
8Cage:
Lightweight Fault-Based Test Generation for Simulink

Dominik Holling
TU München, Germany
holling@cs.tum.edu

Alexander Pretschner
TU München, Germany

pretschn@cs.tum.edu

Matthias Gemmar
ITK Engineering AG
Rülzheim, Germany

matthias.gemmar@
itk-engineering.de

ABSTRACT
Matlab Simulink models, mainly used for the specification
of continuous embedded systems, employ a data flow-driven
notation well understood by engineers. This notation ab-
stracts from the underlying computational model, hiding run
time failures such as over-/underflows and divisions by zero.
They are often detected late in the development process by
the use of static analysis tools on the completely developed
system. The responsible underlying faults are sometimes
attributable to a single operation in a model. 8Cage is an
automated test case generator for the early detection of such
single operation related faults. It is configurable to detect
these faults and runs automatically in the background. It
tries to find potentially failure-causing operations and gener-
ates a test case to gather evidence for an actual fault. 8Cage
is usable by developing/testing engineers with knowledge of
Matlab. It does not require an expert to perform result
validation or fault localization.

1. INTRODUCTION
Matlab Simulink [5] is a development environment for em-

bedded systems software. It aids in model-based architect-
ing, designing, implementing and testing. Simulink models
use a data flow driven block-based notation similar to wiring
plans. Blocks execute functions such as arithmetic, accu-
mulative, limiting and other operations to the data they are
given. Each block has a specific number of input and outputs
which are connected to other outputs and inputs. Each con-
nection represents a data flow. Special I/O blocks let data
flow into and out of the model. The notation helps mechani-
cal/electrical engineers by giving well-understood model no-
tations and enabling code generation from them. Thereby,
programming efforts for continuous and hybrid systems are
minimized while readability for engineers is ensured.

Such a model-based approach is widely employed for au-
tomotive drive trains, aerospace engine control and dentist
drill controllers, among others. For building complete soft-
ware systems, Matlab allows abstraction by encapsulating

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE’14, September 15-19, 2014, Vasteras, Sweden.
ACM 978-1-4503-3013-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642937.2648622.

so-called subsystems. These subsystems can be used in a
different model, allowing their composition in levels. The
lowest level is the unit level, constituting a model without
any subsystems, using only built-in blocks of the Simulink
library. Each layer above the unit level represents an inte-
gration level where two or more unit or integration levels are
composed. The uppermost level is the system level consist-
ing of all unit and integration levels.

When developing embedded software, the development cy-
cle usually starts with the implementation of units. Once a
unit is finished, it can enter unit testing by a tester. The
tester will typically perform a black-box functional test ac-
cording to the unit’s specification. Units are then composed
until the system level is reached. Integration and system
testing are performed alongside. In a last step, static anal-
ysis is typically performed on the production ready system
to detect the aforementioned run time detectable failures. If
such failures are detected, a trained expert needs to perform
fault localization and present the result to the respective de-
veloper(s). When the faults are fixed, the development cycle
restarts with unit and integration tests.

Unfortunately, many essentially avoidable faults involving
only a single or a simple composition of blocks are detected
only by static analysis at the end of a development cycle.
This creates an overhead of at least one full development cy-
cle. Thus, earlier detection would yield cost benefits. In ad-
dition, developer assumptions about certain blocks or block
combinations may be verified only as late as Hardware-In-
the-Loop (HIL) tests. HIL tests requires the software to
be deployed on the target platform and are performed even
later than static analysis.

Problem: While the data flow-driven notation yields great
understandability, it hides—and is supposed to do so—the
underlying computational model of processor and memory
architecture. This regularly leads to problems with gener-
ated code. Certain faults are invisible or hard to detect
by review at the model level. Such faults include run time
detectable under-/overflows, divisions by zero and possibly
infinite loops. In addition, it may be hard for engineers de-
veloping a system to assess if their assertions hold.

