Finding Faults:
Manual Testing vs. Random+ Testing vs. User Reports

Ilinca Ciupa, Bertrand Meyer, Manuel Oriol, Alexander Pretschner
Department of Computer Science, ETH Zurich, Switzerland
{ilinca.ciupa, bertrand.meyer, manuel.oriol, alexander.pretschner } @inf.ethz.ch

Abstract

The usual way to compare testing strategies, whether
theoretically or empirically, is to compare the number of
faults they detect. To ascertain definitely that a testing strat-
egy is better than another, this is a rather coarse criterion:
shouldn’t the nature of faults matter as well as their num-
ber? The empirical study reported here confirms this con-
jecture. An analysis of faults detected in Eliffel libraries
through three different techniques—random tests, manual
tests, and user incident reports—shows that each is good at
uncovering significantly different kinds of faults. None of
the techniques subsumes any of the others, but each brings
distinct contributions.

1 Introduction

A substantial amount of research in software testing has
been devoted to developing new or improving existing fault
detection strategies. It is often hard to know how related
tools and strategies compare in terms of their fault detec-
tion ability. Many studies [19, 20, 17, 28, 22, 40, 15, 23,
38, 25, 7] have tried to answer this question. Some stud-
ies have provided analytical answers such as subsumption;
others have focused on the number of faults detected by the
different strategies. In sum, there is almost no conclusive
evidence that one testing strategy would clearly outperform
another one in terms of the number of detected faults.

Earlier work [11, 12, 38] has led us to conjecture that
the number of faults is too coarse a criterion for assessing
testing strategies. In the experiments described in this pa-
per, we investigate if the nature of faults is a more suitable
discriminator between different fault detection strategies.
This work’s main result is empirical evidence that different
strategies do indeed uncover different kinds of faults.

The three fault detection strategies analyzed in this paper
are manual unit testing, field use (with corresponding bug
reports), and automated random testing. They are represen-
tative of today’s state of the art: the first two are widely used
in industry, and the last reflects the research community’s

current interest in automated testing solutions. By “manual
unit testing” we denote any testing activity whose purpose
is to find faults in a class or group of related classes, and
in which a tester must write the code to create input objects
and must also provide the oracle of the tests.

Although random testing is only one trend in current re-
search, it is attractive because of its simplicity and because
it makes test case generation comparatively cheap. More-
over, there is no conclusive evidence that random testing is
any worse at finding faults than other automated strategies.

Random input generation delivers the best results when
combined with an automated oracle, due to the numerous
and untargeted tests that it produces. For a human it would
be tedious to wade through these tests, of which only a
small proportion reveal faults. The power of random test-
ing can be fully exploited only if the pass/fail decision is
automated. A great part of the work on fully automated
testing [8, 14, 35, 36, 34] thus uses built-in test oracles in
the form of contracts. These can either be written by devel-
opers — who indeed write contracts when possible [9] — or
inferred by a tool [16] from runs of the system under test.
Preconditions, postconditions and class invariants provide
an automated oracle with a level of abstraction [39] that is
usually far more fine-grained than the simple robustness as-
sessment that can be obtained from checking whether or not
the system crashed. Satisfying preconditions is a theoretical
challenge [3], but not necessarily a practical one.

In the experiment presented here, we used the AutoTest
tool [30] for investigating the performance of random test-
ing. AutoTest performs fully automated testing of con-
tracted O-O software: it calls the routines (methods) of the
classes under test with randomly generated inputs (objects),
and, if the preconditions of these routines are satisfied, it
checks if contracts are fulfilled while running the tests. Any
contract violation that occurs or any other thrown exception
signals a fault. AutoTest’s strategy for creating inputs is not
purely random: it is random combined with limit testing,
as explained in §2. Previous experiments [11] have shown
that this strategy is more effective at uncovering faults than
purely random testing at no extra cost in terms of execution

time, so we consider it more relevant to investigate the more
effective strategy. As this strategy is still random-based but
also uses special predefined values (which have a high im-
pact on the results), in the rest of this paper we will refer to it
as random+ testing. We ran AutoTest on 39 classes from a
widely-used Eiffel library, called EiffelBase, which we did
not modify in any way. AutoTest found a total of 165 faults
in these classes. To investigate the performance of manual
testing, we analyzed the faults found by students who were
explicitly asked to test three classes, two created by us and
one slightly adapted from EiffelBase. Faults in the field are
taken from user-submitted bug reports on the EiffelBase li-
brary. We evaluated these three ways of detecting faults by
comparing the number and distribution of faults they detect
via a classification that contains 21 categories.

Contributions. Fault classifications have been used to
analyze the difference between inspections and software
testing. Yet, as far as we know, ours is the first study that
(1) develops a classification of faults specifically adapted to
contracted O-O software, and (2) uses this classification to
compare an automated random testing strategy to manual
testing, and to furthermore compare testing results to faults
detected in the field.

The main results of the comparison are the following.
Random+ testing is particularly good at detecting problems
in specifications. It is not so good at detecting problems of
overly strong preconditions, infinite loops, and ‘“‘semantic”
problems as discussed below. It detects most of the faults
uncovered by manual testing, plus some. This suggests that
random+ testing should be applied before human testers en-
ter the loop. In addition, random+ testing finds only a small
percentage of user-reported faults; this suggests that ran-
dom+ testing cannot replace collecting bug reports from
software users. A more general conclusion is that testing
strategies should indeed be compared in terms of the kind
of faults and not only of the number of faults that they find.

Although, as is the case for any empirical study, the ap-
plicability of the results is limited to the examined testing
techniques and to the specifics of the tested code, other case
studies can build upon our results by extending its scope to
different testing methods and different types of tested sys-
tems, due to the composable nature of such studies.

