
Test-Driven Assessment of Access Control in Legacy Applications

Yves Le Traon, Tejeddine Mouelhi
 IT-TELECOM Bretagne

35576 Cesson Sévigné Cedex,
France

{yves.letraon,tejeddine.mouelhi}
@telecom-bretagne.eu

Alexander Pretschner
ETH Zürich
Switzerland

pretscha@inf.ethz.ch

Benoit Baudry
IRISA/INRIA
35042 Rennes

France
bbaudry@irisa.fr

Abstract

If access control policy decision points are not
neatly separated from the business logic of a system,
the evolution of a security policy likely leads to the
necessity of changing the system’s code base. This is
often the case with legacy systems. We present a test-
driven methodology to assess the flexibility of a system,
a property that describes the degree of coupling be-
tween the access control logic and the business logic of
a system. A low flexibility indicates that a modification
of the policy will lead to substantial changes of the
code. In this paper, we analyze the notion of flexibility
which is related to the presence of hidden and implicit
security mechanisms in the business logic. We detail
how testing can be used for detecting such mechanisms
and how it may drive the incremental evolution of a
security policy. We use several case studies to illus-
trate and validate the methodology.

1. Introduction
Security policies (SPs) embody constraints on the

access to data or functions of an organization, both for
extra-organizational and intra-organizational subjects.
Several access control models have been developed
over the past decades, including RBAC [1-3] and Or-
BAC [4, 5]. In essence, these models provide means to
describe the subjects’ permissions and prohibitions to
access a resource, for instance, the right to configure a
firewall or to access a specific service or record in a
database.

From an access control point of view, a software
system is composed of three parts: the interface, the
business logic and the policy decision point (PDP).
Conceptually, the PDP is the decision logic that checks
whether or not access to a resource can be granted.
Technically, PDPs can be implemented in a multitude
of ways, including configurable dedicated components,

explicit pieces of code, and by imposing architectural
constraints.

In contrast, the business logic consists of the pro-
gram code which is executed to implement the func-
tional requirements. A request coming from the inter-
face is checked by the PDP which allows or disallows
the business logic to be called.

In the last years, researchers [6] have proposed to
separate business and access control logics, and to
automatically generate respective configuration files as
well as application code from a set of related models.
This approach, however, only works in model-based
development processes and generates applications from
scratch. It is thus not applicable to legacy systems. If
legacy systems’ SPs are modified, the code of these
systems often has to be changed as well. However,
locating necessary modifications in the code is far from
trivial. The reason is that the implementation of PDPs
is often interwoven with that of the business logic, and
can furthermore be implemented explicitly or implic-
itly.

Explicit mechanisms are represented by dedicated
pieces of code, and can be either visible or hidden. A
security mechanism is visible in a legacy system if
there is a traceability link from (a part of) the security
policy to the security mechanism. Otherwise, the
mechanism is hidden. Due to the lack of documenta-
tion and traceability, the location of the code imple-
menting a hidden mechanism may be lost, and so may
the knowledge of how it works. This problem espe-
cially occurs for large and old legacy systems. Finally,
implicit mechanisms are a result of technical con-
straints imposed by the architecture, platform or im-
plementation of the business logic.

While the business logic of a legacy system may
implement a given security policy, it may equally re-
strict the evolution of the security policy. This is a
result of hidden and implicit security mechanisms.
Given all possible modifications of a security policy,
we will use the term flexibility to denote the ability of a

2008 International Conference on Software Testing, Verification, and Validation

0-7695-3127-X/08 $25.00 © 2008 IEEE
DOI 10.1109/ICST.2008.60

238

2008 International Conference on Software Testing, Verification, and Validation

0-7695-3127-X/08 $25.00 © 2008 IEEE
DOI 10.1109/ICST.2008.60

238

2008 International Conference on Software Testing, Verification, and Validation

0-7695-3127-X/08 $25.00 © 2008 IEEE
DOI 10.1109/ICST.2008.60

238

2008 International Conference on Software Testing, Verification, and Validation

978-0-7695-3127-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ICST.2008.60

238

Authorized licensed use limited to: UR Rennes. Downloaded on March 21, 2009 at 05:03 from IEEE Xplore. Restrictions apply.

legacy system to evolve without tedious analysis and
modifications of the program (detection and modifica-
tion of the hidden and implicit security mechanisms,
refactorings of the business logic).

Whenever a security policy evolves,

1. the explicit security mechanisms are modified
and have to be tested;

2. hidden security mechanisms may be in conflict
with the new access control rules: they must be
located and adapted; and

3. the business logic may be in conflict with the
new security policy: the reasons for this con-
flict (the implicit mechanisms) must be deter-
mined, and the design and the code may have
to be modified and possibly refactored to make
the legacy system more flexible.

If (black-box) testing legacy applications against new
security policies reveals a mismatch between policy
and implementation, the determination of the cause is
usually difficult. Refactoring the design and re-
programming some parts of the system may be prohibi-
tively expensive. In extreme cases, it might even be-
come impossible to deploy the new security policy.

1.1. Problem Statement
The long-term goal of our research is methodologi-

cal and technological support for the evolution of leg-
acy systems in the context of changing SPs. In this
paper, we take a first step by tackling the following
problem. Given a legacy (or newly developed) system
and a currently applicable SP, can we assess the cou-
pling between business logic and access control logic?
How difficult will it be to implement policy modifica-
tions?