Further typical faults include exceeded ranges of I/O sig-
nals. These ranges are specified by a developer or imposed
by physics. For instance, the revolutions per minute (rpm)
of a gasoline combustion engine may range from 0 to 9,500.
Thus, a 16-bit unsigned integer of range 0 to 65,535 is suf-
ficient to hold the rpm signal’s range. However, the rpm
signal will never be larger than 9,500 when used/given as
I/O. There may be assumptions in certain units that rely on

this range. Thus, the rpm signal’s range must be rigorously
checked to never exceed 9,500. Typically, the ranges are also
checked by static analysis late in the development process.
Detecting failures caused by invalid/unspecified ranges on a
unit level would yield early detection benefits as well.

Solution and Contribution: We developed the 8Cage tool,
an automated test case generator for Matlab Simulink mod-
els based on general fault models [9]. To our knowledge,
it constitutes the first explicit operationalization of fault
models. We demonstrate its capabilities by detecting over-
/underflows, divisions by zero or small numbers, exceeded
I/O ranges, and violated developer assumptions concern-
ing a single block. Developers/testers can specify their own
fault hypotheses and have them automatically tested. If
a possibly failure-causing block is present, 8Cage tries to
produce a test case constituting a counter example. Feed-
back is directly given to the developer; faults are easily lo-
cated. Thereby, it eliminates the need for expert analysis
with static verification tools for the described faults and
bridges the model/source-code level. Because 8Cage only
uses the implicit specification of what should not happen, it
can detect failures in a model even without a specification.
Although the faults currently detected by 8Cage are related
to single blocks, such faults are common and recurring prob-
lems in Matlab Simulink models.

2. APPROACH
Our approach is based on fault models [9]. A fault model

is a transformation of a correct into an incorrect behavior
description and/or a partition of the input space. In the
case of 8Cage, the behavior description is a Simulink model.
The image of the transformation defines a smell, and smells
reveal likely failure-causing blocks. To gather evidence for
the presence of an actual fault, a partition of the input space
for its exploitation is created, and one potentially failure-
causing test case is selected and executed.

In the following two exemplary fault models and the im-
plementation of the approach are detailed. We present two
steps: Fault model specification and automatic detection.
Automatic detection again consists of smell detection, test
data generation, and test case execution.

2.1 Example Faults
All Simulink blocks that can cause over-/underflows have

a binary property called“saturate on integer overflow”(SIO),
which can be set by the developer. Enabling this prop-
erty generates an over-/underflow-preventing safety check
for the respective block. Enabling this property for every
possible block would avert the problem of over-/underflows
completely. However, each check requires processing time
and may lead to dead code. Standards such as MISRA-C
[8] require avoidance of dead code. Developers must decide
whether to enable the SIO property. 8Cage provides help
by searching for a way to cause an over-/underflow, showing
the need to not deactivate the SIO property.

As an example, the built-in Abs block of Simulink calcu-
lates the mathematical absolute value function of the input
x (i.e. |x|). The code generated from this block is: if (x <

0) return -x; else return x;. This implementation of
the absolute value function is efficient and works for all in-
teger inputs except the most minimal one. Let x be a signed
8-bit integer. x then has a range from -128 to 127 making
-128 the only integer without a positive counter-part. Due

to -128 being stored in two’s complement (1000 0000b) and
negation of it (flipping all bits and adding 1) will yield -128
again. A developer assumption for using the absolute value
could be the non-negativity of the output, which cannot be
guaranteed for all integers.

As a further example, consider a division by a small fixed-
point number. Many electronic control units (ECUs) do not
contain a floating point unit due to cost reasons. Thus,
fixed-point numbers are chosen to represent decimals. In
Matlab, fixed-point numbers use integer data types and fix
the precision (i.e. the number of digits after decimal point).
An 8 bit unsigned integer x with 1 bit of precision yields a
range from 0 to 127.5 where the bit of precision can express
.0 and .5 after the decimal point [5]. Computing 64/x, where
x can assume any value in its range, can lead to an overflow
if x = 0.5. This constitutes a multiplication by 2 with a
desired result of 128 and an actual result of 0.

