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Abstract 
Continuous Function Charts are a diagrammatical 
language for the specification of mixed discrete-
continuous embedded systems, similar to the 
languages of Matlab/Simulink, and often used in the 
domain of transportation systems. Both control and 
data flows are explicitly specified when atomic units 
of computation are composed. The obvious way to 
assess the quality of integration test suites is to 
compute known coverage metrics for the generated 
code. This production code does not exhibit those 
structures that would make it amenable to “ relevant”  
coverage measurements. We define a translation 
scheme that results in structures relevant for such 
measurements, apply coverage criteria for both 
control and data flows at the level of composition of 
atomic computational units, and argue for their 
usefulness on the grounds of detected errors. 
Keywords. Integration testing, model-based testing, 
mixed continuous-discrete and real-time systems, 
MC/DC, data flow testing, block diagrams. 
 

1. Introduction 
Continuous Function Charts (CFCs) are a powerful 
graphical modeling language mainly used for 
engineering embedded controller devices in the 
domain of industrial automation and railway 
transportation systems. Both domains may be 
considered as safety-critical, and standards like 
EN50128 [EN01] recommend different testing 
strategies for systems at various levels of criticality, 
one of which includes structural tests. Similar to 
block diagrams, but more complex because of control 
flow issues, CFCs connect so-called function blocks 
that perform well-defined computations. 
Functional tests are derived from the specification 
documents. As in other domains, it is difficult to say 
when one is likely to have applied a sufficient 
number of tests, especially if completeness of the 
specification is itself in question. Structural coverage 
criteria are used to give respective hints to testers and 
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certification authorities. They are usually defined at 
the level of units, e.g., functions in C. In the domain 
of transportation systems, atomic CFC blocks—
units—are certified independently of a particular 
application. When complex systems are assembled, 
engineers need some information w.r.t. the quality of 
their tests for the integrated (sub) system. (When we 
talk about quality, we refer to coverage, and not to 
whether or not a test case is indeed a good one.) 
Because certification at the unit level has already 
taken place, there is a need for criteria at the 
integration level.  
It turns out that the production code itself is not 
particularly suited for assessing the quality of test 
suites w.r.t. coverage criteria. In this paper, we 
advocate the use of different strategies for code 
generation from graphical models, and show how this 
idea helps with testing real-world systems. 
 
Control Flow. A natural strategy for code generators 
from CFCs is to have a dispatch function that calls 
the functions representing atomic blocks. For existing 
code generators, this is indeed the case: when 
different timing events occur, the associated 
computational blocks are activated. Now, the control 
flow of the resulting code associated with the timing 
class is rather linear. As a consequence, direct 
application of control flow based criteria to the code 
generated for one timing event is trivial. Since 
condition blocks in CFCs are all atomic, the control 
flow is also trivial w.r.t. criteria that take into account 
the structure of decisions.  
We show how to identify the control flow relevant 
for the integrated functionality within the CFC. In 
addition, we show how to assemble atomic condition 
blocks into complex conditions that are amenable to 
the application of coverage criteria such as the 
modified condition/decision coverage (MC/DC) 
criterion. This allows the use of well-accepted 
coverage criteria that are based on control flow and 
condition coverage at the composition level of CFCs. 
 
Data Flow. Since the structural elements of CFCs 
focus on the description of data flow between the 
functional computing blocks, data flow criteria 
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[LasKor83, RapWey85] seem to be particularly 
suited for measuring the completeness of tests at the 
CFC integration level. We show how to naturally 
interpret the fundamental entities of data flow, 
definition and usage of variables, at the level of 
CFCs, and how to derive respective coverage 
metrics. Since data flow in CFCs is bound to 
structural elements referred to as connectors, we use 
these elements to introduce further coverage criteria 
requiring coverage at the level of connectors.  
 
Methodology. When we defined the metrics, we did 
so in a top-down manner. That is to say, we analyzed 
existing coverage metrics and lifted them to the 
structural elements of CFCs, without taking into 
account particular examples. In order to assess our 
own work, we then continued by applying the new 
criteria to existing industrial CFCs and the respective 
test suites. Our metrics were able to reveal situations 
that had not been tested before. 
 
Models. It is true that systems specified with CFCs 
exhibit an abstraction level that is rather close to the 
implementation. Like the graphical languages of the 
Matlab toolset, CFCs may be seen as a full-fledged 
domain-specific programming language. Models 
written in these languages can directly be translated 
into code. When compared to general-purpose 
languages, these domain-specific languages are, 
among other things, characterized by the fact that (a) 
they offer language constructs for domain-specific 
entities, and that (b) they only allow restricted 
operations on the syntactic elements. For instance, 
the respective development tools ensure that all input 
ports of a component are connected to the 
environment or some other component. These 
restrictions allow one to come up with tailored 
coverage criteria. We concentrate on what we 
consider the “essence”  of a CFC, and assess test 
suites w.r.t. this essence.   
 
Problem. Roughly, we address the problem of 
assessing functional tests for programs written in 
domain-specific non-textual languages where 
generated production code is unsuitable for 
respective coverage measurements.  
 
Contribution. To the best of our knowledge, the 
paper is the first (a) to define coverage metrics for 
CFCs both for data and control flows, (b) to 
investigate integration tests for mixed continuous-
discrete modeling languages on the grounds of data 
flow, and (c) to explicitly synthesize complex 
conditions in order to apply criteria like MC/DC. 
Previous work on coverage metrics for models 
focuses on control flow, and on unit tests (Sec. 2). 