1.2. Solution and Contribution
Our solution consists of a test-driven assessment

methodology for the flexibility of legacy systems. We
use technology described in earlier work [7, 8] to de-
rive tests from policies. We apply small mutations to
the original policy – simulating incremental evolution-
ary steps – and derive tests from each mutated policy.
Essentially these tests are requests together with expec-
tations as to whether or not the request is granted. We
then disable the visible security mechanisms in the
application. This is feasible precisely because of the
existing traceability. Without hidden and implicit
mechanisms, any request should now be granted. If
implicit and hidden PDPs are present, in contrast, not
all requests will be granted. By applying the generated
tests to the system and comparing the actual with the
expected access decisions, we extract information on
implicit and hidden mechanisms.

Our test-driven approach provides an understanding
of the technical reasons that restrict the evolution of the
security policy for legacy systems. Because test cases
are executable artifacts, they are precious means to
help pinpoint those parts of the business logic that are
not flexible w.r.t. the evolution of security policies.

The contribution of this paper is the proposed
methodology as well as its empirical validation.

1.3. Overview
The remainder of this paper is organized as follows.

Section 2 presents the background and the objectives,
namely the detection of hidden and implicit security
mechanisms. Section 3 presents the methodology, a
two-stage test-driven assessment method. In a first
step, the current system is analyzed based on exhaus-
tive testing. In a second step, the system is assessed
w.r.t. the possible evolutions of the current security
policy. Experimental results are presented in Section 4.
Section 5 presents the related works and the conclu-
sion.

2. Background
Before detailing the proposed test driven methodol-

ogy to estimate system’s flexibility, we need to provide
a few fundamental concepts.

2.1. Access control models
Advanced access control models [4, 6, 9] allow to

express rules (a set of rules specifies a SP) that apply
only under specific circumstances, called contexts. For
instance, in the health care domain, physicians have
special permissions in specific contexts such as emer-
gencies. Furthermore, some models provide means to
specify different SPs for various parts of an organiza-
tion (sub-organizations). In this paper, we will consider
an access control model in which we can specify per-
missions and prohibitions as a function of temporal and
spatial contexts, roles, activities, and resources.

A rule can be a permission or a prohibition. Each
rule of an SP consists of five parameters that we called
entities: a status flag S indicating permission or prohi-
bition, a role, an activity, a view, and a context. Our
domain consists of role names RN, activity names PN,
view names VN, and context names CN. A security
policy SP is thus a set of rules defined by

CNVNPNRNSSP ××××⊆ , and we will denote concrete
rules by a predicate Status(Role, Activity,

View, Context).
As a running example, we will consider a library

management system (LMS). Its purpose is to offer
services to manage books in a public library.

All users can perform three activities, namely bor-
row, reserve, and return a book. There are also a num-

239239239239

Authorized licensed use limited to: UR Rennes. Downloaded on March 21, 2009 at 05:03 from IEEE Xplore. Restrictions apply.

ber of administrative tasks that can be executed, but we
do not need them here. In our model, data items are
called views. Views are the entities that we want to
protect from unauthorized access. In our example,
there are two views, book and account. All entities can
be hierarchical. In the LMS example, there are two
types of accounts: borrower and personnel accounts.
Finally, contexts include temporal contexts such as
working day or weekend.

Several access control rules can then be expressed.
For example, users are allowed to borrow books only
when the library is open. This rule is defined by
Permission(Borrower, BorrowBook, Book, Work-

ingDays). Further examples of rules include the prohi-
bition to borrow a book during holidays, the permis-
sion for an administrator to manage the personnel ac-
counts, and the permission for a secretary to consult
borrower accounts. These examples can be expressed
by Prohibition(Borrower, BorrowBook, Book,
Holidays), Permission(Administrator, ManageAc-
cess, PersonnelAccount, always), and Permis-
sion(Secretary, ConsultBorrowerAccount, Bor-
rowerAccount, always).

For the LMS, the total number of rules is 22. In a
large scale system, the access control policy may be-
come very complex, due to the large number of roles,
activities and contexts that are involved. Priorities have
to be set to specify which rule applies when several
rules are in conflicts.

2.2. Visible security mechanisms
Implementing control over the access to resources of a
system can be done in a variety of ways. A classical
architectural pattern is one component that is dedicated
to access control. Typically, it works as a filter be-
tween the interface of the system and the control logic
functions (services) or data (e.g. access to the data-
base). If it exists, and if it is mentioned in the docu-
mentation or located through traceability links, such a
component can be easily modified to implement a new
security policy. The security mechanism is explicit in
that it has been created with the objective of control-
ling access. It is also visible since its location in the
legacy system is known. For instance, PDPs of this
kind can be specified with Sun’s XACML. This allows
the management of access control independently from
the system. All requests pass through the PDP before
getting to the system.

In order to illustrate explicit visible mechanisms,
we consider that the PDP contains a SecurityPoli-
cyService class which is called by the business ser-
vices classes and returns the decision of the request
(allow or deny). Figure 1 presents the point of view of
the caller. The business services code of borrowBook
automatically calls the visible PDP via the Security-
PolicyService.check method.

public void borrowBook(User user, Book book)
throws SecuritPolicyViolationException {
// call to the security service
ServiceUtils.checkSecurity(user,
LibrarySecurityModel.BORROWBOOK_METHOD,
LibrarySecurityModel.BOOK_VIEW,
ContextManager.getTemporalContext());
// call to business objects
// borrow the book for the user
book.execute(Book.BORROW, user);
// call the dao class to update the DB
bookDAO.insertBorrow(userDTO, bookDTO);}

 Figure 1. An explicit and visible security mechanism

2.3. Security policy testing
One aim of security policy testing is to ensure that

security mechanisms are exercised in every way that
may lead to a failure. A failure of a security mecha-
nism occurs when an access is granted (resp. prohib-
ited) while the security policy stipulates that it should
be prohibited (resp. granted).

