
Int J Softw Tools Technol Transfer (2004) / Digital Object Identifier (DOI) 10.1007/s10009-003-0128-3

Model-based testing for real

The inhouse card case study

A. Pretschner1,∗, O. Slotosch2, E. Aiglstorfer3, S. Kriebel4

1Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland
e-mail: pretscha@inf.ethz.ch
2Validas Model Validation AG, gate, Lichtenbergstr. 8, 85748 Garching, Germany
3Giesecke&Devrient GmbH, Prinzregentenstr. 159, 81667 Munich, Germany
4BMW Group, 80788 Munich, Germany

Published online: 2 March 2004 – Springer-Verlag 2004

Abstract.Model-based testing relies on abstract behav-
ior models for test case generation. These models are ab-
stractions, i.e., simplifications. For deterministic reactive
systems, test cases are sequences of input and expected
output. To bridge the different levels of abstraction, input
must be concretized before being applied to the system
under test. The system’s output must then be abstracted
before being compared to the output of the model.
The concepts are discussed along the lines of a feasibil-

ity study, an inhouse smart card case study. We describe
the modeling concepts of the CASE tool AutoFocus
and an approach to model-based test case generation that
is based on symbolic execution with Constraint Logic
Programming.
Different search strategies and algorithms for test case

generation are discussed. Besides validating the model it-
self, generated test cases were used to verify the actual
hardware with respect to these traces.

Keywords: Test case generation – Model checking –
Symbolic execution – Behavior models

1 Introduction

This paper summarizes the results of a feasibility study
that was carried out by TUMünchen, Validas Model Val-
idation AG, and Giesecke&Devrient GmbH. Its purpose
was to determine the industrial applicability of a com-
bination of the CASE tool AutoFocus [31] with a pro-
totype for the automatic generation of test cases on the
grounds of symbolic execution with Constraint Logic Pro-
gramming (CLP) [36]. In this article, the application do-
main is that of smart cards. Generating test cases for
these systems turns out to be a tedious and difficult task,

∗ The work described in this article was carried out while the first
author worked at Technische Universität München.

and the potentials of automatization are to be assessed.
The main result of this study is that for this application
domain, the techniques in question – symbolic execution
with state storage and directed search – are convincing
candidates for further exploration, as expressed in subse-
quent projects of the authors’ institutions. These projects
target the generation of test cases for further chip card
applications such as the wireless identity module used
for card holder verification and cryptographic operations
such as computing digital signatures; the results have
been published elsewhere [43]. This paper is an extended
version of a workshop contribution [51] augmented by ad-
ditional material from earlier work [46].

Overview. The paper is organized as follows. Section 2
contains an introduction to our understanding of model-
based testing. The role of different models at different
stages of development is highlighted. In Sect. 3, we briefly
present the CASE tool AutoFocus for specification,
simulation, and validation of reactive systems. Section 4
then describes the case study. In Sect. 5, the core of this
paper, we describe and discuss our approach to the gener-
ation of test cases and present some experimental results.
An approach to solving the problem of storing sets of
states in the context of symbolic execution is presented.
The paper concludes with an assessment of the results
of this feasibility study that takes into account both the
modeling formalisms of AutoFocus and the generation
of test cases.

Related work. In large parts, the following discussion is
taken from earlier work [49].
The general schema of generating test cases is simi-

lar to Howden’s proposition [28]. The intricate question
of what should be tested [23, 65] remains unsolved. Zhu
et al. review the use of structural coverage criteria as test
case specifications in their overview article [67]. Ntafos
compares several control flow coverage criteria [41], and

A. Pretschner et al.: Model based testing for real

Frankl and Weyuker do so for data flow testing crite-
ria [20]. Vilkomir and Bowen provide a formalization of
control flow coverage criteria that can serve for the au-
tomatic generation not of test cases but rather test case
specifications [60]. Finally, random testing as test case
specification turns out to be powerful whenever input
data partitioning – and consequently structural coverage
– is not based on a priori knowledge of the likelihood of
errors in the different partitions [17, 25, 27].
The following discussion contains an overview of the

state of the art in test case generation techniques for re-
active systems. Test patterns and test case generation for
object oriented systems are deliberately not reviewed [2].

Synchronous languages. Much of the literature on test
case generation for reactive systems is related to the
French school of synchronous programming languages.
This is no coincidence: their precise semantics and opera-
tional model lend themselves well to algorithmic analysis.
The Lurette tool [54] aims at generating black-box

test sequences for Lustre programs. The idea is to encode
the notion of “relevant” behaviors (or test sequences) in
an observer node – basically, a set of constraints over
Booleans and real variables that take into account the di-
rectly preceding outputs of the programunder test. These
are used for the computation of new inputs to the pro-
gram: random values that satisfy all constraints.
The Lutess tool [15] follows the same basic ideas for

black-box testing invariance properties. I/O data types
are restricted to the Booleans; the “observer” (or test case
specification, respectively) is encoded as a BDD. At each
step, a value satisfying the constraints given by this BDD
is chosen. Lutess provides several strategies for property-
based, random, stochastic (environment) profile-based,
and behavioral pattern-based choice of inputs.
The GATeL tool [38] computes test sequences for Lus-

tre programs by solving systems of constraints. These
constraint systems directly reflect the Lustre dataflow
equations; heuristics are used for choosing which vari-
ables to instantiate and when. Constraint instantiation
may proceed at random; backtracking is provided by the
underlying CLP system. Structured data types as well
as recursive functions on the “transition” level are not
supported.

LOTOS/SDL/Z/(E)FSMs. The TGV tool [19] computes
test sequences for LOTOS and SDL specifications trans-
lated into Input/Output Labeled Transition Systems. Es-
sentially, the synchronous product of a test purpose and
the system under test is traversed in order to decorate
this product with verdicts and timers. The result is a test
graph (representing test sequences and their respective
verdicts). Data states in the IOLTS are not explicitly
taken into account.
Like TGV, some of the test case generators connected

to TorX [14] build on the so-called ioco testing theory [58]
for labeled transition systems. TorX is a test tool archi-
tecture that allows black-box batchwise and on-the-fly

testing of SDL, LOTOS, and Promela specifications. The
generation algorithm for on-the-fly testing is similar to
that of Lurette or Lutess in that they are generated along
with corresponding verdicts while traversing a product
of system (I/O) and test case. Rusu et al. explicitly ex-
tend IOLTs with variables [55]. The basic ideas of the
underlying test case generator are similar to that of TGV
(product of test case specification and system under test).
The motivation for this is not to explicitly encode a sys-
tem’s data state in an LTS that severely suffers from the
state space explosion problem.
The approaches based on IOLTS as an intermediate

language require the explicit computation of the specifi-
cations’ product automata (specifications tend to consist
of more than one process or, in the presented context,
component). In addition, it necessitates computation of
this product automaton with the test case specification.
In many cases, this leads to a large number of unsatis-
fiable transition guards that, during state space explo-
ration, have to be computed for each product transition.
Rusu et al. use PVS and HyTech for the expensive au-
tomatic computation of invariants that may enable one
to statically exclude these transitions [55]. Current work
concentrates on also including such static analysis pro-
cedures; note, however, that in the presented composi-
tional approach, the above-mentioned failing guards need
to be computed only once.
Peleska and Siegel explain how to use CSP models

to perform real-time testing [42]. Tool support is avail-
able; there is a focus on environment models that are
used for test case generation. The basic idea of using Hen-
nessy’s testing theory for real-time testing is also used
by Nielsen [40]. AutoLink [34] is a tool for generation of
test cases from SDL specifications. It works on LTS rather
than extended finite state machines. No symbolic execu-
tion for reducing the state space is performed.
Bourhfir et al. present different test generation tech-

niques for EFSM-based systems [3]. Chow [7] discusses
comprehensive testing of finite state systems where large
sets of test cases converge against proofs. Ural gives an
overview of different testing strategies for finite state ma-
chines [59]; Bochmann and Petrenko discuss their use
in the domain of protocol testing [62]. Among others,
Sadeghipour and Burton [6, 56] use the Isabelle theorem
prover for generating test cases from Z specifications with
extended finite state machines or StateCharts.

Model-checking-based approaches. The obvious idea of di-
rectly using counterexamples from (symbolic as well as
explicit-state) model checkers as test cases has been con-
sidered widely; see, for instance, the work of Ammann
et al. or, for the use of bounded model checking, that of
Wimmel et al. [1, 66].
While not directly aiming at testing, Edelkamp et

al. augment SPIN’s search strategies with directed
search [18]. Fitness functions are based on the de-
gree of satisfaction of formulas and on the euclidian

A. Pretschner et al.: Model based testing for real

distance between states (in the context of evolution-
ary testing and with a slightly different motivation,
this approach is also taken in the theses of Tracey
and Wegener [57, 64]). The structure of the never-claim
is taken into account for increasing efficiency when
model checking liveness properties. Conceptually, this
approach is quite similar to the presented efforts in
using best-first heuristics; the difference lies in the use
of constraints for symbolically executing several traces
simultaneously and for storing large sets of states as
well as in the methodology: it is not stated exactly
which properties are to be checked (i.e., how to de-
rive a set of finite test sequences for, e.g., an invariance
property).
The Java PathFinder project [61] deploys explicit

model checking technology for analyzing Java programs
with similar heuristics [24]; due to the infinite state space
of such programs, this is an approach similar to ours
(differing in the technology as well as the emphasis on
existential properties).

