
CREATING HIDDEN MARKOV MODELS FOR FAST SPEECH

T.Pfau, G.Ruske

Institute for Human-Machine-Communication, Technical University of Munich,
Arcisstr. 21, 80290 München

tel.: +49 89 289-28554, fax: +49 89 289-28535, e-mail: Thilo.Pfau@ei.tum.de

ABSTRACT

This paper deals with the problem of building HMMs suitable
for fast speech. Fast speech leads to increased error rates on
various tasks. In the first part of the paper an automatic
procedure is presented to split speech material into different
categories according to the speaking rate, which is fundamental
for all investigations on the speaking rate.

In the second part the problem of sparse data available for the
estimation of HMMs for fast speech is discussed. A com-
parison of different methods to overcome this problem follows.
The main emphasis here is set on robust reestimation tech-
niques like maximum aposteriori estimation (MAP) as well as
on methods to reduce the variability of the speech signal and
therefore to be able to reduce the number of HMM parameters.
Vocaltract length normalization (VTLN) is chosen for that
purpose. In the last part a comparison of various combinations
of the methods discussed is presented basing on error rates for
continuous speech recognition on fast speech. The best method
(VTLN followed by MAP reestimation) results in an overall
decrease of the error rate of 10% relative to the baseline
system.

1.  INTRODUCTION

The speaking rate (also called speech rate or rate of speech) is
a main source of variability of speech signals. Not only inter-
speaker variability but also intraspeaker variability is the
result, because in different situations speakers tend to vary the
speaking rate. This variability results in a bad recognition
performance especially for fast speech, when standard speech
recognition systems are used (see figure 1).

There are two basic approaches to adapt speech recognition
systems to the speaking rate which will be referenced here as
explicit and implicit adaptation. Explicit adaptation means the
process of measuring the rate of speech and then taking actions
to adapt the recognizer. Implicit adaptation on the other hand is
an adaptation method where the speaking rate must not be
known. For example the overall likelihood of a processed
utterance can be used to decide which of different available
knowledge sources (e.g. speech rate specific HMMs or a
speech rate specific pronunciation lexicon, which both have to
be created in advance) to use. However, for both approaches it
is necessary to create speech rate specific models in a first step
to be able to study the effects of the speaking rate.

Various more or less successful attempts have been made to
improve recognition performance on fast speech. A retraining
of the acoustic models (MLP) on fast speech in [2,3,4] as well

as changes in the transition probabilities of hidden Markov
models in [1,2,3,4] led to decreased error rates on fast speech.
Improvements of up to 25% relative to the baseline perfor-
mance could be achieved. These investigations were made on
TIMIT and WSJ tasks. In first experiments, using a maximum
likelihood reestimation of the HMM parameters of our
recognizer on the fast speech material of the german
spontaneous scheduling task (Verbmobil), we were not able to
reproduce these improvements. Therefore some approaches
suitable to improve the recognition performance on this task
will be discussed here.
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Figure 1: influence of the speaking rate on the word error rate
of a large vocabulary continuous speech recognition system

2. AUTOMATIC SPLITTING OF THE
SPEECH MATERIAL

For investigations on the speaking rate test and training data
must be labelled according to the speaking rate. Thus the
speaking rate for each sentence of the material must be deter-
mined. Basing on these rates, thresholds for splitting the
material into different categories (e.g. slow, average and fast)
can be fixed. As for most speech databases like for the german
spontaneous scheduling task, which is used in our experiments,
such labels are not available, we propose an automatic proce-
dure to determine the speaking rate of spontaneous speech.

Our speech rate estimator [6] which is designed for online
estimation of the speaking rate is based on detecting vowels
(syllable nuclei) using both the modified loudness and the
zerocrossing rate of each frame of a speech signal. To ensure
compatibility with this measure we chose to split the material
according to the syllable rate. However, using this estimator for
splitting the training material is dangerous, as the estimator
shows an error rate of about 22% on spontaneous speech. To be



independent of the quality of the speech rate estimator when
splitting the material according to the speaking rate, the actual
speaking rate is better suited. It can be determined very easily
when exact (manually created) transcriptions of the material
are available. But manually transcribed data is only available
for a small part of the database and is expensive to produce.
Therefore an alternative automatic procedure is used to find
suitable transcriptions for the material. This procedure is
described now.

In an initial step „sharp“ phoneme HMMs are created from a
limited part of the database for which manually created
transcriptions are available. After an initial LBG clustering
procedure, continuous density phoneme HMMs are trained
using maximum likelihood estimation (ML) on these
transcriptions.

In a second step statistical pronunciation graphs are built for
the training material. These graphs are built from the
transliterations using a lexicon with several pronunciations per
word. The resulting graphs are assigned with probabilities [7].

