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INTRODUCTION

In a modal formulation of the underlying equations of motion, the originally
uncoupled and diagonal systems of equations are coupled via off-diagonal terms in the
fluid-structure coupling matrix. In the presence of an absorption material inside the
cavity, additional fluid mode coupling is introduced by a non-diagonal modal fluid
damping matrix [1].

The structure of the modal fluid damping matrix reflects the geometric interaction
between the fluid mode shapes. Typical patterns can be identified and correlated with the
properties of the fluid modes.

This will be illustrated by two examples, each of them calculated using measured
absorption data of acoustic trim material, which is typically used in the automotive
industry.

THEORETICAL BACKGROUND

Generally, there is no explicit modelling of damping mechanisms for the determination of
a damping matrix. Either proportional damping is applied or modal damping is chosen as
a fraction of critical damping. Both approaches lead to diagonal modal damping matrices.

By the introduction of a new finite element for a porous absorber [2], it is possible
to model the physical damping matrix explicitly. The resulting modal fluid damping
matrices are generally non-diagonal.

The FE-model characterises a material not only by its normal impedance but also
takes into account lateral effects by introducing a bulk reacting coefficient [3].

The modal fluid damping matrix can be written as:

D:;CDFT_[NTNdSCDF—§®FTIVSTNVSNdS®F,
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with Z: normal impedance
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B: bulk reacting coefficient

N: shape functions of the fluid finite elements
S: area of the absorber

® ;- : undamped fluid modes

The damping matrix is divided in a normal and a bulk part. The structure of both
parts of the damping matrix, reflecting the coupling between the modes, 1s determined
only by the geometric properties of the mode shapes and the absorber location and does
not depend on the values of Z and B.

This will be illustrated by two applications.

APPLICATION I: TUBE OF KUNDT

For a first application the tube of Kundt has been selected, because its one-dimensional
structure allows an insight in the mechanisms of acoustic effects.

In the first example, a porous absorber is mounted to one end of the tube. Figure 1a
shows the absolute value of the normal part of the fluid modal damping matrix, figure 1b
the absolute value of the bulk part. In both parts, three regions can be identified with
mode indices from 1 to 10, 11 to 34 and 34 to 60.

These regions correspond with the nature of the fluid mode shapes: The first ten
modes are purely longitudinal, the 11" mode is the first lateral mode with one nodal plane
and the 35" mode is the first lateral mode with two nodal planes.

An investigation of the mode shapes with high coupling contributions leads to an
explanation of the characteristic structures of the modal fluid damping matrix:

The coupling between fluid modes via a porous absorber will be the more intensive
the more the topologies of the mode shapes match each other at the area of the absorber.
A longitudinal mode, which has a uniform pressure distribution over the whole absorbing

a) Modal Damping Matrix: abs(Normal Part) b) Modal Damping Matrix: abs(Bulk Part)
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Fig. 1: a) absolute value of the modal fluid damping matrix (Normal Part)
b) absolute value of the modal fluid damping matrix (Bulk Part)
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Fig. 2: Pairs of fluid modes with similar pressure distribution across the absorber area
(applied to the square in the foreground)

area, only couples to a longitudinal mode, a diagonal mode only to a diagonal mode and
SO on.

Figure 2 shows three examples of pairs of mode shapes, which exhibit high
coupling contributions. One can see, that indeed these mode pairs look the same at the
end of the tube.

The bulk part of the modal damping matrix shows basically the same structure as
the normal part, but with one difference: The strength of the coupling via the bulk
damping mechanism is depending on the gradient of the pressure across the absorber. For
the longitudinal modes, there is no pressure gradient along the absorber, therefore the
bulk part for these modes 1s zero. There is a contribution for the diagonal modes and an
even greater contribution for the modes with two nodal planes, where the gradient of the

Modal Damping Matrix: abs(Bulk Part)

Modal Damping Matrix: abs(Normal Part)
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Fig. 3: a) absolute value of the modal fluid damping matrix (Normal Part)
b) absolute value of the modal fluid damping matrix (Bulk Part)
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Fig. 4: Pairs of fluid modes with similar pressure distribution across the absorber area
(applied to the long side in the foreground)

pressure along the absorber also is higher.

In the second example, the same porous absorbing material is mounted along one
long side of the tube. The two parts of the modal damping matrix in figure 3 show a
completely different structure than in the first example, but underlie the same
mechanisms. Those modes will couple, which have a similar pressure distribution across
the area of the absorber. In this example, there is a smaller number of mode shapes that
fulfil this condition.

Two pairs of modes with a high contribution in the normal part of the modal
damping matrix are shown in figure 4.

In this configuration, the bulk part continuously increases, because even for the
lowest coupling modes there is a pressure gradient along the long side of the tube.

In figure 5 the mode participation is shown for an excitation at one end of the tube.
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Fig. 5: Mode participation in presence of a porous absorber applied to a long side of the
tube of Kundt
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Modal Damping Matrix: abs(Bulk Part)
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Fig. 6: a) absolute value of the modal fluid damping matrix (Normal Part)
b) absolute value of the modal fluid damping matrix (Bulk Part)

The effect of mode coupling via the modal damping matrix is clearly visible: Additional
higher modes are excited during operation.

APPLICATION II: CAR INTERIOR

The second application is the fluid FE-Model of a car interior. A damping pad is attached
to the roof of the car.

In figure 6 again the absolute values of the normal and the bulk part of the fluid
modal damping matrix are shown. In this real life application the modal damping matrix
does not show so striking patterns like in the case of the tube of Kundt. Nevertheless a
comparison of two mode shapes with a high contribution to the modal damping matrix
(figure 7) shows, that for this car model the coupling mechanism is the same as in the
first application.
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