
Model-Based Tests for Access Control Policies1

Alexander Pretschnera, Tejeddine Mouelhib, Yves Le Traonb
aETH Zurich, Switzerland

bIT-TELECOM Bretagne, Cesson Sévigné, France

1 pretscha@inf.ethz.ch, {tejeddine.mouelhi, yves.letraon}@telecom-bretagne.eu. This work was done while the first
author was on sabbatical leave at ENST Bretagne. Financial and organizational support is gratefully acknowledged.

Abstract

We present a model-based approach to testing ac-
cess control requirements. By using combinatorial
testing, we first automatically generate test cases from
and without access control policies—i.e., the model—
and assess the effectiveness of the test suites by means
of mutation testing. We also compare them to purely
random tests. For some of the investigated strategies,
non-random tests kill considerably more mutants than
the same number of random tests. Since we rely on
policies only, no information on the application is re-
quired at this stage. As a consequence, our methodol-
ogy applies to arbitrary implementations of the policy
decision points.

1. Introduction
The amount of digital data that is exchanged between
individuals, businesses, and administrations continues
to increase, and so does the number of applications that
manage this kind of data. Fueled by the existence of
many interfaces to such applications, including the
Internet, there is a general agreement that the security
of these applications is becoming ever more relevant.
One major security concern is control over the access
to resources. Respective requirements are stipulated in
so-called access control policies. An application for
which such a policy is specified is supposed to also
implement that policy. The part of the application that
implements the policy is normally called the policy
decision point (PDP). The PDP is a conceptual entity
and can be implemented in many different forms, e.g.,
by dedicated software components that are called be-
fore each resource access, or by spreading the respec-
tive program logic over the code. An obvious problem
then is to make sure that a PDP implements a given
access control policy.

One approach to solving this problem is by design.
Basin et al., for instance, propose to develop systems
on the grounds of two related specifications, one de-
sign model and one access control model [3]. For dif-
ferent infrastructures, the respective code is generated.
Assuming the correctness of code generators, this en-
sures that the application’s PDP implements the policy.
Legacy systems and systems that are built in develop-
ment processes that do not rely on models require a
different approach. One generally applicable strategy is
that by analysis and, if necessary, subsequent modifica-
tion of the PDP.
Problem Statement. In this paper, we study how to
test access control requirements in arbitrary applica-
tions. This question entails three sub-problems, namely
how to generate tests, how to assess their quality, and
how to run them on an actual system.
Solution and Empirical Results. We propose to pro-
ceed in two steps. In a first step, we generate abstract
tests (test targets, §3.1). Test targets represent classes
of actual requests. They are generated (1) regardless of
any policy, i.e., by only taking into account roles, per-
missions, and contexts; (2) by considering all the rules
in a given policy, that is, the model; and (3) completely
at random. Relying on a fault model that considers
incorrect decisions of the PDP to be a consequence of
n-wise interactions of rule elements, we use combina-
torial testing for strategies (1) and (2) to automatically
generate a test suite of manageable size. In a second
step, we show how to derive actual tests (code) from
the abstract test targets. Because this involves applica-
tion-specific program logic and usually also a particu-
lar state of the application, this can in general not be
fully automated. We discuss the issue of automation.
As to the problem of measuring the quality of the gen-
erated tests, we use mutation analysis to show that the
tests that only use domain knowledge (that is, no pol-
icy-related information) perform as good as the same
number of random tests. We also show that some of
the generation strategies that use pair-wise testing and

that rely on the policy do indeed perform better than
random tests, and that they do so with comparably few
tests. This provides first experimental evidence that
combinatorial testing of access control policies is a
promising approach. Our generation procedure is stable
and not subject to random influences, as suggested by a
thirty-fold repetition of our experiments.
Contribution. The first contribution of this paper is a
methodology and technology for automatically gener-
ating tests both without and on the grounds of access
control policies. The second contribution is an experi-
mental assessment of the effectiveness of the generated
tests. We consider a special extension of role-based
access control in this paper, but our methodology natu-
rally generalizes to other access control models.
Overview. The remainder of this paper is organized as
follows. We give the necessary background in terms of
access control, combinatorial testing, and mutation
testing in §2. Our test methodology, consisting of gen-
erating both abstract test targets and deriving concrete
tests is the subject of §3. We describe experiments for
assessing the quality of the generated test suites in §4,
and also discuss the results there. After putting our
work in context in §5, we conclude in §6.

2. Background
This section sets the scene. We present our running
example, describe the access control model used in this
paper, and provide the essence of combinatorial testing
for test case generation as well as of mutation testing
for test case evaluation.

2.1 Running Example
As a running example, we re-use a library management
system (LMS, [12]). While it is not necessary to de-
scribe all constraints here, access conditions like the
following are typical for many systems: books can be
borrowed and returned by the users of the library on
working days. When the library is closed, users can not
borrow books. When a book is already borrowed, a
user can make a reservation. When the book is avail-
able, the user can borrow it. The LMS distinguishes
three types of users: public users who can borrow 5
books for 3 weeks, students (10 books for 3 weeks),
and teachers who can borrow 10 books for 2 months.
The accounts of in the LMS are managed by an admin-
istrator. Books in the library are managed by a secre-
tary who can order books and enter them into the LMS
when they are delivered, repair damaged books, etc.
Finally, the director of the library has the same access
rights as the secretary and he can also consult the ac-
counts of the employees.