Then the „sharp“ HMMs are used to perform a Viterbi
segmentation on the pronunciation graphs for the whole
material (test and training material). To improve the quality of
the HMMs, the pronunciation graphs of the training material
can be first used to estimate larger sized HMMs doing a ML
estimation applying Viterbi training along these graphs. Then
segmentations for the whole material can be found using these
improved models.

Finally the results of the segmentation process can be used to
determine the speaking rate of the sentences and to fix the
thresholds to divide the material into the different bins.

3. THE PROBLEM OF SPARSE DATA

When acoustic models (here: HMMs) for specific speech rates
have to be estimated, the main problem is the reduced amount
of training data available. Thus the number of speaking rate
categories has to be limited in order to guarantee a robust
estimation of the model parameters. The two following aspects
have to be considered when HMMs for specific speech rates
shall be estimated.

First, as the utterances of the different categories show a
reduced variability of speaking rates (this is the criterion for
splitting!) the variation of the speech signal caused by different
speaking rates is reduced within these categories. A limited
number of parameters should hence be sufficient to model the
properties of these specific acouctic models for each category
adequately.

On the other hand the reduced amount of training data per
category also results in a reduced number of training speakers
for each category. Although the criterion for splitting is the
speaking rate and not the speaker, the different categories
contain different speakers just because the range of speaking
rates shown by different speakers is not the same. This results
in a reduced variation of the speech signals and therefore the
resulting HMMs are not able to model the speaker specific

variations adequately. The speech rate specific models are
„less speakerindependent“ than the speech rate independent
models.

4.  HIDDEN MARKOV MODELS FOR
FAST SPEECH

In this section some basic approaches for robust parameter
estimation on fast speech material are presented.

4.1. Maximum Likelihood Estimation

Standard maximum likelihood (ML) estimation is generally not
well suited for a robust estimation of stochastic parameters on
a reduced amount of data, as the new estimates only base on
the reduced training material available.

4.2. Maximum Aposteriori Estimation

Maximum aposteriori (MAP) estimation has proven to be an
efficient method to estimate parameters on sparse data [9].
Especially in speaker adaptation tasks this method has been
used successfully in the past. Methods like MAP-VFS (vector
field smoothing) and MAP-VFC (vector field correlation) are
powerful methods for speaker adaptation with very few adap-
tation data [10,11]. The advantage of MAP based approaches is
that some general models can be combined with specific
training material. And as in MAP theory there is no difference
between speaker specific and speech rate specific material,
MAP reestimation is a promising approach for maintaining the
general information of the speech rate independent HMMs and
simultaneously capturing the speech rate specific effects on the
speech rate specific training material.

4.3. Vocaltract Length Normalization

Vocaltract length normalization (VTLN) is a powerful method
for freeing speech signals from influences of varying vocaltract
lengths of different speakers. It is used successfully to improve
recognition accuracy of LVCSR systems [12,13,14]. As
described in section 3 the speech rate specific training material
contains a smaller number of speakers. Speaker normalization
techniques like VTLN can thus be helpful to make the speech
rate specific models more speaker independent by freeing the
spectrum of the speech signal from speaker specific influences.
A reduced number of parameters should hence be sufficient for
these models. Thus they should be a good basis for robust
reestimation on a limited amount of training data.

4.4. VTLN and ML/MAP Estimation

ML reestimation on a limited amount of data should provide
better results when performed on VTLN models for which a
reduced number of model parameters is sufficient (MLVTLN).
As the amount of speech rate specific data is strongly limited a
combination of a robust estimation in combination with a
reduction of the number of the HMM parameters seems to be
advantageous for our purpose. Therefore a MAP-retraining (i.e.
a more robust estimation) starting from speaker normalized



models (i.e. reduced number of parameters) should be very
well suited (MAPVTLN).

5.  RESULTS

The training conditions used for the experiments described in
this section are chosen according to the Verbmobil evaluation
1996. As test material a combination of the Verbmobil cross-
validation set 1996 and the evaluation set 1996 is used as the
evaluation set alone only contains about 50 sentences of fast
speech, which is not significant to show effects on the error
rates. Both test and training material were splitted into three
categories (slow, average and fast) according to the procedure
described in section 2. The thresholds were set to PP+VV for fast
speech and to PP-VV for slow speech as calculated on the training
set. Recognition was performed using our standard HMM
speech recognition system [8]. For the VTLN based training
and recognition a ML based frequency warping is performed
directly on the linear spectrum (FFT) in our standard pre-
processing unit [5].

The whole training material consists of about 10 mio frames of
spontaneous scheduling dialogues of about 600 speakers
whereas the reduced training material for fast speech only
consists of 800.000 frames of about 400 speakers, which is a
reduction of about 90% in the number of frames and a
reduction of about 33% in the number of speakers.

