
Coverage Metrics for Continuous Function Charts
Vadim Alyokhin, Institut für Informatik, TU München, Germany

Benedikte Elbel* and Martin Rothfelder, Siemens AG, München, Germany
Alexander Pretschner*, Departement Informatik, ETH Zürich, Switzerland

Abstract
Continuous Function Charts are a diagrammatical
language for the specification of mixed discrete-
continuous embedded systems, similar to the
languages of Matlab/Simulink, and often used in the
domain of transportation systems. Both control and
data flows are explicitly specified when atomic units
of computation are composed. The obvious way to
assess the quality of integration test suites is to
compute known coverage metrics for the generated
code. This production code does not exhibit those
structures that would make it amenable to “ relevant”
coverage measurements. We define a translation
scheme that results in structures relevant for such
measurements, apply coverage criteria for both
control and data flows at the level of composition of
atomic computational units, and argue for their
usefulness on the grounds of detected errors.
Keywords. Integration testing, model-based testing,
mixed continuous-discrete and real-time systems,
MC/DC, data flow testing, block diagrams.

1. Introduction
Continuous Function Charts (CFCs) are a powerful
graphical modeling language mainly used for
engineering embedded controller devices in the
domain of industrial automation and railway
transportation systems. Both domains may be
considered as safety-critical, and standards like
EN50128 [EN01] recommend different testing
strategies for systems at various levels of criticality,
one of which includes structural tests. Similar to
block diagrams, but more complex because of control
flow issues, CFCs connect so-called function blocks
that perform well-defined computations.
Functional tests are derived from the specification
documents. As in other domains, it is difficult to say
when one is likely to have applied a sufficient
number of tests, especially if completeness of the
specification is itself in question. Structural coverage
criteria are used to give respective hints to testers and

(*) Corresponding author: A. Pretschner, pretscha@inf.ethz.ch.
Benedikte Elbel was with Siemens AG till February 2004.

certification authorities. They are usually defined at
the level of units, e.g., functions in C. In the domain
of transportation systems, atomic CFC blocks—
units—are certified independently of a particular
application. When complex systems are assembled,
engineers need some information w.r.t. the quality of
their tests for the integrated (sub) system. (When we
talk about quality, we refer to coverage, and not to
whether or not a test case is indeed a good one.)
Because certification at the unit level has already
taken place, there is a need for criteria at the
integration level.
It turns out that the production code itself is not
particularly suited for assessing the quality of test
suites w.r.t. coverage criteria. In this paper, we
advocate the use of different strategies for code
generation from graphical models, and show how this
idea helps with testing real-world systems.

Control Flow. A natural strategy for code generators
from CFCs is to have a dispatch function that calls
the functions representing atomic blocks. For existing
code generators, this is indeed the case: when
different timing events occur, the associated
computational blocks are activated. Now, the control
flow of the resulting code associated with the timing
class is rather linear. As a consequence, direct
application of control flow based criteria to the code
generated for one timing event is trivial. Since
condition blocks in CFCs are all atomic, the control
flow is also trivial w.r.t. criteria that take into account
the structure of decisions.
We show how to identify the control flow relevant
for the integrated functionality within the CFC. In
addition, we show how to assemble atomic condition
blocks into complex conditions that are amenable to
the application of coverage criteria such as the
modified condition/decision coverage (MC/DC)
criterion. This allows the use of well-accepted
coverage criteria that are based on control flow and
condition coverage at the composition level of CFCs.

Data Flow. Since the structural elements of CFCs
focus on the description of data flow between the
functional computing blocks, data flow criteria

Proc. 15th IEEE Intl. Symp. on Software Reliability Engineering, pp. 257-268, St. Malo, 11/04

[LasKor83, RapWey85] seem to be particularly
suited for measuring the completeness of tests at the
CFC integration level. We show how to naturally
interpret the fundamental entities of data flow,
definition and usage of variables, at the level of
CFCs, and how to derive respective coverage
metrics. Since data flow in CFCs is bound to
structural elements referred to as connectors, we use
these elements to introduce further coverage criteria
requiring coverage at the level of connectors.

Methodology. When we defined the metrics, we did
so in a top-down manner. That is to say, we analyzed
existing coverage metrics and lifted them to the
structural elements of CFCs, without taking into
account particular examples. In order to assess our
own work, we then continued by applying the new
criteria to existing industrial CFCs and the respective
test suites. Our metrics were able to reveal situations
that had not been tested before.

Models. It is true that systems specified with CFCs
exhibit an abstraction level that is rather close to the
implementation. Like the graphical languages of the
Matlab toolset, CFCs may be seen as a full-fledged
domain-specific programming language. Models
written in these languages can directly be translated
into code. When compared to general-purpose
languages, these domain-specific languages are,
among other things, characterized by the fact that (a)
they offer language constructs for domain-specific
entities, and that (b) they only allow restricted
operations on the syntactic elements. For instance,
the respective development tools ensure that all input
ports of a component are connected to the
environment or some other component. These
restrictions allow one to come up with tailored
coverage criteria. We concentrate on what we
consider the “essence” of a CFC, and assess test
suites w.r.t. this essence.

Problem. Roughly, we address the problem of
assessing functional tests for programs written in
domain-specific non-textual languages where
generated production code is unsuitable for
respective coverage measurements.

Contribution. To the best of our knowledge, the
paper is the first (a) to define coverage metrics for
CFCs both for data and control flows, (b) to
investigate integration tests for mixed continuous-
discrete modeling languages on the grounds of data
flow, and (c) to explicitly synthesize complex
conditions in order to apply criteria like MC/DC.
Previous work on coverage metrics for models
focuses on control flow, and on unit tests (Sec. 2).

