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Abstract

Intuition suggests that random testing of object-oriented
programs should exhibit a significant difference in the num-
ber of faults detected by two different runs of equal dura-
tion. As a consequence, random testing would be rather
unpredictable. We evaluate the variance of the number of
faults detected by random testing over time. We present the
results of an empirical study that is based on 1215 hours of
randomly testing 27 Eiffel classes, each with 30 seeds of the
random number generator. Analyzing over 6 million fail-
ures triggered during the experiments, the study provides
evidence that the relative number of faults detected by ran-
dom testing over time is predictable but that different runs of
the random test case generator detect different faults. The
study also shows that random testing quickly finds faults:
the first failure is likely to be triggered within 30 seconds.

1 Introduction

The random generation of test input data is attractive be-
cause it is widely applicable and cheap, both in terms of
implementation effort and execution time. Yet, in addition
to the input data, test cases also contain an expected output
part. Because it depends on a specific input, the expected
output cannot be generated at random. However, it can be
provided at different levels of abstraction [27]. One extreme
possibility is to specify the expected output as abstractly as
“no exception is thrown.” In an admittedly rough manner,
this solves the oracle problem: random test case generation
becomes as simple as picking elements from the input do-
main and adding “no exception” as expected output.

Testing object-oriented programs is far more challeng-
ing, because the input domain may consist of arbitrarily
complex objects: picking random elements from the set of
integers is obviously simpler than generating arbitrary elec-
tronic health records. Most methods defined for a health
record are likely to be applicable only if the health record
exhibits certain characteristics—for instance, a comparison
of two diagnoses at least requires the existence of the two

diagnoses. As a consequence, generating objects to use as
input to a method is a non-trivial task.

A particular class of object-oriented software is that of
Eiffel programs. One distinctive feature of Eiffel programs
is the existence of contracts. Among other things, contracts
contain method postconditions. The latter naturally lend
themselves to be used as oracles; the respective level of ab-
straction is somewhere in-between the concrete output and
the abstract absence of exceptions. Randomly generating
test cases for Eiffel programs hence consists of (1) generat-
ing input objects for a method to be tested and (2) adding
the postcondition as the expected output.

Previous experiments on the effectiveness of random
tests for Eiffel programs [7] produced preliminary results
on the number of detected faults over time and on sev-
eral technical parameters that influence the generation pro-
cess. These experiments exhibited a seemingly high vari-
ation of the number of faults detected over time. From an
engineer’s point of view, a high variance means low pre-
dictability of the process – which immediately reduces its
value. One might argue that random testing can be per-
formed overnight and when spare processor cycles are avail-
able; the sheer amount of continuous testing would then
compensate for any potential variance. However, arbitrary
computation resources may not be available, and insights
into the efficiency of a testing strategy are useful from the
management perspective: such numbers make it compara-
ble to other strategies.

Problem We set out to answer the following questions.
How predictable is random testing? What are the conse-
quences? In particular, how would this technique be best
used? Should testers constantly run it in the background?

Solution Using our previously developed test case gener-
ator, AutoTest [20], we generate and run random tests for
27 classes from a widely used Eiffel library. Each class is
tested for 90 minutes. To assess the predictability of the pro-
cess, we repeat the testing process for each class 30 times
with different seeds for the pseudo-random number genera-
tor. This results in an overall testing time of 1215 hours with



more than 6 million triggered failures. The main results are
the following.

1. When averaging over all 27 classes, 30% of the overall
number of faults detected during the experiments are
found after 10 minutes. After 90 minutes, on average,
an additional 8 percent points of the overall number of
randomly detected faults are found.

2. In terms of the relative number of detected faults (rela-
tive to the overall number of faults detected via random
testing), random testing is highly predictable, as mea-
sured by a low standard deviation.

3. Different runs of the testing process reveal different
faults.

4. For each of the classes, at least one out of the 30 ex-
periments detected a fault within the first second. This
can be read as follows: random testing detects a fault
within at most 30 seconds.

A package including the results and the source code of
AutoTest is available online.1 It contains everything needed
for the replication and extension of our experiments.

Contributions This paper presents empirical evidence on
the predictability of random testing. While the effective-
ness of random testing has been studied before, we do not
know of any other investigations of the predictability of the
process.