Constraint- and logic-based approaches, symbolic execu-
tion. The approach of Ciarlini and Frühwirth [8] is simi-
lar to ours (symbolic execution on the grounds of CLP),
differing from the presented work with respect to compo-
sitionality, the degree of automation, and the combina-
tion of state machines with specifications in a functional
language for guards and postconditions, i.e., the input
language. State storage is not taken into account.
Fribourg notes the resemblance of constraint solving

in Logic Programming and model checking of (infinite
state) systems [21]. Delzanno and Podelski identify logi-
cal implications in LP with transitions and, with a set of
sound widening abstractions, model check several infinite
state systems in this way [12]. Cui et al. use tabled reso-
lution [63] in XSB Prolog for the implementation of an
efficient model checker [11].
Symbolic execution for test case generation has been

discussed for a long time. Examples include the work of
Clarke, Howden, King, and Ramamoorthy et al. [10, 29,
30, 33, 53]. Because performance constraint solvers were
not readily available at the time, these systems often
needed help in terms of, for instance, prespecified paths.
Meudec uses CLP for symbolic execution of SPARK

(SPADE Ada Kernel) code to compute test cases [39].
The focus is neither on reactive nor on concurrent sys-
tems. In fact, SPARK is used for high integrity software
and deliberately does not support tasks. Concurrency
has to be implemented explicitly by writing appropriate
schedulers.
Legeard and Peureux use a constraint solver to com-

pute test cases from B specifications [35]. While similar
to the presented approach, there are some technical dif-
ferences. Constraints are not used for storing hitherto
visited states. Directed search does not seem to be im-
plemented. The authors’ experience is that these tech-
niques are necessary to get an acceptable performance,

even for small systems. The application domain is, as in
our case [43], that of chip cards.
Logic variables naturally lend themselves to be used

in symbolic execution and test case generation. Conse-
quently, there are many Prolog-based approaches. Den-
ney, for instance, abstracts recursion in Prolog programs
and heuristically defines equivalence classes on the result-
ing abstract flow graph that are then used as a basis for
symbolic execution [13]. Since Prolog is not typed, all
these approaches do not take into account types. Types,
however, are taken into account in the QuickCheck tool
for (functional) Haskell programs [9]. The basic idea is to
give a separate specification of a program and randomly
generate test cases. AutoFocus makes use of an eager
functional language; testing functional programs is thus
one part of the presented approach.
For the sake of simplicity, we synonymously speak of

test cases and test sequences as sequences of I/O traces of
a system. Terminological issues are discussed in Sect. 2.3.

2 Overview of model-based testing

Testing denotes a set of activities that aim at provid-
ing evidence that the behavior of an implementation does
or does not conform to its intended behavior. The latter
tends to be incompletely represented in usually informal
specification documents. Knowledge of these documents
enables test engineers to build a vague understanding of
what the system is supposed to do; they build a mental
model. It turns out that relying on these implicit models
renders the process of testing unstructured, barely repro-
ducible, and unmotivated in its details.

2.1 Model-based testing

The idea of model-based testing, then, is to use explicit
behavior models instead. They encode the desired behav-
ior and are used to derive test cases that are used for both

– validating the model, i.e., manually checking every
single test case, which is necessary if a further formal
specification does not exist, and
– verifying the respective implementation, which re-
quires bridging the gap between different levels of ab-
straction. This is because models are simplifications,
and they are meant to be simplifications in order to be
able to intellectually master the artifact in question.

In this paper, we consider deterministic reactive systems.1

For deterministic systems, test cases can be seen as se-
quences of input and output. The output of the model en-
codes the desired behavior of the implementation. After
suitable concretization, the model’s input is fed into the
implementation, and, after suitable abstraction, the im-
plementation’s output is compared to the model’s. This

1 More precisely, we consider deterministic models that can, in
some cases, be used to test even nondeterministic systems.

A. Pretschner et al.: Model based testing for real

allows an automatic assessment of whether or not the im-
plementation does what it is intended to do. Again, the
intended behavior is assumed to be given as a validated
model.
One may well ask why validating the model and sub-

sequently generating test cases for the implementation
should be more effective and/or efficient than validating
the system directly. We see the reason in the use of ab-
stract, or simplified, models. Simplified models are more
likely to be intellectually manageable than entire sys-
tems. In addition, using models means, for instance, that
automatic test case generation for regression testing be-
comes possible. On the other hand, missing information
must be inserted at some point. This is achieved bymeans
of driver components that take care of concretizing in-
put and abstracting output. By doing so, complexity is
distributed between the model and the driver. Clearly,
choosing adequate levels of abstraction is a challenging
task.
Then, rather than manually identifying single test

cases, the idea of model-based test case generation is to
use a selection criterion that describes a set of test cases,
aiming at testing a given test purpose (below we give
a more precise terminology). This selection criterion is
what we refer to as test case specification. The idea is
thus to work at a higher level of abstraction: specifying
whole sets of test cases instead of specifying each single
test case, one after another.

2.2 Models

Models for data and communication. In many areas of
software and systems engineering, models enjoy an in-
creasing popularity: in the domain of business informa-
tion systems, data models represented by class or entity-
relationship diagrams have successfully been used for
years. The OMG’s model-driven architecture promotes
the use of platform-independent models in order to ab-
stract from concrete communication infrastructures. The
idea is to (a) be able to develop systems without tak-
ing into account detailed communication issues right from
the beginning and (b) reduce coding efforts by relying on
generated code or code skeletons.

Behavior models. The idea behind models of embedded
systems is to take these ideas further and to use abstract
descriptions for the behavior of a system. When com-
pared to business information systems, embedded sys-
tems tend to exhibit a more complicated control flow
and less complicated data structures. Description tech-
niques for behavior include SDL, process algebras, state-
charts, finite state machines, or Petri nets. The problem
with behavior models is that people want them to be ab-
stract and concrete at the same time. They should be
abstract to become manageable, and they should be con-
crete to render automated code or test case generation
feasible. While data models are static, behavior models

obviously are dynamic, which substantially adds to their
complexity.
While one may well question the existence of under-

lying abstractions, the use of models in engineering em-
bedded systems is already comparatively widespread. In
the domain of continuous and mixed discrete-continuous
systems, description techniques and CASE support have
matured to a point where the generation of not only simu-
lation code but also production code has become a reality.
This is impressively demonstrated by tools like Matlab
Stateflow/Simulink with associated production code gen-
erators (Beacon or Targetlink) or ASCET-SD in the auto-
motive and avionics domains.

System and environment. Naturally, there are two kinds
of models: models of an implementation andmodels of the
environment. For test case generation, both are import-
ant: a model of the implementation specifies the intended
behavior. In itself, it can be used for the generation of test
cases. If it is sufficiently precise, then it can, at least in
principle, also be used for code generation. One could use
the same model for both generating production code and
test cases. The generated test cases, however, cannot be
used for testing the functionality of the implementation.
Instead, they may be used for testing code generators,
legacy code, or assumptions about the environment.
Models of the environment, on the other hand, are

used to enforce implicit assumptions in the model of the
implementation. This is usually necessary for simulation.
Since environment models encode a set of scenarios, they
can be used for test case generation, too, since they usu-
ally restrict the number of possible runs of a system.

Model and code. In this paper, we consider the model
of an implementation that has been built after the im-
plementation [50]. This was done in order to assess the
benefits and shortcomings of our test case generation pro-
cedure. In the domain of model-based testing, this kind
of scenario, however, turns out to be a rather important
one. This is the case if a new device is to be tested in
conjunction with existing legacy systems – just consider
building the networkmaster of, say, a multimedia bus sys-
tem in modern vehicles. In order to generate test cases
for the network master, we need models of the connected
devices (CD player, tuner, navigation systems) that faith-
fully represent the reactions of the actual systems. Models
of these connected devices are also necessary to stub the
actual devices if certain behaviors of the actual network
master are to be tested. The point is that models of con-
nected devices are environment models. In the case of the
chip card, such a model would be necessary to generate
test cases for the respective terminal: the model of the
chip card would then be an environment model.
If models are built before the system under test, they

serve the double purpose of specifications and basis for
test case generation. One must be careful, however, not
to generate both production code and test cases from

A. Pretschner et al.: Model based testing for real

a model – the system would be tested against itself. In
this case, code generators and assumptions on the envi-
ronment can be tested, i.e., the embedding of a system
into its context of hardware, operating system, and legacy
code. However, models for code generation must be very
precise, while models for test case generation (or as spe-
cifications) can be more abstract. Missing information
is inserted by the above-mentioned driver components
when the test is actually executed [43]. If models are ex-
ecutable, they combine the advantages of rapid system
prototyping with a more abstract treatment of relevant
issues. Different scenarios of model-based testing are dis-
cussed elsewhere [50].
We thus see the application domain of our approach

in testing models (as a debugging aid for error location)
as well as testing implementations (where the specifi-
cation is used as an oracle), and we do recognize the
need for structured tests of implementations. We do not,
however, oppose the view of Brooks [4]: “I believe the
hard part of building software to be the specification, de-
sign, and testing of this conceptual construct, not the
labor of representing it and testing the fidelity of the
representation.”

2.3 Terminology

A test case is a structure of finite input and expected
output. For deterministic systems, the structure is a se-
quence; for nondeterministic systems, it is treelike. In the
case of deterministic systems, a test case then is a se-
quence of input and output of a model. It represents the
intended behavior. A test case can represent many traces
of an implementation. This is because of jitter in the time
and value domains. In the chip card example of this pa-
per, for instance, timing behavior is not relevant at the
level of abstraction we consider. Jitter in the value do-
main is ubiquitous when continuous systems are taken
into account.
A test case specification is an intrinsic description of

a set of test cases (a test suite). Test case specifications
reflect a given informal test purpose. Test purposes in-
clude “requirement A”, “invariance property I”, or “cov-
erage criterion C”. Obviously, test purposes cannot di-
rectly be used for testing. Test case specifications render
test purposes amenable to the automatic generation of
test cases:

– “Requirement A” may be expressed as an incomplete
sequence diagram, and a test case generator inserts
missing signals. It may also be expressed as an entire
state machine that encodes all the relevant scenarios
of a protocol (an environment model). In this case,
the test case generator must, at random, for instance,
choose some of the traces of the model that is the re-
sult of composing the models of the environment and
the implementation.
– An “invariance property I” is difficult to test for
it describes infinitely many traces. A corresponding

test case specification may restrict them to a fixed
length, and it may, in addition, require that no state
of the model be entered twice when all test cases are
considered.
– In order to obtain a test suite that satisfies a cer-
tain coverage criterion, a set of test case specifications
must be provided. These specifications ensure, for in-
stance, that a test case generator will generate traces
such that each single statement is executed at least
once, or that each condition is evaluated in a certain
manner. For state machines, for instance, coverage cri-
teria are defined w.r.t. transitions or states. In prac-
tice, coverage criteria are applied to both models of
the system under test and models of the environment.
The latter encode sets of scenarios, and they reduce
the state space (see above).
– In addition to functional and structural (coverage) cri-
teria, test case specification may also be of a stochastic
nature. Test cases can then be generated at random or
with respect to a given probability distribution.