We do think that many results of this work carry over
to Matlab Simulink/Stateflow diagrams, but consider
this future work. We do not know of any work that
applies data flow criteria to languages such as block
diagrams (which becomes even more interesting in
conjunction with Stateflow).

Organization. Sec. 2 lists relevant work in the area.
Sec. 3 informally describes syntax and semantics of
CFCs. In Sec. 4, we review traditional coverage
metrics for control and data flows at the level of
code, and lift them to CFCs. An algorithm is
presented that identifies maximal subgraphs of a CFC
exclusively consisting of logical operators. This is
done to synthesize composite conditions, in order to
subsequently apply respective coverage metrics. We
also sketch coverage criteria for connectors, i.e., I/O
ports. Sec. 5 contains experimental results. Sec. 6
discusses the issue of code instrumentation to the end
of measuring coverage, and Sec. 7 concludes.

2. Related Work
Classical surveys on control and data flow criteria for
code have been given in the Eighties [Nta88,
FraWey88]. Today, the corresponding criteria are
exposed in almost every text book on testing.
In terms of models, coverage at the level of finite
state machines has been studied extensively. Among
many others, Ural provides an overview [Ura92].
Lifting MC/DC to the level of extended finite state
machines with a functional programming language
for actions has been studied by one of the authors
[Pre03]. The focus there is on test case generation.
Several authors have studied the use of model
checkers for the generation of test cases that satisfy a
given structural criterion [RayHei01, HLS+03]. Their
focus is the translation of reachability statements into
temporal logics as input to a model checker.
In terms of coverage for models of continuous and
mixed discrete-continuous systems, Baresel et al.
have provided a recent overview [BCS+03]. In
particular, they investigate the relationship between
different notions of (control flow) coverage for
models and for code at the level of units; integration
testing and data flow are not treated. The
Matlab/Simulink Model Coverage Tool concentrates
on control flow and does not consider data flow and
the synthesis of complex conditions.

3. Continuous Function Charts
After a brief introduction to the application domain,
we use this section to provide a rough survey of both
graphical syntax and computation model of CFCs.

CFCs are used for software design and
implementation in the field of industrial automation.
They were developed for generating automation
solutions for the programmable logic controllers
Siemens SIMATIC S7 and SIMATIC WinAC.
CFCs are frequently applied for developing solutions
in the domain of transportation systems, building
technology, and industrial process support. A
development environment for design, code
generation, test and simulation with CFCs is
commercially available.

Process. With requirements specifications at hand,
engineers build CFCs on the grounds of atomic
blocks from certified libraries. Production code is
subsequently generated from these CFCs. Tests
derived from the requirements documents are applied
to this code. The results of our study led to an
intermediary step: the CFC is used for the generation
of a different (inefficient) code to which the same
tests are applied. Coverage is measured, and new
tests are designed when coverage is not sufficient.
These tests are later also applied to the production
code.

3.1 Syntax
The main structural elements of CFCs are function
blocks, connections between function blocks, and
event classes.

Function blocks. Function blocks are the smallest
units in which computational functions are described.
They contain any description from simple logic
functions to complex control algorithms. The
function blocks may be defined in Assembler or C
and are organized in certified libraries.
Blocks have input and output connectors by which
parameters are passed. In order to control
computational evaluation of the blocks within a CFC,
timing information for a scheduling mechanism must
be assigned to each block. Scheduling is driven by
timing events. This is a major difference between
block diagrams and CFCs.
Figure 1 contains a prototypical function block. The
numbers indicate the following structural
information: 1 - name of the block; 2 – input
connectors; 3 – output connectors; 4 and 5 – names
of the input and output connectors; 6 and 7 – type of
the input and output connectors; 8 – sequence
number within an event class; 9 – event class for
block evaluation.

Connectors. Connectors define the interfaces of a
block. Connectors are typed. Input and output
connectors for a block are distinguished.

Event classes. For computation, timing information
for scheduling is assigned to each block. An event
class is specified, and a sequence number must be
defined. It is unique within each class, defining the
ordering of block computation. In Figure 1, the block
belongs to class T5 with sequence number 10.

Figure 1: CFC function block

Construction of CFCs. When developing a CFC, a
programmer selects function blocks from a library,
places them on a worksheet, and assigns
characteristics such as block name, event class and
sequence number. Subsequently, the output and input
connectors between the blocks are attached. Figs. 6
and 7 at the end of this paper show example CFCs.
Several CFCs may be composed to a functional
package. In a package, connectors are visible in all
plans. Thus, blocks from different plans may be
interconnected. The connection to external signals
such as signals from other functional packages or
hardware signals is defined at this level of
construction.
CFCs may be composed hierarchically. To this end,
CFC plans may be referenced as a function block in
another CFC. Thus, different integration levels can
be described.

3.2 Computation model
At runtime, scheduling is realized by a timing
mechanism with the underlying concept of event
classes. Computation is driven by timing events and
interrupts. Computation of blocks within an event
class is performed in the order defined by the
sequence number.
When an event is raised, the assigned computational
blocks are sequentially evaluated in the predefined
order: values at input connectors are read, the defined
computation is performed, the calculated results are
assigned to the output connectors, and they are
immediately available to the connected blocks.

