
A new dichotomic algorithm for the uniform
random generation of words in regular languages

Johan Oudinet1,2, Alain Denise1,2,3, and Marie-Claude Gaudel1,2

1 Univ Paris-Sud, Laboratoire LRI, UMR8623, Orsay, F-91405;
2 CNRS, Orsay, F-91405;

3 INRIA Saclay - Île-de-France, F-91893 Orsay cedex.

Abstract. We present a new algorithm for generating uniformly at ran-
dom words of any regular language L. When using floating point arith-
metics, its bit-complexity isO(q log2 n) in space andO(qn log2 n) in time,
where n stands for the length of the word, and q stands for the number of
states of a finite deterministic automaton of L. Compared to the known
best alternatives, our algorithm offers an excellent compromise in terms
of space and time complexities.

1 Introduction

The problem of randomly and uniformly generating words from a regular lan-
guage was first addressed by Hickey and Cohen (1983), as a particular case of
context-free languages. Using the so-called recursive method (Wilf, 1977; Flajolet
et al., 1994), they gave an algorithm in O(qn) space and time for the preprocess-
ing stage and O(n) for the generation, where n denotes the length of the word
to be generated, and q denotes the number of states of a deterministic finite
automaton of L. Later, Goldwurm (1995) showed that the memory space can be
reduced to O(q), by using a parsimonious approach to keep in memory only a
few coefficients. These results are in terms of arithmetic complexity, where any
number is supposed to take O(1) space and each basic arithmetic operation takes
O(1) time. As for the bit complexity, the above formulas must be multiplied by
O(n) due to the exponential growing of the involved coefficients according to n.

If floating point arithmetic is used (Denise and Zimmermann, 1999) for
the Hickey and Cohen (1983) algorithm, almost uniform generation can be per-
formed in O(qn log n) bit complexity for the preprocessing stage (in time and
memory), and O(n log n) for the generation. Meanwhile, the parsimonious ver-
sion of Goldwurm cannot be subject to floating point arithmetic, because of the
numerical instability of the involved operations (Oudinet, 2010).

Another technique, the so-called Boltzmann generation method (Duchon
et al., 2004), is well fitted for approximate size generation: it makes possible
to generate words of size between (1 − ε)n and (1 + ε)n, for a fixed value ε,
in average linear time according to n (Flajolet et al., 2007). As for exact size
generation, the average complexity of generation is in O(n2), although it can be
lowered to O(n) if the automaton of L is strongly connected. Bolztmann gener-

ation needs a preprocessing stage whose complexity is in O(qk logk′
n), for some



constants k ≥ 1 and k′ ≥ 1 (whose precise values are not given in (Duchon
et al., 2004) and subsequent papers, to our knowledge).

Recently, Bernardi and Giménez (2010) developed a new divide and con-
quer approach for generating words of regular languages, based on the recursive
method. Their algorithm runs in O(qn log(qn)) in the worst case, with a prepro-
cessing in O(q3 log n log2(qn)) time and O(q2 log n log(qn)) space. Moreover the
average complexity of the generation stage can be lowered to O(qn) if using a
bit-by-bit random number generator.

Here we present a new algorithm named dichopile, also based on a divide-and-
conquer approach, although drastically different from the above one. Compared
to the known best alternatives, our algorithm offers an excellent compromise in
terms of space and time complexities.

2 The Dichopile algorithm

At first, let us briefly recall the general principle of the classical recursive method.
Let us consider a deterministic finite automaton of L with q states {1, 2, . . . , q}.
Obviously, there is a one-to-one correspondence between the words of L and
the paths in A starting at the initial state and ending at any final state. For
each state s, we write ls(n) for the number of paths of length n starting from s
and ending at a terminal state. Such values can be computed with the following
recurrences on n (where F denotes the set of final states in A):

ls(0) = 1 if s ∈ F
ls(0) = 0 if s 6∈ F
ls(i) =

∑
s→s′

ls′(i− 1) ∀i > 0
(1)

If we note the vector Ln = 〈l1(n), l2(n), . . . , lq(n)〉, the principle of the recursive
method is in two steps:

– Compute and store Lk for all 1 ≤ k ≤ n. This calculation is done starting
from L0 and using Equation 1.

