the Brownian motion W and then a Malliavin derivative with respect to the
Brownian motion B to find an estimate for the integrand of the Brownian motion B.

Theorem 5.2. Assume (2.8) holds, a, b, and 4 defined in (2.2) are Lipschitz, and the
functions h and f. in (5.3) are C}. Let (U., Y, Z.,(.) be the solution of (5.3). It holds

i n—1 tita
macE| swp (U0~ U()P | +E| Y [ o) - P ds
r<n _tE[ti,ti+1} i—0 7
B tz+1 t1+1
C
+E /yg —C(t)?ds| +E Z//\Z s,2) — Zo(t;, 2) 2 (dz) ds | < =,
n
1=0 L i

where C' s a positive constant.
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Using the latter theorem, Proposition 5.1, and following similar steps as in Theorem 2.2,
we deduce the next result.

Theorem 5.3. Assume (2.8) holds, a, b, and 4 defined in (2.2) are Lipschitz, and the
functions h in (5.1) and f. in (5.4) are C}. Then for V. and Y. in (5.1) it holds that

n—1 tita
C
max E | sup |Vi(t) — Vi(t;)|*| + E Z / IT.(s5) — Yo(t;)]Pds| < —,
<n te[ti,tzqrﬂ i=0 n

t;
where C' s a positive constant.

5.2. Approximating discrete-time model. The discrete-time version of the process 5.
is denoted by S. and defined by

(5.5)
So(tivr) == S-(t;) + S-(t:)a(t;) At; + S-(t)AM.(t;) i=0,....,n—1, 5.(0)=5(0),
where
ML) = [ aw e+ [ @i B0+ [ [ @i Nands).
t t ti |z|>e

for a,b, and 7 as in (2.1)-(2.4).
A discrete-time version of the process V. in (5.1) is given by

Vo(t) = Veltinn) + @ty Se(ti), Va(t), To(ti)) AM. )y, — Tolts) AM.(tig1)
(5.6) —ALc(tis1),
VAT) = h(5.(T)),

where (T.(t i)){o<i<n} is predictable and [M., L.] is a local P-martingale. We proceed as in
Section 3 to obtain a backward scheme for ( 6) as follows
(T.¢t)= — E[V( ) AML(t }
e\li) — Tfﬂ)(tz) e\li+1 H—l

V(ti) = BIV:(tin)IGn] + Atisai (1 S-(8),

L(T) = V;(T) Yo(t:) AM(ti) + 2% <ti7 S (1), Ae(ti)aTe(ti)) K(ti) Atiga

—

3
|

—

|l
\_/o

where & is as in (2.7).
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5.3. Convergence of the approximating discrete-time model. We first study the
convergence of the approximating forward equation as we proceeded in Section 4. Then
we study the convergence of the backward scheme.

Convergence of the approximating forward equation. In the following theorem we state the
error of the discrete approximating process (5.5) to (2.4).

Theorem 5.4. Recall the dynamics of S and S. as in (2.4) and (5.5) respectively. Assume
that the adapted processes a, b, and v are Lipschitz continuous in t. Then we have

S(t) = Se(t:)

max K

sup
<n

te[ti,tzqrﬂ

2 .
] < %—FC’GQ(s),

for positive constants C' and C independent of the number of steps.

Proof. We have

N 2
max E | sup |S:(¢;) — S(¢)
r<n tet,tit1)
. 2
<maxE| sup [S.(t) - S0)] [ +maxE| sup |S.(t) - S| .
<n tE[tiﬂfiJrl] <n te[ti,tzurﬂ

Thus the statement follows using an adaptation of Theorem 4.1 to the approximating
processes S. and S. and Proposition 3.3 in Benth et al. [3]. O

Convergence of the approrimating backward scheme. Following similar steps as in Section
4, we define a continuous-time version of V. as follows

ti+1 ti+1

V(t) = Veltin) + / (b, So(8), Va(t), Tu(t))a(ts) ds — / T () dMy o(s)
— Ly (tiv1) + Lic(2),

where T4 . € H [Qti’tm] is predictable, [M; ., Ly ] is a local P-martingale, and

M) = Mt + [We) W) + [ 6B + [ [ 9(6.2) Fdsiao),
t; t; ti |z|>e

with M; .(0) = 0. Notice that both the existence of T . and of L; . follow from the GKW
decomposition. The martingale representation of L; . yields

Lye(tivr) = Lic(t) + / Prc(s)dW (s) + / Ri(s)dB(s) + / /Q1,5<372) N(ds,dz),
¢ t t R
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where P, ., Ry, € H, ﬁmm] and Q. € H ﬁmm]. Using the latter equation we can rewrite V.
as follows

tit1 tit1
Va(t) = VL(E'HH/so(fi,ge(ti%‘Z(ti)afs(ti))ﬁ(ti)ds—/Yl,s(twa) dW (s)
t t
tir1 tir1

(5.7) — //Zl,g(ti,s,z) N(ds,dz) - Cre(ti,s)dB(s),

where
Yie(tis) = T1(8)b(ti) + Pre(s), Ce(ti;s) = T1(s)7(t)G(e) + Rie(s),
(5.8) Zi:(tiys,2) = T1o(8)y(ti, 2)Lipamer + Q1e(s, 2) .