In the first experiment three iterations of ML and MAP
estimation were performed on the fast training material. Figure
3 shows the average training scores per frame when trained on
fast speech. As a reference the line indicates the average score
obtained on the whole material with the baseline models. After
three iterations the average score for ML estimation outper-
forms this value whereas using MAP estimation this value is
not yet reached. This is a comprehensible result as the MAP
reestimated parameters do not change as fast as the ML
reestimated parameters because of the combination of the
baseline models with the specific training material. The bad
scores during the first training iteration show the mismatch
between the unspecific models (which are used in the first
training iteration) and the fast speech material.
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Figure 3: average training scores per frame using ML and
MAP reestimation on fast speech

Table 1 shows the recognition rates of speech rate independent
continuous density phoneme HMMs with about 1.5 mio
acoustic parameters. These models are referenced as standard
or baseline models in the following.

WER substitutions deletions insertions
45,3% 31,1% 10,2% 3,9%
Table 1: recognition results using the standard HMMs.

Table 2 shows the recognition performance of the ML
reestimated models of the first two iterations. Like in all other
reestimation procedures described here, all acoustic parameters
are retrained, i.e. means and diagonal covariance matrices of
the gaussian densities as well as mixture weights and transition
probabilities of the states of the phoneme HMMs. However,
using the ML reestimated models of the first training iteration
the recognition performance is only improved slightly. Using
the models of the second iteration even results in an increased
error rate. This is clearly due to the lack of robustness using
ML estimation, the parameters are overadapted to the limited
training material.

iter WER substitutions deletions insertions
1 44,4% 30,6% 9,8% 4,0%
2 44,8% 30,9% 9,6% 4,3%
Table 2: recognition results using ML reestimated HMMs

In table 3 the recognition performance on the fast sentences
using MAP reestimation is shown. Using the first iteration
models, the error rate can be reduced by 4,9% relative to the
standard models. Using the second iteration models again
reduces the error rates slightly. An overall improvement of
6,6% relative to the baseline models can be achieved. This
effect can be explained by the influence of the parameters of
the standard models which weakens from iteration to iteration
during training. After two MAP training iterations the models
have still preserved enough general information and they have
already collected enough speech rate specific information.

iter WER substitutions deletions insertions
1 43,1% 29,9% 9,9% 3,3%
2 42,3% 30,0% 8,9% 3,4%

Table 3: recognition results using MAP reestimated HMMs

In a second experiment the standard models were normalized
performing five iterations of VTLN training. Then the norma-
lized models were retrained using ML and MAP reestimation.

In table 4 the results achieved with speaker normalized models
trained on the whole material are presented. These standard
VTLN models are 8,8% relative better than the standard
models on the fast material, whereas they are only 4,5% rela-
tive better on the whole test set. Thus, VTLN reduces the con-
fusability in the feature space especially for fast speech.

WER substitutions deletions insertions
41,3% 28,9% 8,3% 4,1%

Table 4: recognition results using standard VTLN HMMs

Tables 5 and 6 contain the recognition results for ML and MAP
reestimated VTLN models respectively. The performance of
the ML trained models is not significantly better than the
performance of the VTLN standard models. A slight improve-
ment in recognition performance is achieved using one iteration
of MAP reestimation.



iter WER substitutions deletions insertions
1 41,2% 29,1% 8,3% 3,8%
2 41,6% 29,3% 8,2% 4,1%
Table 5: recognition results using ML reestimated VTLN

HMMs

iter WER substitutions deletions insertions
1 40,7% 28,1% 8,4% 4,2%
2 41,2% 28,6% 8,4% 4,1%

Table 6: recognition results using MAP reestimated VTLN
HMMs

6. CONCLUSION

In this paper the problem of training HMMs for fast speech is
discussed. First an automatic method for splitting the sentences
of test and training material into different categories according
to the speaking rate is described.

In the second part the problem of sparse data is discussed and
some methods are described to robustly estimate the
parameters of HMMs suitable for fast speech.

In the last part recognition results using the methods described
are presented. It is shown that MAP reestimation is better
suited to estimate parameters on a limited amount of data than
ML estimation. The MAP reestimated models result in a 6,6%
relative decreased error rate compared to the standard models.
Furthermore the VTLN is shown to be a proper way of
reducing the confusability of hidden Markov models especially
on fast speech. The error rates on the fast speech are reduced
by 8,8% relative to the standard models when VTLN is used. A
MAP reestimation of the VTLN HMMs results in a further
reduction of the error rate to about 10,2% relative to the
standard models.

Although the improvements presented here are not as high as
results on other tasks [3] they are encouraging to take further
steps to adapt speech recognition systems to fast speech, having
in mind that only the acoustic models were changed. Other
important knowledge sources like the pronunciation models
were not touched so far. Training was performed on the
canonical transcriptions which are also used in the test lexicon
during evaluation. Especially for fast speech a modification of
the pronunciation models seems to be promising and can be
combined easily with the methods described here.
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