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Abstract 
 

We present a model-based approach to testing ac-
cess control requirements. By using combinatorial 
testing, we first automatically generate test cases from 
and without access control policies—i.e., the model—
and assess the effectiveness of the test suites by means 
of mutation testing. We also compare them to purely 
random tests. For some of the investigated strategies, 
non-random tests kill considerably more mutants than 
the same number of random tests. Since we rely on 
policies only, no information on the application is re-
quired at this stage. As a consequence, our methodol-
ogy applies to arbitrary implementations of the policy 
decision points.  
 
 
1. Introduction 
The amount of digital data that is exchanged between 
individuals, businesses, and administrations continues 
to increase, and so does the number of applications that 
manage this kind of data. Fueled by the existence of 
many interfaces to such applications, including the 
Internet, there is a general agreement that the security 
of these applications is becoming ever more relevant. 
One major security concern is control over the access 
to resources. Respective requirements are stipulated in 
so-called access control policies. An application for 
which such a policy is specified is supposed to also 
implement that policy. The part of the application that 
implements the policy is normally called the policy 
decision point (PDP). The PDP is a conceptual entity 
and can be implemented in many different forms, e.g., 
by dedicated software components that are called be-
fore each resource access, or by spreading the respec-
tive program logic over the code. An obvious problem 
then is to make sure that a PDP implements a given 
access control policy. 

One approach to solving this problem is by design. 
Basin et al., for instance, propose to develop systems 
on the grounds of two related specifications, one de-
sign model and one access control model [3]. For dif-
ferent infrastructures, the respective code is generated. 
Assuming the correctness of code generators, this en-
sures that the application’s PDP implements the policy. 
Legacy systems and systems that are built in develop-
ment processes that do not rely on models require a 
different approach. One generally applicable strategy is 
that by analysis and, if necessary, subsequent modifica-
tion of the PDP.  
Problem Statement. In this paper, we study how to 
test access control requirements in arbitrary applica-
tions. This question entails three sub-problems, namely 
how to generate tests, how to assess their quality, and 
how to run them on an actual system.  
Solution and Empirical Results. We propose to pro-
ceed in two steps. In a first step, we generate abstract 
tests (test targets, §3.1). Test targets represent classes 
of actual requests. They are generated (1) regardless of 
any policy, i.e., by only taking into account roles, per-
missions, and contexts; (2) by considering all the rules 
in a given policy, that is, the model; and (3) completely 
at random. Relying on a fault model that considers 
incorrect decisions of the PDP to be a consequence of 
n-wise interactions of rule elements, we use combina-
torial testing for strategies (1) and (2) to automatically 
generate a test suite of manageable size. In a second 
step, we show how to derive actual tests (code) from 
the abstract test targets. Because this involves applica-
tion-specific program logic and usually also a particu-
lar state of the application, this can in general not be 
fully automated. We discuss the issue of automation. 
As to the problem of measuring the quality of the gen-
erated tests, we use mutation analysis to show that the 
tests that only use domain knowledge (that is, no pol-
icy-related information) perform as good as the same 
number of random tests. We also show that some of 
the generation strategies that use pair-wise testing and 



that rely on the policy do indeed perform better than 
random tests, and that they do so with comparably few 
tests. This provides first experimental evidence that 
combinatorial testing of access control policies is a 
promising approach. Our generation procedure is stable 
and not subject to random influences, as suggested by a 
thirty-fold repetition of our experiments.  
Contribution. The first contribution of this paper is a 
methodology and technology for automatically gener-
ating tests both without and on the grounds of access 
control policies. The second contribution is an experi-
mental assessment of the effectiveness of the generated 
tests. We consider a special extension of role-based 
access control in this paper, but our methodology natu-
rally generalizes to other access control models.  
Overview. The remainder of this paper is organized as 
follows. We give the necessary background in terms of 
access control, combinatorial testing, and mutation 
testing in §2. Our test methodology, consisting of gen-
erating both abstract test targets and deriving concrete 
tests is the subject of §3. We describe experiments for 
assessing the quality of the generated test suites in §4, 
and also discuss the results there. After putting our 
work in context in §5, we conclude in §6. 
 
 
2. Background 
This section sets the scene. We present our running 
example, describe the access control model used in this 
paper, and provide the essence of combinatorial testing 
for test case generation as well as of mutation testing 
for test case evaluation. 
 