Test case specifications are thus bound to a certain test
case generator. In this paper, we consider test case speci-
fications that amount to finding certain states or signals
in system runs. In general, functional and structural test
purposes can be broken down into a set of such test case
specifications.
To summarize: rather informally, test purposes de-

scribe what is to be tested. Test case specifications for-
malize this in a manner such that a test case generator
is able to compute test cases. These test cases are traces
of the model, and since the model is an abstraction, they
may represent many traces of an implementation.
How good are the generated test cases? We only an-

swer this question indirectly: they are as good as one
wants them to be. They are as good as the test case speci-
fication is. If one considers a coverage criterion to charac-
terize a “good” test suite, then one can generate test cases
that satisfy the criterion. The test cases are then “good”.
The problem is that there is no generally accepted notion
of a “good” test suite. Note that stating that a test suite
is “good” if it identifies failures of a system is not satisfy-
ing either: for a perfect system, a “good” test suite would
not exist. Stating that a “good” test suite should identify
potential errors is a better approach, but how is this to be
quantified?
Testing and test case generation is more complicated

for nondeterministic systems. The reason is that the test
case may have to “react” to nondeterministic reactions of
the system under test. A test case then represents a whole
set of traces of the model, and it may well be given as
a state machine. We will not further discuss nondeter-
ministic models of an implementation in this paper. Note,
however, that it is sometimes possible to use determinis-
tic models for testing nondeterministic systems by coping
with nondeterminism at the level of the above-mentioned
driver components.

A. Pretschner et al.: Model based testing for real

3 AutoFocus

AutoFocus (autofocus.in.tum.de, [31]) is a tool for
the graphical specification and validation of reactive (em-
bedded) systems. In terms of its focus on behavior models
(automata), it is quite similar to a subset of the UML-RT,
but we consider its simple and formalized semantics to
be a prerequisite for validation techniques such as model
checking or testing.

Components. Systems are structured by decomposing
them into components. A component represents a sin-
gle unit of computation. Components time-synchronously
communicate via typed and directed channels. Each end
of a channel is connected to a port. When two compo-
nents are connected by a channel, we say that they are
composed. Composition of components is depicted in sys-
tem structure diagrams (SSDs). SSDs may be hierarch-
ical; boxes represent components, and arrows between
them represent channels. Our case study merely consists
of a single nonhierarchic component that is depicted in
Fig. 1 (the complexity of our example system lies in the
behavior, not in the structure; more complex studies are
described by the authors [43–45]). Components may be
associated with a set of local variables that are manipu-
lated by the component’s behavior; these local variables
form the component’s data space.

Behavior. Bottom-level components, i.e., components
that are not composed of other components, are equipped
with a behavior. Behaviors are specified by means of ex-
tended state machines: finite state machines that can
access input and output ports as well as local variables
of the (bottom-level) component they belong to. Figure 3
shows the pictorial representation of such an automa-
ton, a state transition diagram (STD). Circles represent
control states, and arrows between them represent transi-
tions. Transitions may fire if (i) certain pattern matching
conditions of the form channel?pattern on the input chan-
nels hold and (ii) their guard, a condition on input values
and the local data state, holds. Guards are expressed by
means of possibly recursive functional programs. Firing
then means to update local variables and write outputs.
This is achieved by means of so-called assignments.
Note that in Fig. 3 transitions are simply labeled since

the respective input statements, guards, and assignments
would clutter the diagram. An example of a transition
(from Fig. 3) is labeled with any possible command. It
has the following annotations:

isDF01Cmd(X);read?X;OK!Present;

Fig. 1. Interface of inhouse card

This transition executes if a value is present on input port
read, and the value (bound to the variable X) satisfies the
guard predicate isDF01Cmd. In this case, the transition
fires and the value Present is written to the output port
OK. In this case, no local variables are updated.

Data and functions. Channels are typed. Allowed types
include standard types like integers or booleans, but they
may also be user-defined in a Gofer-like functional lan-
guage. This enables one to concisely describe enumera-
tion or inductive types. The same functional language is
used for the definition of new, possibly recursive, func-
tions (using the keyword fun). These functions are used
in the guard or postcondition of a transition. Examples
of user-defined data types and functions are given in
Sect. 4.3.

Execution. AutoFocus components execute concur-
rently and simultaneously in a time-synchronousmanner.
The existence of a global clock ensures the existence of
so-called ticks. Before each tick, every component reads
its input ports. It then computes pattern matching con-
ditions and guards for all possible transitions. Possibly
nondeterministically, one of them is then chosen; if there
is none, the system idles, i.e., remains in its current (con-
trol and data) state. Recall that for test case generation,
in this paper we are only concerned with deterministic
models. In addition, the model computes new values for
local variables and output ports. During the (instanta-
neous) tick, it updates the respective variables and writes
new values to the output ports. Since channels connect
output to input ports and transferring messages does not
consume any time, these values are immediately available
for the connected component after the tick. The pro-
cedure then repeats. This results in a time-synchronous
communication scheme with buffer size 1.

Validation and verification. Besides the modeling capa-
bilities of AutoFocus, there are several tools for validat-
ing the specified models. These include simulators on the
grounds of code generators for languages such as C, Java,
Prolog, or ADA. Furthermore, model checkers (SMV,
NuSMV, µcke), propositional solvers for test case gener-
ation and bounded model checking (SATO, chaff) [66],
and theorem provers (VSE, Isabelle) have been connected
to the tool. In addition, tool integration with Rational
UnitTest and DOORS for requirements tracing exists.
Many Matlab-Simulink/Stateflow models can also be im-
ported intoAutoFocus.

4 The inhouse application

In this section we describe the inhouse application as an
example of the integration of a smart card as a security
device within an entire security framework. The inhouse
application is used industrially for demonstration only.

A. Pretschner et al.: Model based testing for real

However, in terms of its technical features, it can be re-
garded as a real-life application without any restrictions.
The inhouse card conforms to ISO 7816 [32], which pro-
vides hardware characteristics such as size of the card and
power supply, as well as the programmable interface for
the application, and the card’s life cycle.

4.1 Application

The inhouse card is a secure device within a security
framework. The application can be arbitrarily designed
to allow authorized access only, e.g., to a site, a building,
parts of a building, rooms, or terminal access of a com-
puter network. Each request for access is represented by
a virtual security state that is achieved on the smart card
by selecting a certain file of the chip card’s file system.
Roughly speaking, such a file system consists of directo-
ries (dedicated files, DFs) and elementary files (EFs). File
access is allowed after valid authentication of the card
reader terminal and/or verification of the card holder.
Card holder verification is achieved by a personal identifi-
cation number (PIN). The inhouse application described
in the following is intentionally kept as simple as possible.
Nonetheless, it also comprises the features also necessary
for more sophisticated security concepts.
The file system is the core of a smart card applica-

tion [32]. It provides all necessary information such as
card holder keys and secret keys. The file system of the
inhouse application used in the remainder of this paper
comprises five EFs (EF00–EF04) and the internal secret
file (ISF). The EFs are used for storage of application rel-
evant data, the ISF provides all data for the necessary
keys (keys 1–6). Each of the states in Fig. 3 corresponds to
a certain set of privileges or admissions the user is granted
once he has correctly authenticated himself.
The initial state MF00 of the smart card is entered by

selecting the root directory of the file system, after each
card reset or power off. As multiple applications can be
stored on a smart card, the respective application is to
be selected in this state. After selection of the file sys-
tems subtree where the inhouse card application is stored,
state DF00 is reached. State DF00 allows read access for
two of the data files (EF00 and EF04). The inhouse ap-
plication now checks the desired access rights of the card
reader terminal and the smart card by mutual authentica-
tion based on symmetric cryptography. Either user mode
or administrator mode is provided by the inhouse appli-
cation. All secret keys needed for the transition from one
security state to another are secured by a so-called error
counter. The keys for the mutual authentication proced-
ures allow 15 consecutive key errors, those for the PIN
procedures only 3. A reduced key error counter is reset
when the respective authentication is successful. An error
counter that allows no more consecutive errors locks the
transition to the subsequent security state.
If the terminal requests user mode access, state DF02

is reached by mutual authentication without any card

holder activity through key 1 and symmetric cryptogra-
phy (DES). DF02 allows read access for the data files
EF00, EF01, and EF04. The authentication procedure is
then followed by card holder verification through key 2,
the user PIN. The PIN transmitted through the card
reader terminal is compared by the smart card with the
key 2 stored on the card. If these match, security state
DF03 is entered. Security state DF03 allows read access
to all data files except for EF03, as well as write access
to EF01. A further successful mutual authentication with
key 3 triggers the transition from DF03 to DF05, which
allows read access to all data files as well as write access
to EF01.
If the terminal requests administrator mode, access

state DF01 is reached by mutual authentication in state
MF00 without any card holder activity through key 1
and symmetric cryptography (DES). DF01 allows read
access to the data files EF00 and EF04. The authenti-
cation procedure is then followed by card holder verifi-
cation through key 5, the administrator PIN. The PIN
transmitted through the card reader terminal is com-
pared by the smart card with the key 5 stored on the
card. If they match, security state DF04 is entered. Secu-
rity state DF04 allows read and write access to all data
files. In state DF04 a locked user PIN, key 2, can be un-
locked by successful verification of the personal unlock
key (PUK) stored on the smart card as key 6. With this
unlock procedure key 2 is changed and its error counter
reset to 3. A successful PUK procedure initiates the tran-
sition from security state DF04 to DF03, i.e., the adminis-
trator mode is changed to user mode after successful card
holder verification.