Using the fact that [M;., L;.| is a local P-martingale, we deduce for ¢; < s < t;41,
1=0,...n—1,

(5.9)
Tic(s) = /{él) b(t:)Y1e(tis s) + G(e)V(ti)Cre(tir s) + / Zre(tis s, 2)v (i, 2) £(dz)
|z|>e
Thus following similar steps as in Section 4, we find
Lit1
(5.10) T.(t) = %E / Y. .(s)ds |G,

t;

Using the continuous-time version (5.7)-(5.8) of the process V. and also the processes T
and Y. as defined respectively in (5.9) and (5.10), we can follow similar steps as in Section
4 to prove the convergence of the approximating discrete-time scheme to the approximating
continuous-time model. In the following theorem we state the obtained convergence rates.
These results are the analogons of those in Theorem 4.4, Theorem 4.5, and Theorem 4.6.
The proofs are hence skipped.

Theorem 5.5. Assume the conditions of Theorem 5.3 hold and ¢(0,0,0,0) = 0. Let the
triplets (Vz, Ye, Le) and (VZ, e, Lc) be respectively the solutions of (5.1) and (5.6). It holds

tit1

max E | sup |V.(¢) — As(t)’ + Z / E [|T€(s) —Y.(t;)|*] ds
i<n te€[tistita] i=0
. 2 C
- m<aXIE { Le(tiv1) — Le(tiyr) } < et

where C' s a positive constant.
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Finally we present the convergence of the approximating discrete-time model to the
continuous-time model.

Theorem 5.6. Assume the conditions of Theorem 5.3 hold and ¢(0,0,0,0) = 0. Let the
triplets (V, Y, L) and (Vz, e, L) be respectively the solutions of (2.5) and (5.6). It holds

o] TR A
max E | sup [V(¢)— Va(t)‘ + Z / E [|T(s) —T.(t;)| ds
<n te[ti,ti+1} i=0 ’
. 21 ¢ .
(5.11) + maxE )L(tiﬂ) — La(ti)| | < = +CGe),

where G(e) is as in (2.3) and C and C are positive constants.
Proof. Recall the functions f and f. respectively in (2.9) and (5.4). Observe that
| f(t, ur, v, w1, Tr) = fo(t, ua, v2, w2, s, Q)
<C (|U1 — ug| + [v1 — va| + Jwy — wa| + [Ty — Taf| 4+ [¢] + é(6)||F1||) :

Thus using Theorem 5.5 in the present paper, Theorem 4.2 in Di Nunno et al. [8], the
Lipschitz property of h, and Proposition 3.3 in Benth et al. [3], we deduce

. 2
max E | sup |VL(t) — V(t)‘
<n t€[ts,tig]
. 2
<2maxE | sup |Vet) = Va(t)| | +2maxE | sup |V(t) = V(1)
<n telti tip1] r<n t€[ts tigp1]
C -
< —+CG%e).
n

The estimates for the second term and for the third term in the left hand side of equation
(5.11) follow using Theorem 4.4 and Theorem 4.5 in Di Nunno et al. [8],Theorem 5.5 in
the present paper, the Lipschitz property of h, and Proposition 3.3 in Benth et al. [3]. O

6. CONCLUSION

We studied in this paper time-discretisation of (2.4)-(2.5), where we specified M to be
driven by a Brownian motion and jumps. We considered jumps with finite activity in a first
step. Then we included jumps with infinite activity. Using the GKW decomposition, we
derived the “intermediate” time-continuous FBSDEJ (4.2). Exploiting this latter equation,
the results in Bouchard and Elie [4] and in Di Nunno et al. [8], we proved the convergence
of the time-discrete scheme to the time-continuous equation. Moreover, we showed that
the L2-error is of the order of the time step.

As far as further investigations are concerned, we consider in another paper applications
of our study to the problem of hedging in finance. Thus we consider quadratic hedging
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strategies in incomplete markets for which we derive the related FBSDE. Then we study
discretisation and simulation of these strategies and we present numerical examples.
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