2.2 Access Control
Access control is concerned with the protection of sys-
tem resources against unauthorized access. In particu-
lar, it defines a process by which the use of system
resources (1) is regulated according to an access con-
trol policy; and (2) is exclusively permitted by author-
ized entities (users, programs, processes, or other sys-
tems) according to that policy. While a multitude of
access control strategies and models has been devel-
oped [15], we will concentrate on an extension of the
so-called role-based access control (RBAC, [14])
model. Roughly, RBAC associates roles (sets of sub-
jects) with permissions (pairs consisting of activities
and resources).
In this paper, we use a simple extension of RBAC with
contexts and strategies for conflict resolution. The
model relies on hierarchical roles, hierarchical permis-
sions that associate activities with resources, and hier-
archical contexts. Requests consist of a subject in-
stance, a resource instance, an action instance the sub-
ject wants to exercise on the resource, and a context
instance. The PDP checks if a request corresponds to a
rule such that the requester is an element of a descen-
dant of that rule’s role, the action is an element of a
descendant of that rule’s action, etc.
Definitions and Syntax. The policy meta model is
depicted in Figure 1. Our domain consists of role
names, permission names that are pairs of activity
names and resource names, and context names. Roles
associate role names with finite sets of subject in-
stances. Similarly, activities associate activity names
with finite sets of action instances, and resources asso-
ciate resource names with finite sets of resource in-
stances. Contexts associate context names with finite
sets of spatial and temporal constraints. In the exam-
ple of the LMS, the role names include borrower and
administrator, and the subject instances include John
Doe. The permission names include borrowBook (ac-
tivity name: borrow, resource name: book), and per-
mission instances include the method name borrow() as
well as the electronic representation of a copy of Du-
mas’s Count of Monte Christo. Context names include
WorkingDays, and context instances include a repre-
sentation of the fact that the current day is a working
day.
Roles, permissions, and contexts are hierarchical, and
we assume the existence of a dedicated root node for
each hierarchy. In this way, for each policy, the uni-
verse of discourse is determined by the n:1 associations
between policies and role names, permission names,
and context names in Figure 1.
In the LMS, for instance, a BorrowerActivity is spe-
cialized by, among other things, BorrowBook and Re-
serveBook. Note that all nodes (as opposed to leaves
only) can be mapped to non-empty sets of instances.

A rule is a quintuple consisting of a role, a permission,
a context, a status flag indicating permission or prohi-
bition, and a natural number that denotes a priority. In
the LMS, an example of a rule is prohibi-

tion(Borrower, BorrowBook, Holidays, 5). Fi-
nally, a policy is a set of rules together with a function
that defines the hierarchies, and a default rule (see be-
low).
Note that nothing prevents us from generating one type
(role name, permission name, context name) per in-
stance and add it to the hierarchies. In this case, the
four instance classes in Figure 1could be omitted.

1

Permission

Activity
Name

Subject
Instance

Activity
Instance

Resource
Instance

Name
Context

Context
Instance

Name
Resource

Policy Rule

Name
Role

Status

PriorityDefault

1 1

*

* *

*1 1

role

activity resource

context

1 1 1

* * *

* *

1 1 1

* * *

* *

*
1

1

Name

Figure 1

Semantics. The application of actions to resources is
requested by a subject in a given context. Intuitively,
for a request, the policy decision point checks if there
is a rule that matches the request: the subject instance
of the request is part of the role or its subroles defined
in the rule; the (activity, resource) pair is part of the
permission of the rule, and the context instance is part
of the context defined in the rule. In that case, the rule
is said to be applicable to the request. If there is no
such rule, the PDP returns a default that is either per-
mission or prohibition. Finally, if there is more than
one rule, then the rule with the higher priority is cho-
sen. If there are two applicable rules with the same
priority and different status flags, then either a deny-
override or permit-override strategy is applied. We
omit the formal semantics here. While our approach to
generating tests obviously relies on the semantics of a
particular access control model when the oracle is con-
sulted, it can nonetheless be applied to any access con-
trol model.

2.3 Combinatorial Testing
When testing configurations that consist of multiple
parameters, one fault model consists of assuming that
failures are a consequence of the interaction of only

two (three, four, …) rather than all parameters. Combi-
natorial testing [16,6] relies on precisely this idea and
aims at defining test suites such that for each pair (tri-
ple, quadruple, …) of parameters, all pairs (triples,
quadruples, …) of values for these parameters appear
in one test case in the test suite. If the assumption (the
fault model) can be justified, the eminent benefit of
this strategy lies in the rather small size of the test
suite. For instance, without any further constraints, the
number of tests necessary for pair-wise testing is the
sum of the number of all possible parameter values in
the system.