Code. Simplifying matters, the generated production
code exhibits the structure given in Figure 2. Events
e1. . eQ are raised outside this fragment. Within each
event class, computations are performed for each
function block cmp j . Output vectors o j are computed
as a function of input vectors i j , and output is
implicitly transferred to input connectors by address

aliasing: &o j is also the address of the input
connector the function block is connected to.

swi t ch(event) {
 case e1:
 cmp1(i 1, &o 1) ;
 cmp2(i 2, &o 2) ;
 . .
 cmpp(i p, &o p) ;
 br eak;
 case e2:
 cmpp+1(i p+1, &o p+1) ;
 cmpp+2(i p+2, &o p+2) ;
 . .
 cmpp+q(i p+q, &o p+q) ;
 br eak;
 . .
 case eQ:
 cmpp+q+1(i p+q+1, &o p+q+1) ;
 cmpp+q+2(i p+q+2, &o p+q+2) ;
 . .
 cmpp+q+r (i p+q+r , &o p+q+r) ;
 br eak;
}

Figure 2: Production code skeleton

In fact, except for conversions and arithmetic
operations, all calls to the cmp j functions are textually
replaced by the corresponding code. This is
motivated by efficiency considerations in real-time
domains: the length of the code does not matter as
much as its speed.

Quality of tests. The production code basically
consists of Q segments, one for each event class. The
following three observations can be made. One, the
application of data flow criteria corresponds to
testing the interconnections between different
function blocks within a CFC. We are not so much
interested in data flow within one function block but
rather at the level of composed function blocks. The
above fragment does not contain explicit
assignments, and the many expanded cmp j blocks
convey “too much” information. Two, the application
of control flow criteria is unlikely to convey
interesting information. This is because there are no
loops nor jumps, and because the involved conditions
are atomic and hence trivial. Three, many expanded
cmp j blocks are library functions that have been
certified independently before.

4. Coverage Metrics for CFCs
This section describes the main conceptual results of
this paper. An application and empirical evidence is
provided in Sec. 5. After motivating a modification
of the production code generator in Sec. 4.1, we
briefly review traditional coverage metrics at the
level of code in Sec. 4.2. We then proceed by lifting
these metrics to the level of CFCs for both control

(Sec. 4.3) and data flows (Sec. 4.4). Criteria for
special connectors are provided in Sec. 4.5.

4.1 Code for measurements
We have seen that the generated production code is
not suited for the application of coverage criteria. In
terms of data flow, there are too many def-use pairs
at the level of expanded cmp j blocks. Control flow is
linear, and there are no or few composite conditions.
For instance, a block that implements the logical
AND is translated into

OUT = I N1 && I N2;

as far as production code is concerned. While less
efficient, the statement

i f (I N1&&I N2) OUT=1; el se OUT=0;
is functionally equivalent but provides two branches
and two definitions of OUT instead of one.
Efficiency and certification issues prevent us from
simply using a production code generator that is
better suited for coverage measurements. The basic
idea is hence to generate code that exhibits the same
“functional” behavior and that does not necessarily
ensure the real-time deadlines, but is amenable to
measuring the quality of test suites.
Basically, our approach amounts to modifying the
code generator by (1) replacing certain code
fragments by actual calls to cmp j . This is done for
function blocks that, in terms of coverage
measurements, are deemed irrelevant at the level of
composition. Since we are interested in applying
traditional coverage criteria, we (2) need to gain
access to the fundamental structural entities when
coverage is measured.
For control flow, these fundamental entities are
conditionals and jumps. Slightly simplifying matters,
no (equivalent to) jumps exist in CFCs. Thus, for a
given timing class, the control flow is rather linear.
The control flow criteria are hence trivial to achieve.
We hence take additional information from atomic
blocks into account. For instance, a conditional block
basically represents two different paths, and these
two paths can be directly incorporated into the
analysis. More complex coverage criteria like
MC/DC rely on complex conditions. Since conditions
are stated as atomic blocks within CFCs, a synthesis
procedure for more complex conditions must be
applied before using these criteria. Our approach to
synthesizing conditions is presented in Sec. 4.3.
For data flow, on the other hand, the fundamental
entities are writing (defining) and reading (using)
accesses to variables. Variables as such do not exist
in CFCs. They do exist at the level of production
code. However, we are interested in connections
between function blocks only—not in auxiliary
variables. The output of a function block can
naturally be interpreted as the definition of a
“communication” variable. Input to a function block

boils down to its use. Note that definitions and uses
may take place at different branches of a block.
To summarize, we will generate code that contains
(1) the “main” branches of the integrated structure,
(2) definitions and uses of variables to the end of data
flow-based testing, and (3) complex conditions to
make complex control flow-based criteria applicable.
This motivates the following generation procedure.
For the sake of simplicity, we only sketch it. Each
single function block was translated manually. Code
generation for composed systems relies on this code.

Function blocks. We show how to generate code for
a few chosen blocks. These are the SWITCH,
SELECT, and MULT blocks. They implement
simple conditionals, selections, and multiplication of
two numbers. What happens is the assignment of
values to output connectors as a function of the input
connectors.
1. Conditionals. Depending on the
value of a connector SEL, the
SWITCH block decides whether the
value of the INH or of the INL
connector is copied to the output connector OUT.
This implements a decision in CFCs; production code
contains a macro at the respective places. The block
is translated into a statement with two branches,

i f (SEL==1)
OUT = I NH

el se OUT = I NL.
2. Selection. The SELECT block
outputs 1 if exactly one of the input
signals is 1. It is translated into

i f ((I N1 == 1) and (I N2 == 0) and
(I N3 == 0) and (I N4 == 0))
OUT = 1

el se i f ((I N1 == 0) and (I N2 == 1) and
(I N3 == 0) and (I N4 == 0))
OUT = 1

el se i f ((I N1 == 0) and (I N2 == 0) and
(I N3 == 1) and (I N4 == 0))
OUT = 1

el se i f ((I N1 == 0) and (I N2 == 0) and
(I N3 == 0) and (I N4 == 1))
OUT = 1

el se OUT = 0

while the production code is
i f ((I N1 & 1) + (I N2 & 1) + (I N3 & 1)