Overview The remainder of this paper is organized as fol-
lows. We describe our conceptual framework for randomly
testing OO programs in §2 and justify the choice of param-
eters measured in the experiments. Technological matters
and a comprehensive description of the experiments are the
subject of §3. We state observations and analyze them in §4.
Our work is put in context in §5, and we conclude in §6.

2 Random Tests for OO Programs

This section first defines the notions of test case, fault
and failure as used throughout this paper. It then presents
the test case generation algorithm and explains it on an ex-
ample test case. The section closes with an explanation of
our reasons for choosing time (rather than number of gen-
erated and executed test cases) as a stopping criterion for
testing.

1 http://se.inf.ethz.ch/people/ciupa/public/
random_oo_testing_experiment.zip

2.1 Unit Tests

Intuitively, the purpose of unit testing is to verify the run
of a certain program unit. Unit tests for OO programs must
take into consideration:

Sub-method invocations – While the purpose of a unit
test (xUnit-style) is most often to verify the run of a particu-
lar method, a unit test typically does not only cause the invo-
cation of the method under test. This is because the method
under test may itself call other methods. In a strict sense, the
unit under test is the originally called method only. Meth-
ods called by the method under test are not part of the unit
under test. From a more pragmatic point of view some of
the methods invoked by the method under test may belong
to the unit under test. It is not clear for which methods this
applies, though.

Inputs – Input data can be created in several ways: by
treating state as a bit field and assembling it bit by bit, by
creating the required input objects via constructor invoca-
tions, by providing mock objects with predefined behaviors,
etc.

Oracle – The oracle of a test case can be provided at
different levels of abstraction: it can be as concrete as spec-
ifying exactly the expected output, it can specify a condi-
tion that the output should fulfill for a particular input, it
can specify conditions that the output should fulfill for any
input, or it can be as abstract as specifying “no exception”
as expected output.

The experiments described in this paper ran for 1215
hours. For experiments of this size it is important that the
notion of test case is chosen with automation and efficiency
in mind. Input objects are created through regular construc-
tor calls, because it is much more likely to end up with a
valid object (one that satisfies its invariant) when creating
it through a constructor call than by setting arbitrary bits in
a bit-vector. Hence creation through execution promises to
be more efficient. For the same reason, objects created for
testing a certain method are kept in a pool and can be reused
later for further testing. This might then change the objects’
state and will also return them to the pool after the method
call is done executing.

In order to achieve full automation the oracle is solely a
contract-based one. The system under test is written in Eif-
fel, which directly supports contracts in the form of method
pre- and postconditions and class invariants. Eiffel pro-
grams, including industrial ones, do contain these asser-
tions [5]. Contract violations raise exceptions – the founda-
tion of the contract-based oracle. If an exception is triggered
by the method under test or any method that it transitively
calls, a failure has been triggered in the system under test.
Precondition violations triggered by the test driver calling
the method under test outside of its intended use (in other
words, violating its precondition) are naturally not classified
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1 create {STRING} v1.make empty
2 create {BANK ACCOUNT} v2.make (v1)
3 v3 := 452719
4 v2 . deposit (v3)
5 v4 := Void
6 v2 . transfer (v4 , v3)
...

Figure 1. Example test case generated by Au-
toTest. Methods deposit and transfer of class
BANK ACCOUNT are being tested.

as failures. The AutoTest framework classifies test cases
into the following categories: passed (no exception), un-
resolved (precondition violation in method under test), or
failed (other exception).

2.2 Faults and Failures

In this paper, the notions of faults and failures are largely
determined by the contract-based oracle. In general, a fail-
ure is an observed difference between actual and intended
behaviors. In this paper, we interpret every contract viola-
tion (except for immediate precondition violations) as a fail-
ure. However, programmers are interested in faults in the
software: wrong pieces of code that trigger the failures, and
the same fault may trigger arbitrarily many failures. Hence,
an analysis of random testing should consider the detected
faults, not the failures. Mapping failures to faults is part
of the debugging process and is usually done by humans.
For practical reasons, this is not feasible for the over 6 mil-
lion failures triggered in this experiment. Instead we rely
on an approximation that groups failures based on the fol-
lowing assumption: two failures are a consequence of the
same fault if and only if they manifest themselves through
the same type of exception, being thrown from the same
method and the same class. Throughout this paper, we use
the term “fault” in this sense.