Overview. §2 provides the background for random tests
of O-O software. §3 presents a classification of faults. The
experiments and their discussion are the subject of §4. After
putting our work in context in §5, we conclude in §6.

2 Background

This section provides an overview of how AutoTest gen-
erates and executes random tests for Eiffel programs. The
tool itself is not the focus of this paper and has been de-
scribed previously [11, 12].

The units under test are routines of Eiffel classes. As-
sume that a class C' defines a routine m with return type R
and formal arguments p1, ..., p, of types C1,...,C,. To
test m, we must generate an object ¢ of type C and actual
arguments aq, ..., a, of types Cq,...,C,. In the absence
of contracts, we would also have to generate an object r of
type R representing the expected output. We can then exe-
cute c.m(ay, . . . , an), compare the resulting object to r, and
check if the effect of m on c and the a; is as expected. The
inputs (the target object ¢ and the argument objects a;) can
be generated through constructor calls, which themselves
are routines and may need arguments; this requires a recur-
sive generation procedure.

For contract-enabled languages such as Eiffel, JML or
Spec#, there is an obvious simplification. Rather than ex-
plicitly describing the expected output through an object r,
we can use the routine and class contracts. Upon execution
of e.m(ay, ..., a,), we check if the postcondition of m and
the invariant of C' are satisfied. This gives us an oracle for
free, in the form of postconditions and invariants. Because
it is an abstraction, this oracle is usually not able to pre-
dict the precise values that are a result of executing the test.
Of course, the contract itself may be incorrect (§3), but this
is a general problem with oracles. Note that tests are only
meaningful for calls (including to constructors) that satisfy
their preconditions.

To obtain input objects for a routine, it is desirable not
to create a new object each time with a constructor call, but
also to keep a pool of available objects. This is because con-
structor calls tend to generate rather simple objects, not nec-
essarily representative of the complex data structures that
can arise during a realistic execution. AutoTest retains ob-
jects that have been created and stores them in the pool.
Whenever it needs an object as target or argument for a call
to a routine under test, it randomly picks one from the pool.
After the routine call, it returns the object to the pool. With
a preset frequency, AutoTest also generates a new object,
which it adds to the pool. In this way, the objects in the
pool are likely to get modified by the routines under test.
When it needs values of primitive types, AutoTest either se-
lects them from a predefined set of values which includes
limit values, or randomly selects one of the possible values
for that type, hence the name “random+ testing”.

Test case generation then means generating Fiffel code
that creates objects and executing their operations — the rou-
tines under test. By running this code in an interpreter, con-
tract violations and other unhandled exceptions are logged.
These violations are the failures that AutoTest can detect.

We use the following terminology. A failure is an ob-
servable difference between expected and actual output; in
this work they are the contract violations and exceptions
logged by AutoTest. An error is a program state that is
not in accordance with the intended state. Errors may (but

do not have to) lead to failures. A fault is the reason for
the error and includes incorrect implementations and invalid
specifications, i.e., specifications inconsistent with the ac-
tual requirements.

3 Classifications of faults

Two dimensions characterize a fault in programming lan-
guages with support for embedding executable specifica-
tions: the fault’s location — whether it occurs in the spec-
ification or in the implementation; and the fault’s cause,
the real underlying issue. The following paragraphs dis-
cuss both dimensions and introduce the resulting fault cate-
gories. The classification is not domain-specific. Although
other fault classification schemes exists, as discussed in §5,
we are not aware of any such schemes for contracted code.

Specification&implementation faults

In contract-equipped programs, the software specification is
embedded in the software itself. Contract violations are one
of the sources of failures. Hence, faults can be located both
in the implementation and in the contracts. A specification
fault is a mismatch between the intended functionality of a
software element and its explicit specification (in the con-
text of this study, the contract). Specification faults reflect
specifications that are not valid, in the sense that they do
not conform to user requirements. The correction of speci-
fication faults requires changing the specification (plus pos-
sibly also the implementation) [38]. As an example, con-
sider a routine deposit of a class BANK_ACCOUNT with
an integer argument representing the amount of money to
be deposited to the account. The intention is for that argu-
ment to be positive, and the routine only works correctly in
that case. If the precondition of deposit does not list this
property, the routine has a specification fault. In contrast, an
implementation fault occurs when a piece of software does
not fulfill its explicit specification, here its contract. The
correction of implementation faults never requires chang-
ing the specification. Suppose the class BANK_ACCOUNT
also contains a routine add_value that should add a value,
positive or negative, to the account. If the precondition does
not specify any constraint on the argument but the code as-
sumes that it is a positive value, then there is a fault in the
implementation.

The notion of specification fault assumes that we have
access to the “intended specification” of the software: the
real specification that it should fulfill. When analyzing the
faults in real-world software, this is not always possible.
Discussing it with the original developers is also in most
cases difficult or even impossible. To infer the intended
specification, one must usually rely on subjective evidence
such as the comments in the routines under test; the speci-
fications and implementations of other routines in the same

class; how the tested routines are called from various parts
of the software system. This strategy resembles how a de-
veloper not familiar with the class would proceed to find out
what the software is supposed to do.

Classification of faults by their cause

Some kinds of specification and implementation faults tend
to recur over and over again in practice. Their study makes
it possible to obtain a finer-grained classification by group-
ing these faults according to the corresponding human mis-
takes or omissions — their causes. By analyzing the cause
for all faults encountered in our study, we obtained the cate-
gories described below. The classification was created with
practical applicability in mind and mainly focuses on either
a mistake in the programmer’s thinking or a misused pro-
gramming mechanism.

Specification faults. An analysis of specification faults
led to the following cause-based categories, grouped by the
type of contract that they apply to.