2.4 Mutation Testing
The original purpose of mutation testing [4] is to assess
the quality of a test suite in terms of failure detection.
The idea is to apply small syntactic changes to a pro-
gram, e.g., replace a plus by a minus. The modified
program is called a mutant. If a test suite is able to de-
tect the deviation, the mutant is said to be killed, and
the mutation score is the number of killed mutants di-
vided by the number of mutants. If a mutant is not
killed, this may be because the test suite is too weak or
because the mutant is equivalent to the original pro-
gram. This happens, for instance, if a +0 is replaced by
a -0. As a consequence, mutation scores of 100% can-
not be obtained. If mutation scores are used as test se-
lection criteria [17], then this obviously poses a practi-
cal problem. Mutation testing assumes validity of the
competent programmer’s and the coupling hypotheses.
The former assumes that programmers essentially in-
troduce relatively simple faults, and the latter assumes
a correlation between simple and more complex faults.
Even though Andrews et al. have recently provided
some empirical evidence that there is indeed such a
correlation [2], both assumptions remain critical.
Mutation can also be applied not to the code but to
access control policies [7,10]. If the code implementing
a PDP can be configured by these policies, then test
cases can be applied to PDPs that implement a mutated
policy. By doing so, the quality of access control pol-
icy test cases can be assessed.
In this paper, we will use the mutation operators de-
fined in earlier work [7]. Five operators are used to
modify existing rules (replace prohibition by permis-
sion, replace permission by prohibition, replace role by
any role, replace role by a descendant, replace context
by different context, and replace the activity part of a
permission by another permission). A sixth operator
adds a new rule to the policy by picking a permission
from the policy, and completing the rule by any role,
any context, and any status flag. If a mutated rule is in
conflict with other rules of the policy (which can be
analyzed statically), then we assign it a priority that is
higher than that of the other rules. Since the mutation

procedure operates on policies, and as such at a “se-
mantic” level (as opposed to code), the first five opera-
tors generate no equivalent mutants, provided that
there are no redundant rules in the original policy.
Equivalent mutants generated by application of the
sixth operator can easily be detected and removed.

3. Test Methodology
Recall that the problem we set out to solve is the gen-
eration of a set of test cases for assessing in how far an
application implements a given access control policy.
We use this section to describe the test methodology
and the technologies involved. After providing the big
picture, §3.1 describes two different ways of generat-
ing test targets; one regardless of any policy, the other
depending on a policy. In §3.2 we explain how to con-
cretize abstract test targets into concrete tests.

implements

test targets

instantiated
test targets

application−
specific roles,

perms, contexts

generated
from

generated
from

test cases

policy

PDP
application

logic

generated from
instantiate

concretize

applied

to

defines rules for

Figure 2

The overall process is depicted in Figure 2. As de-
scribed in §2.2, policies are defined for a domain that
consists of, among other things, application-specific
roles, permissions, and contexts. That domain corre-
sponds to the lower half of Figure 1. Different means
are employed to generate test targets from policies and
partial domain descriptions (§§3.1.1 and 3.1.2). A test
target consists of a role name, a permission name, and
a context name (§2.2). By picking a subject that is as-
sociated with the role name, a permission that is asso-
ciated with the permission name, and a context that is
associated with the context name, we obtain an instan-
tiated test target. Test targets and instantiated test tar-
gets are defined at the level of abstraction of the policy
and the partial domain description. They are hence too
abstract to be directly executed on a real piece of soft-
ware. Test cases, in contrast, are executed. Essentially,
they are pieces of code that implement the instantiated
test targets and that take into account the business logic
of the application under test. The methodology that we
define in this paper is about the generation of (instanti-
ated) test targets and the subsequent manual derivation
of test cases (see §6 for a discussion of the potential for
automation).

Note that when generating both the PDP [3] and the
test suite from the same policy, applying the tests to
the application that contains the PDP is likely to reveal
problems in the code generator rather than in the PDP
plus associated application [13]. Our methodology
hence applies to existing legacy systems and new sys-
tems without automatically generated PDPs [3].

3.1 Test Targets
The generation of test targets can be done in at least
two ways. One is to generate them regardless of any
policy. A second strategy takes into account the policy.

3.1.1 Ignoring the Policy
Roughly, the generation of test targets without policy
only takes into account information on roles, permis-
sions, contexts, and the respective hierarchies. Essen-
tially, combinatorial testing is applied to all nodes of
the three hierarchies (Figure 3).

contextrole permission

Figure 3

Instantiation. Random instantiation then takes place
by picking one element of the respective instance sets.
In case the number of instantiations of roles, permis-
sions, or contexts is not prohibitive, combinatorial test-
ing can even be applied at the level of instances (see
the comment above on introducing one role name,
permission name, or context name per respective in-
stance).

3.1.2 Using the Policy
The generation of test targets from access control poli-
cies, in contrast, proceeds as follows. We will consider
each single rule in turn. The part of the rule that is rele-
vant for test case generation is the triple (r, p, c) that
consists of a role name, a permission name, and a con-
text name (priorities are required for the oracle). Each
element of that triple is a part of one of the hierarchies
defined in Figure 1, and they correspond to boxes with
thick borders in Figure 4. Combinatorial testing is then
employed to generate n-wise coverage

1. for all role names below r,
2. with all permission names below p,
3. with all context names below c.