2.3 Test Case Synthesis Algorithm

Figures 2 and 3 describe the test case generation algo-
rithm used for the experiments in this paper. This algorithm
has been implemented for the AutoTest framework, which
was used to execute the tests. The following describes how
the generation algorithm produces a test case via an exam-
ple, depicted in Figure 1.

The language used to express test cases is a simplified,
dynamically typed variant of Eiffel. In the example, vari-
ables v1, v2, v3, and v4 represent the object pool.

The example assumes that a class BANK ACCOUNT is
being tested. This means that all its methods must be tested.
At every step, method write tests (shown in Figure 2)

of AutoTest chooses one of the methods which have been
tested the least up to that point. When the testing session
starts, no methods have been tested, so one of the methods
of class BANK ACCOUNT is chosen at random. Assume
method deposit is chosen. In order to execute this method,
one needs an object of type BANK ACCOUNT and an inte-
ger representing the amount of money to deposit.

The creation and selection of these values takes place in
method write test for method , shown in Figure 3. The
test generator randomly chooses inputs with the required
types from the object pool. However, before it makes this
choice it might also create new instances for the required
types (with probability P(gen new)) and add them to the
pool. In the example test case the generator decides at this
point to create a new object of type BANK ACCOUNT.
Therefore it chooses a constructor (make) and now works
on the sub-task of acquiring objects serving as parameters
for this constructor. The constructor make requires only one
argument which is of type STRING. Hence write creation
calls itself recursively now with the task of creating a string
object. The type of string objects in Eiffel is a (regular)
reference type. The algorithm decides again to create a
new object, and uses the constructor make empty which
does not take any arguments (line 1). The object pool now
is: {v1 : STRING}. The recursive call of write creation
returns. Method write creation itself synthesizes the
creation instruction for the bank account object (line 2)
using the newly created string object. This updates the ob-
ject pool to: {v1 : STRING , v2 : BANK ACCOUNT}.
At this point, write creation terminates, having cre-
ated a target object. However, it is invoked once more
in order to find an integer (the argument to deposit ).
Integers are basic objects and in the example, a ran-
dom integer (452719) is chosen and assigned to a fresh
pool variable (line 3). This changes the object pool to
{v1 : STRING , v2 : BANK ACCOUNT , v3 = 452719}.
Execution returns to write test for method which is now
able to synthesize what it was asked for: a call to
BANK ACCOUNT.deposit. It uses the newly created bank
account and the randomly chosen integer (line 4).

At this point, execution returns to write tests
which selects another method for testing. Assume

BANK ACCOUNT.transfer is chosen. This method trans-
fers an amount from the bank account object on which it is
called to the bank account that is provided as argument. One
target object and two arguments are necessary. For each
of these three inputs, an object of the corresponding type
might be created and added to the pool (with the probability
P(gen new)). In the case of the call to BANK ACCOUNT
.transfer, the decision is to create a new bank account.
Whenever AutoTest has to create a new object, it may also
choose to add Void to the pool instead of a new object.
This happens in the example, so the pool now consists of



{v1 : STRING , v2 : BANK ACCOUNT , v3 = 452719 ,
v4 = Void}. Now, two instances of BANK ACCOUNT
and an integer are chosen randomly from the pool and the
result is the call to transfer as shown on line 6. Test case
generation continues after this point, but for brevity the
example stops here.

The input generation algorithm uses two parameters:
the probability of generating new objects at every step
P(gen new) and the probability of picking values for
basic types from all possible values for that type rather
than from a predefined set P(gen basic rand). The ex-
periments described here used P(gen new) = 0.25 and
P(gen basic rand) = 0.25, since these values yielded the
best results in earlier experiments [7].

2.4 Stopping Criterion

The stopping criterion for the algorithm presented in this
paper is time. We believe that the questions we are trying
to answer here should take into account testing time rather
than the number of test cases because the testing process
used throughout this paper is fully automatic. If manual pre-
or post-processing per test case were required, the number
of test cases would be much more significant. In the absence
of such manual steps, the only limiting factor is time.