 + (I N4 & 1))
 OUT = 1
el se OUT = 0

with fewer branches, fewer definitions, and no
composite conditions (& is the bitwise AND).
3. Multiplication. The MULT
block implements multiplication of
two 2-byte integers provided at
connectors IN1 and IN2. The result is made
accessible at connector OUT. The arithmetic
operation involves no decisions and is described as
function

OUT = comput e_MULT_OUT (I N1, I N2)

which refers to an external function that performs
multiplication. The actual code that includes checks
is hidden in this function.
This specialized generation of code at the level of
single function blocks is only seemingly in
contradiction with one of our initial statements: we
claimed that measuring coverage at this level is a
dubious endeavor because of the certification that has
already taken place. The point is that we identified
those function blocks with “ interesting” conditions
for the integrated functionality and put them at the
top level of the differently generated code rather than
calling corresponding functions. This is, for instance,
the case for the multiplication but not for the
SWITCH and SELECT blocks. However, the code
generated this way is not a mere macro expansion:
instead, it contains the “relevant” parts only, and it
omits “ irrelevant” details.

Composition. Rather than assigning output by calls
by reference, we introduce explicit assignments. This
is relevant for data flow measurements only.
Composite conditions for control flow measurements
are treated in Sec. 4.3.

4.2 Traditional metrics
In the following, we briefly review classical coverage
metrics at the level of code. Structural coverage
criteria have initially been developed with the aim of
selecting test data or of judging test data adequacy
[GooGer75, How76]. They are defined in terms of
the internal structure of a piece of software. They can
thus be applied even if completeness of a
specification is in question, or if no specification at
all is at hand. Efficiency and the ability to detect
failures of different structural coverage criteria were
controversially discussed in the literature.

Control Flow. Structural coverage criteria that use
control flow as a reference were introduced as
control flow based criteria [How76, Mye79].
Statement coverage requires every statement to be
executed at least once during testing. Branch
coverage requires every branch to be executed at
least once: every decision evaluates to both true and
false. Requiring all program paths to be executed at
least once has been introduced as a powerful yet
generally unachievable criterion. Selection of special
paths to be covered led to the development of
coverage criteria such as LCSAJ or boundary-interior
coverage [How76, WHH80].

Data Flow. Examination of the data flow in
programs led to further requirements on paths to be
covered during testing [LasKor83, RapWey85]. As a

basic criterion, the all-defs criterion requests for all
definitions of a variable a dynamic test case
executing a definition free path (with respect to this
variable) from its definition to one of its uses. The
more demanding all-uses criterion requires a
dynamic test case for covering a definition free path
from each definition of the variable to all its uses. To
fulfill the most demanding criterion of this family,
the all-def-use-paths criterion, all such paths have to
be covered. These and further criteria for covering
the data flow, such as required pairs testing, were
introduced and discussed as data flow criteria.

Complex Conditions. Control and data flow oriented
techniques do not take into account the internal
complexity of compound predicates used in the
decisions of the program. Since predicates determine
the execution path for a given input and thus have a
high impact on the dynamic behavior of the program,
additional coverage metrics have been defined with
respect to the internal structure of compound
predicates [Mye76, ChiMil94].
Conditions are regarded as covered if they have been
evaluated to the Boolean constants true and false at
least once during testing. The weakest criterion,
referred to as condition coverage, requires evaluation
of all atomic conditions to true and false.
Condition/decision coverage has then been defined
with respect to atomic and top-level conditions.
Requiring the coverage of all conditions—atomic,
intermediate and top-level—has been introduced as
minimal multiple condition coverage. Demanding
each compound predicate to be covered with all
possible combinations of Boolean values of its
atomic conditions led to multiple condition coverage.
This criterion is costly to achieve since it requires 2m
combinations for covering a compound predicate
with m atomic conditions. With the aim of
thoroughly examining each atomic condition in a
compound predicate, modified condition/decision
coverage (MC/DC) has been defined. In order to
satisfy this criterion, each atomic condition must
influence the predicate at least once, while all other
independent conditions stay unchanged. For a
compound predicate with m conditions that can be
varied independently, this criterion can be achieved
with m+1 combinations.

4.3 Control Flow Metrics for CFCs
In this section we show how techniques that are
based on control flow can be used to evaluate
completeness of a test suite for CFCs. The graphical
representation of a CFC does not allow direct
application of the coverage criteria. In order to
convey the meaning of a metrics for a graphic plan,
the metrics must be applied to the generated code.

Because the application of well-known coverage
criteria based on control flow is rather trivial, we
focus on the synthesis of complex conditions. That is
to say, in order to apply criteria that take into account
the structure of complex conditions, we would like to
measure coverage on a piece of code
 r = (c1 AND c2) OR c3

rather than
 r 1 = c1 AND c2
 r = r 1 OR c3.
The semantic differences between these two
expressions are not relevant in our context.

Synthesis of composed conditions. CFCs provide
blocks for the logical and, and or operators (not is
handled by means of connectors, see the example
below). They are interconnected to implement
complex conditions/decisions. In order to apply
coverage metrics that take into account the structure
of conditions, composed conditions have to be
synthesized. For these complex logical conditions,
coverage criteria like minimum multiple condition or
MC/DC can be applied.
The idea is to identify maximum subgraphs of a CFC
that consist only of logical operators, and to compute
the corresponding complex condition. In the
following, we assume that all function blocks belong
to the same event class, and for the sake of
simplicity, we consider binary conjunction and
disjunction only. Let F denote an array of function
blocks in reverse order of execution (element 8 in
Figure 1). This array contains only the logical
function blocks “AND” and “OR” of a complex
module. Furthermore, let pred denote a function that
takes a function block and an input connector, i, and
returns the function block that contains the output
connector that is connected to i. The range of pr ed
may be a superset of F. In Figure 4, for instance, we
have
 pred(FRMD_10, I N1) = FRMD_9.