We do think that many results of this work carry over 
to Matlab Simulink/Stateflow diagrams, but consider 
this future work. We do not know of any work that 
applies data flow criteria to languages such as block 
diagrams (which becomes even more interesting in 
conjunction with Stateflow). 
 
Organization. Sec. 2 lists relevant work in the area. 
Sec. 3 informally describes syntax and semantics of 
CFCs. In Sec. 4, we review traditional coverage 
metrics for control and data flows at the level of 
code, and lift them to CFCs. An algorithm is 
presented that identifies maximal subgraphs of a CFC 
exclusively consisting of logical operators. This is 
done to synthesize composite conditions, in order to 
subsequently apply respective coverage metrics. We 
also sketch coverage criteria for connectors, i.e., I/O 
ports. Sec. 5 contains experimental results. Sec. 6 
discusses the issue of code instrumentation to the end 
of measuring coverage, and Sec. 7 concludes. 
 

2. Related Work 
Classical surveys on control and data flow criteria for 
code have been given in the Eighties [Nta88, 
FraWey88]. Today, the corresponding criteria are 
exposed in almost every text book on testing.  
In terms of models, coverage at the level of finite 
state machines has been studied extensively. Among 
many others, Ural provides an overview [Ura92]. 
Lifting MC/DC to the level of extended finite state 
machines with a functional programming language 
for actions has been studied by one of the authors 
[Pre03]. The focus there is on test case generation. 
Several authors have studied the use of model 
checkers for the generation of test cases that satisfy a 
given structural criterion [RayHei01, HLS+03]. Their 
focus is the translation of reachability statements into 
temporal logics as input to a model checker. 
In terms of coverage for models of continuous and 
mixed discrete-continuous systems, Baresel et al. 
have provided a recent overview [BCS+03]. In 
particular, they investigate the relationship between 
different notions of (control flow) coverage for 
models and for code at the level of units; integration 
testing and data flow are not treated. The 
Matlab/Simulink Model Coverage Tool concentrates 
on control flow and does not consider data flow and 
the synthesis of complex conditions. 
  

3. Continuous Function Charts 
After a brief introduction to the application domain, 
we use this section to provide a rough survey of both 
graphical syntax and computation model of CFCs. 



  

CFCs are used for software design and 
implementation in the field of industrial automation. 
They were developed for generating automation 
solutions for the programmable logic controllers 
Siemens SIMATIC S7 and SIMATIC WinAC. 
CFCs are frequently applied for developing solutions 
in the domain of transportation systems, building 
technology, and industrial process support. A 
development environment for design, code 
generation, test and simulation with CFCs is 
commercially available. 
 
Process. With requirements specifications at hand, 
engineers build CFCs on the grounds of atomic 
blocks from certified libraries. Production code is 
subsequently generated from these CFCs. Tests 
derived from the requirements documents are applied 
to this code. The results of our study led to an 
intermediary step: the CFC is used for the generation 
of a different (inefficient) code to which the same 
tests are applied. Coverage is measured, and new 
tests are designed when coverage is not sufficient. 
These tests are later also applied to the production 
code.  
 
3.1 Syntax 
The main structural elements of CFCs are function 
blocks, connections between function blocks, and 
event classes. 
 
Function blocks. Function blocks are the smallest 
units in which computational functions are described. 
They contain any description from simple logic 
functions to complex control algorithms. The 
function blocks may be defined in Assembler or C 
and are organized in certified libraries.  
Blocks have input and output connectors by which 
parameters are passed. In order to control 
computational evaluation of the blocks within a CFC, 
timing information for a scheduling mechanism must 
be assigned to each block. Scheduling is driven by 
timing events. This is a major difference between 
block diagrams and CFCs. 
Figure 1 contains a prototypical function block. The 
numbers indicate the following structural 
information: 1 - name of the block; 2 – input 
connectors; 3 – output connectors; 4 and 5 – names 
of the input and output connectors; 6 and 7 – type of 
the input and output connectors; 8 – sequence 
number within an event class; 9 – event class for 
block evaluation. 
 
Connectors. Connectors define the interfaces of a 
block. Connectors are typed. Input and output 
connectors for a block are distinguished.  
 

Event classes. For computation, timing information 
for scheduling is assigned to each block. An event 
class is specified, and a sequence number must be 
defined. It is unique within each class, defining the 
ordering of block computation. In Figure 1, the block 
belongs to class T5 with sequence number 10. 
 

 
Figure 1: CFC function block 

 
Construction of CFCs. When developing a CFC, a 
programmer selects function blocks from a library, 
places them on a worksheet, and assigns 
characteristics such as block name, event class and 
sequence number. Subsequently, the output and input 
connectors between the blocks are attached. Figs. 6 
and 7 at the end of this paper show example CFCs. 
Several CFCs may be composed to a functional 
package. In a package, connectors are visible in all 
plans. Thus, blocks from different plans may be 
interconnected. The connection to external signals 
such as signals from other functional packages or 
hardware signals is defined at this level of 
construction. 
CFCs may be composed hierarchically. To this end, 
CFC plans may be referenced as a function block in 
another CFC. Thus, different integration levels can 
be described. 
 
3.2 Computation model 
At runtime, scheduling is realized by a timing 
mechanism with the underlying concept of event 
classes. Computation is driven by timing events and 
interrupts. Computation of blocks within an event 
class is performed in the order defined by the 
sequence number.  
When an event is raised, the assigned computational 
blocks are sequentially evaluated in the predefined 
order: values at input connectors are read, the defined 
computation is performed, the calculated results are 
assigned to the output connectors, and they are 
immediately available to the connected blocks. 
 