Both examples are typically detected late, using static
analysis. Automatically detecting them far earlier yields
time and cost benefits. The same holds true for other ele-
mentary faults such as dividing by zero or other single block
related faults. Note that 8Cage is not limited to only these
fault models, but has been and can further be extended to
any failure/assumption caused/violated by a single Simulink
block.

2.2 Fault model specification
8Cage allows to specify single block fault models by us-

ing the Simulink syntax and a small run time extension.
Each Simulink block has properties such as its name, type
and inputs/output with a specified data type comprising the
static properties required by 8Cage. In addition, 8Cage re-
quires knowledge about failure-causing input and/or output
values at run time for each described block. These values
do not necessarily need to be specified as absolute values
(i.e. -128), but can also be specified as relative values (e.g.
MinV alue). The absolute value fault model above can be
specified by telling 8Cage to locate blocks of type “Abs.” Its
properties should be “Saturate on integer overflow” set to
value “off.” The input value should have an integer type and
the value should be MinV alue. Division by a small fixed
point number can be specified analogously.

Developers/Testers can specify these fault models using a
custom XML schema. Thus, the specification of developer
assumptions on single blocks is possible.

2.3 Automatic detection
8Cage allows the operationalization of provided fault mod-

els by performing automated smell detection, test data gen-
eration and test case execution. The purpose of the au-
tomatic detection is to find model smells and to generate
evidence that these smells are actual faults.

Configuration: The configuration parameters of 8Cage
include the model file, its respective configuration files and
the (sub-)system to test. In addition, the number of steps
to simulate the model needs to be provided.

Smell detection: During smell detection, the model is
loaded into Matlab and static block properties are checked.
These include block types/names and I/O data types. For
the absolute value fault model, smell detection searches for
blocks of type “Abs.” All found “Abs” blocks are checked
for their SIO properties to be off and integer input data
types. If a block matches, it is marked in the model and

Figure 1: A typical Matlab Simulink unit

code is generated to perform the next step. All found blocks
constitute model smells.

Test data generation: This step checks dynamic prop-
erties of I/O values. It uses the markers in the model to
create markers in the derived code which it symbolically ex-
ecutes using KLEE [1]. KLEE is directed toward the mark-
ers and generates test input data. Currently, only test input
data is generated since Matlab already provides an oracle for
over-/underflows. However, when checking for signal ranges
or developer assumptions, a respective oracle is generated.

Test case execution: A test case is created to gather
evidence for the presence of an actual fault. The test case
is created in a test execution engine for Simulink models.
The created test case is run as a Model-in-the-Loop (MIL)
test as the single block faults will already fail within Matlab
itself. The results are determined and stored for reporting.

Report generation: The tool generates a report con-
cerning found smells and possible evidence for the presence
of an actual fault. This report details results of the test cases
and contains them for developer/tester reproducibility.

The configuration and smell detection steps are performed
directly in Matlab Simulink catering to the developer/tester
familiarity. Smells can be examined in the model for quick
fixes. Configuration and detected smells are input to test
data generation and test case execution steps. Both are per-
formed centrally on machines running Matlab, KLEE and
the test execution engine.

3. EXAMPLE
To demonstrate 8Cage, a full automatic detection run on

a representative unit (see figure 1) is presented. Its repre-
sentativeness is the result of a survey of multiple software
systems at our industry partners. It represents a unit to
read a temperature value from two redundant sensors. The
inputs TmpMtr1Raw and TmpMtr2Raw (top left) are the
raw temperature values. These values are normalized and
concurrently checked to be in a valid range. In case a sensor
value is not within range, the other sensor’s value is used
instead. If both sensor values are currently invalid and the
last signal was valid (i.e. input TmpMtrLastValid (bottom

left) is set), the last valid sensor readings are used. Finally,
the average of the two sensor values is calculated by adding
and dividing them by two, constituting the first output Tm-
pOut (top right). A difference between the last and the
current value of TmpOut is calculated by taking the abso-
lute value of both sensor values and subtracting the smaller
from the larger value. This difference becomes the second
output TmpDiffOut (bottom right). In addition to the raw
temperature values, the sensors also report their failure us-
ing the input TmpMtrLastFail (bottom right). These values
are converted to the required format and checked against a
bit mask. If the bit mask matches, a failure is reported.