As an illustration, consider the top part of Figure 2
that displays the validation of a current legacy system
against its security policy. Test cases are derived from
the security policy SP (1) and the current version of the
system is tested w.r.t the access rules.

PDP1

Business logic1

(2)

(3)

SP1
R1
R2
…
Rn-1
Rn

TS1
TR1
TR2
…
TRn-1
TRn

PDP1

Business logic1

(2)

(3)

PDP1

Business logic1

(2)

(3)

SP1
R1
R2
…
Rn-1
Rn

SP1
R1
R2
…
Rn-1
Rn

SP1
R1
R2
…
Rn-1
Rn

TS1
TR1
TR2
…
TRn-1
TRn

TS1
TR1
TR2
…
TRn-1
TRn

TS1
TR1
TR2
…
TRn-1
TRn

SP2

R1
R2
…
Rn-1
Rn

+
R’1
R’2
…
Rp

TS2

TR1
TR2
…
TRn-1
TRn

+

TR’1
TR’2
…
TRp

PDP2

Business logic 2

(2)

(3)

SP2

R1
R2
…
Rn-1
Rn

+
R’1
R’2
…
Rp

SP2

R1
R2
…
Rn-1
Rn

+
R’1
R’2
…
Rp

TS2

TR1
TR2
…
TRn-1
TRn

+

TR’1
TR’2
…
TRp

TS2

TR1
TR2
…
TRn-1
TRn

+

TR’1
TR’2
…
TRp

PDP2

Business logic 2

(2)

(3)

PDP2

Business logic 2

(2)

(3)

SPi: Security Policy i
TSi : Test suite i
PDPi: Policy Decision Point i
TRi:Test rule i

evolution

PDP

Business logic

PDP

Business logic
: a legacy system

(1)

(1)

Figure 2. Regression testing of the legacy system

A test case is a sequence of method calls on the

system that ends with a request that the PDP must

240240240240

Authorized licensed use limited to: UR Rennes. Downloaded on March 21, 2009 at 05:03 from IEEE Xplore. Restrictions apply.

check. To illustrate the notion of test case, let us con-
sider the LMS: to be reserved, a book has first to be
borrowed by another user. Any access control rule that
forbids some users to reserve a specific category of
books can only be tested after these books have been
borrowed. The sequence is necessary to reach a state in
which the rule to be tested can be exercised.

As shown in Figure 2, each test case is derived
from a rule of a security policy (1), and calls the PDP
(2) which, in turn, allows or forbids the access to the
business logic part of the system (3).

As an example of a test case, consider testing that a
secretary is not allowed to update personnel accounts.
After preparing the test data, the respective service
method is called. It takes two parameters: a personnel
account object and a user object (the Secretary class
extends the User class). The test fails if we do not get a
security exception. Alternatively, the oracle could
check that the action was not executed (check in the
database that the account was not updated). A piece of
Java code that tests this case is given below.

// preparing test data

Secretary sec1 = new Secretary();

PersonnelAccount pAccount =

new PersonnelAccount(accoutID);

// run security test

try {

PersonnelAccountSevice.updateAccount(pAccount,

 sec1);

// test oracle, we expect a security violation
exception here

Fail(“test failed, security violation excep-
tion expected here, a secretary is not allowed
to update personnel accounts”).

}

Catch(SecurityPolicyViolationException e) {

// pass: test successfully executed

}

In this example, the oracle is implemented using
SecurityPolicyViolationException. Many other im-
plementations are possible for the security outcome.
Hence, the test can be automated or adapted to the
specific implementation.

Formally, the PDP of an SUT, consisting of visi-
ble, implicit, and possibly hidden parts, implements a
function s from requests, I, to decisions, O. That is, for
any input vector i ∈I, s(i) ∈O is the actual outcome
for the request i.

A test case is a pair (i, p(i)) where i is a request that
is drawn from a set I. p(i) is the expected outcome
drawn from a set O={yes,no} with “yes” for permis-
sion and “no” for prohibition. p(i) ∈O is the expected
or intended outcome as specified by the policy. p is
the function that specifies the expected behavior, i.e.,

the oracle. For a given request i, a test case verdict is
“pass” if s(i)=p(i), and it is “fail” otherwise.

2.4. Regression testing reveals some hidden
and implicit mechanisms

We now turn our attention to the ideal case of deal-
ing with a system’s evolution using regression testing.
It serves as an illustration of the problems that are
caused by hidden and implicit security mechanisms.

If policies evolve, testing can be used to assess that
the new security policy is correctly implemented. The
bottom part of Figure 2 presents the ideal scheme of
regression testing in cases where security policy
evolves. The tests cases are first applied to the current
system and then are partially reused on the new sys-
tem, as explained in the following.

If only the access control policy evolves, the evolu-
tion is iso-functional since the functions of the business
logic are unchanged. The evolution of a security policy
consists of adding and removing access rules, and of
adding and removing roles, activities and contexts. The
new PDP is modified in accordance with this evolu-
tion. The correctness of the PDP modifications must be
ensured using regression testing. Test cases corre-
sponding to deleted rules are removed. For instance, in
Figure 2, the TR1 test case is removed since rule R1 is
deleted. The test cases remaining ones guarantee the
non-regression, since they execute the unchanged parts
of the security policy. New test cases are added for the
new rules. In Figure 2, TR’i test cases are added for
testing R’i new rules.