All these nodes depicted as grey boxes in Figure 4, top.
Since a rule is either a permission or a prohibition, it
appears sensible to also test all those nodes which are
not explicitly specified (this complementary set is de-
picted as grey boxes in Figure 4, bottom).

contextrole permission

Figure 4

For the three elements of a rule, we can then specify
whether or not the respective component of a test target
should conform with the element of a rule. As an ex-
ample, consider a rule that constrains role r, permission
p, and context c (boxes with thick borders in Figure 5).
The test targets that correspond to the grey boxes in
that figure specify a role different from r, a permission
that derives from p, and a context that differs from c. In
sum, for each rule, this gives rise to eight combinations
that can be used for the generation of test targets.

contextrole permission

Figure 5

Instantiation. Similar to the first case, instances are
then randomly chosen for each role name, permission
name, and context name. Furthermore, also in accor-
dance with the first case, if the number of instances is
not prohibitive, combinatorial testing can even be ap-
plied to the respective instances. If, in this sense, one
role name is introduced for each subject instance in the
system, one permission name for each pair of action

instance and resource instance, and one context name
for each constraint, then the above procedure needs to
be applied to the leaves of the hierarchies only, and no
subsequent instantiation step is required.

3.1.3 Comparison
Not using the policy at all may, at first sight, appear
surprising: if there is a policy, why wouldn’t we use it
for test case generation? Not using a policy seems rea-
sonable because regardless of the policy, all kinds of
requests should be tested, and these only depend on the
roles, permissions, and contexts, but not on the poli-
cies. The essential difference between the two strate-
gies lies in the number of tests that correspond to exist-
ing rules. In most cases, some permissions or prohibi-
tions will not be defined explicitly in the policy. Re-
spective decisions are then taken by referring to the
default rule. In the first approach, corresponding test
targets may be generated more or less at random. In
contrast, many test targets are explicitly generated by
the second approach for these implicit rules. Note that
because our policies can express both permissions and
prohibitions even within one policy, the two ap-
proaches do not differ in “better” testing permissions
than prohibitions nor vice versa.

3.2 Concrete Test Cases
Concrete tests differ from abstract and instantiated test
targets in that both targets do not take into account the
application logic at all. The problem then is that spe-
cific actions cannot be applied to specific resources in
all states. For instance, a book cannot be returned be-
fore it has been borrowed. When concretizing test tar-
gets, this information must be taken into account. The
information, however, is likely available in the re-
quirements documents, in the form of sequence dia-
grams or similar descriptions. The derivation of test
cases then consists of writing a preamble that puts the
system into a state where the access rule is applicable
as far as the state of the application is concerned. We
are currently working on generating the respective
code from sequence diagrams, and integrating it with
the generated tests, but this is not the subject of this
paper and immaterial to our results that relate to test
generation strategies. From a practical perspective,
however, the automation of such procedures is of
course highly useful—testing becomes a push-button
technology.
The following example illustrates concretization. Con-
sider a rule prohibition(borrower, return_book,

maintenanceDay, 4) for the LMS. For any of the
above generation strategies, assume that the test target
prescribes a role borrower, a permission return_book,
and a context maintenanceDay. A possible instanti-

ated test target is prohibition(std1, book1, main-
tenanceDay, 4). This however, still is too abstract to
be executed. Concretization leads the following code
that consists of a preamble that puts the system into a
desired state, execution of the actual test, and the
evaluation of the test.

// test data initialization
// log in a student
std1 = userService.logUser("login1", "pwd1");
// create a book
book1 = new Book(“book title”);
// activity
// book needs to be borrowed before returned
borrowBookForStudent(student1,book1);
// context
contextMan-
ager.setTemporalContext(maintenaceDay);
// security test
// run test
try {
 returnBookForStudent(std1,book1)
 // security oracle
 // SecurityPolicyViolationException is ex-
pected because an SP rules is not respected
 // test failure
 fail(“ SecurityPolicyViolationException ex-
pected, returnBookForStudent with student =
“ + std1 + “ and book = “ + book1);
}
catch(SecurityPolicyViolationException e) {
 // ok security test succeeded log info
 log.info(“test success for rule : prohibi-
tion(borrower,return_book,maintenanceDay)”);
}

3.3 Implementation
With the exception of the generation of Java code, our
test generation procedure is fully automated. The sys-
tem takes as input a policy and the respective domain
description (roles, permissions, contexts) together with
the strategies to be applied. For each strategy, it returns
the generated test targets. N-wise test generation—we
concentrate on pairs in this paper—is performed by a
tool that is publicly available at
www.burtleburtle.net/bob/math/ jenny.html.
In terms of the experiments, mutants of the policy (not
any respective implementing code—this would almost
certainly lead to equivalent mutants) are generated by
the procedure described in §2.4. This procedure has
been implemented as part of earlier work [7, 12]. The
mutated polices are translated into Prolog code (motor-
bac.sourceforge.net), and this code is used as the ex-
ecutable oracle.