1. We identified the following faults related to precondi-
tions.
Missing non-voidness precondition: A precondition
clause is missing, specifying that a routine argument,
class attribute, or other reference denoted by argument
or attribute should not be void (null) is missing.
Missing min/max-related precondition: a precondi-
tion clause is missing, specifying that an integer argu-
ment, class attribute, or other integer denoted by an ar-
gument or attribute should have a certain value related
to the minimum/maximum possible value for integers.
Missing other precondition part: a precondition is
under-specified in another way than the previous cases.
Precondition disjunction due to inheritance: with
multiple inheritance it can be the case that a routine
merges several others, inherited from different classes.
In this case, the preconditions of the merged routines
are composed, using disjunction, with the most cur-
rent ones. Faults in this category appear because of
this language mechanism (e.g., because the precondi-
tion of one parent class is true).
Precondition too restrictive: the precondition of a
routine is stronger than it should be.

2. Faults related to the postcondition include wrong post-
condition (the postcondition of a routine is incorrect)
and missing postcondition (the postcondition of a
routine was omitted).

3. Faults related to class invariants include only one: the
missing invariant clause — a part of a class invariant
is missing.

4. Faults related to check! include only one kind:
wrong check assertion — the routine contains a
check condition that does not necessarily hold.

5. Finally, the following faults apply to all contracts.
Faulty specification supplier: a routine used by the
contract of the routine under test?> contains a fault,
which makes the contract of the routine under test in-
correct. (The fault can be located either in the contract
or in the implementation of the supplier, but, since it
affects the contract of the client, we classify it as spec-
ification fault.)

Calling a routine outside its precondition from a
contract: a failure is triggered because the contract
of the routine under test calls another routine without
fulfilling the latter’s precondition.

Min/max int related fault in specification (other than
missing precondition): the specification of the routine
under test lacks some condition(s) related to the min-
imum/maximum possible value for integers. (Our ex-
amples so far do not cover floating-point computation.)

The categories in this classification have various degrees
of granularity. The reason is that the classification was de-
rived from faults obtained through widely different mecha-
nisms: by AutoTest; by manual testers; by users of the soft-
ware. The categories emerged by inductively identifying
recurring patterns in existing faults, rather than by trying to
fit faults deductively into a scheme defined a priori. Where
such patterns could not be found, the categories are rather
coarse-grained.

Implementation faults. The analysis of implementation
faults led to the following cause-based categories.

Faulty implementation supplier: a routine called from the
body of the routine under test contains a fault, which does
not allow the routine under test to function properly.
Wrong export status: this category refers particularly to
the case of creation procedures (constructors), which in Eif-
fel can also be exported as normal routines. The faults clas-
sified in this category are due to routines being exported as
both creation procedures and normal routines, but which,
when called as normal routines, do not fulfill their contract,
as they were meant to be used only as creation procedures.
External fault: FEiffel allows the embedding of routines
written in C. This category refers to faults located in such
routines.

Missing implementation: the body of a routine is empty,
often signaling an uncompleted attempt at top-down algo-
rithm design.

! An Eiffel check instruction is similar to an “assert” in C and C++. It
states a condition that should be fulfilled at a certain point in the execution
of a block of code. If contract monitoring is on and the condition does not
hold, the execution triggers an exception.

2In Eiffel, contracts can include function calls.

Case not treated: the implementation does not treat one of
the cases that can appear, the result typically being that a
necessary 1if branch is missing.

Catcall: due to the implementation of type covariance in
Eiffel, the compiler cannot (in the Eiffel version used) de-
tect some routine calls that are not available in the actual
type of the target object. Such violations can only be de-
tected at runtime. This class groups faults that stem from
this deficiency of the type system.

Calling a routine outside its precondition from the im-
plementation: the fault appears because the routine under
test calls another routine without fulfilling the latter’s pre-
condition.

Wrong operator semantics: the implementation of an op-
erator is faulty, in the sense that it causes the application of
the operator to have a different effect than intended.
Infinite loop: executing the routine can trigger an infinite
loop, due to a fault in the loop exit condition.

Three of the above categories are specific to the Eif-
fel language and would not be directly applicable to lan-
guages which do not support multiple inheritance (precon-
dition disjunction due to inheritance), covariant definitions
(catcalls), or the inclusion of code written in other program-
ming languages (external faults). All other categories are
directly applicable to other object-oriented languages with
support for embedded and executable specifications.

4 Experimental results

This section first describes the artifacts examined in the
experiment and how the experiment was conducted. Then
it presents the results of the experiment in terms of: (1) a
comparison of the type of faults found by AutoTest and re-
ported by users for the EiffelBase library; and (2) a compar-
ison of the type of faults found by AutoTest and by manual
testers for a set of classes created by the authors and one
class taken almost verbatim from the EiffelBase library. It
then summarizes the results, discusses the most important
findings, and concludes with a presentation of the threats to
the validity of generalizing our results.

4.1 Experiment

To see how random+ testing performs, we ran AutoTest
on classes from the 5.6 version of the EiffelBase library:
the most widely used Eiffel library, containing classes im-
plementing various data structures and other common facil-
ities. This library contains a total of 58321 lines of code, out
of which 17783 are contained in contracts. Overall, we ran-
domly tested 39 classes from the library and found a total
of 165 faults in them.

We then examined bug reports from users of the Eiffel-
Base library. From the database of bug reports, we selected
those referring to faults present in version 5.6 of the Eiffel-
Base library and excluded those which were declared by the

Table 1. Classes tested manually

Class LOC LOCC #Methods
MY _STRING 2444 221 116
UTILS 54 3 3
BANK_ACCOUNT 74 13 4

library developers to not be faults or those that referred to
the .NET version of EiffelBase, which we cannot test with
AutoTest. Our analysis hence refers to the remaining 28
bug reports fulfilling these criteria. The bug reports were
submitted between the beginning of 2005 and the end of
2007, so they span a period of almost 3 years.