There is also a conceptual problem with using the num-
ber of executed test cases as stopping criterion. Most of-
ten the method under test calls other methods. Because ev-
ery method execution contains its own oracle, not only top
level method calls count as a test case. Of course some of
the methods called might not be of interest for testing, but
others will. It is hence not completely clear what the num-
ber of executed tests should refer to: the number of synthe-
sized method invocations, the number of total method in-
vocations, the number of method invocations on the system
under test, or maybe some combination thereof.

3 Experimental Setup

3.1 AutoTest

AutoTest, the tool used to run the experiments presented
in this paper, implements the input generation algorithm as
described in §2.3. The tool is launched from the command
line with a testing time and the names of the classes to test.
It tests these classes for the given time by calling their meth-
ods with randomly generated objects as targets and param-
eters. It then delivers the results, which include minimized
failure-reproducing examples, if any, and statistics about the
testing session.

AutoTest is composed of two processes: the test gen-
erator, also called “driver,” implements the testing strategy
and issues simple commands (such as object creation and

Method write tests depicted below contains the main
loop of the testing strategy used in this paper. At each
step it selects a method for testing and then causes the ex-
ecution of this method.

write tests ( timeout ) :
from

initialize pool
until timeout
loop

m := choose ( methods under test () )
write test for method (m)

end

Method initialize pool creates an empty pool of ob-
jects to be used for testing (both targets and parameters).
The method methods under test returns the set of meth-
ods under test. The non-deterministic method choose se-
lects an arbitrary element of a set or a list. The method
write test for method is described in figure 3.

Figure 2. Testing loop in a nutshell

method invocation) to another process, an interpreter, which
carries out the actual test execution. If failures occur during
testing from which the interpreter cannot recover, the driver
shuts it down and then restarts it, resuming testing where it
was interrupted. This separation of the test execution from
the test strategy logic improves the robustness of the pro-
cess.

Restarting the interpreter has an important consequence:
it triggers the reinitialization of the object pool. Subsequent
method calls will not be able to use any of the objects cre-
ated previously, but must start from an empty pool and build
it anew.

When AutoTest tests a class, it tests all its methods. Au-
toTest keeps track of the number of times each method was
called and has the following fairness policy: it tries to call
each method once before it calls any of them a second time.
To achieve this, it associates priorities with the methods and
changes these priorities so that they reflect how often the
method was called. An interpreter restart does not cause
the resetting of these priorities, so the fairness criterion is
preserved across multiple interpreter sessions.

3.2 Experiment

In the experiments, each of 27 classes was tested in 30
sessions of 90 minutes each, where in each session a differ-
ent seed was used to initialize the pseudo-random number
generator used for input creation. The total testing time was
thus 30∗27∗90 minutes = 50.6 days. All the tested classes
were taken unmodified from the EiffelBase library version
5.6, which is used in almost all projects written in Eiffel,



The method write test for method is responsible for generating a call to method m.
Notations: <x1, x2 , x3> creates a list (ordered set) with the elements x1, x2, and x3. list1 ... list2 is the concatenation
of list1 and list2 . Method P(x) non-deterministically evaluates to True with a probability of x. type (m) yields the type
in which method m is contained.

write test for method (m):
ops := <>
foreach ot from (<type (m)> ... param types (m)) do

if P (gen new) then
write creation (ot )

end
ops := ops ... choose ( conforming objects (ot ) )

end
write invoke instruction (m, ops)

end

The method does two things for the target object and each method parameter:

1. With a probability of P(gen new) it creates a new object and puts it into the pool.

2. It selects from the pool an arbitrary object conforming to the required type to be used as target object or parameter
respectively. Note that, if an object is created in the previous step, this object is not necessarily selected in this step
too. By chance an older object could be selected just as well.