Code. Simplifying matters, the generated production 
code exhibits the structure given in Figure 2. Events 
e1. . eQ are raised outside this fragment. Within each 
event class, computations are performed for each 
function block cmp j . Output vectors o j  are computed 
as a function of input vectors i  j , and output is 
implicitly transferred to input connectors by address 



  

aliasing: &o j  is also the address of the input 
connector the function block is connected to.  
 
swi t ch( event )  {  
  case e1:  
    cmp1( i  1, &o 1) ;  
    cmp2( i  2, &o 2) ;  
    . .  
    cmpp( i  p, &o p) ;  
    br eak;  
  case e2:  
    cmpp+1( i   p+1, &o  p+1) ;  
    cmpp+2( i   p+2, &o  p+2) ;  
    . .  
    cmpp+q( i   p+q, &o  p+q) ;  
    br eak;  
   . .  
  case eQ:  
    cmpp+q+1( i   p+q+1, &o  p+q+1) ;  
    cmpp+q+2( i   p+q+2, &o  p+q+2) ;  
    . .  
    cmpp+q+r ( i   p+q+r , &o  p+q+r ) ;  
    br eak;  
}  

Figure 2: Production code skeleton 

In fact, except for conversions and arithmetic 
operations, all calls to the cmp j  functions are textually 
replaced by the corresponding code. This is 
motivated by efficiency considerations in real-time 
domains: the length of the code does not matter as 
much as its speed. 
 
Quality of tests. The production code basically 
consists of Q segments, one for each event class.  The 
following three observations can be made. One, the 
application of data flow criteria corresponds to 
testing the interconnections between different 
function blocks within a CFC. We are not so much 
interested in data flow within one function block but 
rather at the level of composed function blocks. The 
above fragment does not contain explicit 
assignments, and the many expanded cmp j  blocks 
convey “too much”  information. Two, the application 
of control flow criteria is unlikely to convey 
interesting information. This is because there are no 
loops nor jumps, and because the involved conditions 
are atomic and hence trivial. Three, many expanded 
cmp j   blocks are library functions that have been 
certified independently before.  
 

4. Coverage Metrics for CFCs 
This section describes the main conceptual results of 
this paper. An application and empirical evidence is 
provided in Sec. 5. After motivating a modification 
of the production code generator in Sec. 4.1, we 
briefly review traditional coverage metrics at the 
level of code in Sec. 4.2. We then proceed by lifting 
these metrics to the level of CFCs for both control 

(Sec. 4.3) and data flows (Sec. 4.4). Criteria for 
special connectors are provided in Sec. 4.5. 
 
4.1 Code for measurements 
We have seen that the generated production code is 
not suited for the application of coverage criteria. In 
terms of data flow, there are too many def-use pairs 
at the level of expanded cmp j  blocks. Control flow is 
linear, and there are no or few composite conditions. 
For instance, a block that implements the logical 
AND is translated into  

OUT = I N1 && I N2;   

as far as production code is concerned. While less 
efficient, the statement 

i f ( I N1&&I N2)  OUT=1;  el se OUT=0;  
is functionally equivalent but provides two branches 
and two definitions of OUT instead of one. 
Efficiency and certification issues prevent us from 
simply using a production code generator that is 
better suited for coverage measurements. The basic 
idea is hence to generate code that exhibits the same 
“functional”  behavior and that does not necessarily 
ensure the real-time deadlines, but is amenable to 
measuring the quality of test suites.  
Basically, our approach amounts to modifying the 
code generator by (1) replacing certain code 
fragments by actual calls to cmp j . This is done for 
function blocks that, in terms of coverage 
measurements, are deemed irrelevant at the level of 
composition. Since we are interested in applying 
traditional coverage criteria, we (2) need to gain 
access to the fundamental structural entities when 
coverage is measured. 
For control flow, these fundamental entities are 
conditionals and jumps. Slightly simplifying matters, 
no (equivalent to) jumps exist in CFCs. Thus, for a 
given timing class, the control flow is rather linear. 
The control flow criteria are hence trivial to achieve. 
We hence take additional information from atomic 
blocks into account. For instance, a conditional block 
basically represents two different paths, and these 
two paths can be directly incorporated into the 
analysis. More complex coverage criteria like 
MC/DC rely on complex conditions. Since conditions 
are stated as atomic blocks within CFCs, a synthesis 
procedure for more complex conditions must be 
applied before using these criteria. Our approach to 
synthesizing conditions is presented in Sec. 4.3.  
For data flow, on the other hand, the fundamental 
entities are writing (defining) and reading (using) 
accesses to variables. Variables as such do not exist 
in CFCs. They do exist at the level of production 
code. However, we are interested in connections 
between function blocks only—not in auxiliary 
variables. The output of a function block can 
naturally be interpreted as the definition of a 
“communication”  variable. Input to a function block 



  

boils down to its use. Note that definitions and uses 
may take place at different branches of a block. 
To summarize, we will generate code that contains 
(1) the “main”  branches of the integrated structure, 
(2) definitions and uses of variables to the end of data 
flow-based testing, and (3) complex conditions to 
make complex control flow-based criteria applicable. 
This motivates the following generation procedure. 
For the sake of simplicity, we only sketch it. Each 
single function block was translated manually. Code 
generation for composed systems relies on this code. 
 