4. Experiments
The question that we study is concerned with the qual-
ity of tests generated by the different above strategies.
We consider the following case studies that have all

been used in various other research projects. Both poli-
cies and systems were designed and implemented in-
dependently of the present study.
The library management system has already been
described in §2.1. Its policy is defined via 41 rules on 7
roles, 10 permissions, and 4 contexts.
We also consider the access control policy in a hospi-
tal with different physicians and staff. It defines who
manages the administrative tasks and who performs
which medical tasks. Its policy is defined in 37 rules
with 10 roles, 15 permissions, and 3 contexts. In con-
trast to the other systems, the hospital system was not
implemented in an application. The policy, however,
was defined in projects on security policies [1].
The auction system is inspired by the eBay auction
sales management system. Sellers can create and sell
products. Buyers place bids. During an auction, buyers
and sellers can post comments. They can also give
marks to the sellers and buyers. In addition, the appli-
cation allows the personnel of the website to manage
sales and user and personnel accounts. The system’s
policy is defined on 8 roles, 23 permissions and 4 con-
texts with 130 rules.
Finally, the meeting management system allows users
to create and attend different types of meetings. It also
allows the management to delegate and to transmit
texts during the meeting. Meetings can be moderated
by a specific user called the moderator and the number
of attendees can be fixed. This application also allows
the personnel to create and manage accounts for meet-
ing users. Its policy consists of 106 rules defined over
8 roles, 18 permissions, and 3 contexts.
Procedure. We first generate tests with the two strate-
gies described in §3.1. Our instantiation of n-wise test-
ing is pair-wise testing. As a gold standard, we also
generate tests purely at random. We count the number
of generated test targets and measure the generation
time. This time turns out to be negligible – less than a
second – which is why we refrain from stating respec-
tive numbers here. In a second step, we assess the qual-
ity of the test suites by using mutation testing (§2.4).
Generation of test targets. The first strategy does not
take into account policies but rather the domains only.
Pair-wise testing is applied to roles, permissions, and
contexts. In order to get a feeling for the influence of
randomness when pairs are chosen, we perform the
generation process thirty times for each strategy and
for each case study.
The second strategy does take policies into account.
For each of the eight sub-strategies, we generate test
targets for each single rule (that is, each role-
permission-context triple). We make sure that they are
all independent from each other: we do not first gener-
ate two sets of role names, two sets of permission
names and two sets of context names and then pick the

8 combinations from these buckets, but rather regener-
ate them in each turn. This experiment is also per-
formed thirty times (hence 240 experiments per rule).
In each of the thirty experiments, we remove redundant
test targets from each of the eight test suites.
The third strategy also does not consider policies.
However, test targets are chosen fully randomly, with-
out pair-wise testing. In such a randomly generated test
suite, we make sure there are no identical tests. This
generation strategy is also applied thirty times.
Assessment of tests. The quality assessment proceeds
as follows (we only consider the level of test targets
here). We consider each of the four fixed policies in
turn. We apply the first five mutation operators to
every rule (§2.4). Replacing a prohibition by a permis-
sion and vice versa yields one mutated policy. When
applying the other mutation operators, we generate all
possible mutants rather than just one. For instance,
when a role is replaced in a rule, we replace it by all
other possible roles in the system rather than by just
one other role. Furthermore, the application of the ad-
dition operator yields an entire set of mutated policies.
Details of the mutation operators are described else-
where [7, 12]. The generated test suites are then ap-
plied to all mutants, and we record the mutation score.
Observations and Discussion. Figure 6 to Figure 9
show box-whisker diagrams of the mutation scores for
the four case studies. Strategy 1 (no policy, only do-
main considered, pair-wise coverage) is labeled no
policy (N). The test targets generated for strategy 3 are
labeled random (N). In both cases, N denotes the num-
ber of generated test targets.
The eight sub-strategies of strategy 2 are labeled pol-
icy 000 (N0), policy 001 (N1), …, policy 111 (N7). The
Ni correspond to the number of test targets generated
for each sub-strategy. The binary number rpc in the
labels encodes the chosen sub-strategy: Let r denote
whether, for each rule, roles are chosen from the spe-
cializations of the role provided in that rule (1), or from
the complement of that set (0). Let p denote whether,
for each rule, permissions are chosen from the speciali-
zations of the provided permission (1) or from the
complement of that set (0). Finally, let c denote
whether, for each rule, contexts are chosen from the
specializations of the provided context (1) or from the
complement of that set (0). Then, for instance, rpc=010
(Figure 5) corresponds to: (a) role not below the role
that is specified in the rule, (b) permission from the set
of all permissions that are below the permission pro-
vided in the rule, and (c) a context chosen from the set
of contexts that are not sub-contexts of that provided in
the rule. In the following, we will denote sub-strategy
xyz (x,y,z are 1 or 0) of strategy 2 by 2.xyz.