4.2 Interfaces

In the following discussion, we describe the model of the
card that we used for generating test cases. Its interface
and structure are shown in Fig. 1. The structure shows
the interfaces of the modeled component Card. It receives
commands from the environment via channel read and
sends return values via channel OK. The commands of the
inhouse card and their return values are described in the
specification manual. In the following discussion, how-
ever, we restrict ourselves to giving an abstracted version
of the actual card that, after suitable transformations,
was also used for the computation of test cases for the
actual hardware. This requires translating the abstract
commands into byte strings that the chip card processor’s
API is able to process. This step also includes inserting
correct (or, depending on the test case, incorrect) PINs.
In this case study, we concentrated on testing the actual
implementation.
Note that we consider the use of fairly abstract behav-

ior models as one of the keys to successful model-based
testing. Models are supposed to be simple, in order to
be understandable, and in order to be amenable to au-
tomatic test case generation. Missing information is in-

A. Pretschner et al.: Model based testing for real

serted by means of driver components. Complexity is thus
distributed between the model and the driver component.
For instance, we used the following – manually identi-

fied – equivalence classes for the verify command, an
integral part of the verification protocol:

data AbsCmds =

Verify_A | // correct state & PIN

Verify_B | // wrong parameters

Verify_C | // wrong state

Verify_D; // wrong PIN.

This command is sent from the reading device (the ter-
minal) to the card. These equivalence classes encode not
only the command itself as well as its parameters, but
also the return value from the card: Verify_A denotes
sending the command with correct parameters and return
value OK.
However, since in AutoFocus all elements of an in-

put type can be entered at any time, it is necessary to
differentiate between allowed cases and impossible cases.
For instance, since a successful verify command cannot be
entered in every state, the equivalence classes Verify_A
and Verify_C are disjoint, i.e., they cannot be tested in
the same states. Hence the modeling task included the ex-
clusion of some commands in some states. Therefore, the
model sends signals of the single valued type data Signal
= Present to the environment to indicate that the re-
ceived command is admissible. For the generation of test
sequences we are only interested in admissible sequences,
i.e., in sequences that accept every command with a sig-
nal Present on the return channel OK.

4.3 Behavior

As mentioned above, the inhouse card is used for access
control. The user puts the card into a card reader, and
with a correct PIN he can access the respective part of
the building. The card also has a superuser mode (with
a Personal Unblocking Key, or PUK). Authentication is
achieved between card reader and (superuser) terminals.
Authentication is based on encryption of random num-
bers (so-called challenges). All (different) authentications
follow the same scheme. Using our command equivalence
classes, the simplified sequence is depicted in Fig. 2.
There are six counters that count the number of au-

thentication attempts (for different situations). These
counters, K1C:Int, ..., K6C:Int, are declared as local
variables of component Card. Different maximum values
are declared for the counters as constants to model the
fact that the PIN can be entered three times wrongly and
the PUK 14 times before they are blocked (the maximum
value for the first counter, for instance, is declared by
const startK1 = 14).
The description of the behavior consists of several

main control states (called “authentication” states in
the requirements specification) and transitions between
them. Some transitions (for instance, the reset transition)

Fig. 2. Authentication sequence (simplified)

change the main state directly, whereas the authentica-
tion process requires two intermediate states between the
connected authentication states (the “challenge” – ran-
dom numbers – and some data have to be transferred).
In principle, these intermediate states could be mod-

eled as control states (ovals) in the state transition dia-
gram. However, this leads to a large number of control
states and to many reset transitions (for each intermedi-
ate state). This is why we chose to encode these control
states as data states that are changed by the postcon-
ditions of the respective transitions ([51] contains a de-
scription and comparison of both approaches to model-
ing). The intermediate states are encoded into a variable
AS:AuthState of the type

data AuthState = Ready | GotData | GotChallenge

(cf. Fig. 3). That is to say, control states are encoded as
data states. This reduces the number of control states and
reset transitions to the application states, and the STD
is now very similar to the informal diagram in the given
requirement document. In this case, the transition that
takes care of the identification of the terminal is

AS == GotChallenge && K1C>0; read?MutAuth_A;

OK!Present; AS=Ready; K1C=startK1.

The last modeling task is to differentiate between the
possible and the impossible commands at the different
states. This is done via the “any possible command” tran-
sitions (Fig. 3):

isDF01Cmd(X); read?X; OK!Present.

This transition acknowledges all commands that satisfy
the predicate isDF01Cmd with the value Present. The
predicate isDF01Cmd describes the commands that are
admissible within the authentication state DF01Admin.
The predicate is defined by

fun isDF01Cmd(ReadBin_A) = True

| isDF01Cmd(UpdateBin_E) = True

| ...

| isDF01Cmd(X) = False; // no others.

This denotes that in these states successful reading is ad-
mitted (described by the equivalence class ReadBin_A),
whereas updating results in an error (command equiva-

A. Pretschner et al.: Model based testing for real

Fig. 3. Inhouse card: authentication with data states

lence class UpdateBin_E). For every state such a pred-
icate is defined. This allows a flexible modeling process
since every command can be allowed or excluded explic-
itly without changing the layout and the transitions of the
STD.

5 Test case generation

In this section, we describe our approach to test case
generation with symbolic execution on the grounds of
Constraint Logic Programming. We restrict ourselves to
a coarse description of the basic ideas; details of the trans-
lation [36, 37] as well as the embedding in an incremental
development process [48] have been discussed elsewhere.
It turns out that test case generation for functional

and structural test case specifications boils down to find-
ing states in the model’s state space (elsewhere [47], it is
shown how test cases can be generated that satisfy the
MC/DC coverage criterion. The idea is to first generate
a set of test case specifications that enforce certain vari-
able valuations and then generate test cases for them.

The variable valuation is nothing but a state). The aim
of symbolic execution of a model is then to find a trace –
a test case – that leads to the specified state. Since it is
in general impossible to completely test universal proper-
ties (properties that can be proved only with a possibly
infinite set of infinite witnesses) at the level of the imple-
mentation, we take it for granted that the test engineer
has transformed universal properties into such existential
– “find state σ” – properties.

5.1 Test case generation

The basic idea behind our algorithm is a symbolic exe-
cution of the model. To this end, we generate a set of
predicates, PK , for each automaton,K. Recall that auto-
mata only occur in bottom-level components. Each pred-
icate in PK encodes one transition, and its arguments
thus contain the state and the destination state. Further-
more, the predicates’ arguments contain formal param-
eters for input and output as well as for local variables.
Guards and postconditions are encoded in the predi-
cate’s body, and they are evaluated to see if the encoded

A. Pretschner et al.: Model based testing for real

transition may fire or not and how local variables are
updated.
In a nutshell, each transition of a bottom-level com-

ponentK – equipped with a state machine – is translated
into a formula (a CLP program)

stepK(�σsrc ,�ι, �o, �σdst)⇐ guard(�ι, �σsrc)∧assgmt(�o, �σdst)
(1)

indicating that, given input �ι, the component may pro-
ceed from control and data state �σsrc to �σdst by out-
putting �o, provided the transition’s guard holds true. The
successor state is determined by the transition arrow’s
destination and an assignment that updates the compo-
nent’s data state (the postcondition). Guards and assign-
ments may contain arbitrary constraints. All these transi-
tion predicates form the set PK .
Functional expressions in guards and assignments are

easily translated into respective predicates. These pred-
icates cannot directly deal with nested function calls,
which is why they must be flattened. In essence, this is
what happens when, say, nested arithmetic expressions
are compiled into assembly language. Since the predicates
allow recursive calls, recursion can be translated directly.
AutoFocus state machines are input enabled with

an idling semantics. That is to say, if no transition from
a given state can fire for a given output, then the system
remains in its current state. For code generation purpose,
this is easily implemented by means of an “else” case.
For test case generation with Prolog, this idling condition
must be computed explicitly. Even though there are some
interesting consequences with respect to the use of nega-
tion in CLP, we omit its translation here.

5.1.1 Composition

When composing a set of components, C, by putting them
in a new SSD and connecting their ports, a driver predi-
cate is needed. This predicate subsequently calls the pred-
icates that correspond to the state machine of each of the
elements of C. Furthermore, it takes care of the communi-
cation between two components. ComponentsK that are
not leaves of the component hierarchy and thus consist of
subcomponents k1, . . . , kn then recursively translate into

stepK(�σKsrc ,�ι
K , �oK , �σKdst)⇐

n∧

j=1

stepkj (�σ
kj
src ,�ι

kj , �okj , �σ
kj
dst),

(2)

where internal channels, i.e., channels that connect sub-
components, are encoded as local variables of K and be-
come parts of σKsrc and σ

K
dst .

This ensures that the interface of the driver predicate
stepK is, in terms of its structure, exactly the same as
that of any bottom-level component. Rather than storing
pairs of values before and after firing a particular transi-
tion (or rather a set of them, since components fire sim-
ultaneously), we store the complete histories; this is done

since we are interested in complete traces that are used
as test cases. Histories are lists that contain the values of
the particular channel or variable at each single tick. In
this way, it is possible to update local variables or out-
put channels with a value by simply concatenating this
very value to the respective history list (recall that, when
containing free variables, parameters in Prolog are always
transient, i.e., the “free” parts are passed by reference).
The predicate’s head thus contains a tuple of lists for
input histories, a tuple of lists for local variables, and a tu-
ple of lists for output histories. The components of the
tuple correspond to the involved system’s components;
and since there may be more than one input/output chan-
nel or local variable, these again usually are tuples.
This simple translation scheme only works because of

the simple time-synchronous communication semantics of
AutoFocus. When necessary, we model asynchronous
communication by explicit buffer components.

5.1.2 Execution and search

Symbolic execution now means successively calling the
top-level driver predicate. It usually is a good idea to
restrict the maximum possible length of the system
runs. The exact number can be crucial in terms of effi-
ciency [48], and its determination is an important task
(which we do not consider further here). The “granular-
ity” of the symbolic execution can vary. For instance, the
computation of a guard can be performed by actually call-
ing the predicates that correspond to its flat translation;
it can, however, also be delayed.
Stimuli that are known (e.g., if they form part of a test

case specification) can be inserted in the input history
list; the same holds true for the values of output chan-
nels or internal variables. The backtracking mechanism
of the underlying CLP engine ensures that, if potentially
more than one transition of a particular automaton can
fire, all of them are tried. This also ensures that if a pre-
determined output cannot be achieved by choosing a par-
ticular transition, all other possible transitions are tried.
In addition, the use of free (i.e., unspecified or unbound)
variables in Prolog enables one to compute test cases: un-
specified stimuli in an execution are encoded by those
free variables. The choice of a transition by the respec-
tive driver predicate, scheduled by Prolog’s backtracking
mechanism, then binds this variable to a concrete value.2

In this way, completely instantiated system traces are
computed. Thus far, what happens is an explicit gener-
ation of the system’s state space, including the traces that
led to each state.
However, this is too simple to work. The problem with

Prolog’s depth-first strategy is that, whenever possible, it
executes transition predicates in the same order as they

2 Choosing a good ordering for the transitions gives rise to dif-
ferent search strategies like best-first on the grounds of appropriate
fitness functions [46].