Function blocks. We show how to generate code for 
a few chosen blocks. These are the SWITCH, 
SELECT, and MULT blocks. They implement 
simple conditionals, selections, and multiplication of 
two numbers. What happens is the assignment of 
values to output connectors as a function of the input 
connectors. 
1. Conditionals. Depending on the 
value of a connector SEL, the 
SWITCH block decides whether the 
value of the INH or of the INL 
connector is copied to the output connector OUT. 
This implements a decision in CFCs; production code 
contains a macro at the respective places. The block 
is translated into a statement with two branches, 

i f  ( SEL==1)   
OUT = I NH  

el se  OUT = I NL. 
2. Selection. The SELECT block 
outputs 1 if exactly one of the input 
signals is 1. It is translated into 

i f  ( ( I N1 == 1)  and ( I N2 == 0)  and 
( I N3 == 0)  and ( I N4 == 0) )  
OUT = 1 

el se i f  ( ( I N1 == 0)  and ( I N2 == 1) and 
( I N3 == 0)  and ( I N4 == 0) )  
OUT = 1 

el se i f  ( ( I N1 == 0)  and ( I N2 == 0) and 
( I N3 == 1)  and ( I N4 == 0) )  
OUT = 1 

el se i f  ( ( I N1 == 0)  and ( I N2 == 0) and 
( I N3 == 0)  and ( I N4 == 1) )  
OUT = 1 

el se   OUT = 0 

while the production code is 
i f  ( ( I N1 & 1)  + ( I N2 & 1)  + ( I N3 & 1)  

 + ( I N4 & 1) )  
     OUT = 1 
el se OUT = 0 

with fewer branches, fewer definitions,  and no 
composite conditions (& is the bitwise AND). 
3. Multiplication. The MULT 
block implements multiplication of 
two 2-byte integers provided at 
connectors IN1 and IN2. The result is made 
accessible at connector OUT. The arithmetic 
operation involves no decisions and is described as 
function 

OUT = comput e_MULT_OUT ( I N1,  I N2)  

which refers to an external function that performs 
multiplication. The actual code that includes checks 
is hidden in this function.  
This specialized generation of code at the level of 
single function blocks is only seemingly in 
contradiction with one of our initial statements: we 
claimed that measuring coverage at this level is a 
dubious endeavor because of the certification that has 
already taken place. The point is that we identified 
those function blocks with “ interesting”  conditions 
for the integrated functionality and put them at the 
top level of the differently generated code rather than 
calling corresponding functions. This is, for instance, 
the case for the multiplication but not for the 
SWITCH and SELECT blocks. However, the code 
generated this way is not a mere macro expansion: 
instead, it contains the “relevant”  parts only, and it 
omits “ irrelevant”  details.   
 
Composition. Rather than assigning output by calls 
by reference, we introduce explicit assignments. This 
is relevant for data flow measurements only. 
Composite conditions for control flow measurements 
are treated in Sec. 4.3.  
 
4.2 Traditional metrics 
In the following, we briefly review classical coverage 
metrics at the level of code. Structural coverage 
criteria have initially been developed with the aim of 
selecting test data or of judging test data adequacy 
[GooGer75, How76]. They are defined in terms of 
the internal structure of a piece of software. They can 
thus be applied even if completeness of a 
specification is in question, or if no specification at 
all is at hand. Efficiency and the ability to detect 
failures of different structural coverage criteria were 
controversially discussed in the literature. 
 
Control Flow. Structural coverage criteria that use 
control flow as a reference were introduced as 
control flow based criteria  [How76, Mye79]. 
Statement coverage requires every statement to be 
executed at least once during testing. Branch 
coverage requires every branch to be executed at 
least once: every decision evaluates to both true and 
false. Requiring all program paths to be executed at 
least once has been introduced as a powerful yet 
generally unachievable criterion. Selection of special 
paths to be covered led to the development of 
coverage criteria such as LCSAJ or boundary-interior 
coverage [How76, WHH80].  
 
Data Flow. Examination of the data flow in 
programs led to further requirements on paths to be 
covered during testing  [LasKor83, RapWey85]. As a 

 



  

basic criterion, the all-defs criterion requests for all 
definitions of a variable a dynamic test case 
executing a definition free path (with respect to this 
variable) from its definition to one of its uses. The 
more demanding all-uses criterion requires a 
dynamic test case for covering a definition free path 
from each definition of the variable to all its uses. To 
fulfill the most demanding criterion of this family, 
the all-def-use-paths criterion, all such paths have to 
be covered. These and further criteria for covering 
the data flow, such as required pairs testing, were 
introduced and discussed as data flow criteria. 
 
Complex Conditions. Control and data flow oriented 
techniques do not take into account the internal 
complexity of compound predicates used in the 
decisions of the program. Since predicates determine 
the execution path for a given input and thus have a 
high impact on the dynamic behavior of the program, 
additional coverage metrics have been defined with 
respect to the internal structure of compound 
predicates [Mye76, ChiMil94].  
Conditions are regarded as covered if they have been 
evaluated to the Boolean constants true and false at 
least once during testing. The weakest criterion, 
referred to as condition coverage, requires evaluation 
of all atomic conditions to true and false. 
Condition/decision coverage has then been defined 
with respect to atomic and top-level conditions. 
Requiring the coverage of all conditions—atomic, 
intermediate and top-level—has been introduced as 
minimal multiple condition coverage. Demanding 
each compound predicate to be covered with all 
possible combinations of Boolean values of its 
atomic conditions led to multiple condition coverage. 
This criterion is costly to achieve since it requires 2m 
combinations for covering a compound predicate 
with m atomic conditions. With the aim of 
thoroughly examining each atomic condition in a 
compound predicate, modified condition/decision 
coverage (MC/DC) has been defined. In order to 
satisfy this criterion, each atomic condition must 
influence the predicate at least once, while all other 
independent conditions stay unchanged. For a 
compound predicate with m conditions that can be 
varied independently, this criterion can be achieved 
with m+1 combinations. 
 