2.1 Running Example 
As a running example, we re-use a library management 
system (LMS, [12]). While it is not necessary to de-
scribe all constraints here, access conditions like the 
following are typical for many systems: books can be 
borrowed and returned by the users of the library on 
working days. When the library is closed, users can not 
borrow books. When a book is already borrowed, a 
user can make a reservation. When the book is avail-
able, the user can borrow it. The LMS distinguishes 
three types of users: public users who can borrow 5 
books for 3 weeks, students (10 books for 3 weeks), 
and teachers who can borrow 10 books for 2 months. 
The accounts of in the LMS are managed by an admin-
istrator. Books in the library are managed by a secre-
tary who can order books and enter them into the LMS 
when they are delivered, repair damaged books, etc. 
Finally, the director of the library has the same access 
rights as the secretary and he can also consult the ac-
counts of the employees. 
 

2.2 Access Control 
Access control is concerned with the protection of sys-
tem resources against unauthorized access. In particu-
lar, it defines a process by which the use of system 
resources (1) is regulated according to an access con-
trol policy; and (2) is exclusively permitted by author-
ized entities (users, programs, processes, or other sys-
tems) according to that policy. While a multitude of 
access control strategies and models has been devel-
oped [15], we will concentrate on an extension of the 
so-called role-based access control (RBAC, [14]) 
model. Roughly, RBAC associates roles (sets of sub-
jects) with permissions (pairs consisting of activities 
and resources). 
In this paper, we use a simple extension of RBAC with 
contexts and strategies for conflict resolution. The 
model relies on hierarchical roles, hierarchical permis-
sions that associate activities with resources, and hier-
archical contexts. Requests consist of a subject in-
stance, a resource instance, an action instance the sub-
ject wants to exercise on the resource, and a context 
instance. The PDP checks if a request corresponds to a 
rule such that the requester is an element of a descen-
dant of that rule’s role, the action is an element of a 
descendant of that rule’s action, etc. 
Definitions and Syntax. The policy meta model is 
depicted in Figure 1. Our domain consists of role 
names, permission names that are pairs of activity 
names and resource names, and context names. Roles 
associate role names with finite sets of subject in-
stances. Similarly, activities associate activity names 
with finite sets of action instances, and resources asso-
ciate resource names with finite sets of resource in-
stances. Contexts associate context names with finite 
sets of spatial and temporal constraints. In the exam-
ple of the LMS, the role names include borrower and 
administrator, and the subject instances include John 
Doe. The permission names include borrowBook (ac-
tivity name: borrow, resource name: book), and per-
mission instances include the method name borrow() as 
well as the electronic representation of a copy of Du-
mas’s Count of Monte Christo. Context names include 
WorkingDays, and context instances include a repre-
sentation of the fact that the current day is a working 
day. 
Roles, permissions, and contexts are hierarchical, and 
we assume the existence of a dedicated root node for 
each hierarchy. In this way, for each policy, the uni-
verse of discourse is determined by the n:1 associations 
between policies and role names, permission names, 
and context names in Figure 1. 
In the LMS, for instance, a BorrowerActivity is spe-
cialized by, among other things, BorrowBook and Re-
serveBook. Note that all nodes (as opposed to leaves 
only) can be mapped to non-empty sets of instances. 



A rule is a quintuple consisting of a role, a permission, 
a context, a status flag indicating permission or prohi-
bition, and a natural number that denotes a priority. In 
the LMS, an example of a rule is prohibi-

tion(Borrower, BorrowBook, Holidays, 5). Fi-
nally, a policy is a set of rules together with a function 
that defines the hierarchies, and a default rule (see be-
low). 
Note that nothing prevents us from generating one type 
(role name, permission name, context name) per in-
stance and add it to the hierarchies. In this case, the 
four instance classes in Figure 1could be omitted. 
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Figure 1 

 
Semantics. The application of actions to resources is 
requested by a subject in a given context. Intuitively, 
for a request, the policy decision point checks if there 
is a rule that matches the request: the subject instance 
of the request is part of the role or its subroles defined 
in the rule; the (activity, resource) pair is part of the 
permission of the rule, and the context instance is part 
of the context defined in the rule. In that case, the rule 
is said to be applicable to the request. If there is no 
such rule, the PDP returns a default that is either per-
mission or prohibition. Finally, if there is more than 
one rule, then the rule with the higher priority is cho-
sen. If there are two applicable rules with the same 
priority and different status flags, then either a deny-
override or permit-override strategy is applied. We 
omit the formal semantics here. While our approach to 
generating tests obviously relies on the semantics of a 
particular access control model when the oracle is con-
sulted, it can nonetheless be applied to any access con-
trol model. 
 
2.3 Combinatorial Testing 
When testing configurations that consist of multiple 
parameters, one fault model consists of assuming that 
failures are a consequence of the interaction of only 

two (three, four, …) rather than all parameters. Combi-
natorial testing [16,6] relies on precisely this idea and 
aims at defining test suites such that for each pair (tri-
ple, quadruple, …) of parameters, all pairs (triples, 
quadruples, …) of values for these parameters appear 
in one test case in the test suite. If the assumption (the 
fault model) can be justified, the eminent benefit of 
this strategy lies in the rather small size of the test 
suite. For instance, without any further constraints, the 
number of tests necessary for pair-wise testing is the 
sum of the number of all possible parameter values in 
the system. 
 