– Generate a path of length n by choosing each state according to a suitable
probability to ensure uniformity among every path of length n. Thus, the
probability of choosing the successor si when the current state is s and the
path has already n−m states is:

P(si) =
lsi(m− 1)

ls(m)
. (2)

Note that to choose the successor of the initial state, we only need Ln and
Ln−1. Then, Ln−1 and Ln−2 allow to choose the next state and so on. Thus,
if we have a method that compute efficiently Ln, Ln−1, . . . , L0 in descending
order, we can store the two last vectors only and reduce space complexity com-
pared with the recursive method, which stores all Lk’s in memory. This inverse



approach constitutes the principle of Goldwurm (1995)’s method. In (Oudinet,
2010), the inverse recurrence is stated for regular languages, and it is shown that
the algorithm is numerically instable, thus forbidding the use of floating-point
arithmetics.

2.1 General principle

The idea of our dichopile algorithm is as follows. Compute the number of paths
of length n from the number of paths of length 0 while saving in a stack a
logarithmic number of intermediate steps: the number of paths of length n/2, of
length 3n/4, of length 7n/8, etc. When we need to compute the number of paths
of length n − i, we compute it again from the intermediate stage that is at the
top of the stack. Figure 1 illustrates the principle of this algorithm. Recall that
Lj denotes the vector of q numbers of paths of length j, that is the ls(j)’s for
all states s.

Algorithm 1 draws drawing uniformly at random a path of length n by suc-
cessively computing the numbers of paths of length i in descending order. This
algorithm takes as inputs:

– a deterministic finite automaton A;
– a vector L0 of q numbers defined as in the two first items of Equation 1;
– the path length n;
– and a function F that computes Lj from Lj−1, thus F computes the ls(j)’s

for all s ∈ S using the third item of Equation 1.

It uses a stack and two local variables L cur and L suc, which are vectors of
q numbers. The vector L suc saves the previous value of L cur.
Step i = 0 computes Ln from L0, pushing to the stack the vectors Ln/2, L3/4,
L7/8, etc.
Step i seeks to compute Ln−i. For that, it starts by retrieving the top of the
stack Lj (if j > n − i then it takes the next item on the stack) and computes
Ln−i from Lj , pushing to the stack a logarithmic number of intermediate vectors
Lk.
At the end of each iteration of the main loop and just before updating L suc,
we have L cur = Ln−i and L suc = Ln−i+1. Then, using Equation 2, we can
draw the successor state according to the current state and values contained in
these two vectors.

2.2 Complexity analysis

Theorem 1. Using floating-point numbers with a mantissa of size O(log n), bit
complexities of Algorithm 1 are O(q log2 n) in space and O(dqn log2 n) in time,
where d stands for the maximal out-degree of the automaton.

Proof. Unlike the classical recursive method, there is no preprocessing phase.
Values cannot be saved between two path generations because the contents of
the stack changes during the drawing.



0 n/2
3n
4

7n
8 n

L0

Ln/2

L3n/4

L7n/8

Step 0: compute Ln from L0

0 j n− i n

L0

Lj

Step i: pop Lj from the stack

0 j k n− i n

L0

Lj

Lk

Step i: compute Ln−i from Lj

Fig. 1. Principle of the dichopile algorithm



Algorithm 1 Draw a path of length n with the dichopile algorithm

Require: an automaton A, a vector L0, a length n, and a function F that computes
Lj from Lj−1

Ensure: returns a path σ of length n.
s← s0 {initialize s to the initial state}
push (0, L0)
for i← 0 to n do {Iteration for computing Ln−i}

(j, L cur)← top of the stack
if j > n− i then {useless value on the stack, gets the next one}

pop from the stack
(j, L cur)← top of the stack

end if
while j < n− i− 1 do {compute Ln−i from Lj}
k ← j+n−i

2

for m← j + 1 to k do
L cur ← F (L cur)

end for
push (k, L cur) {push Lk to the stack}
j ← k

end while
if j = n− i− 1 then
L cur ← F (L cur)

end if
if i > 0 then {wait until L suc is defined to have L cur = Ln−i and L suc =
Ln−i+1}

choose the next transition ti in A according to s, L cur and L suc
σ ← σ.ti {concatenation of the transition}
s← the extremity of ti

end if
L suc← L cur

end for
return σ

Lk

Ln

lg(n− k)

After step 0

Lk

Ln−i

lg(n− k − i)

After step i

Fig. 2. The stack size is maximal after the first iteration of the dichopile algorithm



The space complexity depends on the stack size. After the first iteration,
there are lg n elements on the stack, and there will never be more elements on
the stack in subsequent iterations: If Lk is on top of the stack at the i-th iteration,
there were lg(n − k) elements above Lk after the first iteration and there will
be lg(n − k − i) elements after the i-th iteration; Hence, fewer elements. This
property is illustrated Figure 2. Each stack element contains an integer (≤ n)
and q path numbers represented by floating-point numbers with a mantissa of
size O(log n), i.e. O(q log n) bits per item. Hence the size occupied by the stack
is O(q log2 n) bits.