0.40 0.60 0.80 1.00

mutation score

no policy (144)
random (144)

policy 000 (427)
random (420)

policy 001 (432)
random (432)

policy 010 (388)
random (375)

policy 011 (252)
random (252)

policy 100 (330)
random (328)

policy 101 (270)
random (270)

policy 110 (167)
random (169)

policy 111 (106)
random (106)

st
ra

te
gy

Figure 6: Meeting System (432 exhaustive tests)

0.20 0.40 0.60 0.80 1.00

mutation score

no policy (70)
random (70)

policy 000 (239)
random (228)

policy 001 (280)
random (280)

policy 010 (223)
random (224)

policy 011 (98)
random (98)

policy 100 (220)
random (224)

policy 101 (120)
random (120)

policy 110 (97)
random (96)

policy 111 (41)
random (41)

st
ra

te
gy

Figure 7: Library System (280 exhaustive tests)

0.20 0.40 0.60 0.80

mutation score

no policy (150)
random (150)

policy 000 (358)
random (345)

policy 001 (285)
random (285)

policy 010 (278)
random (278)

policy 011 (139)
random (139)

policy 100 (240)
random (240)

policy 101 (150)
random (150)

policy 110 (74)
random (74)

policy 111 (37)
random (37)

st
ra

te
gy

Figure 8: Hospital System (450 exhaustive tests)

0.20 0.40 0.60 0.80 1.00

mutation score

no policy (184)
random (184)

policy 000 (653)
random (639)

policy 001 (735)
random (735)

policy 010 (590)
random (590)

policy 011 (252)
random (252)

policy 100 (547)
random (539)

policy 101 (433)
random (433)

policy 110 (364)
random (364)

policy 111 (130)
random (130)

st
ra

te
gy

Figure 9: Auction System (736 exhaustive tests)

Overall, the variance of the mutation scores in all ex-
periments is small. The number of tests for comparable
strategies may slightly differ (e.g., for strategy 2.000 in
all four experiments). This is a result of randomness in
the pair-wise testing approach. However, as the vari-
ance is small, we may ignore this effect here.
Furthermore, the eight sub-strategies of strategy 2 re-
sult in different numbers of test targets. This is a con-
sequence of the role, permission, and context hierar-
chies: the number of nodes above or below a node need
not be identical. Consequently, pair-wise testing is
applied to variables with different domains.
Strategy 1 turns out to be as good as random testing,
and, with the exception of the hospital system, worse
than all sub-strategies of strategy 2. The number of
tests is comparatively low: an average 29% of the car-
dinality of the exhaustive test set. However, because of
better strategies, pair-wise testing that does not take
into account a policy is, in terms of our assessment
criterion, a strategy that can safely be discarded. This
result indicates that taking into account an access con-
trol policy when generating tests on the grounds of
pair-wise testing is highly advisable. Because of the
existence of default rules, we would have argued that,
in general, all requests (or test targets) are equally
likely to detect faults. The above is hence a result that
we did not expect and that is probably due to the use of
mutation testing for assessing tests.
With the exception of the hospital system, strategy
2.001 yields exhaustive tests. This will, in general, not
be the case for all policies. In our examples, however,
hierarchies are rather flat (which means that the nega-
tion of roles and permissions yields, for every rule that
is used for test target generation, almost all other roles
and permissions, respectively). At the same time, the

number of contexts is small. Taken together, this leads
to a high probability of generating exhaustive tests
(note that this is only almost the case for the auction
system). The exception of the hospital system is ex-
plained by its policy and the mutant generator: for one
role, there are no rules, and in contrast to the test target
generator, the mutation generator creates mutants only
for those elements that occur in any rule (and that are
not only provided in the policy’s domain description).
When comparing different strategies to random tests,
we get the following aggregated results (bold rows
indicate superiority of the respective strategy):

Strategy Better than random Equal Worse
1 0 4 0
2.000 1 2 1
2.001 1 3 0
2.010 0 0 4
2.011 4 0 0
2.100 0 2 2
2.101 4 0 0
2.110 2 1 1
2.111 3 1 0

Strategies 2.011, 2.101, and 2.111 perform better than
random tests; strategies 2.000, 2.001, and 2.110 per-
form approximately like random testing; and strategies
2.010 and 2.100 perform worse than random testing.
However, we also have to consider the number of tests
that achieve these results. The following table shows
the relative number (x 100) of test cases that achieved
the mutation scores, i.e., number of tests divided by the
cardinality of the exhaustive test set.

000 001 010 011 100 101 110 111 System
99 100 90 58 76 63 39 25 Meeting
85 100 80 35 79 43 34 15 Library
80 63 62 31 53 33 16 8 Hospital
89 100 80 34 74 59 50 18 Auction
88 91 78 40 71 50 35 17 Average

1. Strategies that take into account positive context

definitions (i.e., do not make use of the comple-
ment set: strategies 2.001, 2.011, 2.101, 2.111)
provide better or identical results than random
tests. Out of these, 2.011 and 2.101 perform their
results with 40%-50% of the tests, and 2.111 with
only 17%.

2. Conversely, strategies that take into account the
complement set of the contexts (strategies 2.000,
2.010, 2.100, 2.110) provide worse results than
random tests. Three of them require 71%-88% of
the tests; only strategy 2.110 requires a mere 35%.