4.3 Control Flow Metrics for CFCs  
In this section we show how techniques that are 
based on control flow can be used to evaluate 
completeness of a test suite for CFCs. The graphical 
representation of a CFC does not allow direct 
application of the coverage criteria. In order to 
convey the meaning of a metrics for a graphic plan, 
the metrics must be applied to the generated code. 

Because the application of well-known coverage 
criteria based on control flow is rather trivial, we 
focus on the synthesis of complex conditions. That is 
to say, in order to apply criteria that take into account 
the structure of complex conditions, we would like to 
measure coverage on a piece of code 
 r  = ( c1 AND c2)  OR c3 

rather than  
 r 1 =  c1 AND c2 
 r  =   r 1 OR c3.  
The semantic differences between these two 
expressions are not relevant in our context. 
  
Synthesis of composed conditions. CFCs provide 
blocks for the logical and, and or operators (not is 
handled by means of connectors, see the example 
below). They are interconnected to implement 
complex conditions/decisions. In order to apply 
coverage metrics that take into account the structure 
of conditions, composed conditions have to be 
synthesized. For these complex logical conditions, 
coverage criteria like minimum multiple condition or 
MC/DC can be applied. 
The idea is to identify maximum subgraphs of a CFC 
that consist only of logical operators, and to compute 
the corresponding complex condition. In the 
following, we assume that all function blocks belong 
to the same event class, and for the sake of 
simplicity, we consider binary conjunction and 
disjunction only. Let F denote an array of function 
blocks in reverse order of execution (element 8 in 
Figure 1). This array contains only the logical 
function blocks “AND”  and “OR”  of a complex 
module.  Furthermore, let pred denote a function that 
takes a function block and an input connector, i, and 
returns the function block that contains the output 
connector that is connected to i. The range of pr ed 
may be a superset of F. In Figure 4, for instance, we 
have 
  pred( FRMD_10,  I N1)  = FRMD_9.  
 

In case there is no predecessor, pred  returns the 
name of the input signal. The algorithm then works 
as follows. Function max_subgraph defined in Figure 
3 is executed for each f∈F. This yields an array of 
possibly complex conditions, C:  

f or  i =1 . .  | F|  
  C[ i ]  = max_subgraph( F[ i ] ) .  

 
An element C[i] is the empty string if F[i] is a logical 
block that has become part of a more complex 
synthesized condition. max_subgraph is recursively 
applied to those function blocks that yield the input 
for connectors in1 and in2, and their result is 
connected by “and”  or by “or” , depending on the 
nature of f. is_neg returns TRUE if its argument is a 
negated connector (see below), and false otherwise.  
 



  

  in:  function block f 
  out:  string of synthesized conditions with f at the 

top level 
side effects: mark_visited changes status of 
   blocks (initially FALSE) 

  max_subgraph( f )  
    i f  was_visited( f )  t hen r et ur n “ ”  
    el se  
      c1 = max_subgraph( pred( f . i n1) )  
      i f  is_neg( f . i n1)   

t hen c = “ ( not ( ”  + c1 + “ ) ”  
    el se c = “ ( ( ”  + c1 + “ ) ”  
      i f  is_and( f )  t hen c += “  and ”  
   el se c += “  or  ”  
      c2 = max_subgraph( pred( f . i n2) )  
      i f  is_neg( f . i n2)  

  t hen c += “ not ( ”  + c2 + “ ) ) ”  
  el se c += “ ( ”  + c2 + “ ) ) ”  
      mark_visited( f )  
      r et ur n c 
   end 

Figure 3: Synthesizing complex conditions 

 

mark_visited( f )  makes sure that subsequent calls to 
was_visited( f )  return TRUE instead of FALSE. We 
need this function to ensure maximality of the 
synthesized condition. We will show in Sec. 6 how 
these synthesized conditions are used for measuring 
coverage with criteria such as MC/DC. 

 
Figure 4: Composite condition 

 
Example. Figure 4, a subgraph of Figure 7, shows 
two interconnected blocks, AND2 and OR2. Circles 
on connectors indicate negation. The following 
condition C[2] is derived from these two blocks: 
 

[ ( FRMD_9. I N1 == FALSE)  AND ( FRMD_9. I N2 == 
TRUE) ]  OR ( FRMD_10. I N2 == FALSE)  

 
where FRMD_9. I N1 and FRMD_9. I N2 are the values of 
signals at connectors I N1 and I N2 in block FRMD_9, 
and FRMD_10. I N2 is the value of the signal at 
connector I N2 in block FRMD_10. 
 
4.4 Data Flow Metrics for CFCs 
Since CFCs are essentially data flow diagrams, 
traditional criteria based on data flow appear to be 
particularly suited for use with CFCs. The basis for 
applying data flow criteria is the data flow graph. 
Roughly, that is a control flow graph enriched with 
data flow information describing definitions (def), 
predicative use (p-use) and computational use (c-use) 
of variables. As mentioned above, data flow criteria 