2.4 Mutation Testing 
The original purpose of mutation testing [4] is to assess 
the quality of a test suite in terms of failure detection.  
The idea is to apply small syntactic changes to a pro-
gram, e.g., replace a plus by a minus. The modified 
program is called a mutant. If a test suite is able to de-
tect the deviation, the mutant is said to be killed, and 
the mutation score is the number of killed mutants di-
vided by the number of mutants. If a mutant is not 
killed, this may be because the test suite is too weak or 
because the mutant is equivalent to the original pro-
gram. This happens, for instance, if a +0 is replaced by 
a -0. As a consequence, mutation scores of 100% can-
not be obtained. If mutation scores are used as test se-
lection criteria [17], then this obviously poses a practi-
cal problem. Mutation testing assumes validity of the 
competent programmer’s and the coupling hypotheses. 
The former assumes that programmers essentially in-
troduce relatively simple faults, and the latter assumes 
a correlation between simple and more complex faults. 
Even though Andrews et al. have recently provided 
some empirical evidence that there is indeed such a 
correlation [2], both assumptions remain critical. 
Mutation can also be applied not to the code but to 
access control policies [7,10]. If the code implementing 
a PDP can be configured by these policies, then test 
cases can be applied to PDPs that implement a mutated 
policy. By doing so, the quality of access control pol-
icy test cases can be assessed. 
In this paper, we will use the mutation operators de-
fined in earlier work [7]. Five operators are used to 
modify existing rules (replace prohibition by permis-
sion, replace permission by prohibition, replace role by 
any role, replace role by a descendant, replace context 
by different context, and replace the activity part of a 
permission by another permission). A sixth operator 
adds a new rule to the policy by picking a permission 
from the policy, and completing the rule by any role, 
any context, and any status flag. If a mutated rule is in 
conflict with other rules of the policy (which can be 
analyzed statically), then we assign it a priority that is 
higher than that of the other rules. Since the mutation 



procedure operates on policies, and as such at a “se-
mantic” level (as opposed to code), the first five opera-
tors generate no equivalent mutants, provided that 
there are no redundant rules in the original policy. 
Equivalent mutants generated by application of the 
sixth operator can easily be detected and removed. 
 
 
3. Test Methodology 
Recall that the problem we set out to solve is the gen-
eration of a set of test cases for assessing in how far an 
application implements a given access control policy. 
We use this section to describe the test methodology 
and the technologies involved. After providing the big 
picture, §3.1 describes two different ways of generat-
ing test targets; one regardless of any policy, the other 
depending on a policy. In §3.2 we explain how to con-
cretize abstract test targets into concrete tests. 
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The overall process is depicted in Figure 2. As de-
scribed in §2.2, policies are defined for a domain that 
consists of, among other things, application-specific 
roles, permissions, and contexts. That domain corre-
sponds to the lower half of Figure 1. Different means 
are employed to generate test targets from policies and 
partial domain descriptions (§§3.1.1 and 3.1.2). A test 
target consists of a role name, a permission name, and 
a context name (§2.2). By picking a subject that is as-
sociated with the role name, a permission that is asso-
ciated with the permission name, and a context that is 
associated with the context name, we obtain an instan-
tiated test target. Test targets and instantiated test tar-
gets are defined at the level of abstraction of the policy 
and the partial domain description. They are hence too 
abstract to be directly executed on a real piece of soft-
ware. Test cases, in contrast, are executed. Essentially, 
they are pieces of code that implement the instantiated 
test targets and that take into account the business logic 
of the application under test. The methodology that we 
define in this paper is about the generation of (instanti-
ated) test targets and the subsequent manual derivation 
of test cases (see §6 for a discussion of the potential for 
automation).  

Note that when generating both the PDP [3] and the 
test suite from the same policy, applying the tests to 
the application that contains the PDP is likely to reveal 
problems in the code generator rather than in the PDP 
plus associated application [13]. Our methodology 
hence applies to existing legacy systems and new sys-
tems without automatically generated PDPs [3]. 
 
3.1 Test Targets 
The generation of test targets can be done in at least 
two ways. One is to generate them regardless of any 
policy. A second strategy takes into account the policy. 
 