Using the selected objects it serializes the actual invocation instruction as text to the output.
The method write creation creates an object of type t and puts it into the pool:

write creation ( t ) :
if is basic type ( t ) then

if P ( gen basic rand ) then
write assignment ( random basic object ( t ) )

else
write assignment (choose ( predefined objects ( t ) )

end
else

c := choose (cons ( t ) )
ops := <>
foreach ot from (param types (c) ) do

if P(gen new) then
write creation (ot )

end
ops := ops ... choose ( conforming objects (ot ) )

end
write creation instruction (c , ops)

end
end

The method treats basic types (e.g. INTEGER, DOUBLE, BOOLEAN, ...) and reference types differently. For basic
types, with a probability of P(gen basic rand ), it creates an arbitrary random object of the required type using method
random basic object . Since objects of all basic types are finite state, such a method is easy to devise using a random
number generator. The alternative is to select an object from a predefined list that includes common values (e.g. 0, 1 for
integers) and boundary values.
If the type to be created is not basic then the algorithm chooses randomly one of the available constructors for the required
type. This constructor might also need arguments, so a similar algorithm to the one implemented in write test for method
is applied, with the difference that a constructor call needs only arguments and no target.

Figure 3. Methods write test for method and write creation which generate calls to invoke methods
under test and create objects respectively.



Table 1. Metrics of the tested classes

Average Median Minimum Maximum
LoCs 477.67 366 62 2600

Methods 108.37 111 37 171
Attributes 6.26 6 1 16
Contracts 111.07 98 53 296

Faults 39.52 38 0 94

similar to the system library in Java or C#. The tested
classes include widely used classes like STRING or ARRAY
and also more seldom used classes such as FIBONACCI or
FORMAT DOUBLE. Table 1 shows various statistics of the
code metrics of the classes under test: lines of code, num-
ber of methods, attributes, contract clauses and total num-
ber of faults found in the experiments. These statistics are
meant to give an overview of the sizes of the classes. De-
tailed information about the class sizes is available online2.
The number of methods, attributes and contracts includes
the part that the class inherits from ancestors, if any.

During the testing sessions, AutoTest may trigger fail-
ures in the class under test and also in classes on which
the tested class depends. There are two ways in which fail-
ures can be triggered in other classes than the one currently
under test. First, a method of the class under test calls a
method of another class, and the latter contains a fault which
affects the caller. Second, the constructor of another class,
of which an instance is needed as argument to a method un-
der test, contains a fault.

AutoTest reports faults from the first category as faults in
the class under test. This is because, although the method
under test is not responsible for the failure, this method can-
not function correctly due to a faulty supplier and any user
of the class under test should be warned of this. Faults from
the second category, however, are not counted. This is be-
cause in these experiments we focus on faults found in the
class under test only. Such tests are nevertheless also likely
to reveal faults (cf. the related analysis on the benefits of
“interwoven” contracts [19]). How many of them are found
there and how this impacts the predictability of random test-
ing is a subject of further studies.

Computing infrastructure The experiments ran on 10
dedicated PCs equipped with Pentium 4 at 3.2GHz, 1Gb
of RAM, running Linux Red Hat Enterprise 4 and ISE Eif-
fel 5.6. The AutoTest session was the only CPU intensive
program running at any time.

2http://se.inf.ethz.ch/people/ciupa/public/
random_oo_testing_experiment.zip

4 Discussion

4.1 Observations and Analysis

Over all 27 classes, the number of detected faults ranges
from 0 to 94, with a median of 38 and a standard devia-
tion of 28. In two of the classes (CHARACTER REF and
STRING SEARCHER) the experiments did not uncover any
faults. Figure 4 shows the median absolute number of faults
detected over time for each class.

Figure 4. Medians of the absolute numbers of
faults found in each class

In order to get aggregated results, we look at the normal-
ized number of faults over time. For each class, we normal-
ize by dividing the number of faults found by each test run
by the total number of faults found for this particular class.
The result is shown in Figure 5. When averaging over all 27
classes, 30% of the overall number of faults detected during
our experiments are found after 10 minutes, as witnessed by
the median of medians reaching .3 after 10 minutes in Fig-
ure 5. After 90 minutes, on average, an additional 8 percent
of the overall number of randomly detected faults are found.

The main question is: how predictable is random test-
ing? We consider two kinds of predictability: one that re-
lates to the number of faults, and one that relates to the kind
of faults and that essentially investigates if we are likely to
detect the same faults, regardless of which of the thirty ex-
periments is chosen. This provides insight into the influence
of randomness (or, in more technical terms, the influence of
the seed that initializes the pseudo-random number gener-
ator). Furthermore, we also consider how long it takes to
detect a first fault and how predictable random testing is
with respect to this duration.