In case there is no predecessor, pred returns the
name of the input signal. The algorithm then works
as follows. Function max_subgraph defined in Figure
3 is executed for each f∈F. This yields an array of
possibly complex conditions, C:

f or i =1 . . | F|
 C[i] = max_subgraph(F[i]) .

An element C[i] is the empty string if F[i] is a logical
block that has become part of a more complex
synthesized condition. max_subgraph is recursively
applied to those function blocks that yield the input
for connectors in1 and in2, and their result is
connected by “and” or by “or” , depending on the
nature of f. is_neg returns TRUE if its argument is a
negated connector (see below), and false otherwise.

 in: function block f
 out: string of synthesized conditions with f at the

top level
side effects: mark_visited changes status of
 blocks (initially FALSE)

 max_subgraph(f)
 i f was_visited(f) t hen r et ur n “ ”
 el se
 c1 = max_subgraph(pred(f . i n1))
 i f is_neg(f . i n1)

t hen c = “ (not (” + c1 + “) ”
 el se c = “ ((” + c1 + “) ”
 i f is_and(f) t hen c += “ and ”
 el se c += “ or ”
 c2 = max_subgraph(pred(f . i n2))
 i f is_neg(f . i n2)

 t hen c += “ not (” + c2 + “)) ”
 el se c += “ (” + c2 + “)) ”
 mark_visited(f)
 r et ur n c
 end

Figure 3: Synthesizing complex conditions

mark_visited(f) makes sure that subsequent calls to
was_visited(f) return TRUE instead of FALSE. We
need this function to ensure maximality of the
synthesized condition. We will show in Sec. 6 how
these synthesized conditions are used for measuring
coverage with criteria such as MC/DC.

Figure 4: Composite condition

Example. Figure 4, a subgraph of Figure 7, shows
two interconnected blocks, AND2 and OR2. Circles
on connectors indicate negation. The following
condition C[2] is derived from these two blocks:

[(FRMD_9. I N1 == FALSE) AND (FRMD_9. I N2 ==
TRUE)] OR (FRMD_10. I N2 == FALSE)

where FRMD_9. I N1 and FRMD_9. I N2 are the values of
signals at connectors I N1 and I N2 in block FRMD_9,
and FRMD_10. I N2 is the value of the signal at
connector I N2 in block FRMD_10.

4.4 Data Flow Metrics for CFCs
Since CFCs are essentially data flow diagrams,
traditional criteria based on data flow appear to be
particularly suited for use with CFCs. The basis for
applying data flow criteria is the data flow graph.
Roughly, that is a control flow graph enriched with
data flow information describing definitions (def),
predicative use (p-use) and computational use (c-use)
of variables. As mentioned above, data flow criteria

then require paths between definitions and uses of
variables to be covered.
In CFCs, paths between definitions and uses are
described with solid lines between different blocks.
To achieve data flow coverage within the
corresponding code, it is necessary to cover these
connections. Of course, this is motivated by our
initial desire to measure coverage at the level of
composition. Nevertheless, a simple connector-based
coverage—i.e., one that requires that a value must be
written at each connector—is not sufficient. This is
because within a block, due to its internal control
structure, several definitions and uses may appear. In
this case, one connection may well correspond to
more than one def-use-pair. Figure 5 shows a part of
the code (not production code) that corresponds to
the CFC in Fig. 6 where blocks TEMP_ML{ 3,4} are
located in the second rightmost column, blocks
TEMP_CP{ 1,2} are located in the middle column,
and blocks TEMP_SW{ 2,3} are in the rightmost
column. The code contains three lines in bold face,
the first two of which define a value, and the last of
which uses the corresponding value. In Fig.6, the
corresponding connection between two function
blocks is also given in bold face. In the following, the
first component of a pair denotes the value of
TEMP_CP1. OUT, and the second component denotes
TEMP_CP2. OUT. The test data { (1,0),(0,0)} satisfies
all-defs coverage but not branch coverage while the
test data { (0,0),(1,1)} satisfies branch coverage but
not all-defs. While the relationship between def-use
and branch coverage is well known [Nta88], we give
the example in order to convey the relationship with
CFCs.

TEMP_ML3. OUT =
 comput e_MULT_OUT(TEMP_SB3. OUT, 0. 333)
TEMP_ML4. OUT =
 comput e_MULT_OUT(TEMP_SB1. OUT, 0. 333)
i f (TEMP_CP1. OUT)
 t hen TEMP_SW3.OUT = TEMP_ML3.OUT
 el se TEMP_SW3.OUT = TEMP_ML1.OUT
TEMP_ML2. OUT =
 comput e_MULT_OUT(TEMP_AD2. OUT, 0. 25)
i f (TEMP_CP2. OUT)
 t hen TEMP_SW2. OUT = TEMP_ML4. OUT
 el se TEMP_SW2.OUT = TEMP_SW3.OUT
i f (TEMP_CP3. OUT)
 t hen $62M7W00 = TEMP_ML2. OUT
 el se $62M7W00 = TEMP_SW2. OUT

Figure 5: Part of the pseudo code for the CFC in Fig. 6

4.5 Metrics for connectors
In this section, we present some additional criteria
that are specific to CFCs. These criteria are defined
independently of blocks in a CFC. Instead,
connectors are used as a basis. These criteria cater for
the test of signals at connectors where the notions of

equivalence classes, limit values, and special values
make an intuitive sense. We only consider connectors
that allow signals within a whole range of values.
These include integer signals, binary signals, and
floating point signals:
• For integer signals, the special value zero and

the minimum and maximum values are selected.
As an example, consider a signed 1-byte integer
signal S. The connector-based criterion then
requires test cases with the following values: S <
-128; S = -128; -128 < S < -1; S = -1; S = 0; S =
1; 1< S < 127; S = 127 and S > 127.