To determine how manual testing compares to random+
testing, we organized a competition for students of com-
puter science at ETH Zurich. 13 students participated in
the competition. They were given 3 classes to test (which
we also tested with AutoTest to compare the results). The
task was to find as many faults as possible in these 3 classes
in 2 hours. Two of the classes were written by us (with
implementation, contracts, and purposely introduced faults
from various of the above categories), and one was an
adapted version of the STRING class from EiffelBase. Ta-
ble 1 shows some code metrics for these 3 classes: number
of lines of code (LOC), number of lines of contract code
(LOCC), and number of routines. We intentionally chose
one class that was significantly larger and more complex
than the others to see how the students would cope with it.
Although such a class is harder to test, intuition suggests
that it is more likely to contain faults. The students were
not allowed to modify the classes under test in any way.

The students had varying experience in testing O-O soft-
ware; most of them had had at least a few lectures on the
topic. 9 out of the 13 students declared that they usually
or always unit test their code as they write it. They were
allowed to use any technique to find faults in the software
under test, except for running AutoTest on it. Although they
would have been allowed to use other tools (and this was an-
nounced before the competition), all the students performed
only manual testing. The code they were given included
contracts, which the students used as oracle: at the end of
the competition, they had to deliver test cases revealing the
faults that they had found, through a contract violation or
another exception.

4.2 Random+ testing vs. user reports

Table 2 shows the distribution of specification and imple-
mentation faults (1) found by random+ testing (labeled “Au-
toTest” in the table) 39 classes from the EiffelBase library
and (2) recorded in bug reports (provided by the maintainers
of the library) from professional users. Note that the results
in this table refer to more classes tested with AutoTest than
for which there are user reports: even if there are no user re-
ports on a specific class, the class may still have been used
in the field.

Table 2. Random+ Testing vs. User Reports
Spec. faults Implem. faults

103 (62.42%) 62 (37.58%)
10 (35.71%) 18 (64.29%)

AutoTest
User reports

Almost two thirds of the faults found by random+ test-
ing were located in the specification of the software, that is,
in the contracts. This indicates that random+ testing is es-
pecially good at finding faults in the contracts. In the case
of faults collected from users’ bug reports, the situation is
reversed: almost two thirds of user reports refer to faults in
the implementation.

Table 3 presents a more detailed view of the specification
and implementation faults found by AutoTest and recorded
in users’ bug reports, grouping the faults by their cause,
as explained in §3. This sheds more light on differences
between faults reported by users and those found by au-
tomated testing, and exposes strengths and weaknesses of
both approaches. One difference that stands out relates to
faults related to extreme values (either Void references or
numbers at the lower or higher end of their representation
interval) in the specification. Around 30% of the faults un-
covered by AutoTest are in one of these categories, whereas
users do not report any such faults. Possible explanations
are that such situations are not encountered in practice; that
users do not consider them to be worth reporting; or that
users rely on their intuition on the range of acceptable in-
puts for a routine, rather than the routine’s precondition, and
their intuition corresponds to the intended specification, not
to the erroneous one provided in the contracts.

A further difference results from AutoTest’s ability to de-
tect faults from the categories “faulty specification supplier”
and “faulty implementation supplier.” They mean that Au-
toTest can report that certain routines do not work prop-
erly because they depend on other faulty routines. In our
records users never report such faults: they only indicate
the routine that contains the fault, without mentioning other
routines that also do not work correctly because of the fault
in their supplier. An important piece of information gets
lost this way: after fixing the fault, there is no incentive to
check whether the clients of the routine now work properly,
meaning to check that the correction in the supplier allows
the client to work properly too.

Random+ testing is particularly bad at detecting some
categories of faults: too strong preconditions, faults that are
a result of wrong operator semantics, infinite loops, missing
routine implementations. None of the 165 faults found by
AutoTest and examined in this study belonged to any of the
first three categories, but the users reported at least one fault
in each. It is not surprising that AutoTest has trouble detect-
ing such faults. First, if AutoTest tries to call a routine with
a too strong precondition and does not fulfill this precondi-
tion, the testing engine will simply classify the test case as

Table 3. Random+ Testing vs. User Reports: Specification and Implementation Faults

Cause

Id Number of faults
AutoTest Users

Percentage of faults
AutoTest Users

Specification faults

Missing non-voidness precondition S1 22 0 13.33% 0.00%
Missing min/max-related precondition S2 23 0 13.94% 0.00%
Missing other precondition part S3 28 3 16.97% 10.71%
Faulty specification supplier S4 7 0 4.24% 0.00%
Calling a routine outside its precondition from a contract S5 0 0 0.00% 0.00%
Min/max int related fault in spec (other than missing precondition) S6 4 0 2.42% 0.00%
Precondition disjunction due to inheritance S7 2 0 1.21% 0.00%
Missing invariant clause S8 3 0 1.82% 0.00%
Precondition too restrictive S9 0 2 0.00% 7.14%
Wrong postcondition S10 12 2 7.27% 7.14%
Wrong check assertion S11 2 0 1.21% 0.00%
Missing postcondition S12 0 3 0.00% 10.71%
Specification faults total 103 10 62.42% 35.71%
Implementation faults

Faulty implementation supplier I1 47 0 28.48% 0.00%
Wrong export status 12 0 2 0.00% 7.14%
External fault 13 1 0 0.61% 0.00%
Missing implementation 14 2 2 1.21% 7.14%
Case not treated 5 4 7 2.42% 25.00%
Catcall 16 3 1 1.82% 3.57%
Calling a routine outside its precondition from the implementation 17 5 1 3.03% 3.57%
Wrong operator semantics 18 0 1 0.00% 3.57%
Infinite loop 19 0 4 0.00% 14.29%
Implementation faults total 62 18 37.58% 64.29%

invalid and try again to satisfy the routine’s precondition by
using other inputs. Second, AutoTest also cannot detect in-
finite loops: if the execution of a test case times out, it will
classify the test case as “bad response.” This means that it
is not possible for the tool to decide if a fault was found
or not — the user must inspect the test case and decide.
Third, users of the EiffelBase library could report faults re-
lated to operators being implemented with the wrong se-
mantics. Naturally, to decide this, it is necessary to know
the intended specification of the operator. Finally, AutoTest
cannot detect that the implementation of a routine body is
missing, unless this triggers a contract violation. By code
analysis, one can automatically find empty routine bodies,
yet not decide if this is a fault. Note that in these cases,
the overall number of detected faults is rather low, which
suggests special care in generalizing the findings.