This ideal regression scheme rarely applies. Even
for an iso-functional evolution, the unchanged business
logic can be in contradiction with the new access con-
trol policy, due to implicit or hidden mechanisms.

The first case of mismatch occurs if an explicit se-
curity mechanism is not visible, i.e., is hidden in the
legacy system.

Figure 3 adds a hidden mechanism to the example
of Figure 1. In the body of the method, after this secu-
rity call has been executed, a new check is done which
forbids borrowing books during week-ends. Disabling
the first mechanism will not prevent this hidden prohi-
bition from being executed. If the PDP component is
modified in order to allow borrowing books during
week-ends, the hidden mechanism will have to be
located and deleted.

public void borrowBook(Book b, User user) {

// visible mechanism, call to the security
policy service

SecurityPolicyService.check(user,

SecurityModel.BORROW_METHOD, Book.class, Se-
curityModel.DEFAULT_CONTEXT);

// do something else

241241241241

Authorized licensed use limited to: UR Rennes. Downloaded on March 21, 2009 at 05:03 from IEEE Xplore. Restrictions apply.

// hidden mechanism

If(getDayOfWeek().equals(“Sunday”) || getDay-
OfWeek().equals(“Saturday”)) {

// this is not authorized throw a business
exception

Throw new BusinessException(“Not allowed to
borrow in week-ends);} …}

Figure 3. Explicit hidden security mechanism

A second kind of mismatch is due to implicit con-
straints which restrict the access, due to the way the
system has been designed, implemented and deployed.

Director
+ updatePersonnelAccount(account)

Account* *

Server
+ updateAccounts(director, account)
+ consultPersonnelAccount(director)
+ consultPersonnelAccount(secretary)

*
*

Secretary

Personnel

Director
+ updatePersonnelAccount(account)
+ consultPersonnelAccount()+ consultPersonnelAccount()+ consultPersonnelAccount()+ consultPersonnelAccount()

PersonnelAccount* *

Server
+ updateAccounts(director, account)
+ consultPersonnelAccount(director)

*
*

Secretary

Personnel

access

Figure 4. Implicit security mechanism

By construction, a Secretary cannot directly call
updatePersonnelAccount. A new access rule may
specify that the director’s secretary should now have
access to personnel accounts. Since the program design
does not have any direct reference from the secretary to
the personnel accounts, we cannot add a rule “permis-
sion(secretary, update, account, always)”. A simple
refactoring would consist of moving the association
“access” and the methods to the level of the class Per-
sonnel. Such a refactoring would also allow any Per-
sonnel instance to access the personnel accounts,
which may be an unexpected change. So, the program
will have to be carefully modified in several places to
implement the desired evolution of the access control
policy.

A last, more complicated case occurs when some
access to a resource is granted by a hidden mechanism.
In such a case, if the new security policy restricts this
access, the visible PDP is modified but, depending on
the execution flow, the user may still have his access
granted due to the hidden mechanism.

In conclusion, the implementation of an evolving
system policy is constrained by hidden and implicit
security mechanisms. Even with a new PDP which
implements the new security policy, these mechanisms
may cause the system execution to fail. In this paper,
we use testing for the early detection of such inconsis-
tencies in the legacy system.

3. Flexibility analysis of the system to
assess control policy changes

The difficulty of implementing an evolving policy
is obviously related to the number of changes that must
be applied to the current legacy system to enforce the
new policy. Modifying the existing code may be more
or less difficult, depending on the system size, on the
programming languages (OO, Cobol etc.), and on the
quality of documentation and design models. However,
the mere modification of an existing application is
costly because the legacy system business logic has to
be analyzed.

In this paper, we argue that testing offers a prag-
matic way of dealing with this problem and helps esti-
mate the cost of a planned evolution. The test-driven
evolution process consists of:

1. assessing the current legacy system,
2. measuring its flexibility w.r.t. (micro-) evolu-

tions, and
3. diagnosing which functions and resources of

the system are causing flexibility problems.

3.1. Exhaustive test-driven assessment of the
current legacy system

The first question is to what extent the business
logic implements hidden and implicit security mecha-
nisms. These “hard-wired rules” may be redundant or
even in conflict with some of the visible security
mechanisms. The ratio of access control rules which
are “hard-wired” in the business logic can be meas-
ured. We propose an exhaustive testing approach to
assess the degree of hard-wiring of the security policy
in the business logic. Exhaustive testing means that a
test input is generated for each combination of roles,
activities, views and contexts. In the top part of Figure
2, it means that step (1) is replaced by a systematic test
input generation from the roles, activities, views and
contexts. The system flexibility is thus measured inde-
pendently from a given security policy but it depends
on the roles, activities, views and contexts.

We start by disabling the visible security mecha-
nisms of the legacy system under test. This can mean:

1. either that all requests should be granted now
(universal permission),

2. or that all requests should be denied now (uni-
versal prohibition).

Recall that in contrast to function p which encodes
the oracle, function s encodes the actual decisions
taken by the PDP. Let s+ denote the function that corre-
sponds to the visible PDP that is disabled in the sense
of universally granting access (i.e., permission). If
there are no hidden or implicit mechanisms, we would
expect

s+(i)=yes for all i ∈I.