• For binary connectors—whose range is { 0,1} —
these two values are required for the tests.

• For floating point signals, negative and positive
values are required, and so is the value 0. The
test cases include values that are almost zero.
For 48-bits floating point signals, for instance,
this is the value 0.9e-2466. In critical cases, it
might also be interesting to apply a value
between zero and the value: 0 < S < 0.9e-2466.

One may argue that these criteria correspond to the
evaluation of equivalence classes for internal
variables. Such a criterion is indeed demanding, and
may even be unachievable. Nevertheless, for failure-
prevention in safety-relevant functions it may be
suitable to try to provoke over- or underflow of
variables and faulty internal data states by assigning
boundary values to data transferred internally.

5. Application
In order to demonstrate the usefulness of the defined
criteria, we now present results from their application
to CFCs from real-world projects. Secs. 5.1 and 5.2
discuss the application to CFCs containing mainly
arithmetical, and logical blocks, respectively. In both
examples, coverage criteria were applied to test cases
previously defined w.r.t. a given functional
specification. We were able to identify structural
elements—and, equivalently, functionality—of the
CFCs that had not been covered by the given
functional test cases. As a consequence, additional
test cases were defined and run. The results of these
additional test cases turned out to be useful for
software quality assurance, as detailed below.

5.1 CFCs with arithmetics prevailing
The CFC used as a first example is presented in
Figure 6. It computes the average of four temperature
values. Its functional specification requires the
maximum value of the four temperature values to be
excluded from the computation of the average if it
exceeds the average of the other values by a factor of
1.1. Analogously, if the minimum temperature value

is smaller than the average value from the other three
temperature values multiplied by 0.9, it has to be
excluded as well. If both the minimum and maximum
values are excluded from the computation, the
average is calculated from the remaining two
temperature values. The case of negative
temperatures is handled in the actual system but
omitted here for the sake of simplicity.
Table 1 shows the original functional test cases that
were derived from the functional specification
sketched above. The structural criteria presented
above were applied after running these test cases. All
three of them were necessary to achieve complete
branch coverage.

Table 1: Original test cases for computation of average

 v1 v2 v3 V4 Exp.Result
Test 1 20°C 21°C 22°C 23°C 21.5°C

Test 2 20°C 21°C 22°C 25°C 21°C
Test 3 16°C 21°C 22°C 25°C 21.5°C

All-uses coverage. Since one of the def-use pairs,
namely that between the SWITCH blocks
TEMP_SW3 and TEMP_SW2 printed in bold in
Figure 5, was not covered by the three test cases, a
def-use coverage of 98% is achieved by the three test
cases. Additional test data v1=16°C, v2=21°C,
v3=22°C, and v4=23°C with an expected result of
22°C was designed in order to test the missing def-
use-pair. This test data showed a deviation from the
specification: the specification requires the value
16°C to be excluded from the computation because
16 < (21 + 22 + 23) / 3 * 0.9. The average value of
the remaining three signals is 22°C. However, the
result computed by the CFC is 22.64°C. The error is
caused by a wrong calling ordering of the blocks that
causes a value to be erroneously taken from the
previous computation step.

Connector-based coverage. The connector-based
criteria presented in Sec. 4.5 require test cases
provoking underflow, overflow and truncation of
values at numeric connectors. For internal numeric
connectors between arithmetic blocks of a CFC, such
requirements may be very demanding, if not
unachievable. Thus, connector based coverage must
be interpreted with care and should be monitored
only for critical functionality. In the example
presented above, a connector-based coverage of only
3.6% was achieved by the functional test cases.

5.2 CFCs with logics prevailing
A second example for the application of coverage
criteria is presented in Fig. 7. It deals with energy

management for an air conditioning system in a two-
cabin vehicle. Two states of the power supply are to
be differentiated: normal operation with four air
conditioning systems takes place in the state “ full
power supply” . In state “reduced power supply” , only
one air conditioning system of four may be used.
Thus, if several air conditioning systems are switched
on at the same time in this state, only one may begin
to operate. If one of the air conditioning systems is
running in state “reduced power supply” and a
second one is switched on, then the first air
conditioning system must be switched off.
The CFC describes the switching logic in one of the
cabins. Signal $61Z5002 reports whether an air
conditioning system in the other cabin is switched on.
Signals $61E5903 to $61E5906 encode the state of
the four air conditioning systems in the cabin. Signal
$31M5000 indicates reduction of power supply. B/H
and H/B blocks perform a binary to hexadecimal
translation and vice-versa. The lower part of the CFC
implements the behavior where the „reduced power
supply“ signal makes sure that an AC is switched off
when a new one is switched on. The upper part
decides whether all ACs should be switched off. The
six test cases in Table 2 had been derived from the
functional specification.

Table 2: Original test cases for the AC system

Test 1 - Full power supply
- All AC systems switched off
- Expected Result: All ACs off.

Test 2 - Full power supply
- All ACs switched on
- Expected Result: All ACs working

Test 3 - Reduced power supply
- No AC working in cabin B
- All ACs in cabin A are switched on
- Expected Result: All ACs switched off

Test 4 - Reduced power supply
- All ACs in both cabins are off
- AC #1 in cabin A is switched on
- Expected Result: AC #1 working

Test 5 - Reduced power supply;
- AC #1 in cabin A working. All other

ACs in both cabins are switched off
- AC #2 in cabin A is switched on
- Expected Result: AC #1 is switched

off, AC #2 is switched on
Test 6 - Reduced power supply;

- One AC is switched on in cabin A; all
other ACs are off.