We also ran AutoTest exclusively on the classes for
which users reported faults to see if it would find those
faults (except three which AutoTest cannot currently pro-
cess as they are either expanded or built-in). When run
on each class in 10 sessions of 3 minutes, AutoTest found
a total of 268 faults (However, 183 of these faults were
found through failures caused by the classes RAW_FILE,
PLAIN_TEXT_FILE and DIRECTORY through operating
system signals and I/O exceptions, so it is debatable if

these can indeed be considered faults in the software.) 4
of these were also reported by users, so 21 faults are solely
reported by users and 264 solely by AutoTest. AutoTest
detected only one of the 18 implementation faults (5%) re-
ported by users and 3 out of the 7 specification faults (43%).
While theoretically it could, AutoTest did not find the user-
reported faults belonging to such categories as “wrong ex-
port status” or “case not treated.” Longer testing times
might, however, have produced different results.

4.3 Random+ testing vs. manual testing

To investigate how AutoTest performs when compared
to manual testers (the students participating in the compe-
tition), we ran AutoTest on the 3 classes that were tested
manually. The tool tested each class in 30 sessions of 3
minutes, where each session used a different seed for the
pseudo-random number generator. Table 4 shows a sum-
mary of the results. It displays a categorization of the fault
according to the classification scheme used in this paper (the
category ids are used here; they can be looked up in Table
3), the name of the class where a fault was found by either
AutoTest or the manual testers, how many of the manual
testers found the fault out of the total 13 and a percent rep-
resentation of the same information, and finally, in the last
column, x’s mark the faults that AutoTest detected.

The table shows that AutoTest found 9 out of the 14

Table 4. Random+ Testing vs. Manual Testing

Id Class # testers AutoTest

S1 BANK_ACCOUNT 8 (61.5%)

S1 UTILS 5 (38.5%) X

S1 MY_STRING 1(7.7%) X

S2 BANK_ACCOUNT 8 (61.5%)

S2 UTILS 7 (53.8%) X

S2 MY_STRING 1(7.7%) X

S2 MY_STRING 5 (38.5%) X

S2 MY_STRING 1 (7.7%) X

S2 MY_STRING 0(0%) X

S3 BANK_ACCOUNT 1(7.7%) X

S3 UTILS 4 (30.8%) X
S10 MY_STRING 1(7.7%)

12 BANK_ACCOUNT 4 (30.8%) X

16 MY _STRING 1 (7.7%)

17 MY_STRING 0(0%) X

19 MY_STRING 9 (69.2%)

faults that humans detected and 2 faults that humans did
not find. The two faults that only AutoTest found do not
exhibit any special characteristics, but they occur in class
MY _STRING, which is considerably larger than the other 2
classes. We conjecture that, because of its size, students
tested this class less thoroughly than the others. This high-
lights one of the clear strengths of the automatic testing tool:
the sheer number of tests that it generates and runs per time
unit and the resulting routine coverage.

Conversely, three of the faults that AutoTest does not de-
tect were found by more than 60% of the testers. One of
these faults is due to an infinite loop; AutoTest, as discussed
above, classifies timeouts as test cases with a bad response
and not as failures. The other two faults belong to the
categories “missing non-voidness precondition” and “miss-
ing min/max-related precondition.” Although the strength
of AutoTest lies partly in detecting exactly these kinds of
faults, the tool fails to find them for these particular exam-
ples in the limited time it is given. This once again stresses
the role that randomness plays in the approach, with both
advantages and disadvantages.

4.4 Summary and consequences

Three main observations emerge from the preceding
analysis. First, random+ testing is good at detecting prob-
lems in specifications. It is particularly good with problems
related to limit values. Problems of this kind are not re-
ported in the field but tend to be caught by manual testers.

Second, AutoTest is not good at detecting problems with
too strong preconditions, infinite loops, missing implemen-
tations and operator semantics. This is due to the very na-
ture of automated random testing.

Third, in a comparison between automated and manual
testing (i.e., not taking into consideration bug reports), Au-
toTest detects almost all faults also detected by humans,

plus a few others. For model-based testing, this confirms
the findings of an earlier study [38] and speaks strongly in
favor of running the tool on the code before having it tested
by humans. The human testers may find faults that the tool
misses, but a great part of their work will be done at no other
cost than CPU power.

4.5 Discussion

AutoTest finds significantly more faults in contracts than
in implementations. This might seem surprising, given that
contracts are Boolean expressions and typically take up far
fewer lines of code than the implementation (14% of the
code on average in our study). Two questions naturally
arise. One, are there more faults in contracts than in im-
plementations, i.e., do the results obtained with AutoTest
reflect the actual distribution of faults? Two, is it interest-
ing at all to find faults in contracts, knowing that contract
checking is usually disabled in production code?

We do not know the answer to the first question. We can-
not deduce from our results that there are indeed more prob-
lems in specifications than in implementations. The only
thing we can deduce is that random testing that takes special
care of extreme values detects more faults in specifications
than in implementations. Around 45% of the faults are un-
covered in preconditions, showing that programmers often
fail to specify correctly the range of inputs or conditions on
the state of the input accepted by routines.