During configuration, the model and its model parame-
ters are selected as system to test. Fault models are chosen
(e.g. absolute value overflow) and the number of simulation
steps is set (e.g. 4). After setting these parameters, 8Cage
performs smell detection, test data generation and test case
execution for the chosen fault models. The absolute value
fault model’s smell detection will reveal several matching
absolute value blocks with integer inputs. Selecting the un-
derlined block named Abs in figure 1 (middle right), test
data generation finds a minimum input of -32768 possibly
leading to a failure. An actual fault in the model is detected
as the test case results in an overflow. All other fault models
are handled the same. Finally, a report will be issued to the
requester containing the detected absolute value overflow.

A video showing the exemplary run employing multiple
fault models and a final report can be found at
https://www22.cs.tum.edu/en/tools/8Cage.

The overall execution time for finding potentially failure-
causing blocks in smell detection is 7 seconds. Generating
code from the model requires 45 seconds. Both these tasks
are run in and limited by Matlab. Executing the gener-
ated test cases takes 4 seconds per test case caused by the
test execution engine. Symbolic execution for each poten-
tially failure-causing block uses 90 seconds of single threaded
computation time. Adding only one input signal increases
this time to 10 minutes. Performing 10 instead of four steps
requires 7 hours of computation time. We are currently in-
vestigating ways of improvement in this area.

https://www22.cs.tum.edu/en/tools/8Cage

4. RELATED WORK
8Cage is related to static analysis tools. Tools using ab-

stract interpretation are Astrée [3] and Polyspace Code Prov-
er [10]. Both can detect run time failures such as over-
/underflows and out of bounds pointers as well as poten-
tially infinite loops and potentially dead code. However, it
requires an expert to prepare a software system for analysis
in these tools as they work on a C/C++ code level. Thus,
analyzing each unit often is deemed excessive work and only
the completely developed system is analyzed. Results are
returned by coloring source code—code verified to cause a
run-time failure; code that may cause a failure; code that
will not cause a problem; and code deemed dead. Unfortu-
nately, because of approximations, often large parts of the
source code is marked as potentially failure causing. Then,
an expert has to walk through the C code. Finally, faults
must be localized to go from the reported failures to the ac-
tual faults. This result and suggestions to fix are then given
back to the developers (or testers in some cases). 8Cage
allows the developer/tester to start the automatic detec-
tion and yields results directly traceable to blocks in the
model. Thus, no expert is involved in the analysis. How-
ever, 8Cage only detects faults related to single blocks on a
unit/integration level. This makes the use of static analysis
tools still advisable to detect other faults at a later stage.

Static analysis is also performed by smell finding tools
such as Lint [4] and Polyspace Bug Finder [10]. They return
possible problems for C code without dynamic execution.
8Cage also performs a lint-like smell detection. However,
8Cage always aims to gather evidence for an actual problem
to be present by creating a test case and executing it. Smell
detection is also performed by the Simulink Model Advisor
[6] leading to similar results as 8Cage’s smell detection, but
without test case generation.

Tools related to 8Cage in the field of model-based test-
ing of Simulink models are, among others, Simulink Design
Verifier [7], Reactis [11] and TPT [12]. These tools allow
the manual specification and automated execution of test
cases. Design Verifier and Reactis can generate test cases
for coverage. In addition, Reactis can generate random test
inputs. TPT uses a graphical test case notation abstract-
ing from actual I/O in a keyword-driven way. In contrast,
8Cage generates test cases that target specific faults within
the Simulink model by operationalizing fault models.