3. Strategies that do not negate both roles and per-
missions at the same time and that negate contexts
(strategies 2.010 and 2.100) perform worse than

random tests. This is with a comparably high num-
ber of tests: 71-78%.

4. With the exception of strategy 2.111, strategies
that either negate or do not negate both roles and
permissions perform as good as random tests
(2.000, 2.001, 2.110). Strategies 2.000 and 2.001
require 88%-91% of the tests while strategy 2.110
(that may also be classified as performing better
than random tests) only requires 35% of the tests.

In terms of the number of necessary tests—that tends
to be relatively high when compared to the exhaustive
test set—strategies 2.011, 2.101, 2.110, and 2.111 ap-
pear promising. In terms of the mutation scores, 2.001,
2.011, 2.101 and 2.111 appear promising. The intersec-
tion consists of strategies 2.011, 2.101 and 2.111.
When compared to random testing, strategy 2.111
(positive role, positive permission, positive context)
performs particularly well. Good mutation scores are
obtained for rather small numbers of tests (17%). The
number of test targets for strategy 2.111 equals the
number of rules. The reason for this equivalence is the
rather flat hierarchies in all example systems, and as it
turns out (in hindsight), if a rule is defined for a non-
leaf node of a hierarchy, then there are always com-
plementary rules for all sub-nodes. Since redundant
tests are removed in all strategies, this explains that
exactly the number of rules is obtained. This result
suggests that simply using one test per rule (possibly
with exactly the elements that define the rule) provides
surprisingly good results. We cannot really explain this
finding, and we do not dare to generalize it. We will
use it to scrutinize the mutation operators.
Summary. Because of the many degrees of freedom in
the policy language of our examples (default rule,
specification of both permissions and prohibitions,
priorities), we think it is too early to draw generalized
results in terms of which strategy is better. We also
conjecture that this depends on the policies—ratio of
permissions and prohibitions, and on the depth of the
different hierarchies. However, we believe that our
work, firstly, suggests that using policies for test gen-
eration with pair-wise algorithms is preferable to only
using domain knowledge (roles, permissions, and con-
texts). Secondly, while it is too early to decide on the
best strategies, there are notable differences between
the different strategies that use combinatorial testing.
This suggests that research into combinatorial testing
for access control policies is a promising avenue of
research. Thirdly, our generation procedure that uses
pair-wise testing is stable in the sense that it is not sub-
ject to random influences, as suggested by the small
variances in a thirty-fold repetition of our experiments.
Our conclusions are of course subject to several valid-
ity threats. The main problem with any generalization
is obviously the small number of systems and the small

number of roles, permissions, contexts, and rules for
each policy. A set of four domain definitions with four
hierarchies is unlikely to be representative of all possi-
ble hierarchies. Furthermore, as with all mutation test-
ing, the relationship between mutants and actually oc-
curring faults needs to be investigated [2].

5. Related Work
In earlier work, we have defined mutation operators
and mutation-based coverage criteria for assessing tests
for access control policies [7]. The concern of that
work was not the automated generation of tests but
rather their assessment. Martin and Xie [10] define a
fault model and mutation operators for XACML poli-
cies. Their mutation operators may well lead to equiva-
lent mutants which, because of the higher level of ab-
straction we use for mutation, can be avoided in our
approach. This is crucial because with no equivalent
mutants, we can measure the quality of a test suite in
terms of failure detection. The respective mutation
score is less significant when equivalent mutants exist.
The same authors also generate tests [11] without rely-
ing on the ideas of combinatorial testing and measure,
among other things, the mutation scores. These num-
bers are difficult to compare with ours because we
work at a different level of abstraction and, as a conse-
quence, employ mutation operators at the level of rules
rather than at the level of XACML code.
Among other things, a tool [5] developed by Fisler et
al. performs change-impact analysis on a restricted set
of XACML policies. Given an original and a modified
policy, the tool proposes requests that lead to different
decisions for two PDPs that implement the two poli-
cies. This tool can be used for test case generation on
the grounds of XACML which is not the level of ab-
straction that we target in this paper.
Several researchers have generated tests from access
control policies given by various forms of state ma-
chines [8,9]. This work does not contain an evaluation
of the generated tests.

6. Conclusions
We have presented a methodology for testing access
control requirements, technology for automatically
generating test targets, and an evaluation of the genera-
tion procedure. In sum, our results suggest, firstly, that
using a policy for test generation is beneficial when
compared to only using domain knowledge, i.e., the
roles, permissions, and contexts (cf. the related contro-
versy on partition-based testing). Given that policies
are usually equipped with a default rule and that hence
any request to a system is relevant for testing, this