It is also important to point out that a significant pro-
portion of specification errors are due to void-related is-
sues, which are scheduled to go away as the new versions of
Eiffel, starting with 6.2 (Spring 2008), implement the “at-
tached type” mechanism [33]. This removes the problem
by making non-voidness part of the type system and catches
violations at compile time rather than run time.

We have not provided a comparison with a fully random
strategy, but rather used random+ testing (see arguments in
§1). Void-related issues (and problems with other limit val-
ues) would of course have been less likely detected with a
purely random strategy. We conjecture that our results gen-
eralize, modulo the other threats to validity from §4.6, for
all fault categories that do not relate to limit values, because
these have been found with “purely” random objects. Con-
versely, they seem unlikely to generalize for fault categories
that relate to limit objects.

As to whether it is useful or interesting to detect and an-
alyze faults in contracts, one must keep in mind that most
often the same person writes both the contract and the body
of a routine. A fault in the contract signals a mistake in this
person’s thinking just as a fault in the routine body does.
Once the routine has been implemented, client program-
mers who want to use its functionality from other classes
look at its contract to understand under what conditions the
routine can be called (expressed by its precondition) and
what the routine does (the postcondition expresses the effect

of calling the routine on the state). Hence, if the routine’s
contract is incorrect, the routine will most likely be used in-
correctly by its callers, which will produce a chain of faulty
routines. The validity of the contract is thus as important as
the correctness of the implementation.

The existence of contracts embedded in the software is
a key assumption both for the proposed fault classification
and for the automated testing strategy used. We do not con-
sider this to be too strong an assumption because it has been
shown [9] that programmers willingly use a language’s inte-
grated support for Design by Contract, if available. For lan-
guages lacking such features and having only rudimentary
support for checking conditions at runtime in the form of the
assert mechanism, the situation is different: program-
mers using these languages are indeed resistant towards in-
cluding assertions in their code. Nevertheless, for such lan-
guages approaches [16, 24] have been developed for infer-
ring contracts from executions of the system.

The evaluation of the performance of random+ testing
performed here always considers the faults that AutoTest
finds over several runs, using different seeds for the pseudo-
random number generator. In previous work [12] we have
shown that random+ testing is predictable in the number of
faults that it finds, but not in the kind of faults that it finds.
Hence, in order to reliably assess the types of faults that
random+ testing finds, it is necessary to sum up the results
of different runs of the tool.

In addition to pointing out strengths and weaknesses of
a certain testing strategy, a classification of repeatedly oc-
curring faults based on the cause of the fault also brings in-
sights into those mechanisms of the programming language
that are particularly error-prone. For instance, faults due to
wrong export status of creation procedures show that pro-
grammers do not master the property of the language that
allows creation procedures to be exported both for object
creation and for being used as normal routines.

4.6 Threats to validity

The biggest threat to the generalization of the results pre-
sented here is the small size of the set of manually tested
classes, of the analyzed user bug reports, and of the group
of human testers participating in the study. In particular, in
this paper, not all techniques were applied to the same code
base (manual testing was not applied to all classes of the
base library), and we did not directly compare bug reports
to manual tests. We intend to more homogeneously expand
this study to larger and more diverse code bases.

Like the quality of the implementation code, the quality
of the oracle, i.e., the contracts, will of course influence our
results. With a larger code base, a respective threat to the
validity of generalizing our results could be countered.

As explained in §4.1, we only had access to bug reports
submitted by users for the EiffelBase library. Naturally,
these are not all the faults found in field use, but only the

ones that users took the time to report. Interestingly, for
all but one of these reports the users set the priority to ei-
ther “medium” or “high”; the severity, on the other hand,
is “non-critical” for 7 of the reports and either “serious” or
“critical” for the others. This suggests that even users who
take the time to report faults only do so for faults that they
consider important enough.

As we could not perform the study with professional
testers, we used bachelor and master students of computer
science; to strengthen the incentive for finding as many
faults as possible, we ran this as a competition. We did not
instruct the students to follow any particular manual testing
strategy (such as coverage-oriented testing, limit-value test-
ing, etc.) nor did we discourage them from doing so. In
other words, the students had complete freedom in choos-
ing if they wanted to apply a certain strategy or none at all,
since the purpose of the experiment was to study how man-
ual testing in general compares to random+ testing.

A further threat to generalization is due to the peculiari-
ties of the random testing tool used. AutoTest implements
one particular algorithm for random testing and the results
described here would probably not be identical for other ap-
proaches to the random testing of OO programs (e.g., [13]).
In particular, we make use of extreme values to initialize
the object pool (§2). While void objects are rather likely to
occur in practice, extreme integer values are not. In other
words, the approach, as mentioned, is not entirely random.

Also as noted, compile-time removal of void-related er-
rors will affect the results, for ISO Eiffel and other lan-
guages that have the equivalent of an “attached type” mech-
anism (including Spec# [4]).

Another source of uncertainty is the assignment of de-
fects to a classification. Finding a consistent assignment
among several experts is difficult [26]. In our study, one
person was assigned to this task. While this yields consis-
tency, running the experiment with a different person might
produce different results.

Finally, the programming language used in the study,
Eiffel, also influenced the results. As explained in §4.5, a
few of the fault categories are closely related to the lan-
guage mechanisms that are misused or that allow the fault
to occur. This is to be expected in a classification of soft-
ware faults based on the cause of the faults.

The fault classification is inherently object-oriented. Al-
though some fault categories may appear in non-object-
oriented code too, the distribution and nature of faults is
most likely very different in non-object-oriented systems
than in the code examined in our study, so we do not be-
lieve that the results are generalizable outside of object-
oriented systems. Moreover, there is of course a chance
that other classification schemes would lead to different
results—which would allow different assessments of the
three strategies.