242242242242

Authorized licensed use limited to: UR Rennes. Downloaded on March 21, 2009 at 05:03 from IEEE Xplore. Restrictions apply.

Similarly, let s- denote the function that corre-

sponds to the visible PDP that is disabled in the sense
of universally prohibiting access. If there are no hid-
den or implicit mechanisms, we would expect

s-(i)=no for all i ∈I.

1. Let us first apply an input i to the original SUT

(no changes in the PDP). If s(i)=p(i), the PDP be-
haves as expected. If s(i)≠p(i), then something is
wrong – the legacy system does not do what it is
supposed to do, i.e., what is described in the pol-
icy. In our setting, we may assume that this does
not happen. We assume that the current system is
consistent with its actual security policy.

2. Let us now apply an input i to the SUT with the
visible PDP universally granting access.
a. If s+(i)=yes, the result is inconclusive.
Thus we cannot tell whether or not there is a hid-
den mechanism. Let per1 be the number of test
executions in this category.
b. If, in contrast, s+(i)=no, we have detected an im-

plicit or hidden mechanism.
i. If s(i)=no, we know for sure that disabling the

visible PDP didn’t have the desired effect.
One scenario is that a request i1 is passed to
the visible PDP and then forwarded to a hid-
den PDP which denies access. Disabling the
visible PDP may mean that i1 is directly
passed to the hidden PDP.

ii. Symmetrically, let us assume that s(i)=yes.
This means that disabling the visible PDP (in
the sense of universally granting access) all of
a sudden leads to a prohibition, a case that
seems somewhat unlikely. However, one pos-
sibility is that in the original system, i1 is
passed to the explicit PDP which transforms it
into a distinct request i2 that is sent to the
hidden PDP. The hidden PDP grants access to
i2, and hence in sum, s(i1)=yes. Now, if the
visible PDP is replaced by universal permis-
sion, this may mean that i1 is directly sent to
the hidden PDP which denies access.
Either way, a hidden mechanism is detected.
Let per2 be the number of test executions in
this category.

Note that this case is independent of the value
of p(i). We don’t need to know the actual pol-
icy.

3. Finally, let us apply an input i to the SUT with the
visible PDP universally prohibiting access.
a. If s-(i)=yes, we have detected an implicit or hid-

den mechanism. In this situation, the visible
PDP is somehow bypassed. Let pro1 be the
number of test executions in this category.

i. If s(i)=yes, one scenario is that in the original
system, a request i1 is first passed to the hid-
den mechanism which is directly granted, that
is, control is transferred to the program logic
without consulting the visible PDP. Modify-
ing the visible PDP then obviously does not
have any consequences.

ii. If s(i)=no, one possible, albeit admittedly con-
strued, scenario is that a request i1 is passed
to the hidden PDP in the original system. As-
sume that this hidden PDP logs the reception
and forwards i1 to the visible PDP who grants
access. The positive response is passed back
to the hidden PDP who decides that access
cannot be granted. However, the hidden PDP
may be configured in a way that a negative re-
sponse of the explicit PDP (which is what we
get by universal prohibition) is transformed
into a positive one. This scenario appears
rather unlikely but is not impossible.

b. If, in contrast, s-(i)=no, the result is inconclu-
sive. Let pro2 be the number of test executions
in this category.

i. There may not be a hidden mechanism.
ii. On the other hand, there may well be a hidden

mechanism whose functioning is masked by
the universally prohibiting visible PDP.

Note that this again is independent of the value
of p(i).

In sum, the presence of hidden mechanism can be
proven in those situations where s+(i)=no and where
s-(i)=yes. Furthermore, the expected output p(i) does
not matter in cases (2) and (3). The consequence is that
the expected output part of a test case does not matter
for our assessment. We “only” need to generate the
input data for a test case but not the oracle. Further-
more, note that these results are independent of
whether or not there is a default rule for policy evalua-
tion, simply because the expected outcome p(i) does
not matter.

In order to measure the flexibility of a system, let N
be the number of exhaustive tests that is run. Clearly,
N=per1+per2 = pro1+pro2.

The number of test cases that indicate the existence
of hidden and implicit mechanisms is hence per2+
pro1. Conversely, the flexibility of a system is defined
as the ratio

2N
 pro2 per1_ +=yflexibilitSystem .

A value of “1” means that our testing approach did
not detect any hidden or implicit security mechanism
(only inconclusive verdicts are emitted). A value of ‘0’
means that every visible security mechanisms is dou-
bled by a redundant mechanism which is hidden or
implicit. When the ratio is close to zero, hidden and/or

243243243243

Authorized licensed use limited to: UR Rennes. Downloaded on March 21, 2009 at 05:03 from IEEE Xplore. Restrictions apply.

implicit security mechanisms are detected. These make
the whole system rigid and its evolution problematic.

The problem with this approach to measuring sys-
tem flexibility is that it forces all combinations of pos-
sible requests to be executed. It means, that a sequence
must be produced for each possible input i. The num-
ber of test cases then amounts to

CNVNPNRNN ×××= ,
which may be huge, depending on the number of

roles, activities, views and contexts.

3.2. Test Selection for assessing system flexi-
bility

In order to overcome this problem, we now take
into consideration the old and the new policies. The
expert responsible for the security policy evolutions
may want to know how much effort will be needed in
terms of code and design refactoring. So only the hid-
den and implicit mechanisms that would block an evo-
lution have to be detected.

a Test case criterion
In [8], we studied several test criteria to derive test

cases from a security policy, including an analysis on
the grounds of mutation analysis. Several mutation
operators were proposed: a mutant differs from the
initial code by the introduction of a single flaw into the
security mechanism. The mutation score corresponds
to the proportion of faulty versions of the system which
are detected (or “killed”) by the test cases. In the cited
paper, an efficient criterion has been identified which
consists of deriving at least one test case per concrete
access control rule (some rule may be generic in the
sense they apply to a category of roles or activities or
context).