comes as a surprise and requires further investigations.
Secondly, we find that pair-wise testing yields, for
some strategies, tests with higher mutation scores than
purely random tests. Because we have considered only
four examples of moderate size, we refrain from draw-
ing generalized conclusions as to which strategy is the
best. However, we believe that our results provide evi-
dence that combinatorial testing for access control
policies is a promising avenue of future research.
In addition to overcoming the threats to validity dis-
cussed in §4, there are many possibilities for future
work. We deliberately only use the policies, and not
any code, for generating and assessing tests (generation
is simple and the assessment does not run into the
problem of equivalent mutants). The concretization of
the tests, in contrast, is a manual process today. We
believe in the potential of automatically generating this
code from requirements in the form of sequence dia-
grams. However, by their very nature, these sequence
diagrams are likely to only modify one small part of
the system’s state space. Yet, tests (that is, requests for
accessing a resource) should be run in many different
states. This suggests that one test target should be con-
cretized into many concrete tests. This is currently not
considered in our approach. Because of the separation
of test target generation from all application logics,
once the problem of putting the system in “interesting”
states is solved, however, it seems easy to integrate this
with our test target generation procedure.
In our examples, the exhaustive number of test targets
is rather low. Assuming that automation for generating
and executing concrete tests is available, one might ask
why not to perform exhaustive testing (exhaustive at
the level of the policy, not the code). Test case minimi-
zation nonetheless reduces effort, and for huge poli-
cies, exhaustive testing may not be possible. The better
of our generation procedures generate in-between 17%
and 50% of the number of exhaustive tests. We do not
know these numbers for larger policies.
In terms of the size of the test suite, the benefits of
combinatorial testing become increasingly apparent if
more than three parameters (roles, permissions, con-
texts) have to be taken into account. ORBAC [1], for
instance, explicitly splits permissions into activities
and resources, and adds the dimension of organiza-
tions, which gives a total of five parameters. We are
currently conducting a respective study. The concreti-
zation of tests, however, is not entirely trivial because
many activities are not defined for all resources.
If the reduction of test suites turns out to result in lar-
ger gains (say, of an order of magnitude), then one
interesting application of our approach would be the
manual validation of policies.
Finally, we will have to better understand the suitabil-
ity of our mutation operators, and how they relate to

actual faults in policies and the respective implementa-
tions. In other words, the respective fault model for
policies needs to be investigated. In this vein, among
other things, we will have to look into the difference
between first-order and second-order mutants.

References
1. El Kalam A., Benferhat S., Miège A., El Baida R., Cup-

pens F., Saurel C., Balbiani P., Deswarte Y., Trouessin
G.: Organization Based Access Control. Proc. Policy,
pp. 120-131, 2003

2. Andrews J., Briand L., Labiche Y.: Is Mutation an Ap-
propriate Tool for Testing Experiments? Proc. ICSE, pp.
402-411, 2005

3. Basin D., Doser J., Lodderstedt T.: Model-driven secu-
rity: From UML models to access control infrastructure.
ACM TOSEM 15(1):39-91, 2006

4. DeMillo R., Lipton R., Sayward F.: Hints on Test Data
Selection: Help for the Practicing Programmer. IEEE
Computer 11(4):34-41, 1978

5. Fisler K., Krishnamurthi S., Meyerovich L., Tschantz
M.: Verification and Change-Impact Analysis of Access
Control Policies. Proc. ICSE, pp. 196-205, 2005

6. Grindal M., Offutt J., Andler S.: Combination Testing
Strategies: A Survey. Technical Report ISE-TR-04-05,
George Mason University, 2004

7. Le Traon Y., Mouelhi T., Baudry B.: Testing Security
Policies: Going Beyond Function Testing. Proc. ISSRE,
pp. 93-102, 2007

8. Li K., Mounier L., Groz R.: Test Generation from Secu-
rity Policies in OrBAC. Proc. COMPSAC(2), pp. 255-
260, 2007

9. Mallouli W., Orset J.-M., Cavalli A., Cuppens N., Cup-
pens F.: A Formal Approach for Testing Security Rules.
Proc. SACMAT, pp. 127-132, 2007

10. Martin E., Xie T.: A Fault Model and Mutation Testing
of Access Control Policies. Proc. WWW, pp. 667-676,
2007

11. Martin E., Xie T.: Automated test generation for access
control policies via change-impact analysis. Proc. 3rd
Intl. workshop on software engineering for secure sys-
tems, pp. 5-11, 2007

12. Mouelhi T., Le Traon Y., Baudry B.: Mutation analysis
for security test qualification. Proc. Testing: Academic
and Industrial Conference, pp. 233-242, 2007

13. Pretschner A., Philipps J.: Methodological Issues in
Model-Based Testing. In Broy, M. et al. (eds.): Model-
Based Testing of Reactive Systems, pp. 281-291, 2005

14. Sandhu R., Coyne E., Feinstein H., Youman C.: Role-
based access control models. IEEE Computer 29(2):38-
47, 1996

15. Sandhu R., Samarati P.: Access Control: Principles and
Practice. IEEE Communications Magazine 32(9):40-48,
1994

16. Williams A., Probert R.: A Practical Strategy for Test-
ing Pair-wise Coverage of Network Interfaces. Proc.
ISSRE, pp. 246-254, 1996

17. Zhu H., Hall P., May J.: Software Unit Test Coverage
and Adequacy. ACM Computing Surveys 29(4):366-
427, 1997