then require paths between definitions and uses of 
variables to be covered. 
In CFCs, paths between definitions and uses are 
described with solid lines between different blocks. 
To achieve data flow coverage within the 
corresponding code, it is necessary to cover these 
connections. Of course, this is motivated by our 
initial desire to measure coverage at the level of 
composition. Nevertheless, a simple connector-based 
coverage—i.e., one that requires that a value must be 
written at each connector—is not sufficient. This is 
because within a block, due to its internal control 
structure, several definitions and uses may appear. In 
this case, one connection may well correspond to 
more than one def-use-pair. Figure 5 shows a part of 
the code (not production code) that corresponds to 
the CFC in Fig. 6 where blocks TEMP_ML{ 3,4}  are 
located in the second rightmost column, blocks 
TEMP_CP{ 1,2}  are located in the middle column, 
and blocks TEMP_SW{ 2,3}  are in the rightmost 
column. The code contains three lines in bold face, 
the first two of which define a value, and the last of 
which uses the corresponding value. In Fig.6, the 
corresponding connection between two function 
blocks is also given in bold face. In the following, the 
first component of a pair denotes the value of 
TEMP_CP1. OUT, and the second component denotes 
TEMP_CP2. OUT. The test data { (1,0),(0,0)}  satisfies 
all-defs coverage but not branch coverage while the 
test data { (0,0),(1,1)}  satisfies branch coverage but 
not all-defs. While the relationship between def-use 
and branch coverage is well known [Nta88], we give 
the example in order to convey the relationship with 
CFCs.   
 
TEMP_ML3. OUT = 
  comput e_MULT_OUT( TEMP_SB3. OUT,  0. 333)  
TEMP_ML4. OUT = 
  comput e_MULT_OUT( TEMP_SB1. OUT,  0. 333)  
i f  ( TEMP_CP1. OUT)  
   t hen TEMP_SW3.OUT = TEMP_ML3.OUT 
   el se TEMP_SW3.OUT = TEMP_ML1.OUT 
TEMP_ML2. OUT = 
  comput e_MULT_OUT( TEMP_AD2. OUT,  0. 25)  
i f  ( TEMP_CP2. OUT)  
   t hen TEMP_SW2. OUT = TEMP_ML4. OUT 
   el se TEMP_SW2.OUT = TEMP_SW3.OUT 
i f  ( TEMP_CP3. OUT)  
   t hen $62M7W00 = TEMP_ML2. OUT 
   el se $62M7W00 = TEMP_SW2. OUT 

Figure 5: Part of the pseudo code for the CFC in Fig. 6 

 
4.5 Metrics for connectors 
In this section, we present some additional criteria 
that are specific to CFCs. These criteria are defined 
independently of blocks in a CFC. Instead, 
connectors are used as a basis. These criteria cater for 
the test of signals at connectors where the notions of 



  

equivalence classes, limit values, and special values 
make an intuitive sense. We only consider connectors 
that allow signals within a whole range of values. 
These include integer signals, binary signals, and 
floating point signals: 
• For integer signals, the special value zero and 

the minimum and maximum values are selected. 
As an example, consider a signed 1-byte integer 
signal S. The connector-based criterion then 
requires test cases with the following values: S < 
-128; S = -128; -128 < S < -1; S = -1; S = 0; S = 
1; 1< S < 127; S = 127 and S > 127.  

• For binary connectors—whose range is { 0,1} —
these two values are required for the tests. 

• For floating point signals, negative and positive 
values are required, and so is the value 0. The 
test cases include values that are almost zero. 
For 48-bits floating point signals, for instance, 
this is the value 0.9e-2466. In critical cases, it 
might also be interesting to apply a value 
between zero and the value: 0 < S < 0.9e-2466. 

One may argue that these criteria correspond to the 
evaluation of equivalence classes for internal 
variables. Such a criterion is indeed demanding, and 
may even be unachievable. Nevertheless, for failure-
prevention in safety-relevant functions it may be 
suitable to try to provoke over- or underflow of 
variables and faulty internal data states by assigning 
boundary values to data transferred internally. 
  

5. Application  
In order to demonstrate the usefulness of the defined 
criteria, we now present results from their application 
to CFCs from real-world projects. Secs. 5.1 and 5.2 
discuss the application to CFCs containing mainly 
arithmetical, and logical blocks, respectively. In both 
examples, coverage criteria were applied to test cases 
previously defined w.r.t. a given functional 
specification. We were able to identify structural 
elements—and, equivalently, functionality—of the 
CFCs that had not been covered by the given 
functional test cases. As a consequence, additional 
test cases were defined and run. The results of these 
additional test cases turned out to be useful for 
software quality assurance, as detailed below.  
 
5.1 CFCs with arithmetics prevailing  
The CFC used as a first example is presented in 
Figure 6. It computes the average of four temperature 
values. Its functional specification requires the 
maximum value of the four temperature values to be 
excluded from the computation of the average if it 
exceeds the average of the other values by a factor of 
1.1. Analogously, if the minimum temperature value 

is smaller than the average value from the other three 
temperature values multiplied by 0.9, it has to be 
excluded as well. If both the minimum and maximum 
values are excluded from the computation, the 
average is calculated from the remaining two 
temperature values. The case of negative 
temperatures is handled in the actual system but 
omitted here for the sake of simplicity. 
Table 1 shows the original functional test cases that 
were derived from the functional specification 
sketched above. The structural criteria presented 
above were applied after running these test cases. All 
three of them were necessary to achieve complete 
branch coverage.  

Table 1: Original test cases for computation of average 

  v1 v2 v3 V4 Exp.Result 
Test 1 20°C 21°C 22°C 23°C 21.5°C 

Test 2 20°C 21°C 22°C 25°C 21°C 
Test 3 16°C 21°C 22°C 25°C 21.5°C 

 
 
All-uses coverage. Since one of the def-use pairs, 
namely that between the SWITCH blocks 
TEMP_SW3 and TEMP_SW2 printed in bold in 
Figure 5, was not covered by the three test cases, a 
def-use coverage of 98% is achieved by the three test 
cases. Additional test data v1=16°C, v2=21°C, 
v3=22°C, and v4=23°C with an expected result of 
22°C was designed in order to test the missing def-
use-pair. This test data showed a deviation from the 
specification: the specification requires the value 
16°C to be excluded from the computation because 
16 < (21 + 22 + 23) / 3 *  0.9. The average value of 
the remaining three signals is 22°C. However, the 
result computed by the CFC is 22.64°C. The error is 
caused by a wrong calling ordering of the blocks that 
causes a value to be erroneously taken from the 
previous computation step. 
 