In terms of predictability of the number of detected dis-
tinct faults, we provide an answer by considering the stan-
dard deviations of the normalized number of faults detected
over time (Figure 6). With the exception of INTEGER REF,
an outlier that we do not show in the figure, the standard de-
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Figure 5. Medians of the normalized numbers
of faults found in each class; their median

Figure 6. Standard deviations of the normal-
ized numbers of faults found in each class;
their median and standard deviation

viations lie roughly in-between 0.02 and 0.06, correspond-
ing to 2% to 6% of the relative number of errors detected.
Because we want to get one aggregated result across all
classes, we display the median and the standard deviation
of the standard deviations of the normalized number of de-
tected faults in the same figure (median of standard devia-
tions: upper thick line; standard deviation of standard de-
viations: lower thick line in Figure 6). The median of the
standard deviations of the normalized numbers of detected
faults decreases from 4% to 2% in the first 15 minutes and
then remains constant. Similarly, the standard deviation of
the standard deviations of the normalized number of de-
tected faults linearly decreases from 3% to 1.5% after 10
minutes, and then remains approximately constant.

The median and standard deviation of the standard devi-
ations being rather small suggests that random testing is, in
terms of the relative number of detected faults, rather pre-

dictable in the first 15 minutes, and strongly predictable af-
ter 15 minutes. In sum, this somewhat counter-intuitively
suggests that in terms of the relative number of detected
faults, random testing OO programs is indeed predictable.

An identical relative number of faults does not neces-
sarily indicate that the same faults are detected. If all runs
detected approximately the same errors, then we could ex-
pect the normalized numbers of detected faults to be close
to 1 after 90 minutes. This is not the case (median 38%)
in our experiments: random testing exhibits a high variance
in terms of the kind of detected failures, and thus appears
rather unpredictable in terms of the kind of the detected
faults.

Finally, when analyzing the results, we were surprised
to see that for 24 out of the 25 classes in which we found
faults, at least one experiment detected a fault in the first
second. Taking a slightly different perspective, we could
hence test any class thirty times, one second each. This
means that within our experimental setup, random testing
is almost certain to detect a fault for any class within 30
seconds. In itself, this is a rather strong predictability result.

This unexpected finding led us to investigate a question
that we originally did not set out to answer: In terms of the
efficiency of our technology, is there a difference between
long and short tests? In other words, does it make a differ-
ence if we test one class once for ninety minutes or thirty
times for three minutes?

To answer this question, we analyzed how the number
of faults detected when testing for 30 minutes and chang-
ing the seed every minute compares to the number of faults
found when testing for 90 minutes and changing the seed
every 3 minutes and to the number of faults found when test-
ing for 90 minutes without changing the seed, with longer
test runs being an approximation of longer test sequences.
Figure 7 shows the results of a class-by-class comparison.

Figure 7. Cumulated normalized numbers of
faults after 30*3 and 30*1 minutes; median
normalized number of faults after 90 minutes



The results indicate that the strategy using each of the
30 seeds for 3 minutes (90 minutes altogether) detects more
faults than using each of the thirty seeds for 1 minute (30
minutes altogether). Because the testing time is three times
larger in the former when compared to the latter case, this
is not surprising. Note, however, that the normalized num-
ber of faults is not three times higher. On more compara-
ble grounds (90 minutes testing time each), collating thirty
times 3 minutes of test yields considerably better results
than testing for 90 minutes.

This suggests that short tests are more effective than
longer tests. However, a more detailed analysis reveals that
this conclusion is too simple. For the technical reasons de-
scribed in §2, the interpreter needs to be restarted at least
once during most of the experiments. In fact, there were
only 60 experiments during which no interpreter restart oc-
curred. Such a restart is similar to beginning a new exper-
iment in that, as explained in §3.1, the object pool is emp-
tied and must be constructed anew. Interpreter restarts do
not, however, affect the scheduling of calls to methods un-
der test: AutoTest preserves the fairness criteria and tries to
call first methods that were tested the least up to that point.
Because of these interpreter restarts, we cannot directly hy-
pothesize on the length of test cases. In fact, we do not have
any explanation of this stunning result yet, and its study is
the subject of ongoing and future work.

