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10.1 Introduction

Testing denotes a set of activities that aim at showing that actual and intended
behaviors of a system differ, or at increasing confidence that they do not differ.
Often enough, the intended behavior is defined by means of rather informal
and incomplete requirement specifications. Test engineers use these specification
documents to gain an approximate understanding of the intended behavior. That
is to say, they build a mental model of the system. This mental model is then
used to derive test cases for the implementation, or system under test (SUT):
input and expected output. Obviously, this approach is implicit, unstructured,
not motivated in its details and not reproducible.

While some argue that because of these implicit mental models all testing
is necessarily model-based [Bin99], the idea of model-based testing is to use
explicit behavior models to encode the intended behavior. Traces of these models
are interpreted as test cases for the implementation: input and expected output.
The input part is fed into an implementation (the system under test, or SUT),
and the implementation’s output is compared to that of the model, as reflected
in the output part of the test case.

Fig. 10.1 sketches the general approach to model-based testing. Model-
based testing uses abstract models to generate traces—test cases for an
implementation—according to a test case specification. This test case specifi-
cation is a selection criterion on the set of the traces of the model—in the case
of reactive systems, a finite set of finite traces has to be selected from a usually
infinite set of infinite traces. Because deriving, running, and evaluating tests are
costly activities, one would like this set to be as small as possible.

The generated traces can also be manually checked in order to ascertain
that the model represents the system requirements: similar to simulation, this is
an activity of validation, concerned with checking whether or not an artifact—
the model in this case—conforms to the actual user requirements. Finally, the
model’s traces—i.e., the test cases—are used to increase confidence that the
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Fig. 10.1. Model-Based Testing

implementation corresponds to the model, or to prove that it does not. Testing
is hence an activity of verification: the implementation is checked for correctness
w.r.t. the model which can arguably be interpreted as a behavior specification,
and which represents the formalized user requirements.

This approach immediately raises an array of difficult questions. The issues of
test case specifications and generation technology are treated in Chapters 11 and
12 of this book, and are consequently not the subject of this chapter. Instead,
we focus on the following two key questions.

(1) Obviously, in the above approach, the model has to faithfully represent the
user requirements, i.e., the intended behavior: it has to be valid. Why would
one choose to build a costly model, validate it, derive tests and run them on
a SUT rather than directly validate the SUT?

(2) Because system and software construction occur—as any engineering
activity—under high time and cost constraints, can we build a single model
to generate both test cases and production code?

The first question is answered by requiring models to be more abstract, or
“simpler”, than the SUT. Because they are more abstract, they are easier to
understand, validate, maintain, and more likely to be amenable to test case gen-
eration. The above approach to model-based testing is then modified as follows.
The input part of a model’s trace—the test case—is concretized (γ in the figure)
before it is fed into the implementation. Conversely, the output of the SUT is
abstracted (α in the figure) before it is compared to the output of the model.
Note that this approach incurs a cost: aspects of the SUT that were abstracted
away can obviously not directly be tested on the grounds of the abstract model.

The second question will be answered by discussing different scenarios of
model-based testing that regard different interleavings and flavors of building
models and code. Roughly, it will turn out that some sort of redundancy is
indispensable: choosing to derive both test cases and implementations from one
single model requires one to precisely know what this means in terms of quality
assurance: in this way, code generators and assumptions on the environment can
be tested.



10 Methodological Issues in Model-Based Testing 283

One might argue that if the model has to be valid anyway, then we could
generate code from it without any need for further testing. Unfortunately, this
is no viable option in general. Since the SUT consists not only of a piece of
code that is to be verified but also of an environment consisting of hardware,
operating system, and legacy software components, it will always be necessary to
dynamically execute the SUT. This is because the model contains assumptions
on the environment, and these may or may not be justified.

Overview

The remainder of this chapter is organized as follows. Sec. 10.2 elaborates on
the different levels of abstraction of models and implementations. In Sec. 10.3,
we discuss several scenarios of model-based testing and shed light on how to
interleave the development of models and of code. Sec. 10.4 concludes.

10.2 Abstraction

Stachowiak identifies the following three fundamental characteristics of models
[Sta73].

• Models are mappings from a concrete (the “original”) into a more abstract
(the “model”) world;
• Models serve a specific purpose;
• Models are simplifications, in that they do not reflect all attributes of the

the concrete world.

In this section, we take a look at the third point. There are two basic ap-
proaches to simplification: omission and encapsulation of details.