In the following, we use this criterion for our ex-
periments. The approach could be easily adapted to
other criteria. The underlying assumption is that we
have a set of test cases which are able to exercise and
test each access control rule.

b Decomposing policy evolutions
The evolution of a security policy can be decom-

posed into micro steps as presented in Figure 5:
1. δ+ for relaxing a policy (addition of a permis-

sion or removal of a prohibition),
2. δ- for restricting a policy (addition of a pro-

hibition or removal of a permission).

Initial SP
(δ- | δ+)*

Final SP

Figure 5. Decomposition of the SP evolution into mi-
cro steps

Let SP be a security policy, i.e., a set of permission
and prohibition rules. Each micro-evolution results in a
new security policy. We denote by SP- the set of poli-
cies resulting from the restriction of the initial security
policy (addition of a new prohibition, removal of a
permission), and by SP+ the security policies obtained
by relaxing the initial policy (addition of a new permis-
sion, removal of a prohibition). We assume that a pol-
icy SP consists of two disjoint sets Perm and Pro that
contain the permissions and prohibitions, respectively.
Hence, ProPermSP ∪= . The set NewPerm contains all
those permissions that can be added to the security
policy. Similarly, NewPro contains all the prohibitions
that can be added to the policy. Activities and views
are not enumerated here for the reason that some ac-
tivities cannot be used with every view (for example
borrow can only be used with the book view). When
adding a new rule we hence reuse activities with com-
patible views only.

(_,_, , ,_)
,

(_,_, , ,_)
,

{(, , , ,)}

{(, , , ,)}

a v SP
r RN c CN

a v SP
r RN c CN

NewPerm permission r a v c SP

NewPro prohibition r a v c SP

∈
∈ ∈

∈
∈ ∈

= −

= −

∪

∪

Activities and views are not enumerated here for
the reason that activities are linked to specific views
(for example borrow can only be used with the book
view). When adding a new rule we reuse activities with
compatible views. SP- and SP+ are then defined as
follows:

{ { }} { { }}

{ { }} { { }}
pro Pro nperm NewPerm

perm Perm npro NewPro

SP SP pro SP nperm

SP SP perm SP npro

+

∈ ∈

−

∈ ∈

= − ∪ ∪

= − ∪ ∪

∪ ∪
∪ ∪

c Measuring system’s flexibility for a given SP
Based on a given security policy and on all possible

evolutions, we are now ready to estimate the overall
flexibility of a legacy system. By applying micro-
evolutions, we also expect to get an idea of the func-
tionalities and resources which are the subject of hid-
den or implicit access restrictions. The analysis of
flexibility should help pinpointing those parts of the
system which are flexible when the SP evolves.

Figure 6 depicts a test-driven technique to provide
such an estimate. From an initial security policy

1. all possible security policy micro-evolutions
are built,

2. for micro evolutions, the associated visible
mechanisms are disabled,

3. for each micro-evolution, a test case is gener-
ated to test the evolution and applied to the
business logic,

4. if the test case fails (detects an error), it means
that the micro-evolution cannot be supported
by the existing business logic without analysis

244244244244

Authorized licensed use limited to: UR Rennes. Downloaded on March 21, 2009 at 05:03 from IEEE Xplore. Restrictions apply.

and possibly refactoring. The legacy system
cannot easily evolve in that direction.

SP

SP1

SP2

SP3

SP4

SPn

SP-
1

SP-
2

SP-
3

SP-
4

SP-
p

……

δ+δ-

δ- = restrict the access control
δ+ = relax the access control

Test δ-
on

Business logic

Test δ+
on

Business logic

¬ok

¬ok

¬ok

ok

ok

¬ok

¬ok

¬ok

ok

ok

Figure 6. Micro-evolutions of a legacy system access

control policy

Let TSP+ (resp. TSP-) denote the test cases set built
for testing each δ+ (resp. δ-) micro-evolution. We
denote by tsp(pass) a pass verdict for a test case tsp,
the overall flexibility of the legacy system for a given
security policy SP, tested with the test suite TSP, is
equal to:

{ } { }

yflexibilitrigidity

SPSP

passtspTSPtsppasstspTSPtsp
TSPSPyflexibilit

pjni
i j

−=

+

∈∪∈
=

=

−

=

+

−+

1

)(/)(/
),(

..1..1
∪∪

Example: Consider 20 test cases used to test the 20

possible micro-evolutions: If 5 of them are executed
and detect a failure (either a prohibition when permis-
sion is expected or a permission when a prohibition is
expected), the flexibility for micro-evolutions is equal
to 0.75. One evolution in four cannot be done without
analyzing the business logic.

3.3. Locating rigidity in the system
At each step, the analysis of micro-evolutions pro-

vides a useful diagnosis of those parts of the legacy
system which are constrained by hidden or implicit
security mechanism. The parts which cause the system
to be “rigid” can be classified. The analysis we propose
is two-fold.

1. Access to resources analysis: measuring the
flexibility related to each resource (view) of
the legacy system: detection of problematic re-
sources.

2. Access to functions analysis: measuring the
flexibility related to each function (activity) in-
teracting with a resource.