A. Pretschner et al.: Model based testing for real

were written down. This may result in loops because pre-
viously visited states can be visited again. In the extreme
case, if two transitions emanate from a control state, the
first of which leads to this very state, the second transi-
tion will only be taken when backtracking is performed.
The problem becomes obvious if traces of a length of
10 000 or more are taken into account. We implemented
three solutions to this problem. One consists of simply
memorizing for each state which transition was last taken
out of it, and when the state is reentered, another transi-
tion is chosen. In this sense, transitions are “interleaved”
over time. Our second implementation is based on prob-
abilities for transitions that influence the choice of which
transition is tried out first. As with probabilistic models
in the Cleanroom Reference Model [52], the source of the
transition probabilities is usually rather esoteric. How-
ever, in cases like the one mentioned below, it is a good
idea to try a 50–50 probability without knowing what
happens in the real system. The third approach relies
on storing states and preventing hitherto visited states
from being visited again (for an unlimited length of the
generated traces, this does not result in incompleteness
because of backtracking). This is described at the end of
the next paragraph.

5.1.3 Constraints

Consider the guard of a transition that merely requires
a local variable to be inside a certain range at a given
point in time, t, for instance, vt > 3.2. If the local vari-
able vt had been hitherto unbound, it could, in principle,
be bound to a value such as 3.2001. However, this instan-
tiation is not necessarily essential: the system may well
continue its execution with the knowledge that vt > 3.2.
This kind of information that accompanies the compu-
tation is called a constraint. If, later on, for a particular
trace, it turns out that vt should indeed have been greater
than, say, 5.0, the corresponding constraint is updated to
vt > 5.0. However, it is also possible that later on the par-
ticular trace will turn out to be impossible with vt > 3.2,
and that rather vt = 0 would have been necessary. In such
a situation, the computation is discarded: the particular
constraint is not satisfiable.
The bad news in this case is that obviously something

went wrong, and backtracking is to be performed. The
good news is that we do not need to continue the compu-
tation, for we know that the constraint on vt cannot be
satisfied. This results in an a priori pruning of the search
tree, as opposed to the usual generate-and-test strategy
so common in Logic programming.
In order to use constraints for pruning the search tree,

some additional steps have to be taken. Since AutoFo-
cus allows for the definition of (recursive) data types
and functions that are used in guards and postcondi-
tions, we have to translate all data type declarations
and function definitions into some kind of constraint (in-
cidentally, > is a predefined constraint in most CLP

systems). This is done by means of Constraint Handling
Rules – CHR [22] – a metalanguage for constraint han-
dlers (constraint handlers are those parts of the system
that take care of checking satisfiability of constraints).
Function definitions and calls are compiled into flat (ea-
ger) constrained predicates; since the generation of test
cases does involve function inversions, we introduced an
upper bound for the number of recursive calls in order
to avoid infinite loops. Lazy evaluation is achieved by
means of (delaying) constraints. As mentioned above,
the “granularity” of symbolic execution can vary: con-
straints can be restricted to arithmetic comparisons,
but they can also contain arbitrary delayed function
calls.

5.1.4 Storing sets of states

Constraints are used not only for representing sets of I/O
but also for space-efficient storage of sets of states where
previously visited states cannot be visited a second time.
Since test case generation relies on symbolic execution
where sets of states rather than single states are enumer-
ated, it is thus necessary to check for inclusion of sets
of states: if all ground instances of the representation of
a set of states are included in the set of all ground in-
stances of a previously stored representation of a set of
states, then the further set may be ignored. This is be-
cause it is handled when the successors of the larger set
are computed. From the point of view of validating the
model, this is not problematic; from the point of view of
testing an implementation, this means that traces involv-
ing states that have been visited more than once will not
be executed. Unfortunately, in practice it often happens
that exactly the same sequence of inputs does not yield
an error if executed n times; the n+1-th time, however,
an error occurs. The problem here is that models are ab-
stractions of implementations, and one state of the model
may well correspond to a multitude of states in the im-
plementation. The problem can be alleviated by storing
sequences of states rather than single states.
It turns out that checking for state inclusion is effi-

ciently implementable in CLP. Let σ = (σ̃, Cσ) denote the
representation of a set of states. σ̃ denotes the syntactic
part, e.g., σ̃ = c(X) for a constructor c and a variable X,
and Cσ denotes a set of constraints over the variables of
σ, e.g., Cσ = {X ∈ IN :X > 3}. [[σ]] then denotes the set of
all ground instantiations of σ. In the example, this means
that [[σ]] = {c(4), c(5), . . . }. For technical reasons, we do
not check for inclusion but rather for its negation. Let
≤ denote the usual term ordering; mgu(ν̃,σ̃) denotes the
most general unifier of two terms ν̃ and σ̃. · denotes the
complement of its argument. Because of [[ν]] �⊆ [[σ]]⇔ [[ν]]∩
[[σ]] �= ∅ for a new set of states, [[ν]], and a previously vis-
ited set of states, [[σ]], it can be shown that [[ν]] is not
a specialization of [[σ]] (and thus must be stored) iff3

3 We assume the cardinality of [[ν]] to be greater than one.

A. Pretschner et al.: Model based testing for real

Cν ∧
(
σ̃ ≤ ν̃⇒mgu(ν̃,σ̃)(Cσ ∧Cν)

)
,

which is trivial to implement in CLP. Cσ denotes the
negation of a set of constraints. For equalities and in-
equalities, this is syntactically easy to achieve (replace =
by �=, ≥ by <, etc.). In essence, each visited set of states
must be compared to all previously visited sets (repre-
sented as predicates; combination of sets into one single
predicate is possible).
It is also possible not to check for the negation of in-

clusion but instead subtract the set of all previously vis-
ited states from the currently visited one. We omit this
subject for the sake of brevity. The approach is concep-
tually similar to memoing [63], where multiple calls to
the same predicate are prohibited. We do not memo at
the level of predicates but rather at the level of explored
(sets of) states, and we include general constraints in this
scheme.

5.1.5 Constraint instantiation

The last piece of the puzzle is concerned with an answer
to the question of what to do with remaining constraints.
The point is that a constraint such as it > 3.2 for an in-
put value it for a given tick t may lead to an execution
trace that satisfies the given test case specification (for in-
stance, a particular coverage criterion). The test case spe-
cification can thus be satisfied without further restricting
the value of it. In other words, we have just computed
not one test sequence but a whole set of them: all those
traces where input i at time t is greater than 3.2. This
kind of situation naturally occurs with other constraints
for (user-defined) types other than the real numbers. The
question, then, is to choose one value for it out of the in-
finitely many possibilities for a significant test case. In
this kind of situation, heuristics have been developed (in
this case, so-called equivalence class heuristics: one would
try three values, 3.1, 3.2, and, say, 5.0; this also shows how
our approach extends to limit tests over time). Naturally,
clever instantiations are a major problem in the gener-
ation of test cases.

5.1.6 Integration tests and compositionality

Our approach is compositional in that test cases for
subsystems can be used to generate test cases for an
integrated system [47]. This applies to (i) different com-
ponents within one system, (ii) different increments of
the model of a system, and (iii) different models – re-
ferring to the above example, this means that test cases
for the chip card yield test cases for the terminal, and
vice versa. In terms of different increments, automatic
test generation technology naturally lends itself to its
application in regression testing [48]. With suitable man-
agement tools, test cases that have been derived for
an earlier increment may be used for regression testing

later ones. Note that we do not give a suitable definition
of “increment” here that extends beyond “additional
functionality”.

5.2 Discussion

At the level of exploring the model’s state space, our ap-
proach is similar to explicit-state model checking. We do,
however, compute with sets of states rather than single
states, as is done in Spin or Murφ. The relationship be-
tween (C)LP and model checking of (infinite) systems
has been the subject of recent work [5, 11, 12, 21]. While
the intention of testing and model checking is different in
terms of intended completeness of the result, we see one
major advantage of our approach in the higher flexibility
in generating counterexamples.
Methodologically, there is a fundamental difference

between testing and model checking. First, model check-
ing is concerned with models, and testing is usually con-
cerned with implementation. In order to check, for in-
stance, assumptions on the environment, testing must
complement technologies that rely on models only.
As a consequence, model checking allows the assess-

ment of infinite sets of model traces in finite time. Actual
implementations of embedded systems, however, must
be verified or validated by means of finite sets of finite
traces. The problem is that in general a, say, invariance
property cannot be validated by a finite trace: witnesses
of such a property are transition systems that usually
encode infinitely many infinite traces. It is thus neces-
sary to approximate such universal properties by prop-
erties that can be proved by finite witnesses (in CTL
terminology, EF properties). This is why our test case
generator is not equipped with mechanisms for check-
ing universal properties (e.g., double stacks for liveness):
we consider EF properties as the starting point for test
case generation. It turns out that coverage-based test
criteria as well as scenarios are expressible in terms of
them [47].
The use of constraint languages is also crucial in the

intended interactivity that we consider the key to scal-
ability of our method: simplifying the model by exclud-
ing certain system runs, transitions, or states is achieved
most easily. In terms of performance, the predetermined
maximum length of the generated test cases plays an
important role: other work contains an example where
changing the maximum length by as little as 20 results
in a change of as many as four orders of magnitude
in terms of time needed to compute the specified test
case [48].
Since the reason for this behavior is Prolog’s search

strategy, better performing strategies for an intelligent
choice of transitions (or, more generally, better search
strategies than depth-first search with simple prevention
of loops or probabilistic approaches) are thus needed. We
have shown elsewhere how the definition of fitness func-
tion can be used to direct the search that, for certain

A. Pretschner et al.: Model based testing for real

applications, turns out to yield considerable gains in per-
formance [49]. One application of this scheme is discussed
in the next section.
A yet unanswered question is that of appropriate in-

put languages for test case specifications. Constraint lan-
guages (e.g., CHR) as an input language certainly are not
always the best choice. Graphical input languages, such
as sequence diagrams or automata, are probably better
suited for a certain class of test cases. However, constraint
languages like CHR seem to be a good choice as back end
of such interfaces.