5 Related work

Many fault classification models have been proposed in
the past [10, 1, 31, 21, 6, 37]. This includes the Orthogo-
nal Defect Classification (ODC) [10] whose main point is
to combine two different classifications, defect types and
defect triggers. In a sense our classification is an ODC in
itself but our classification of defect types is finer while the
defect location is simpler than defect triggers. The IEEE
classification [1] aims at building a framework for a com-
plete characterization of the defect. It defines 79 hierarchi-
cally organized types that are sufficient to understand any
defect. In our case using such categories would not have
helped because they do not reflect the particular constructs
of contract-enabled languages. Ma et al. [32] define fault
categories for Java programs and relate them to mutation
operators. It is unclear how the mapping from failures to
these fault categories could be done automatically, and the
categories do not take into account contracts. Lutz [31] de-
scribes a safety checklist that defines categories of possi-
ble errors in safety-critical embedded systems. The classi-
fication probably most similar to ours is that by Basili et
al. [5, 29, 41], organized in two dimensions: whether the
fault is an omission or a commission fault, and to which
of 6 possible types it belongs. Our classification takes into
account specifications (contracts) and is more fine-grained.

Bug patterns (e.g., [2, 27]) are also related to our work.
Allen [2] defined 14 types of defects in Java programs. Our
approach has to cope with different constructs and thus de-
fines categories adapted to Eiffel programs, taking into ac-
count contracts and multiple inheritance.

Several studies compare different testing strategies by
evaluating their respective failure-triggering capabilities.
Random tests have been compared to partition testing both
theoretically and empirically [22, 40, 15, 23], and the effec-
tiveness of model-based testing has been studied [38, 25, 7].
These studies do not take into consideration a classification
of faults which, among other things, led us to conduct the
experiment presented here.

Numerous other studies have compared structural and
functional testing strategies as well as code reading (among
others, [18, 5, 29, 41]). None of these studies compares
manual testing to automated techniques. Our study com-
pares random+ testing with manual testing and user bug re-
ports; as far as we know, this is the first time that these three
methods of identifying software faults are correlated. Like
most of the earlier comparative studies, the results highlight
the complementarity of different techniques.

6 Conclusions

One of the main goals of this work is to understand
if different ways of detecting faults detect different kinds
of faults. The question is of high practical importance:

which testing strategy should be applied under which cir-
cumstances? A further motivation was the conjecture that a
reason for the inconclusiveness of earlier comparative stud-
ies is that the number of detected faults alone is too strong
an abstraction for comparing testing strategies.

In this paper we examined the kind of faults that ran-
dom+ testing finds, and whether and how these differ from
faults found by human testers and by users of the software.
Our experiments suggest that these three strategies for find-
ing software faults have different strengths and applicabil-
ity. None of them subsumes any other in terms of perfor-
mance. Random+ testing with AutoTest has the advantage
of being completely automatic. The experiments presented
here as well as in earlier work [11, 12] show that the tool
indeed finds a high number of faults in little time. Humans,
however, find faults that AutoTest misses. This is shown
both by the examined user bug reports and by asking testers
to test some code on which AutoTest was run, and by sub-
sequently comparing the results. This last experiment also
proved that AutoTest finds faults that testers miss. The con-
clusion is that random+ tests should be used alongside with
manual tests. Given earlier results on comparing different
QA strategies, this is not surprising, but we are not aware of
any systematic studies that showed this for random testing.
We discussed threats to generalizing these results in §4.6.

The results of research into randomly testing Eiffel pro-
grams can also be used for investigating the benefits of us-
ing contracts and how to improve contracts, possibly based
on specification patterns. Future work in this direction will
require performing more experiments of the kind presented
in this paper, adjusting the classification, and comparing
concrete testing strategies such as partition-based testing
or usage-profile-based testing rather than the — admittedly
underspecified — “manual testing strategy.”

Our analysis is based on a classification of faults that
is not specific to one particular application domain. For
specification faults, it covers typical problems with pre- and
postconditions and invariants that are too weak, for exam-
ple by not taking extreme values into account, or too strong.
For implementation faults, it covers a few general problems
such as missing cases or infinite loops, and some problems
that relate to the specifics of Eiffel. We do not assert that
our classification is complete or the only possible one; it
is the result of analyzing the faults that we encountered.
We believe that this classification, or some variant of it, can
be used for future experiments on comparing strategies for
finding faults.

As for any case study, the applicability of the results is
limited: we consider three approaches for finding software
faults and investigate them for Eiffel code equipped with
contracts. Still, the case study presented here provides a
foundation for other researchers to build upon.

Acknowledgments. We thank Raluca Borca, on whose work

a large part of the study of random testing is based. We are also
thankful to Andreas Leitner for numerous discussions and insight-
ful observations on this work.

References

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

(16]

(7]

(18]
[19]

[20]

IEEE standard classification for software anomalies. /EEE

Std 1044-1993, 2 Jun 1994.
E. Allen. Bug Patterns in Java. APress L. P., 2002.
S. Artzi, M. Ernst, K. A, C. Pacheco, and J. Perkins. Finding

the needles in the haystack: Generating legal test inputs for
object-oriented programs. In Proc. 1st Workshop on Model-

Based Testing and Object-Oriented Systems, 2006.
M. Barnett, K. R. M. Leino, and W. Schulte. The spec# pro-

gramming system: An overview. In Proc. CASSIS, 2004.

Springer LNCS 3362.
V. Basili and R. Selby. Comparing the effectiveness of soft-

ware testing strategies. I[EEE TSE, 13(12):1278-1296, 1987.
B. Beizer. Software Testing Techniques. John Wiley & Sons,

Inc., New York, NY, USA, 1990.

E. Bernard, B. Legeard, X. Luck, and F. Peureux. Gen-
eration of test sequences from formal specifications: GSM
11-11 standard case study. Software-Practice & Experience,
34(10):915-948, August 2004.