5. DISCUSSION AND CONCLUSION
We have described an operationalization of fault models

using 8Cage. 8Cage currently detects faults related to sin-
gle blocks in Matlab Simulink models. These faults are de-
scribed as fault models [9] using parts of the Simulink model
syntax with a minor extension. They are operationalized by
8Cage in automatic detection consisting of smell detection,
test data generation and test case execution. During smell
detection, the static aspects of a block (i.e. the image of the
transformation) such as its type, name and properties are
utilized to find potentially failure-causing blocks (i.e. model
smells). Test data generation performs a symbolic execution
using the dynamic aspects to search for failure-causing in-
puts to the model (i.e. an input space partition). Test case
execution creates a test case using the failure-causing inputs
and provides evidence for a fault.

Scalability of symbolic execution is a concern. Test data
generation takes a significant proportion of the analysis time.
However, experience shows that almost all single block faults
can be found within the first 5 time steps, a pattern also
exploited by unfolding heuristics in static analyzers. Test
data generation has to be performed for every potentially
failure-causing block. Because test generation for each block
is independent from another, it can be parallelized.

8Cage is currently unable to perform symbolic execution
on floating points numbers. As electronic control units in
the automotive area often lack floating point units because
of cost, this is not a drawback for 8Cage yet. However, it
is projected that floating point units will be built in within
a few years. Thus, we are currently looking into a floating
point version of KLEE [2].

8Cage can solely detect prespecified faults. New or differ-
ent faults need to be specified to be detectable. Thus, the
library of fault models needs to be maintained.

We are unaware of tools to detect faults related to a sin-
gle block at an early stage and developers/testers presented
with 8Cage had a very positive response. In particular de-
velopers could detect these faults before even checking their
model into version control.

We currently enhance 8Cage to feed results directly back
into Simulink. This helps to cater to developers/testers only
familiar with Matlab even better. In addition, we are run-
ning analyses on further real-world models. Our ideas likely
generalize to integration faults, and we are currently work-
ing on integrating composite and integration fault models
involving multiple Simulink blocks.

6. REFERENCES
[1] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted

and automatic generation of high-coverage tests for
complex systems programs. In Proc. OSDI, pages
209–224, 2008.

[2] P. Collingbourne, C. Cadar, and P. Kelly. Symbolic
crosschecking of floating-point and simd code. In Proc.
EuroSys, 2011.

[3] P. Cousot, R. Cousot, J. Feret, L. Mauborgne,

A. Miné, D. Monniaux, and X. Rival. The ASTRÉE
analyzer. In Proc. PLAS, pages 21–30, 2005.

[4] S. C. Johnson. Lint, a c program checker. In COMP.
SCI. TECH. REP, pages 78–1273, 1978.

[5] MATLAB. version 7.11.1.866 (R2010b SP1). The
MathWorks Inc., Natick, Massachusetts, 2011.

[6] MATLAB. Consult the Model Advisor. The
MathWorks Inc., Natick, Massachusetts, 2014.

[7] MATLAB. Simulink Design Verifier. The MathWorks
Inc., Natick, Massachusetts, 2014.

[8] MISRA Ltd. MISRA-C:2004 Guidelines for the use of
the C language in critical systems, Oct. 2004.

[9] A. Pretschner, D. Holling, R. Eschbach, and
M. Gemmar. A generic fault model for quality
assurance. In Proc. MODELS, pages 87–103. 2013.

[10] P. C. Prover. Static Analysis with Polyspace Products.
Mathworks, June 2014.

[11] Reactis. Reactis Product Suite. Reactive Systems Inc.,
Cary, North Carolina, 2014.

[12] TPT. TPT - Time Partition Testing. Piketec Gmbh,
Berlin, Germany, 2014.

	Introduction
	Approach
	Example Faults
	Fault model specification
	Automatic detection

	Example
	Related Work
	Discussion and Conclusion
	References