5.3 Application

We generated several test cases for this example that,
after the necessary concretization, were fed into the ac-
tual hardware. The objective was to derive test sequences
for several coverage criteria (states, transitions) as well
as for functional purposes. Memory requirements for the
generation of all test cases was smaller than 10MB; we
omit the details. All measurements were performed on
a Pentium III/850MHz, 512MB RAM.
One of the test purposes was to achieve control state

coverage. Our system computed the corresponding test
cases in < 0.01 s for a given maximum length ranging
from 10 to 100. The constraint specifying this test case is
a macro cover_states that (automatically) rewrites to
a set of membership constraints on the history of states
being visited during execution.
For the sake of random testing, we made the system

compute a test sequence of length 1000 (which does make
sense with the interleaving of transitions explained in
Sect. 5.1.2). The first sequence took 7.8 s to compute; sub-
sequent sequences could be obtained immediately.
Table 1 shows some experimental data for functional

tests that required the counters to reach zero (the mean-
ing of the asterisk is explained below).
For counters 1 and 2, the system could quickly deter-

mine the required test sequences. For counters 3, 4, and 6,
this was not the case; we stopped computations after 2 h.
The reason for this behavior was easily found: the num-
ber of transitions emanating from each state is, with the
strategy of interleaving transitions, too large. For coun-
ters 3 and 4, for instance, it is necessary that between two
decrements exactly the same (looping) transitions have to

Table 1. Required time

cnt # from–to max steps time [s]

2 3–0 11 8.8
3 14–12 15 41.3
3 14–0* 10 .52
4 14–12 15 132.4
4 14–0* 43 .345
6 15–14 8 84.96
6 15–0* 20 .1

be taken. With interleaving, it is not exactly a surprise
that we did not find the test case.

5.3.1 Manual intervention

In the first step, we thus made the system decrement
the respective counter by 1 (or even 2), a task the sys-
tem could handle. Since we knew that in order to compute
a trace where the counter reaches zero, it is sufficient
to remain in the same control state, i.e., oval (because
of the above-mentioned looping transitions), we simply
specified the respective test case as follows: first, make
the system decrement the respective counter by one, and
then remain in the same state until the counter reaches
zero. We thus “sliced” the model by ad hoc restricting
ourselves to one particular state (with all looping transi-
tions enabled). In this way, it was again simple to finally
compute the test sequences; the lines in the table with
an asterisk (∗) indicate that we helped the system in the
described manner. In the following section, we show how
storing states makes the automatic computation of these
test cases possible.
It is noteworthy that with the other selection strategy

of choosing transitions by means of given probabilities we
were able to find all test cases without “helping” the sys-
tem. In a way, however, this is a workaround: if the loop
transitions in questions are given exorbitantly high prob-
abilities because we know what the problem is, what we
actually do is no different from forbidding certain states
or transitions. This shows, however, that with knowledge
of the system it is possible to even compute “difficult”
systems, and, again, we consider the possibility of interac-
tion as the key factor in scalability of our approach as well
as in its graceful degradation.

5.3.2 Automatic generation

In the following discussion, we show the fully (and al-
most instantaneous) automatic determination of the test
cases in Table 1 with a combination of best-first and tabu
search where, as mentioned above, the fitness function is
defined by means of shortest paths in the state machine
and is implicitly implemented by a transition reordering.
Tabu search is implemented by storing sets of already vis-
ited states (cf. Sect. 5.1.4). These results are taken from
earlier work [46].

Best-first. As we will argue quantitatively in the follow-
ing discussion, the ordering in which transitions from
a given (control) state are taken is crucial for the per-
formance of the test case generation. This issue becomes
increasingly important when there are many transitions
from that state. In some cases, it is possible to define
a fitness function that with respect to a test case spe-
cification computes the (approximately) best transition
to be taken. In the case of control states to be reached

A. Pretschner et al.: Model based testing for real

or transitions to be taken, this fitness function is com-
paratively easy to define: from each control state c we
compute the shortest path pc to reach the desired des-
tination state s. We then implement a best-first search
by defining the transition ordering for state c as follows.
Transitions that connect c with the second state in pc are
tried first. For the remaining transitions emanating from
c, we choose those that lead to a state d satisfying the re-
quirement that there be no d′ where the length of pd′ is
strictly shorter than that of pd.
Iterating this procedure leads to a transition ordering

that first tries transitions from c that are on pc. It then
tries those transitions that lead to states with minimum
shortest paths to s, then those that lead to states with
the second minimum paths, etc. This algorithm works
because each subpath of an optimal path is itself opti-
mal. The advantage of this procedure is that best-first
strategies based on the Euclidean distance between con-
trol states can be encoded statically. In [49] we present
a more general approach that takes into account arbitrary
distance measures on the control and data states that are
computed at runtime.
In our example, we are interested in optimal order-

ings with respect to reaching state DF00Init for decre-
menting cnt4 and to reaching DF04Admin in order to
decrement cnt6 . This is because transition noAuth4 is
responsible for decrementing cnt4 and transition noAu-
thCH is responsible for decrementing cnt6 . We thus use

Table 2. Search strategies for cnt4 → 0

depth strat. time stet sets memory

150 → .5-.8-178 46-333-9470 185-512-14546
→: σ/µ 53/22 2852/1505 4381/2312

rP .8-102-4724 232-7405-52403 356-11374-80491
rP:σ/µ 1798/1298 20286/18539 31180/28446
rT 2.6-153-621 653-8773-17693 1003-13476-27177

rT:σ/µ 264/336 6849/10918 16771/10520

300 → .5-.6-377 56-79-14440 86-122-22180
→: σ/µ 113/38 4297/1552 6560/2383

rP 1-2.9-2432 354-956-37282 544-1467-57265
rP:σ/µ 915/534 14284/10035 21941/15413
rT 1.5-1.7-93 330-398-6907 507-612-10609

rT:σ/µ 30/16 2253/1570 3460/2411

400 → .6-.7-4706 42-112-46366 65-172-71218
→: σ/µ 1111/371 13853/4808 21278/7385

rP 1-2.9-2432 354-956-37282 544-1469-57265
rP:σ/µ 915/534 14284/10 21941/15414
rT 1.3-1.7-3.3 254-386-945 390-593-1451

rT:σ/µ .7/265 229/668 352/404

500 → .6-.7-2900 70-140-41984 108-215-64488
→: σ/µ 870/291 12527/4403 19242/6764

rP 1-1.2-3083 410-471-43107 630-724-66213
rP:σ/µ 924/378 13434/6667 20635/10240
rT 1.4-1.7-285 243-444-12154 373-682-18669

rT:σ/µ 1.4/30.2 243/1640 373/2519

the algorithm for reaching states as one that is capable
of finding good transition orderings for reaching transi-
tions; as a further step, we move transitions noAuth4 and
noAuthCH in front of the respective transition sequences.
Note that this simple heuristics is, in general, appli-

cable only to control states, as the number of data states
may be too large. When the system contains data states,
it is only a heuristic. This is the case in our example.

Breadth-first. The desire to get the shortest possible
traces makes breadth-first search enter the game as it
guarantees traces of minimum length. However, breadth-
first search severely suffers from memory explosion (at
least if we do not employ symbolic representations such as
BDDs). For the sake of a smaller memory allocation, we
did not store the traces in the experiment. It is notewor-
thy that the architecture of our system does not necessi-
tate the implementation of a naive metainterpreter, as is
usually done in breadth-first implementations in Prolog.
We do not provide any numbers here [46].

Experiments. We consider two functional test case speci-
fications, namely, decrementing counters cnt4 and cnt6 .
Tables 2 and 3 summarize the results where sets

of states are not visited twice. The following strategies
were used: left-to-right (→), randomized processes (rP)
and randomized threads (rT). → is a strategy where
the transitions that emanate from a control state are

A. Pretschner et al.: Model based testing for real

Table 3. Search strategies for cnt6 → 0

depth strat. time stet sets memory

50 → (7) 13.4-72.3-269 2485-6349-12445 3817-9752-19116
→: σ/µ 80/85 3600/5686 4731/9323
rP (5) 58-242-346 5282-11578-13909 5282-11578-13909
rP:σ/µ 95/219 2962/13909 4551/21365
rT (4) 52-100-389 5072-7044-13756 7790-10033-21129
rT:σ/µ 149/224 3824/9815 6024/14880

100 → (8) .6-2.6-1026 23-745-24587 35-1145-37766
→: σ/µ 359/202 8861/6133 13611/9420
rP (9) 19-1057-2124 2955-24851-35255 4539-38171-54151
rP:σ/µ 827/930 12880/19192 19783/29479
rT (8) 30-96-1173 4091-7150-23534 6284-10982-36148
rT:σ/µ 402/319 6662/10445 16044/10233