C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated
testing based on Java predicates. In Proc. Intl. Symp. on Soft-

ware Testing and Analysis, pages 123—133, 2002.
P. Chalin. Are practitioners writing contracts? In Springer

LNCS 4157, pages 100-113, 2006.
R. Chillarege, 1. Bhandari, J. Chaar, M. Halliday, D. Moebus,

B. Ray, and M.-Y. Wong. Orthogonal defect classification-
a concept for in-process measurements. IEEE TSE,
18(11):943-956, 1992.

I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Experimental
assessment of random testing for object-oriented software.

In Proc. ISSTA, pages 84-94, 2007.
L. Ciupa, A. Pretschner, A. Leitner, M. Oriol, and B. Meyer.

On the predictability of random tests for object-oriented soft-

ware. In Proc. ICST, pages 72-81, 2008.
C. Csallner and Y. Smaragdakis. JCrasher: an automatic ro-

bustness tester for Java. Software: Practice and Experience,

34(11):1025-1050, 2004.
C. Csallner and Y. Smaragdakis. DSD-Crasher: A Hybrid

Analysis Tool for Bug Finding. In Proc. Intl. Symp. on Soft-

ware Testing and Analysis, pages 245-254, July 2006.
J. Duran and S. Ntafos. An Evaluation of Random Testing.

IEEE TSE, SE-10(4):438-444, July 1984.
M. D. Ernst. Dynamically Discovering Likely Program In-

variants. PhD thesis, University of Washington Department

of Computer Science and Engineering, August 2000.
P. Frankl and S. Weiss. An Experimental Comparison of

the Effectiveness of Branch Testing and Data Flow Testing.

IEEE TSE, 19(8):774-787, 1993.
P. Frankl, S. Weiss, and C. Hu. All-uses versus mutation

testing: An experimental comparison of effectiveness, 1994.
P. Frankl and E. Weyuker. An Applicable Family of Data

Flow Testing Criteria. /[EEE TSE, 14(10):1483-1498, 1998.
M. Girgis and M. Woodward. An experimental comparison

of the error exposing ability of program testing criteria. In
Proc. IEEE/ACM workshop on software testing, pages 64—
73, July 1986.

10

(21]

(22]
(23]

(24]

(25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

J. Gray. Why do computers stop and what can be done about
it? In Symposium on Reliability in Distributed Software and

Database Systems, pages 3—12, 1986.
W. Gutjahr. Partition testing versus random testing: the in-

fluence of uncertainty. /[EEE TSE, 25(5):661-674, 1999.
D. Hamlet and R. Taylor. Partition Testing Does Not Inspire

Confidence. IEEE TSE, 16(12):1402—-1411, Dec. 1990.
S. Hangal and M. S. Lam. Tracking down software bugs us-

ing automatic anomaly detection. In ICSE '02: Proceedings
of the 24th International Conference on Software Engineer-

ing, pages 291-301, New York, NY, USA, 2002. ACM.
M. Heimdahl, D. George, and R. Weber. Specification Test

Coverage Adequacy Criteria = Specification Test Generation
Inadequacy Criteria? In Proc. 8th IEEE High Assurance in

Systems Engineering Workshop, February 2004.
K. Henningsson and C. Wohlin. Assuring fault classification

agreement — an empirical evaluation. In Proc. Intl. Symp. on

Empirical Software Engineering, pages 95-104, 2004.
D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN

Not., 39(12):92-106, 2004.
M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Ex-

periments of the effectiveness of dataflow- and controlflow-
based test adequacy criteria. In Proc. ICSE, pages 191-200,

1994.
E. Kamsties and C. Lott. An empirical evaluation of three

defect-detection techniques. In Proc. ESEC, pages 362-383,

1995.
A. Leitner and I. Ciupa. AutoTest. se.inf.ethz.ch/

people/leitner/auto_test/, 2005 - 2007.
R. Lutz. Targeting Safety-Related Errors During Software

Requirements Analysis. In Proc. ACM SIGSOFT FSE, pages

99-106, 1993.
Y. Ma, Y. Kwon, and J. Offutt. Inter-Class Mutation Opera-

tors for Java. In Proc. ISSRE, pages 352-366, 2002.
B. Meyer. Attached types and their application to three open

problems of object-oriented programming. In Proc. ECOOP,

pages 1-32, 2005. Springer LNCS 3586.
C. Oriat. Jartege: a tool for random generation of unit tests

for java classes. Technical Report RR-1069-1, CNRS, Uni-

versite Joseph Fourier Grenoble I, June 2004.
C. Pacheco and M. D. Ernst. Eclat: Automatic generation

and classification of test inputs. In Proc. ECOOP, pages

504-527, 2005.
C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-

directed random test generation. In Proc. ICSE, pages 75-84,

2007.
J. Ploski, M. Rohr, P. Schwenkenberg, and W. Hasselbring.

Research issues in software fault categorization. SIGSOFT

Softw. Eng. Notes, 32(6):6, 2007.
A. Pretschner, W. Prenninger, S. Wagner, C. Kiihnel,

M. Baumgartner, B. Sostawa, R. Zolch, and T. Stauner. One
evaluation of model-based testing and its automation. In

Proc. ICSE, Kages 392-401, 2005.
M. Utting, A. Pretschner, and B. Legeard. A taxonomy

of model-based testing. Technical Report 04/2006, Depart-
ment of Computer Science, The University of Waikato (New

Zealand), April 2006.
E. Weyuker and B. Jeng. Analyzing Partition Testing Strate-

gies. IEEE TSE, 17(7):703=711, 1991.
M. Wood, M. Roper, A. Brooks, and J. Miller. Compar-

ing and combining software defect detection techniques: a
replicated empirical study. SIGSOFT Softw. Eng. Notes,
22(6):262-277, 1997.