4.2 Threats to the Validity of Generaliza-
tions of These Results

The classes used in the experiment belong to the most
widely used Eiffel library and were not modified in any way.
They are diverse both in terms of various code metrics and
of intended semantics, but naturally their representativeness
of OO software is limited.

A further threat to the validity of the present empirical
evaluation is that the interpreter restarts trigger the empty-
ing of the object pool. This puts a limit to the degree of
complexity that the test inputs can reach. In our experi-
ments, interpreter restarts occurred at intervals between less
than a minute and over an hour. Even for the same class,
these restarts occur at widely varying intervals, so that some
sessions reach presumably rather complex object structures,
and others only very simple ones.

AutoTest implements one of several possible algorithms
for randomly generating inputs for OO programs. Although
we tried to keep the algorithm as general as possible through
various parameters, there exist other methods for generat-
ing objects randomly, as explained in §5. As such, the re-
sults of this study apply only to the specific algorithm to-
gether with specific choices for technical parameters (e.g.,
P(gen new)) for random testing implemented in AutoTest.

The full automation of the testing process – necessary

also due to the sheer number of tests generated and executed
in the experiment – required an automated oracle: contracts
and exceptions. This means that naturally any fault which
does not manifest itself through a contract violation or an-
other exception could not be detected and included in the
results presented here. Furthermore, we approximate faults
by failures as described in §2.2. The automatic mapping
from failures to faults could have led to faults being missed.

The results that we present relate to faults detected by
random testing. Random testing may miss many more
faults, and we do not know what the results would be if
we compared the number of randomly detected faults to the
number of faults that were detected manually, by random
testing, and by other strategies.

The experiments reported here were performed only on
classes “in isolation,” not on a library as a whole or on an
entire application. This means that the methods of these
classes were the only ones tested directly. The methods that
they transitively call are also implicitly tested. The results
would probably be different for a wider testing scope, but
timing constraints did not allow testing of entire applica-
tions and libraries.

As explained in §4.1, for 24 out of the 25 classes in
which our experiments uncovered faults, there was at least
one experiment in which the first fault for a class was found
within the first second of testing. The vast majority of these
faults are found in constructors when using either an ex-
treme value for an integer or Void for a reference-type ar-
gument. It is thus questionable if these results generalize
to classes which do not exhibit one of these types of faults.
However, as stated above, in our experiment 24 out of the
27 tested classes did contain a maximum integer or Void-
related fault.

5 Related Work

Much of the criticism of random testing in the literature
stems from the intuition that, for most programs, this strat-
egy stands little chance of coming across “interesting” and
meaningful inputs. Several theoretical studies and reports
on practical applications of the method contradict this in-
tuition. Analytical studies by several authors [17, 22, 29]
indicate that random testing can be as effective as (or even
better than) partition testing. In contrast, Gutjahr shows that
if the expected failure rates of the blocks of a partition are
equal and one test is chosen per block, then the expected
failure detection capability of partition testing will in gen-
eral be better [15]. The assumption of equal expected fail-
ure rates is of course crucial here, and Gutjahr justifies it by
the argument that if they were not equal, partition testing
with one test per block would not be applied. However, not
knowing failure rates does in general not imply that their
expectations are equal. All these studies are theoretical and



focus on the comparison between partition and random test-
ing, whereas the present study is purely empirical and aims
at investigating several parameters about the performance
of random testing alone.

On the practical side, random testing has been used to
uncover bugs in Java libraries and programs [24], [9], in
Haskell programs [8], in utilities for various operating sys-
tems [13], [21]. All these reports show that random testing
does find defects in various types of software, but they do
not investigate its predictability.

A comprehensive overview of random testing is provided
by Hamlet [18]. He stresses the point that it is exactly the
lack of system in choosing inputs that makes random test-
ing the only strategy that can offer any statistical predic-
tion of significance of the results. Hence, if such a measure
of reliability is necessary, random testing is the only op-
tion. Furthermore, random testing is also the only option
in cases when information is lacking to make systematic
choices [16].