10.2.1 Omission of Details

When details are actually discarded, in the sense that no macro expansion mech-
anism can insert the missing information, then the resulting model is likely to be
easier to understand. This is the basic idea behind development methodologies
like stepwise refinement, where the level of abstraction is steadily decreased. 1

Specifications at higher levels of abstraction convey the fundamental ideas. As
we have alluded to above, they cannot directly be used for testing, simply be-
cause they contain too little information. This is why we need driver components
that, where necessary, insert missing information into the test cases.

The problem then obviously is which information to discard. That is true
for all modeling tasks and, until building software becomes a true engineering
discipline, remains a black art which is why we do not discuss it further here.
1 A similar scheme is also found in incremental approaches like Cleanroom [PTLP99]

where the difference between two increments consists of one further component that
is 100% finished.
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In the literature, there are many examples of abstractions—and the necessary
insertion of information by means of driver components—for model-based testing
[PP04]. These are also discussed in Chap. 15.

This variant of simplification reflects one perspective on model-based de-
velopment activities. Models are seen as a means to actually get rid of details
deemed irrelevant. As mentioned above, no macro expansion mechanism can
automatically insert them, simply because the information is given nowhere.
Missing information can, in the context of stepwise refinement, for instance, be
inserted by a human when this is considered necessary.

10.2.2 Encapsulation of Details

Details of a system (or of parts a system) can be also be referenced. Complexity
is reduced by regarding the references, and not the content they stand for. This
second kind of abstraction lets modeling languages appear as the natural exten-
sion of programming languages (note that we are talking about behavior models
only). The underlying idea is to find ways to encapsulate details by means of
libraries or language constructs.

Encapsulating the assembly of stack frames into function calls is an exam-
ple, encapsulating a certain kind of error handling into exceptions is another.
The Swing library provides abstractions for GUI constructs, and successes of
CORBA and the J2EE architectures are, among many other things, due to the
underlying encapsulation of access to communication infrastructures. The MDA
takes these ideas even further. Leaving the domain of programming languages,
this phenomenon can also be seen in the ISO/OSI communication stack where
one layer relies on the services of a lower layer. The different layers of operating
systems are a further prominent example.

What is common about these approaches is that basically, macro expansion
is carried out at compile or run time. In the respective contexts, the involved
information loss is considered to be irrelevant. These macros are not only use-
ful, but they also restrict programmers’ possibilities: stack frame assembly, for
instance, can in general not be altered. Similarly, some modeling languages disal-
low arbitrary communications between components (via variables) when explicit
connectors are specified. The good news is that while expressiveness—in a given
domain—is restricted, the languages become, at least in theory, amenable to
automatic analysis simply because of this restriction.

Of course, the two points of view on model-based development activities are
not orthogonal. There is no problem with using a modeling language in order to
very abstractly specify arbitrary systems. In the context of testing, the decision
of which point of view to adopt is of utter importance. When models of the pure
latter kind are taken into consideration, then they are likely to be specified at
the same level of abstraction as the system that is to be tested. We then run into
the above mentioned problem of having to validate a model that is as complex
as the system under test.
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Fig. 10.2. Abstractions and concretizations. The general setting is depicted at the
left; an example where α and γ are defined via a configuration file is given at the right.

10.2.3 Concretization and Abstraction

As argued above, with the possible exception of stress testing, it is methodolog-
ically indispensable that in terms of model-based testing, models are simplifica-
tions of the system under test. Consequently, test cases derived from the model
can in general not be directly fed into the system. To adapt the test cases to
the system, it is necessary to re-insert the information by means of driver com-
ponents :2 the input part i of a trace of the model—a test case—is concretized
to the level of the implementation, γ(i). In general, there will be many choices
to select γ(i), simply because the model is an abstraction. This choice is left to
the test engineer, or a driver component that he or she has to write.

γ(i) is then fed into the implementation which reacts by outputting some o′.
By construction, o′ is not at the same level of abstraction as the output of the
model, o. Unfortunately, we cannot in general use γ to compare γ(o) to o′. The
reason is that as in the case of concretizing input, there are many candidates
for γ(o), and for comparing the system to the model, a random choice is not an
option here.

The classical solution to this problem is to use an abstraction function, α,
instead. Since α is an abstraction function, it itself involves a loss of information.
Provided we have chosen γ and α adequately, we can now apply α to the system’s
output and compare the resulting value α(o′) to the model’s output. If α(o′)
equals o, then the test case passes, otherwise it fails. In the driver component,
this is usually implemented as follows: it is checked whether or not the imple-
mentation’s output is a member of the set of possible implementation outputs
that correspond to the model’s output (of course, in non-deterministic settings
it might possible to assign a verdict only after applying an entire sequence of
stimuli to the SUT).