First, the degree to which a given resource is “pro-
tected” by hidden or implicit mechanisms is obtained.

This is an estimate of the flexibility related to a given
resource. For a view v (which corresponds to the data
and resources of the system), we define:

Resource_flexibility(v)= percentage of test cases
which pass when testing a rule related to the view
(resource) v. Let TSPv be the test cases set exercizing
the rules related to a view v, we have:

{ }
TSPv

passtspTSPvtsp
vyflexibilitresource

)(/
)(_

∈
=

Second, the flexibility of system functions can be

estimated in the same way. For an activity a (corre-
sponding to a system’s functions), we have:

Function_flexibility(a)= percentage of test cases
which pass when testing a rule related to the activity
(function) a. Let TSPa be the test cases set exercizing
the rules related to an activity a, we have:

{ }

TSPa
passtspTSPatsp

ayflexibilitFunction
)(/

)(_
∈

=

3.4. Test-driven evolution in practice
The flexibility measurement we propose provides

an analysis of the micro-evolutions that the business
logic may accept without refactorings and modifica-
tions. In practice, it is not necessary to make a com-
plete analysis of the current system flexibility when a
new policy is defined. Let SPinit be the initial security
policy, and SPtarg the target security policy. The evo-
lution from SPinit to SPtarg can be decomposed into
micro steps (maybe with many possible solutions)

n.compositiofunction a and

evolution-micro aor aeither denotes where

)(....arg)(121

D

DD
+−+−

+−+−
−

+−
−

+−==∆

δδδ
δδδδ

i

nnn SPinitSPtSPinit

The test driven process is similar to the test driven
development principles promoted with XP. This test
driven evolution technique involves repeatedly:

- writing a test case associated to the +−
iδ micro-

evolution;
- detecting a potential rigidity in the legacy sys-

tem;
- fixing the problem to pass the test;
- then implementing – and documenting – only

the micro-step in the PDP.
This pragmatic approach assists the safe evolution
of a legacy system.

4. Experiments and discussion
We applied our technique to three examples:
• An auctions sales management system (ASMS)

containing 10703 lines of code, 122 classes
and 797 methods;

245245245245

Authorized licensed use limited to: UR Rennes. Downloaded on March 21, 2009 at 05:03 from IEEE Xplore. Restrictions apply.

• a virtual meeting management system
(VMMS) containing 6077 lines of code, 134
classes and 581 methods; and

• a library management system (LMS) contain-
ing 3204 lines of code, 62 classes and 335
methods.

The three case studies have a typical 3-tiers archi-
tecture widely used for web applications. We use the
OrBAC [4, 5] environment as a specification language
to define the access control rules.

4.1. VMS results
The virtual meeting system offers simplified web

conference services. It is used in an advanced software
engineering course at the University of Rennes. The
virtual meeting server allows meetings to be organized
on a distributed platform. When connected to the
server, a user can enter or exit a meeting, ask to speak,
speak, or plan new meetings. Each meeting has a man-
ager. The manager is the person who has planned the
meeting and has set its main parameters (such as its
name, its agenda, etc). Each meeting may also have a
moderator, appointed by the meeting manager. The
moderator gives the floor to a participant who has
asked to speak.

In the following table we present the results for the
VMS. The overall flexibility of the initial policy is
0.35, which means that 35% of the security rules
should be modifiable without code and design refactor-
ings. It also reveals that the remaining is constrained
by hidden/implicit security mechanisms.

 Flex. rules Rigid Rules System

flexibility
results 20 36 0.35

To obtain a more accurate diagnosis, we consider

which resources and views are the subjects of hid-
den/implicit mechanisms:

Resource\View Flex.

rules
Rigid rules All Flexibility

Meeting 12 36 48 0.25
PersonnelAccount 6 0 6 1
UserAccount 2 0 2 1

This table leads to the understanding that any evo-

lution concerning PersonnelAccount or UserAccount
is possible and that the problems of rigidity concern the
Meeting resource. We can go further in the analysis
and check which functions/activities are flexible in
terms of security policy micro-evolutions. The results
show –without surprise – that the functions which are
more rigid are related to the Meeting manipulation. It
also reveals that some of the functions related to this
resource are flexible (like opening a meeting).

Function/Activity Flexibility
updatePersonnelAccount 1
updateUserAccount 1
askToSpeak 0.13
leaveMeeting 0.14
overSpeaking 1
closeMeeting 1
setMeetingAgenda 0.14
setMeetingModerator 0.14
speakInMeeting 0.14
setMeetingTitle 0.14
deleteUserAccount 1
openMeeting 1
handover 1
deletePersonnelAccount 1

4.2. Auction Sales management system
The ASMS allows users to buy or sell items online.

A seller can start an auction by submitting a descrip-
tion of the item he wants to sell and a minimum price
(with a start date and an ending date for the auction).
Then a typical bidding process starts, and people can
bid on this auction. One specific feature of this system
is that a buyer must have enough money in his account
before bidding.

We obtained the following results for the ASMS.
The system flexibility value is very close to the previ-
ous example and the diagnosis allows determining that
only the Comment resource can support security evolu-
tions without restriction. Concerning the other re-
sources, UserAccount cannot evolve at all without
modifying the code. Only 16% of the possible evolu-
tions can be applied without problems to the Bid re-
source and 31% for PersonnelAccount. The activi-
ties/functions which are the cause of these rigidity
problems can be located more precisely with the last
table. For both VMMS and ASMS, we found implicit
mechanisms similar to the one presented in Figure 4.
Only δ+ evolutions were problematic, which means
that no hidden mechanism has been detected which
grants permission while a prohibition is expected. No
hidden mechanisms were detected, which may be ex-
plained by the fact the systems are new (not real “old”
legacy systems), the business model designs are object-
oriented, and that the PDPs are centralized in dedicated
classes. In such cases, the main rigidity is caused by
design constraints, i.e. implicit mechanisms, which
only restrict the δ+ evolutions (relaxing access).