The interest in random testing of OO programs has in-
creased greatly in recent years. Proof of this are the numer-
ous testing tools using this strategy developed recently such
as: JCrasher [9], Eclat [24], Jtest [1], Jartege [23], or RUTE-
J [2]. The evaluations of these tools are focused on various
quality estimation methods for the tools themselves: find-
ing real errors in existing software (JCrasher, Eclat, RUTE-
J), in code created by the authors (Jartege), in code writ-
ten by students (JCrasher), the number of false positives re-
ported (JCrasher), mutation testing (RUTE-J), code cover-
age (RUTE-J). As such, the studies of the behaviors of these
tools stand witness for the ability of random testing to find
defects in mature and widely used software and to detect up
to 100% of generated mutants for a class. These studies do
not, however, employ any statistical analysis which would
allow drawing more general conclusions from them about
the nature of random testing.

Several tools (RANDOOP [25], DART [14], ART [6],
Agitator [3]) combine random testing with systematic ap-
proaches, in order to improve its efficiency by providing
some guidance in the choice of inputs. The evaluations of
RANDOOP, DART and ART use purely random testing as
a basis for comparison: RANDOOP and DART are shown
to uncover defects that random testing does not find, DART
achieves higher code coverage than random testing, ART
finds defects with up to 50% less tests than random test-
ing. These results, although highly interesting in terms of
comparing different testing strategies, do not provide much
information about the performance of random testing itself
or about the predictability of its performance.

A wide variety of other testing strategies also exists.
Many strategies use symbolic execution to guide test case
generation [30, 14, 10]. Tools like Korat [4] and Java
PathFinder [28] offer bounded exhaustive exploration of

test cases: Korat can generate all non-isomorphic inputs up
to a given bound and JPF can explore bounded sequences
of method calls exhaustively.

There are several studies which empirically compare the
performance of various testing strategies against that of ran-
dom testing. For example, Duran and Ntafos [12] compared
random testing to partition testing and found that random
testing can be as efficient as partition testing. Pretschner
et al. [26] found that random tests perform worse than
both model-based and manually derived tests. D’Amorim
et al [11] compare the performance of two input genera-
tion strategies (random generation and symbolic execution)
combined with two strategies for test result classification
(the use of operational models and of uncaught exceptions).
An interesting result of their study refers to the applicability
of the two test generation methods that they compare: the
authors could only run the symbolic execution-based tool on
about 10% of the subjects used for the random strategy and,
even for these 10% of subjects, the tool could only partly
explore the code.

6 Conclusions and Future Work

The random generation of tests for Eiffel programs is
particularly attractive because of the built-in oracle pro-
vided by the contracts. Random testing, by its very nature,
is subject to random influences. Intuitively, choosing dif-
ferent seeds for different generation runs should lead to dif-
ferent results in terms of detected defects. Earlier studies
had given initial evidence for this intuition. In this paper,
we set out to do a systematic study on the predictability of
random tests. To the best of our knowledge (and somewhat
surprisingly), this question has not been studied before.

In sum, our main results are the following. Random test-
ing is predictable in terms of the relative number of defects
detected over time. In our experiments, random testing de-
tects a defect within 30 seconds, (almost) regardless of the
class under test, and regardless of the seed. On the other
hand, random testing is much less predictable in terms of
the kind of defects that are detected. We have commented
on threats to validity of a generalization of these results.

Our study also led to one phenomenon that we cannot
explain yet. If, for any class, we take the first three minute
chunk of all thirty experiments and subsequently collate
them, we obtain considerably better results than if we take
the median of all 90-minute-runs for that class. This seems
to suggest that short tests perform better than long tests, but
because of frequent resets of the pool of objects used as in-
puts, this cannot be deduced.

Explaining this phenomenon is the focus of our current
and future efforts. A systematic study on the effectiveness
of short vs. long test runs is a further project and so is
the repetition of our experiments with other classes and for



longer periods of time. Findings in this area could lead to
conclusions as to whether random testing is “only” good
at finding defects with a comparably simple structure, or if
more complex defects can be detected as well. A related av-
enue of exciting research is concerned with the influence of
a software system’s coupling and cohesion on the efficiency
of random tests.
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