The idea is depicted in Fig. 10.2, left. Note that the general idea with pairs
of abstraction/concretization mappings is crucial to many formally founded ap-

2 Of course, this concretization may also be performed in a component different from
the driver.
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proaches to systems engineering that work with different levels of abstraction
[BS01b].

Example. As an example, consider Fig. 10.2, right. It is part of a case study in
the field of smart card testing [PPS+03]. The example shows a case where the
verification of digital signatures should be checked. In order to keep the size of the
model manageable, the respective crypto algorithms are not implemented in the
model—testing the crypto algorithms in themselves was considered a different
task. Instead, the model outputs an abstract value with a set of parameters
when it is asked to verify a signature. By means of a configuration file—which
is part of the driver component—, the (abstract) command and its parameters
are concretized and applied to the actual smart card. It responds 90 00 which
basically indicates that everything is alright. This value is then augmented with
additional information from the configuration file, e.g., certificates and keys, and
abstracted. Finally, it is compared to the output of the model.

Further examples for different abstractions are given in Chap. 15.

10.3 Scenarios of Model-Based Testing

Model-based testing is not the only use of models in software engineering. More
common is the constructive use of behavior models for code generation. In this
section we discuss four scenarios that concern the interplay of models used for
test case generation and code generation. The first scenario concerns the process
of having one model for both code and test case generation. The second and third
scenarios concern the process of building a model after the system it is supposed
to represent; here we distinguish between manual and automatic modeling. The
last scenario discusses the situation where two distinct models are built.

10.3.1 Common Model

In this scenario, a common model is used for both code generation and test case
generation (Fig. 10.3).

γ/α
Code

HW, OS, Legacy

Requirements

Test Case Specification

Generation Generation

Model

Manual
verdicts

Test Cases

Fig. 10.3. One model is used for both code and test case generation
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Testing always involves some kind of redundancy: the intended and the actual
behaviors. When a single model for both code generation and test case generation
chosen, this redundancy is lacking. In a sense, the code (or model) would be
tested against itself. This is why no automatic verdicts are possible.

On the other hand, what can be automatically tested are the code generator
and environment assumptions that are explicitly given, or implicitly encoded in
the model. This can be regarded as problematic or not. In case the code generator
works correctly and the model is valid, which is what we have presupposed, tests
of the adequacy of environment assumptions are the only task necessary to ensure
a proper functioning of the actual (sub-)system. This is where formal verification
technology and testing seem to smoothly blend: formal verification of the model
is done to make sure the model does what it is supposed to. Possibly inadequate
environment assumptions can be identified when (selected) traces of the model
are compared to traces of the system. Note that this adds a slightly different
flavor to our current understanding of model-based testing. Rather than testing
a system, we are now checking the adequacy of environment assumptions. This
is likely to be influential w.r.t. the choice of test cases.

Depending on which parts of a model are used for which purpose, this sce-
nario usually restricts the possible abstractions to those that involve a loss of
information that can be coped with by means of macro expansion (Sec. 10.2).

10.3.2 Automatic Model Extraction

Our second scenario is concerned with extracting models from an existing system
(Fig. 10.4). The process of building the system is conventional: somehow, a
specification is built, and then the system is hand coded. Once the system is
built, one creates a model manually or automatically, and this model is then
used for test case generation.

γ/α
Code

HW, OS, Legacy

Extraction

Generation

Manual
Verdicts

Manual
Coding

Requirements

Test Case Specification

Model

Test Cases

Specification

Fig. 10.4. A model is automatically extracted from code

Automatically extracting abstractions from code or more concrete models
is a rather active branch of computer science [Hol01, GS97, SA99] which we
will not discuss here. The abstractions should be created in a way such that
at least some—and identifiable—statements about them should carry over to
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the more concrete artifact. In the context of testing, it is important to notice
that we run into the same problem of not having any redundancy as above. The
consequence is that automatic verdicts make statements only about assumptions
in the automatic process of abstraction.

Abstractions are bound to a given purpose [Sta73]. Automatic abstraction
must hence be performed with a given goal in mind. It is likely that for test case
generation, fully automatic abstraction is not possible but that test engineers
must provide the abstraction mechanism with domain and application specific
knowledge.

10.3.3 Manual Modeling

A further possibility consists of manually building the model for test case genera-
tion, while the system is again built on top of a different specification (Fig. 10.5).
Depending on how close the interaction between the responsibles for specifica-
tion and model is, there will in general be the redundancy that is required for
automatically assigning verdicts.

γ/α
Code

HW, OS, Legacy

Requirements

Test Case Specification

Model

Manual
Coding

Automatic
Verdicts

Generation

Test Cases

Specification

Fig. 10.5. A model is built only for testing purposes

This approach also reflects the situation where building the specification and
implementing a system are not necessarily performed by the same organization.
For instance, this is often the case in the automotive industry where OEMs
assemble devices from different suppliers. Obviously, the OEMs are interested in
making sure that the supplied systems conform to the specification.