Resource\View Flex.

rules
Rigid rules All Flexibility

Comment 5 0 5 1
Bid 1 5 6 0.16
PersonnelAccount 5 11 16 0.31
UserAccount 0 5 5 0

Function/Activity Flexibility
updatePersonnelAccount 1

246246246246

Authorized licensed use limited to: UR Rennes. Downloaded on March 21, 2009 at 05:03 from IEEE Xplore. Restrictions apply.

consultBid 0
consultComment 1
postComment 1
consultOldBids 0
updateBid 0
deleteBid 0.69
deleteComment 1
deleteUserAccount 0
consultPersonnelAccount 0
deletePersonnelAccount 0

4.3. LMS: Library Management System
The library management system is interesting since

it is fully flexible. In fact, based on the return of ex-
perience of the two first studies, we built it to be flexi-
ble: the business model contains a Role class and al-
lows the access to be fully controlled from the PDP.
The principle for building a business model with no
implicit mechanism may consists of making the access
control concepts explicit (reification) in the business
model.

5. Related work and conclusion
As far as we know, no previous studies focused on

the problem of automatically identifying im-
plicit/hidden access control mechanisms in legacy
systems. Xie et al.[10] propose a machine learning
algorithm to infer properties of XACML policies. This
approach focuses on the PDP and infers the policy
properties by analyzing request-response pairs. Their
approach does not consider the whole system (PDP +
system). As pointed out by [11], guiding the systems
security policy evolution is a challenging issue. Our
test-driven technique suggests that testing is a prag-
matic technique to detect and locate (either using ex-
haustive or security policy based testing) hid-
den/implicit security mechanisms which might make
the legacy evolution a nightmare for domain experts.
The approach is still dependent on the generation of SP
test cases. The issue of automating test generation can
be addressed using combinatorial [12] or computa-
tional intelligence algorithms [13, 14]. Future work
will focus on more complex evolution scenarios, in-
cluding merging several organizations policies.

6. References
1. D. F. Ferraiolo, et al., Proposed NIST stan-

dard for role-based access control. ACM
Transactions on Information and System Se-
curity, 2001. 4(3): p. 224–274.

2. S. I. Gavrila and J.F. Barkley. Formal Specifi-
cation for Role Based Access Control

User/Role and Role/Role Relationship Man-
agement. in Third ACM Workshop on Role-
Based Access Control. 1996.

3. R. Sandhu, E.J.C., H. L. Feinstein, and C.E.
Youman, Role-based access control models.
IEEE Computer, 1996. 29(2): p. 38-47.

4. A. Abou El Kalam, et al., Organization Based
Access Control, in IEEE 4th International
Workshop on Policies for Distributed Systems
and Networks. 2003.

5. F. Cuppens, N. Cuppens-Boulahia, and M.B.
Ghorbel. High-level conflict management
strategies in advanced access control models.
in Workshop on Information and Computer
Security (ICS'06). 2006.

6. Basin, D., J. Doser, and T. Lodderstedt.
Model driven security: From UML models to
access control infrastructures. in ACM
Transactions on Software Engineering and
Methodology (TOSEM). 2006

7. T. Mouelhi, Y. Le Traon, and B. Baudry,
Mutation analysis for security tests qualifica-
tion, in Mutation'07 workshop. 2007.

8. T. Mouelhi, Y. Le Traon, and B. Baudry,
Testing security policies: going beyond func-
tional testing, in International Symposium on
Software Reliability Engineering. 2007.

9. Briand, L. and Y. Labiche, A UML-based
approach to System Testing. Software and
Systems Modeling, 2002. 1(1): p. 10 - 42.

10. Martin, E. and T. Xie. Inferring Access-
Control Policy Properties via Machine Learn-
ing. in 7th IEEE Workshop on Policies for
Distributed Systems and Networks 2006.

11. Devanbu, P.T. and S. Stubblebine. Software
engineering for security: a roadmap. in Inter-
national Conference on Software Engineer-
ing. 2000.

12. A. Pretschner, T. Mouelhi, and Y. Le Traon,
Model-Based Tests for Access Control Poli-
cies, in International Conference on Software
Testing Verification and Validation. 2008.

13. B. Baudry, F. Fleurey, Y. Le Traon, and J.-M.
Jézéquel. Automatic Test Cases Optimization
using a Bacteriological Adaptation Model:
Application to .NET Components. in ASE'02
(Automated Software Engineering). 2002.
Edimburgh, Scotland, UK: IEEE Computer
Society Press, Los Alamitos, CA, USA.

14. B. Baudry, F. Fleurey, Y. Le Traon, and J.-M.
Jézéquel., From Genetic to Bacteriological
Algorithms for Mutation-Based Testing. Soft-
ware Testing, Verification and Reliability,
2005. 15(1): p. 73-96.

 Flexible Rigid rules System
flexibility

Results 12 22 0.34

247247247247

Authorized licensed use limited to: UR Rennes. Downloaded on March 21, 2009 at 05:03 from IEEE Xplore. Restrictions apply.