- AC #2 is switched on in cabin B
- Expected Result: All ACs switched off

in cabin A

Branch coverage. The functional test cases covered
91% of all branches. For full branch coverage,
additional test cases had to be designed. Roughly
speaking, these switched on and off all types of air
conditioning systems in the state “reduced power
supply” .

MC/DC coverage. In the CFC in Fig. 7, one
complex logical condition could be sythesized. The
condition consists of the two blocks FRMD_9 (and)
and FRMD_10 (or) with input signals $61Z5002,
FRMD_8. OUT and KLM_FRSP. OUT. The synthesized
condition can be described as follows (cf. Sec. 4.3):

[not ($61Z5002) AND (FRMD_8. OUT)] OR
not (KLM_FRSP. OUT)

The combinations of truth values tested by the
functional test cases for the complex condition are
described in rows 1-6 of Table 3. Test cases 1 and 2
as well as 4 and 5 are identical only w.r.t. the given
signals. They do not cover the signal $61Z5002 w.r.t.
MC/DC. For achieving complete MC/DC coverage,
the additional test case 7 had to be designed,
covering signal $61Z5002 in combination with test
case 4.

Table 3: Projection of tests in Table 2

Test NOT
$61Z5002

frmd_8.
out

NOT
klm_frsp.
out

Result

1 T F T T
2 T F T T
3 T F F F
4 T T F T
5 T T F T
6 F F F F
7 F T F F

The additional test case 7 helped to discover a non-
specified behavior. This error leads to a malfunction
occurring in state “reduced power supply” , with one
air conditioning system running in one of the cabins:
in this state, if one tries to switch on a second air
conditioning system in the other cabin, the new air
conditioning cannot be activated. Nevertheless, a flag
is set that the new air conditioning system is switched
on, requiring to stop the air conditioning system
previously at work. Thus, all air conditioning systems
are deactivated, while the internal data state
erroneously indicates the first one to be active.
This is an argument in favor of using MC/DC, and
this is consistent with the findings of Dupuy and
Leveson [DupLev00].

All-uses coverage. The six functional test cases
achieved an all-uses coverage of 82%. As with
branch covererage, full coverage could simply be
achieved by defining further test cases requiring all

types of air conditioning systems to be switched on
and of during testing in the state “reduced power
supply” .

Connector-based coverage. From all connector-
based criteria, only criteria for binary connectors are
applicable for the CFC plan. Full coverage could be
achieved with five out of the six test cases. This
demonstrates that criteria for binary connectors may
be regarded as a weak coverage criterion that can
easily be achieved.

6. Instrumentation of Code
We have seen that different strategies of code
generation impact coverage measurements. These
latter necessitate the instrumentation of code, which
can be done by external tools. One can also directly
encode the measurements into the code. While this
means re-inventing the wheel to a large extent, its
benefit is a higher degree of flexibility.
Recall that the production code roughly looks as
given in Figure 2. Modifying the code generator
yields code that (1) expands some function calls, (2)
replaces some fragments by calls, and (3) contains
explicit “communication variables” . Further
adjustments are necessary for coverage
measurements.

• For measurement purposes, copies of all i j
and ok variables (Figure 2) are introduced,
i j ’ and o j ’ .

• Each cmp statement is preceded by a set of
copying statements i j ’ =i j . This makes sure
that the dummy code subsequently works on
adequate values.

• Some (Sec. 4.1) of the calls to cmp are
expanded into actual code that works on
these redundant variables. This may go
beyond simple macro expansion of the
originial production code. For instance, the
example of the AND block shows that
additional branches are introduced. Because
this code works on the redundant variables,
there is no interference with the original
functionality.

• The calls to cmp that have not been
expanded, cmp(i , &o) ; are followed by a
set of copy statements o j ’ =o j for 1≤j≤M
where M is the length of vector o. This
makes sure that the correct values are used
subsequently.

• Synthesized composite conditions (Sec. 4.3)
are inserted before the first corresponding
cmp function is executed. The t hen and el se

branches both lead to empty statements, i.e.,
they do not modify any values.

The motivation for introducing shadow variables, i ’
and o’ , is that they allow us to use simplified
expanded versions of some function blocks. By doing
so, we can ignore all the internal checks in a function
block when it comes to coverage measurements.
This procedure inserts new branches and conditions
into the code. The relationship between coverage on
the original and on this altered code is that whenever
coverage on the latter increases, it also does so on the
former. However, recall that we are not so much
interested in actual code coverage—just consider the
many checks that defensive programming
introduces—but rather in coverage of the main
functionality.

7. Conclusions
Summary. This paper provides a solution to the
problem of assessing test suites for CFCs at the level
of composition. Production code at the level of
composition does not exhibit the structures that
would make it amenable to coverage measurements
with results that can be interpreted. We have
presented a way of generating code that is too
inefficient to serve as production code. On the other
hand, this code does allow one to apply coverage
criteria at the level of composed function blocks. The
straightforward interpretation of connections as
variables gives rise to def-use pairs, and the synthesis
of complex conditions makes this code amenable to
criteria such as MC/DC. Coverage is measured for
the “relevant” parts of CFCs only. We are confident
that our results carry over to the similar languages of
Matlab/Simulink where coverage measurements at
the level of single models are good practice, but not
at the integration level of components.

Assessment. Our experiments show the usefulness of
the criteria for they revealed previously untested
situations in commercial applications. They are
currently used at Siemens for the assessment of test
suites. We do not use coverage criteria for the
generation of test cases.
We are aware that there is no conclusive evidence on
the “quality” of coverage metrics w.r.t. their power of
revealing failures, and that a controversial discussion
on the benefits of random testing vs. structural testing
persists [HamTay90, Nta98, Gut99]. However,
because our experiments revealed previously
untested situations, and because coverage metrics
provide some number that can be interpreted as
progress, it was decided to incorporate the use of the
coverage metrics of this paper into the development
process.