As an aside, combinations of this scenario and that of the last subsection
typically arise when test case generation technology is to be assessed (a recent
survey contains some examples [PP04]). Doing so, however, is problematic in
that testing is only performed when the system has, in large parts, already been
built.

10.3.4 Separate Models

Finally, a last scenario is noteworthy that involves having two redundant and dis-
tinct models, one for test case generation, and one for code generation (Fig. 10.6).
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This approach allows one to have automatic verdicts. The model for develop-
ment may be as abstract as desired when the requirement for automatic code
generation is dropped.

γ/αTestfälle
Code

HW, OS, Legacy

Requirements

Test Case Specifications

Model
For Tests

Generation

Automatic
Verdicts

for Development
Model

Manual or

Coding
Automatic

Fig. 10.6. Two models

10.3.5 Interleaving

Except for the last scenario, the above scenarios share the commonality that
there is no real interaction between the development processes of the models
and that of the code. In iterative development processes with ever changing
requirements, this seems unrealistic. With suitable definitions of what an incre-
ment is, it is of course possible to interleave the development of two models,
or to interleave the development of a model and some code. Of course, this is
likely to involve some overhead. We will not discuss this issue any further here
since that has been done elsewhere [PLP03] with considerations of the role of
regression testing and of compositional testing [Pre03].

10.3.6 Summary

Automatic code generation from models boils down to perceiving models as
possibly executable artifacts written in a very high-level programming language.
This goes well beyond the use of models for analytical purposes only where,
again, it is widely accepted that while it might be too expensive, modeling in
itself usually reveals many errors. Currently, the embedded systems industry
expresses a high degree of interest in these concepts.

We have shown that one must be careful in ensuring redundancy when mod-
els are used for testing and code generation. Models for the further can involve
both flavors of simplification that we identified in Sec. 10.2, namely the one
where information is encapsulated, and the one where information is deliber-
ately dropped. Models for the latter can obviously only involve encapsulation of
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details.3 We consider a thorough discussion of when the use of models for code
generation is likely to pay off utterly important but beyond the scope of this
paper. Briefly, we see a separation of concerns, multiple views, and restriction
as key success factors of modeling languages [SPHP02]. The following captures
the essence of the four scenarios and provides a prudent assessment.

• Our first scenario considered one model as the basis for code and tests. This
is problematic w.r.t. redundancy issues and a restriction to abstractions that
boil down to macros. Code generators and environment assumptions can be
checked.
• The second scenario discussed the automatic or manual extraction of ab-

stractions (beyond its technical feasibility). Because there is no redundancy
either, the consequences are similar to those of the first scenario.
• The third scenario discussed the use of dedicated models for test case gener-

ation only. Because there is redundancy w.r.t. a manually implemented sys-
tems and because of the possibility of applying simplifications in the sense of
actually losing information, this scenario appears promising. This is without
any considerations of whether or not it is economic to use such models. We
will come back to this question in the conclusion in Sec. 10.4.
• Finally, the fourth scenario considered the use of two independent models,

one for test case generation, and one for development. The latter model
may or may not be used for the automatic generation of code. This scenario
seems to be optimal in that it combines the—not yet empirically verified—
advantages of model-based testing and model-based development. Clearly,
this approach is the most expensive one.

10.4 Conclusion

In this brief overview chapter, we have discussed the role of models in the context
of testing. Some emphasis was put on a discussion on the methodological need for
different abstraction levels of models and implementations. The basic argument
is that the effort to manually validate an SUT—checking whether or not it
corresponds to the usually informal requirements—must find itself below the
effort necessary to build the model, validate the model, and derive test cases
from it. Abstract models are easier to understand than very concrete artifacts.
On the other hand, abstraction incurs a cost: aspects that were abstracted can
usually not be tested. We discussed the role of driver components that, to a
certain extent, can re-introduce the missing information.

A further focus of this article is on different scenarios of model-based testing.
We have discussed the role of redundancy and the problematics of generating
both tests and production code from one single model.

3 When they focus on certain parts of a system only, then this clearly is a loss of
information. However, code can obviously only be generated for those parts that
have been modeled.
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The fundamental concern of model-based testing seems to be whether or
not it is more cost-effective than other approaches—traditional testing, reviews,
inspections, and also constructive approaches to quality assurance. While first
evaluations of model-based testing are available [PPW+05], there clearly is a
need for studies that examine the economics of model-based testing.
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