Connector-based coverage. The connector-based 
criteria presented in Sec. 4.5 require test cases 
provoking underflow, overflow and truncation of 
values at numeric connectors. For internal numeric 
connectors between arithmetic blocks of a CFC, such 
requirements may be very demanding, if not 
unachievable. Thus, connector based coverage must 
be interpreted with care and should be monitored 
only for critical functionality. In the example 
presented above, a connector-based coverage of  only 
3.6% was achieved by the functional test cases. 
 
5.2 CFCs with logics prevailing 
A second example for the application of coverage 
criteria is presented in Fig. 7. It deals with energy 



  

management for an air conditioning system in a two-
cabin vehicle. Two states of the power supply are to 
be differentiated: normal operation with four air 
conditioning systems takes place in the state “ full 
power supply” . In state “reduced power supply” , only 
one air conditioning system of four may be used. 
Thus, if several air conditioning systems are switched 
on at the same time in this state, only one may begin 
to operate. If one of the air conditioning systems is 
running in state “reduced power supply”  and a 
second one is switched on, then the first air 
conditioning system must be switched off. 
The CFC describes the switching logic in one of the 
cabins. Signal $61Z5002 reports whether an air 
conditioning system in the other cabin is switched on. 
Signals $61E5903 to $61E5906 encode the state of 
the four air conditioning systems in the cabin. Signal 
$31M5000 indicates reduction of power supply. B/H 
and H/B blocks perform a binary to hexadecimal 
translation and vice-versa. The lower part of the CFC 
implements the behavior where the „reduced power 
supply“ signal makes sure that an AC is switched off 
when a new one is switched on. The upper part 
decides whether all ACs should be switched off. The 
six test cases in Table 2 had been derived from the 
functional specification. 
 

Table 2: Original test cases for the AC system 

Test 1 - Full power supply 
- All AC systems switched off 
- Expected Result: All ACs off. 

Test 2 - Full power supply  
- All ACs switched on 
- Expected Result: All ACs working 

Test 3 - Reduced power supply  
- No AC working in cabin B 
- All ACs in cabin A are switched on 
- Expected Result: All ACs switched off 

Test 4 - Reduced power supply 
- All ACs in both cabins are off 
- AC #1 in cabin A is switched on 
- Expected Result: AC #1 working 

Test 5 - Reduced power supply; 
- AC #1 in cabin A working. All other 

ACs in both cabins are switched off 
- AC #2 in cabin A is switched on 
- Expected Result: AC #1 is switched 

off, AC #2 is switched on 
Test 6 - Reduced power supply; 

- One AC is switched on in cabin A; all 
other ACs are off. 

- AC #2 is switched on in cabin B 
- Expected Result: All ACs switched off 

in cabin A 
 

Branch coverage. The functional test cases covered 
91% of all branches. For full branch coverage, 
additional test cases had to be designed. Roughly 
speaking, these switched on and off all types of air 
conditioning systems in the state “reduced power 
supply” . 
 
MC/DC coverage. In the CFC in Fig. 7, one 
complex logical condition could be sythesized. The 
condition consists of the two blocks FRMD_9 (and) 
and FRMD_10 (or) with input signals $61Z5002, 
FRMD_8. OUT and KLM_FRSP. OUT. The synthesized 
condition can be described as follows (cf. Sec. 4.3): 

[ not ( $61Z5002)  AND ( FRMD_8. OUT) ]  OR 
not ( KLM_FRSP. OUT)  

The combinations of truth values tested by the 
functional test cases for the complex condition are 
described in rows 1-6 of Table 3. Test cases 1 and 2 
as well as 4 and 5 are identical only w.r.t. the given 
signals. They do not cover the signal $61Z5002 w.r.t. 
MC/DC. For achieving complete MC/DC coverage, 
the additional test case 7 had to be designed, 
covering signal $61Z5002 in combination with test 
case 4.  

Table 3: Projection of tests in Table 2 

Test NOT 
$61Z5002  

 
frmd_8. 
out 

NOT 
klm_frsp. 
out 

 
Result 

1 T F T T 
2 T F T T 
3 T F F F 
4 T T F T 
5 T T F T 
6 F F F F 
7 F T F F 

 
The additional test case 7 helped to discover a non-
specified behavior. This error leads to a malfunction 
occurring in state “reduced power supply” , with one 
air conditioning system running in one of the cabins: 
in this state, if one tries to switch on a second air 
conditioning system in the other cabin, the new air 
conditioning cannot be activated. Nevertheless, a flag 
is set that the new air conditioning system is switched 
on, requiring to stop the air conditioning system 
previously at work. Thus, all air conditioning systems 
are deactivated, while the internal data state 
erroneously indicates the first one to be active. 
This is an argument in favor of using MC/DC, and 
this is consistent with the findings of Dupuy and 
Leveson [DupLev00].  
 
All-uses coverage. The six functional test cases 
achieved an all-uses coverage of 82%. As with 
branch covererage, full coverage could simply be 
achieved by defining further test cases requiring all 



  

types of air conditioning systems to be switched on 
and of during testing in the state “reduced power 
supply” .  
 