The time complexity depends on the number of calls to function F and this
number depends on the difference between the last stacked value (j) and the one
to compute (n−i). To calculate this complexity, we refer to a diagram describing
the successive calculations done by the algorithm using two functions, f and g,
which call each other. The calculation scheme is shown Figure 3.

0 n/2
3n
4

7n
8 n

f(n)

f(n/2− 1) g(n/2)

f(n/4− 1) g(n/4)

Fig. 3. Recursive scheme of the number of calls to function F done by Algorithm 1;
We omit floor and ceiling notations to clarify the figure

The function f counts the number of calculations required when the stack is
empty, while the function g counts the number of calculations performed when
the stack holds intermediate values. For function f(n), it will first call F n times,
then repeat the same work on the first half, while there are several intermediate
values in the second half, hence the call to g. Function g calls f for the first half
because the smallest value in the stack is half away. Thus, the number of calls
to F to generate a path of length n is equal to f(n), which is defined as:

f(n) = n+ f(bn/2c − 1) + g(dn/2e)
g(n) = f(bn/2c − 1) + g(dn/2e)
f(1) = 1

g(1) = 0

To study the complexity of this algorithm, we bound this formula by the func-
tions f−(n) and f+(n) defined such that:

f−(n) ≤ f(n) ≤ f+(n)



f−(n) = n+ f−(n/2− 2) + g−(n/2)

g−(n) = f−(n/2− 2) + g−(n/2)

f−(1) = 1

g−(1) = 0

f+(n) = n+ f+(n/2− 1) + g+(n/2 + 1)

g+(n) = f+(n/2− 1) + g+(n/2 + 1)

f+(1) = 1

g+(1) = 0

Then, we can find a lower bound of f−(n):

f−(n) ≥ n+ f−(n/2− 2) + f−(n/4− 2) + g−(n/4)

≥ n+ (n/2− 2) + f−(n/4− 3) + g−(n/4− 1) + f−(n/4− 2) + g−(n/4)

≥ n+ (n/2− 2) + 2 [f−(n/4− 3) + g−(n/4− 1)]

≥ n+

lg(n)/2∑
i=1

(n/2− i2i−i)

≥ n+
n lg(n)

4
− 2lg(n)/2(lg(n)− 2)

2
− 1

f−(n) = Ω(n log n)

And an upper bound of f+(n):

f+(n) ≤ n+ (n/2− 1) + f+(n/4− 1) + g+(n/4 + 1) + f+(n/4) + g+(n/4 + 2)

≤ n+ (n/2− 1) + 2 [f+(n/4) + g+(n/4 + 2)]

≤ n+ (n/2− 1) + 2 [n/4 + f+(n/8− 1) + g+(n/8 + 1) + f+(n/8) + g+(n/8 + 2)]

≤ n+

lg(n)−1∑
i=1

n/2

≤ n+
n lg(n)

2
f+(n) = O(n log n)

Hence a time complexity of f(n) in Θ(n log n) calls to function F . The cost
of a call to the function F is in O(dq log n) because it corresponds to compute
ls(i) from Li−1 for all s ∈ S, using a floating-point arithmetic with numbers of
O(log n) bits. Thus, a bit complexity of O(dqn log2 n) in time.

3 Conclusion

Table 1 summarizes the bit complexities in time and in space of several algo-
rithms to generate random words in regular languages. Since our goal is to be



able to explore at random very large models, we are interested in the complexity
in terms of both the path length n and the automaton size q. For the sake of
clarity, we consider as constants the following values: the maximum degree d of
the automaton and the mantissa size b chosen for the floating-point numbers.
The inverse method using floating-point arithmetic is crossed out since it can
not be used due to its numerical instability.

Table 1. Summary of the binary complexities in time and in space according to the
method used. We consider the path length n and the number of states q in the au-
tomaton.