Future Work. In terms of ongoing empirical
investigations, we try to get further evidence at
whether or not the use of coverage metrics pays off
in our particular application domain. This is
regardless of the fact that coverage measurements are
recommended by the certification authorities. As far
as technology is concerned, we are manually
translating more and more function blocks that
somehow involve conditions, and whose computation
is not dispatched to external functions but is rather
performed at the top level of the generated code (Sec.
4.1). Furthermore, we consider it interesting to
measure coverage w.r.t. other metrics and to compare
the ability to detect failures in our domain of
graphical implementations of railroad transportation
systems.
Because the languages of Matlab Simulink/Stateflow
are similar to CFCs, we consider an adaptation to
these languages and other application domains, such
as automotive systems, to be straightforward.
Regardless of whether or not one accepts CFCs as a
language for model-based development, the work in
this paper is an instance of a more general issue,
namely how to use coverage criteria in the context of
model-based development. Dedicated criteria can be
defined, or classical criteria can be applied to
generated code. (Inconclusive) past studies on the
relationship between implementation coverage and
error detection must be complemented by further
studies that take into account the role of models
[WGS94].
Finally, we did not treat the issue of automatically
generating test cases in this article. The rather simple
execution semantics of CFCs is similar to that of the
CASE tool AutoFocus [HSE97] for which an
industrially relevant body of automatic test case
generation technology has been developed [PSA+04,
Pre03]. Consequently, it appears feasible to not only
assess the quality of test suites but instead
automatically generate test suites that satisfy a given
coverage criterion by construction

References
[BCS+03] Baresel, A., Conrad, M., Sadeghipour,
S., Wegener, J.: The Interplay between Model Coverage
and Code Coverage, Proc. EuroCAST, 2003.
[ChiMil94] Chilenski, J., Miller, S.: Applicability of
modified condition/decision coverage to software testing,
Software Engineering Journal, pages 193—200, September
1994.
[DupLev00] Dupuy, A., Leveson, N.: An Empirical
Evaluation of the MC/DC Coverage Criterion on the
HETE-2 Satellite Software. Proc. Digital Aviations
Systems Conference, October 2000

[EN01] European Committee for
Electrotechnical Standardization: EN 50128:2001—
Railway applications—Communications, signaling and
processing systems--Software for Railway Control and
Protection Systems, 2001.
[FraWey88] Frankl, P., Weyuker, E.: An applicable
family of data-flow testing criteria. IEEE TSE
14(10):1483-1498, 1988.
[GooGer75] Goodenough, J., Gerhart, S.: Toward a
theory of test data selection, IEEE TSE 1(2):156—173,
1975.
[Gut98] Gutjahr, W.: Partition Testing vs.
Random Testing: The Influence of Uncertainty. IEEE TSE
25(5): 661-674, 1999.
[HamTay90] Hamlet, D., Taylor, R.: Partition
Testing does not inspire confidence. IEEE TSE
16(12):1402-1411, 1990.
[HLS+03] Hong, H., Lee, I., Sokolsky, O., Ural,
H.: A Temporal Logic Based Theory of Test Coverage and
Generation, Proc. TACAS’02, pp. 327-341.
[How76] Howden, W.: Reliability of the Path
Testing Strategy, IEEE TSE 2(3): 208-215, 1976.
[HSE97] Huber, F., Schätz, B., Einert, G.:
Consistent Graphical Specification of Distributed Systems,
Proc. FME’91, pp. 122-141, 1997.
[LasKor83] Laski, J., Korel, B.: A data flow
oriented program testing strategy, IEEE TSE 9(3):347—
354, 1983.
[Mye79] Myers, G.: The Art of Software Testing,
Wiley, New York, 1979.
[Nta88] Ntafos, S.: A comparison of some
structural testing strategies, IEEE TSE 14(6):868-874,
1988.
[Nta98] Ntafos, S.: On random and partition
testing. Proc. Intl. symp. on Software Testing and Analysis,
pp. 42—48, 1998.
[Pre03] Pretschner, A.: Compositional
Generation of MC/DC Test Suites, Electronic Notes in
Theoretical Computer Science 82(6):1-11,2003.
[PSA+04] Pretschner, A., Slotosch, O.,
Aiglstorfer, E., Kriebel, S.: Model-Based Test Case
Generation for Real: The Inhouse Card Case Study,
Software Tools for Technology Transfer 5(2-3):140—157,
2004.
[RapWey85] Rapps S., Weyuker, E.: Selecting
Software Test Data Using Data Flow Information, IEEE
TSE 11(4):367-375, April 1985.
[RayHei01] Rayadurgan, S., Heimdahl, M.:
Coverage Based Test Case Generation Using Model
Checkers. Proc. 8th Intl. Conf. and Workshop on the Eng.
of Computer-Based Systems, pp. 83-93, 2001.
[Ura92] Ural, H.: Formal Methods for Test
Sequence Generation, Computer Communications
15(5):311-3254, 1992.
[WHH80] Woodward, M., Hedley, D., Hennell,
M.: Experience with path analysis and testing of programs,
IEEE TSE 6(3): 278—286, September 1980.
[WGS94] Weyuker, E., Goradia, T., Singh, A.:
Automatically Generating Test Data from a Boolean
Specification. IEEE TSE 20(5):353-363, May 1994.

Figure 6: Example of a CFC mainly consisting of arithmetic blocks

Figure 7: Example of a CFC mainly consisting of logical blocks