150 → .5-64-1498 47-5803-28363 72-8914-43566
→: σ/µ 442/274 8385/8920 12880/13701

rP 3.9-317-1714 1156-12643-31422 1775-19419-48264
rP:σ/µ 620/656 11536/15734 17719/24167
rT 3.2-145-1113 928-8816-22928 1426-13541-35218

rT:σ/µ 318/267 6345/9656 9747/14832

200 → .9-70.5-685 349-6046-20271 536-9287-31137
→: σ/µ 271/285 7487/10439 11500/16035

rP .9-10.4-196 357-2179-10513 549-3347-16148
rP:σ/µ 64/48 3268/3888 5020/5973
rT 3.4-129-1057 1002-8229-22532 1539-12640-3904776

rT:σ/µ 413/355 7949/1.02E04 1.5E06/665951

300 → .7-46.3-9122 244-4622-59001 375-7099-111096
→: σ/µ 2765/1353 17677/12686 32968/22107

rP 96-1225-2314 7074-25550-35256 10866-39245-54153
rP:σ/µ 701/1287 8894/24983 13660/38374
rT 22-30-427 3354-3699-15094 5152-5682-23185

rT:σ/µ 165/149 4724/7352 7257/11294

tried in an arbitrary but fixed order. rP denotes a strat-
egy where ten processes are run in parallel and com-
putation stops when the first process has succeeded.
rT denotes a strategy where ten threads run in paral-
lel and where the set of stored states is shared by all
threads. → is different from the other strategies in that
the ordering in which transitions are tried is always the
same (i.e., one random ordering is fixed at the beginning
of the generation procedure). The other strategies use
a new random ordering whenever a state is visited. For
each search depth, all experiments were conducted ten
times.
Hyphen-separated triples include minimum, mean,

and maximum values. σ and µ denote standard deviation
and average values, respectively. We show the maximum
search depth, the necessary time, the number of sets of
states that were stored during execution, and the neces-
sary memory. In the case of cnt6 , the number in brackets
indicate the number of successful threads or processes. If
no number is given, all ten runs were successful. Because
of state storage, not all runs are successful.
One can see that rP and rT exhibit approximately

the same characteristics. In general, the worst-case per-

formance of rT is better than that of rP. In terms of the
average case, rT tends to perform slightly better.
Somewhat to our surprise, the best strategy for this

application is→. An analysis of the visited sets of states
revealed why. It is bound to the structure of the search
problem. Good results (little time, little memory) are
achieved if few control states (ovals in the state machines)
are visited. The probability of getting a good result is
rather high for many permutations of the transition or-
derings. If good transition orderings are chosen once, at
the beginning, the result is good. If a new ordering is
chosen within every step, then the probability of having
to visit a further control state increases. If this happens,
then the counter associated with this control state has to
be decremented that results in many new global states.
In all cases, using directed search yields the results

within fractions of a second.
It might be interesting to note that in the case of

counter 6, we were able to find the corresponding test case
without hints with one of the model checkers connected to
AutoFocus, SMV. For a discussion of the relationship of
(bounded) model checking and testing, we refer to earlier
work [46]; consider also the remarks in the paragraph on

A. Pretschner et al.: Model based testing for real

related work in the first section. For the model checking
approach we are quite close to the complexity limit (state
explosion problem). The application (modeler’s) model
has 38 (38) state-bits with 54 (72) transitions. Model
checking with SMV required 30 (20) s 112464 (73145)
BDD nodes, and 3 (2.5) MB storage. Bounded model
checking [66] with SATO fails to find these examples. Our
approach with best-first search (see above, [46]) succeeds
in finding the test case in less than 0.01 s. In the afore-
mentioned subsequent studies [43], the models were too
complex to be amenable to model checking.

6 Conclusion

Our understanding of model-based testing boils down to
using abstract models for the generation of test cases.
Their simplicity enables their intellectual mastery as well
as automatic test case generation. In order to use traces
of the model for testing an implementation, the missing
information has to be inserted. This is done by means of
driver components. Complexity is hence distributed be-
tween model and driver.
Test case generation relies on the use of selection cri-

teria. These must be provided by a test engineer, and
they represent “interesting” situations. Structural crite-
ria exhibit the advantage that test cases can be generated
fully automatically without further specifying the selec-
tion criterion. However, there is widespread agreement
that they must be complemented by functional tests.
We have presented some results of a feasibility study

that aimed at assessing the practicability of a test case
generator on the grounds of Constraint Logic Program-
ming. The results show that the test case generator in
combination with a suitable modeling tool like AutoFo-
cus allows one to compute relevant test cases for indus-
trial applications. This alleviates the tedious task of test
development. In fact, a subsequent study [43] confirmed
this impression. In the remainder of the paper, we briefly
assess both the modeling capabilities of AutoFocus and
the test generator.

Modeling. The specification formalisms, GUI, and tool
support of AutoFocus were perceived to be easier to
grasp and more comprehensive than other approaches
used in previous studies, e.g., product nets. The possibil-
ity to quickly alter a model and to be able to immediately
(i.e., after compilation) simulate it was also considered to
be very helpful. The possibility to “replay” or simulate
computed test cases interactively is most important for
industrial testing. In addition, the integration of the mod-
eling and the testing tools was identified as being crucial.

Test case generation. In addition to actually generat-
ing complete test sequences (from specifications such as
“transition tour”), it is important to verify that a given
test sequence satisfies the intended test purpose (formal-
ized by a test case specification). The approach presented

in this paper obviously facilitates this task – computed
test sequences do what they ought to by construction, i.e.,
conform to their test case specification.
The ability to formulate arbitrary test case specifica-

tions by means of Constraint Handling Rules is consid-
ered to be one of the strengths of this approach. How-
ever, this requires expert’s knowledge, and the tradeoff
between the tool’s computation power and interaction is
acknowledged. Nonetheless, formulating test case speci-
fications by means of CHRs is considered to be rather
acceptable. This is why, as a complement to functional
test cases, automatically generating test cases from struc-
tural criteria is considered desirable.
We do not assess the quality of the generated tests

here. This is because generally accepted notions of what
constitutes a “good” test case do not exist. That is to say,
test cases are as good as the respective test case specifica-
tions. In a subsequent study [43], we deliberately gener-
ated test cases without testing experience of the domain
experts. Test case specifications were then structural,
functional, and stochastic. The domain experts decided
that the generated test cases “covered” (with an intuti-
tive understanding of one test case “covering” another)
their manual test cases. The advantage of automatically
generated test cases is that once a model is built, they are
cheap to generate, and test cases can be executed in par-
allel. The number of test cases is then restricted by the
number of existing card reader terminals.
The model in this paper consists of just one compon-

ent. Experience has shown that the approach is also appli-
cable to more complex systems such as further chip card
applications [43, 47] or the NetworkMaster of multimedia
buses in modern vehicles [44, 45]. We are also optimistic
that it is usable in the realm of mixed discrete-continuous
systems [26]. In particular, it is possible to make use of
test cases of a subsystem to generate test cases for a set
of composed components. This issue of compositional test
case generation – up to integration tests for the over-
all system – is discussed elsewhere [47]. The cited article
shows how unit tests that satisfy a structural coverage cri-
terion (modified decision/condition coverage, MC/DC)
can be used to automatically generate test cases that sat-
isfy MC/DC at the level of the integrated system.
The main problem in testing – as in formal verifica-

tion – is the question of what an “interesting” test case
(or a “relevant” property) is. Structural coverage criteria
are advantageous in that they are independent of a par-
ticular application domain, but there is broad agreement
that structural test cases should only be used as a com-
plement to functional, application-specific tests. We con-
sider domain-specific error classifications and checklists
to be a promising first step toward the goal of a structured
testing process.
Finally, the quantitative results in this paper clearly

lack comparative numbers. This is in part due to the fact
that the example is not a publicly available academic ex-
ample (which does not, of course, mean that the system

A. Pretschner et al.: Model based testing for real

could not be remodeled in Lustre, and that existing test
tools such as Lutess [16] or Gatel [38] could not be used
for test case generation). Another reason is that there
are hardly any tools that can be used for graphical spe-
cification as well as for test case generation, a situation
that, with the enormous industrial interest in such tools,
is most likely to change.

References

1. Ammann P, Black P, Majurski W (1998) Using model check-
ing to generate tests from specifications. In: Proceedings of
the 2nd IEEE international conference on formal engineering
methods, Brisbane, Queensland, Australia, 9–11 December
1998, pp 46–54

2. Binder R (2001) Testing object-oriented systems: models, pat-
terns, and tools. Addison-Wesley, Reading, MA

3. Bourhfir C, Dssouli R, Aboulhamid E (1996) Automatic test
generation for EFSM-based systems. Technical Report IRO
1043, University of Montreal, August 1996

4. Brooks F (1986) No silver bullet. In: Proceedings of the
10th IFIP world computing conference, Dublin, Ireland, 1–5
September 1986, pp 1069–1076

5. Bultan T (1998) Automated symbolic analysis of reactive sys-
tems. PhD thesis, University of Maryland, College Park, MD

6. Burton S, Clark J, McDermid J (2001) Automatic generation
of tests from Statechart specifications. In: Proceedings of the
conference on formal approaches to testing of software, Aal-
borg, Denmark, 25 August 2001, pp 31–46

7. Chow T (1978) Testing software design modeled by finite-state
machines. IEEE Trans Softw Eng SE-4(3):178–187

8. Ciarlini A, Frühwirth T (1999) Using Constraint Logic Pro-
gramming for software validation. In: Proceedings of the 5th
workshop on the German-Brazilian Bilateral Programme for
Scientific and Technological Cooperation, Königswinter, Ger-
many, March 1999

9. Claessen K, Hughes J (2000) QuickCheck: a lightweight tool
for random testing of Haskell programs. In: Proceedings of the
5th ACM SIGPLAN international conference on functional
programming, Montreal, 18–21 September 2000, pp 268–279

10. Clarke L (1976) A system to generate test data and sym-
bolically execute programs. IEEE Trans Softw Eng SE-2(3):
215–222

11. Cui B, Dong Y, Du X, Kumar NK, Ramakrishnan C, Ramakr-
ishnan I, Roychoudhury A, Smolka S, Warren D (1998) Logic
programming and model checking. Lecture notes in com-
puter science, vol 1490. Springer, Berlin Heidelberg New York,
pp 1–20

12. Delzanno G, Podelski A (1999) Model checking in CLP. In:
Proceedings of the 5th international conference on tools and
algorithms for construction and analysis of systems, Amster-
dam, 22–28 March 1999, pp 223–239

13. Denney R (1991) Test-case generation from Prolog-based spe-
cifications. IEEE Softw 8(2):49–57

14. De Vries R, Tretmans J, Belinfante A, Feenstra J, Feijs L,
Mauw S, Goga N, Heerink L, de Heer A (2000) Côte de
Resyste in Progress. In: Proceedings of Progress 2000 – work-
shop on embedded systems, Utrecht, The Netherlands, Octo-
ber 2000, pp 141–148