Connector-based coverage. From all connector-
based criteria, only criteria for binary connectors are 
applicable for the CFC plan. Full coverage could be 
achieved with five out of the six test cases. This 
demonstrates that criteria for binary connectors may 
be regarded as a weak coverage criterion that can 
easily be achieved. 
 

6. Instrumentation of Code 
We have seen that different strategies of code 
generation impact coverage measurements. These 
latter necessitate the instrumentation of code, which 
can be done by external tools. One can also directly 
encode the measurements into the code. While this 
means re-inventing the wheel to a large extent, its 
benefit is a higher degree of flexibility.  
Recall that the production code roughly looks as 
given in Figure 2. Modifying the code generator 
yields code that (1) expands some function calls, (2) 
replaces some fragments by calls, and (3) contains 
explicit “communication variables” . Further 
adjustments are necessary for coverage 
measurements.  

• For measurement purposes, copies of all i j  
and ok variables (Figure 2) are introduced, 
i j ’  and o j ’ . 

• Each cmp statement is preceded by a set of 
copying statements i j ’ =i j . This makes sure 
that the dummy code subsequently works on 
adequate values. 

• Some (Sec. 4.1) of the calls to cmp are 
expanded into actual code that works on 
these redundant variables. This may go 
beyond simple macro expansion of the 
originial production code. For instance, the 
example of the AND block shows that 
additional branches are introduced. Because 
this code works on the redundant variables, 
there is no interference with the original 
functionality. 

• The calls to cmp that have not been 
expanded,  cmp( i , &o) ;  are followed by a 
set of copy statements o j ’ =o j  for 1≤j≤M 
where M is the length of vector o. This 
makes sure that the correct values are used 
subsequently. 

• Synthesized composite conditions (Sec. 4.3) 
are inserted before the first corresponding 
cmp function is executed. The t hen and el se 

branches both lead to empty statements, i.e., 
they do not modify any values. 

The motivation for introducing shadow variables, i ’  
and o’ , is that they allow us to use simplified 
expanded versions of some function blocks. By doing 
so, we can ignore all the internal checks in a function 
block when it comes to coverage measurements. 
This procedure inserts new branches and conditions 
into the code. The relationship between coverage on 
the original and on this altered code is that whenever 
coverage on the latter increases, it also does so on the 
former. However, recall that we are not so much 
interested in actual code coverage—just consider the 
many checks that defensive programming 
introduces—but rather in coverage of the main 
functionality.   
 

7. Conclusions 
Summary. This paper provides a solution to the 
problem of assessing test suites for CFCs at the level 
of composition. Production code at the level of 
composition does not exhibit the structures that 
would make it amenable to coverage measurements 
with results that can be interpreted. We have 
presented a way of generating code that is too 
inefficient to serve as production code. On the other 
hand, this code does allow one to apply coverage 
criteria at the level of composed function blocks. The 
straightforward interpretation of connections as 
variables gives rise to def-use pairs, and the synthesis 
of complex conditions makes this code amenable to 
criteria such as MC/DC. Coverage is measured for 
the “relevant”  parts of CFCs only. We are confident 
that our results carry over to the similar languages of 
Matlab/Simulink where coverage measurements at 
the level of single models are good practice, but not 
at the integration level of components. 
 
Assessment. Our experiments show the usefulness of 
the criteria for they revealed previously untested 
situations in commercial applications. They are 
currently used at Siemens for the assessment of test 
suites. We do not use coverage criteria for the 
generation of  test cases.  
We are aware that there is no conclusive  evidence on 
the “quality”  of coverage metrics w.r.t. their power of 
revealing failures, and that a controversial discussion 
on the benefits of random testing vs. structural testing 
persists [HamTay90, Nta98, Gut99]. However, 
because our experiments revealed previously 
untested situations, and because coverage metrics 
provide some number that can be interpreted as 
progress, it was decided to incorporate the use of the 
coverage metrics of this paper into the development 
process. 



  

 
Future Work. In terms of ongoing empirical 
investigations, we try to get further evidence at 
whether or not the use of coverage metrics pays off 
in our particular application domain. This is 
regardless of the fact that coverage measurements are 
recommended by the certification authorities. As far 
as technology is concerned, we are manually 
translating more and more function blocks that 
somehow involve conditions, and whose computation 
is not dispatched to external functions but is rather 
performed at the top level of the generated code (Sec. 
4.1). Furthermore, we consider it interesting to 
measure coverage w.r.t. other metrics and to compare 
the ability to detect failures in our domain of 
graphical implementations of railroad transportation 
systems.  
Because the languages of Matlab Simulink/Stateflow  
are similar to  CFCs, we consider an adaptation to 
these languages and other application domains, such 
as automotive systems, to be straightforward. 
Regardless of whether or not one accepts CFCs as a 
language for model-based development, the work in 
this paper is an instance of a more general issue, 
namely how to use coverage criteria in the context of 
model-based development. Dedicated criteria can be 
defined, or classical criteria can be applied to 
generated code. (Inconclusive) past studies on the 
relationship between implementation coverage and 
error detection must be complemented by further 
studies that take into account the role of models 
[WGS94]. 
Finally, we did not treat the issue of automatically 
generating test cases in this article. The rather simple 
execution semantics of CFCs is similar to that of the 
CASE tool AutoFocus [HSE97] for which an 
industrially relevant body of automatic test case 
generation technology has been developed [PSA+04, 
Pre03]. Consequently, it appears feasible to not only 
assess the quality of test suites but instead 
automatically generate test suites that satisfy a given 
coverage criterion by construction 
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Figure 6: Example of a CFC mainly consisting of arithmetic blocks 

 

Figure 7: Example of a CFC mainly consisting of logical blocks 