Time

Method Arith Space Preprocessing Generation

recursive exact O(qn2) O(qn2) O(n2)
inverse exact O(qn) O(q2 + qn2) O(qn2)
recursive float O(qn logn) O(qn logn) O(n logn)
inverse float O(q logn) O(q2 + qn logn) O(qn logn)
dichopile float O(q log2 n) O(1) O(qn log2 n)
divide and conquer float O(q2 logn log(qn)) O(q3 logn log2(qn)) O(qn log(qn))

Boltzmann float O(q) O(qk logk′
n) O(n2)

From the point of view of space complexity, obviously the best algorithm
is the Boltzmann method with its O(q) complexity. The main limitation of the
recursive method is the space needed to store the counting table. Even when
using floating-point arithmetic, the space complexity is still O(qn log n), which
becomes very problematic for large n. The inverse method has similar problems,
with it O(qn) complexity. Both divide and conquer and dichopile perform well
due to their polylogarithmic complexity in n, but dichopile uses more than q
times less memory than divide and conquer (up to a constant factor).

If for any reason, the tiny difference from the uniformity induced by the use
of a floating-point arithmetic is not acceptable, the inverse method can be used
as it offers the best space complexity, but it requires a long generation time. Note
that it is possible to perform exactly uniform generation by combining floating-
point arithmetic and exact arithmetic (Denise and Zimmermann, 1999), but the
space complexity becomes larger than for the quasi-uniform generation shown
here. For example, the bit space complexity becomes O(qn2) for the recursive
method and O(q2n) for the divide-and-conquer algorithm.

Regarding the time complexity only, the best algorithm is the classical recur-
sive scheme with its O(n log n) complexity in floating point arithmetic. As for
Boltzmann, the rejection procedure necessary to obtain paths of length n raises
the time complexity to O(n2) in the general case. Again, divide and conquer
and dichopile perform well: they are linear in q and almost linear in n, with
an advantage for divide and conquer. Moreover, the average complexity of the



generation stage can be lowered to O(qn) for divide and conquer and O(qn log n)
for dichopile if using a bit-by-bit random number generator.

Altogether, the classical recursive method is fast (after the preprocessing
stage), but is unusable for large n and q due to its huge space requirement.
On the other hand, the Boltzmann method needs a few memory but is slow
according to n. Both divide and conquer and dichopile are excellent compromises
when considering both space and time complexities. The latter offers a better
space complexity, and comparatively the increase of time complexity according
to n is quite low.

However, if a error margin is tolerated on the path length, that is if it suffices
to generate paths whose length lay in the interval [(1− ε)n, (1 + ε)n] for a fixed
ε > 0, then the time complexity of the Boltzmann method is O(n).



Bibliography

Bernardi, O. and Giménez, O. (2010). A linear algorithm for the random genera-
tion of regular languages. 11 pages. Submitted. Preprint available on internet.
2

Denise, A. and Zimmermann, P. (1999). Uniform random generation of de-
composable structures using floating-point arithmetic. Theoretical Computer
Science, 218:233–248. 1, 8

Duchon, P., Flajolet, P., Louchard, G., and Schaeffer, G. (2004). Boltzmann
samplers for the random generation of combinatorial structures. Combina-
torics, Probability and Computing, 13(4–5):577–625. Special issue on Analysis
of Algorithms. 1, 2

Flajolet, P., Fusy, E., and Pivoteau., C. (2007). Boltzmann sampling of unla-
belled structures. In Proceedings of the 4th Workshop on Analytic Algorithms
and Combinatorics, ANALCO’07 (New Orleans), pages 201–211. SIAM. 1

Flajolet, P., Zimmermann, P., and Cutsem, B. V. (1994). A calculus for the
random generation of labelled combinatorial structures. TCS, 132:1–35. 1

Goldwurm, M. (1995). Random generation of words in an algebraic language in
linear binary space. Information Processing Letters, 54(4):229–233. 1, 3

Hickey, T. and Cohen, J. (1983). Uniform random generation of strings in a
context-free language. SIAM J. Comput., 12(4):645–655. 1

Oudinet, J. (2010). Random exploration of models. Technical Report 1534,
LRI, Université Paris-Sud XI. 15 pages, submitted to Discrete Event Dynamic
Systems. 1, 3

Wilf, H. S. (1977). A unified setting for sequencing, ranking, and selection
algorithms for combinatorial objects. Advances in Mathematics, 24:281–291.
1


	A new dichotomic algorithm for the uniform random generation of words in regular languages