15. Du Bousquet L, Ouabdesselam F, Parissis I, Richier J-L,
Zuanon N (2000) Specification-based testing of synchronous
software. In: Proceedings of the 5th international workshop
on formal methods for industrial critical systems, Berlin, 3–4
April 2000, pp 123–140

16. Du Bousquet L, Zuanon N (1999) An overview of Lutess,
a specification-based tool for testing synchronous software.
In: Proceedings of the 14th IEEE international conference on
automated SW engineering, Cocoa Beach, FL, 12–15 October
1999, pp 208–215

17. Duran J, Ntafos S (1984) An evaluation of random testing.
IEEE Trans Softw Eng SE-10(4):438–444

18. Edelkamp S, Lluch-Lafuente A, Leue S (2001) Directed Ex-
plicit Model Checking with HSF-SPIN. In: Proceedings of the
8th international SPIN workshop on model checking software,
Toronto, 19–20 May 2001, pp 57–79

19. Fernandez J-C, Jard C, Jéron T, Viho C (1996) Using on-the-
fly verification techniques for the generation of test suites. In:
Proceedings of the 8th international conference on computer-
aided verification, New Brunswick, NJ, 31 July–3 August
1996, pp 348–359

20. Frankl P, Weyuker E (1998) An applicable family of data flow
testing criteria. IEEE Trans Softw Eng 14(10):1483–1498

21. Fribourg L (1999) Constraint logic programming applied to
model checking. In: Proceedings of the 9th international work-
shop on logic-based program synthesis and transformation
(LOPSTR’99), Venice, 22–24 September 1999. Lecture notes
in computer science, vol 1817. Springer, Berlin Heidelberg
New York, pp 30–41

22. Frühwirth T (1998) Theory and practice of constraint hand-
ling rules. J Logic Program 37(1–3):95–138

23. Goodenough J, Gerhart S (1975) Toward a theory of test data
selection. IEEE Trans Softw Eng SE-1(2):156–173

24. Groce A, Visser W (2002) Model checking Java programs
using structural heuristics. In: Proceedings of the interna-
tional symposium on software testing and analysis, Rome,
22–24 July 2002, pp 12–21

25. Gutjahr W (1999) Partition testing versus random testing: the
influence of uncertainty. IEEE Trans Softw Eng 25(5):661–674

26. Hahn G, Philipps J, Pretschner A, Stauner T (2003) Prototype-
based tests for hybrid reactive systems. In: Proceedings of
RSP’03, San Diego, 9–11 June 2003, pp 78–86

27. Hamlet D, Taylor R (1990) Partition test does not inspire con-
fidence. IEEE Trans Softw Eng 16(12):1402–1411

28. Howden W (1975) Methodology for the generation of program
test data. IEEE Trans Comput C-24(5):554–560

29. HowdenW(1977) Symbolic testing and theDISSECT symbolic
evaluation system. IEEE Trans Softw Eng SE-3(4):266–278

30. Howden W (1978) An evaluation of the effectiveness of sym-
bolic testing. Softw Pract Exper 8:381–397

31. Huber F, Schätz B, Einert G (1997) Consistent graphical spe-
cification of distributed systems. In: Proceedings of the confer-
ence on industrial applications and strengthened foundations
of formal methods (FME’97), Graz, Austria, 15–19 September
1997. Lecture notes in computer science, vol 1313. Springer,
Berlin Heidelberg New York, pp 122–141

32. International Organization for Standardization (1995) Inter-
national Standard ISO/IEC 7816: integrated circuit(s) cards
with contacts

33. King J (1976) Symbolic execution and program testing. Com-
mun ACM 19(7):385–394

34. Koch B, Grabowski J, Hogrefe D, Schmitt M (1998) AutoLink
– a tool for automatic test generation from SDL specifications.
In: Proceedings of the IEEE international workshop on in-
dustrial strength formal specification techniques, Boca Raton,
FL, 20–23 October 1998, pp 114–127

35. Legeard B, Peureux F (2001) Génération de séquences de
tests à partir d’une spécification B en PLC ensembliste.
In: Proceedings of Approches Formelles dans l’Assistance
au Développement de Logiciels, Nancy, France, June 2001,
pp 113–130

36. Lötzbeyer H, Pretschner A (2000) AutoFocus on Constraint
Logic Programming. In: Proceedings of (Constraint) Logic Pro-
gramming and Software Engineering, London, 10 August 2000

37. Lötzbeyer H, Pretschner A (2000) Testing concurrent reactive
systems with Constraint Logic Programming. In: Proceedings
of the 2nd workshop on rule-based constraint reasoning and
programming, Singapore, 22 September 2000

38. Marre B, Arnould A (2000) Test sequence generation from Lus-
tre descriptions: GATEL. In: Proceedings of the 15th IEEE
international conference on automated software engineering
(ASE’00), Grenoble, France, 11–15 September 2000, pp 229-238

39. Meudec C (2000) ATGen: automatic test data generation
using Constraint Logic Programming and Symbolic Execu-
tion. In: Proceedings of the 1st international workshop on
automated program analysis, testing, and verification, Limer-
ick, Ireland, 4–5 June 2000

A. Pretschner et al.: Model based testing for real

40. Nielsen B (2000) Specification and test of real-time systems.
PhD thesis, Department of Computer Science, Aalborg Uni-
versity, Aalborg, Denmark

41. Ntafos S (1988) A comparison of some structural testing
strategies. IEEE Trans Softw Eng 14(6):868–874

42. Peleska J, Siegel M (1997) Test automation of safety-critical
reactive systems. S Afric Comput J 19:53–77

43. Philipps J, Pretschner A, Slotosch O, Aiglstorfer E, Kriebel S,
Scholl K (2003) Model-based test case generation for smart
cards. In: Proceedings of FMICS’03, Trondheim, Norway, 5–7
June 2003, pp 168–182

44. Prenninger W, Pretschner A, Wagner S (2003) MOST Net-
workMaster – AutoFocus model. Internal Study, BMW AG
and TU München, Munich, Germany

45. Prenninger W, Pretschner A, Wagner S (2003) MOST Net-
workMaster – generation of test harnesses. Internal Study,
BMW AG and TU München, Munich, Germany

46. Pretschner A (2001) Classical search strategies for test case
generation with Constraint Logic Programming. In: Proceed-
ings of the workshop on formal approaches to testing of soft-
ware, Aalborg, Denmark, August 2001, pp 47–60

47. Pretschner A (2003) Compositional generation for MC/DC
test suites. In: Proceedings of TACoS’03, Warsaw, Poland, 13
April 2003, pp 1–11

48. Pretschner A, Lötzbeyer H, Philipps J (2001) Model based
testing in evolutionary software development. In: Proceedings
of the 11th IEEE international workshop on rapid system pro-
totyping, Monterey, CA, 25–27 June 2001, pp 155–160

49. Pretschner A, Lötzbeyer H, Philipps J (2003) Model based
testing in incremental system development. J Sys Softw
70(3):315–329

50. Pretschner A, Philipps J (2002) Szenarien modellbasierten
Testens. Technical Report TUM-I0205, Institut für Infor-
matik, Technische Universität München, Munich, Germany

51. Pretschner A, Slotosch O, Lötzbeyer H, Aiglstorfer E, Kriebel
S (2001) Model based testing for real: the inhouse card case
study. In: Proceedings of the 6th international workshop on
formal methods for industrial critical systems, Paris, France,
16–17 July 2001, pp 79–94

52. Prowell S, Trammell C, Linger R, Poore J (1999) Cleanroom
software engineering. Addison-Wesley, Reading, MA

53. Ramamoorthy C, Ho S, Chen W (1976) On the automated
generation of program test data. IEEE Trans Softw Eng SE-
2(4):293–300

54. Raymond P, Weber D, Nicollin X, Halbwachs N (1998) Auto-
matic testing of reactive systems. In: Proceedings of the 19th
IEEE symposium on real-time systems, Madrid, 2–4 Decem-
ber 1998, pp 200–209

55. Rusu V, du Bousquet L, Jéron T (2000) An approach to sym-
bolic test generation. In: Proceedings of Integrated Formal
Methods, Dagstuhl, Germany, 1–3 November 2000, pp 338–357

56. Sadeghipour S (1998) Testing cyclic software components of
reactive systems on the basis of formal specifications. PhD
thesis, Department of Informatics, TU Berlin

57. Tracey N (2000) A search-based automated test-data gener-
ation framework for safety-critical software. PhD thesis, De-
partment of Computer Science, University of York, UK

58. Tretmans J (1996) Test generation with inputs, outputs and
repetitive quiescence. Softw Concepts Tools 17(3):103–120

59. Ural H (1992) Formal methods for test sequence generation.
Comput Commun 15(5):311–325

60. Vilkomir S, Bowen J (2001) Formalization of control-flow cri-
teria of software testing. Technical Report SBU-CISM-01-01,
South Bank University, London, UK

61. Visser W, Havelund K, Brat G, Park S (2000) Java PathFinder
– second generation of a Java model checker. In: Proceedings of
the workshop on advances in verification, Chicago, July 2000

62. Von Bochmann G, Petrenko A (1994) Protocol testing: review
of methods and testing for software testing. In: Proceedings
of the 1994 international symposium on software testing and
analysis, Seattle, 17–19 August 1994, pp 109–124

63. Warren DS (1992) Memoing for logic programs. Commun
ACM 35(3):93–111

64. Wegener J (2001) Evolutionärer Test des Zeitverhaltens von
Realzeit-Systemen. PhD thesis, Humboldt Universität, Berlin

65. Weyuker E (1986) Axiomatizing software test data adequacy.
IEEE Trans Softw Eng SE-12(12):1128–1138

66. Wimmel G, Lötzbeyer H, Pretschner A, Slotosch O (2000)
Specification based test sequence generation with proposi-
tional logic. J Softw Test Validat Reliabil 10(4):229–248

67. Zhu H, Hall P, May J (1997) Software unit test coverage and
adequacy. ACM Comput Surv 29(4):366–427