3.1.1 Ignoring the Policy 
Roughly, the generation of test targets without policy 
only takes into account information on roles, permis-
sions, contexts, and the respective hierarchies. Essen-
tially, combinatorial testing is applied to all nodes of 
the three hierarchies (Figure 3).  
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Instantiation. Random instantiation then takes place 
by picking one element of the respective instance sets. 
In case the number of instantiations of roles, permis-
sions, or contexts is not prohibitive, combinatorial test-
ing can even be applied at the level of instances (see 
the comment above on introducing one role name, 
permission name, or context name per respective in-
stance).  
 
3.1.2 Using the Policy 
The generation of test targets from access control poli-
cies, in contrast, proceeds as follows. We will consider 
each single rule in turn. The part of the rule that is rele-
vant for test case generation is the triple (r, p, c) that 
consists of a role name, a permission name, and a con-
text name (priorities are required for the oracle). Each 
element of that triple is a part of one of the hierarchies 
defined in Figure 1, and they correspond to boxes with 
thick borders in Figure 4. Combinatorial testing is then 
employed to generate n-wise coverage  

1. for all role names below r, 
2. with all permission names below p, 
3. with all context names below c. 



All these nodes depicted as grey boxes in Figure 4, top. 
Since a rule is either a permission or a prohibition, it 
appears sensible to also test all those nodes which are 
not explicitly specified (this complementary set is de-
picted as grey boxes in Figure 4, bottom).  
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For the three elements of a rule, we can then specify 
whether or not the respective component of a test target 
should conform with the element of a rule. As an ex-
ample, consider a rule that constrains role r, permission 
p, and context c (boxes with thick borders in Figure 5). 
The test targets that correspond to the grey boxes in 
that figure specify a role different from r, a permission 
that derives from p, and a context that differs from c. In 
sum, for each rule, this gives rise to eight combinations 
that can be used for the generation of test targets. 
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Instantiation. Similar to the first case, instances are 
then randomly chosen for each role name, permission 
name, and context name. Furthermore, also in accor-
dance with the first case, if the number of instances is 
not prohibitive, combinatorial testing can even be ap-
plied to the respective instances. If, in this sense, one 
role name is introduced for each subject instance in the 
system, one permission name for each pair of action 

instance and resource instance, and one context name 
for each constraint, then the above procedure needs to 
be applied to the leaves of the hierarchies only, and no 
subsequent instantiation step is required.  
 
3.1.3 Comparison 
Not using the policy at all may, at first sight, appear 
surprising: if there is a policy, why wouldn’t we use it 
for test case generation? Not using a policy seems rea-
sonable because regardless of the policy, all kinds of 
requests should be tested, and these only depend on the 
roles, permissions, and contexts, but not on the poli-
cies. The essential difference between the two strate-
gies lies in the number of tests that correspond to exist-
ing rules. In most cases, some permissions or prohibi-
tions will not be defined explicitly in the policy. Re-
spective decisions are then taken by referring to the 
default rule. In the first approach, corresponding test 
targets may be generated more or less at random. In 
contrast, many test targets are explicitly generated by 
the second approach for these implicit rules. Note that 
because our policies can express both permissions and 
prohibitions even within one policy, the two ap-
proaches do not differ in “better” testing permissions 
than prohibitions nor vice versa. 
 
3.2 Concrete Test Cases 
Concrete tests differ from abstract and instantiated test 
targets in that both targets do not take into account the 
application logic at all. The problem then is that spe-
cific actions cannot be applied to specific resources in 
all states. For instance, a book cannot be returned be-
fore it has been borrowed. When concretizing test tar-
gets, this information must be taken into account. The 
information, however, is likely available in the re-
quirements documents, in the form of sequence dia-
grams or similar descriptions. The derivation of test 
cases then consists of writing a preamble that puts the 
system into a state where the access rule is applicable 
as far as the state of the application is concerned. We 
are currently working on generating the respective 
code from sequence diagrams, and integrating it with 
the generated tests, but this is not the subject of this 
paper and immaterial to our results that relate to test 
generation strategies. From a practical perspective, 
however, the automation of such procedures is of 
course highly useful—testing becomes a push-button 
technology. 
The following example illustrates concretization. Con-
sider a rule prohibition(borrower, return_book, 

maintenanceDay, 4) for the LMS. For any of the 
above generation strategies, assume that the test target 
prescribes a role borrower, a permission return_book, 
and a context maintenanceDay. A possible instanti-



ated test target is prohibition(std1, book1, main-
tenanceDay, 4). This however, still is too abstract to 
be executed. Concretization leads the following code 
that consists of a preamble that puts the system into a 
desired state, execution of the actual test, and the 
evaluation of the test. 
 
// test data initialization 
// log in a student  
std1 = userService.logUser("login1", "pwd1"); 
// create a book 
book1 = new Book(“book title”); 
// activity 
// book needs to be borrowed before returned 
borrowBookForStudent(student1,book1); 
// context 
contextMan-
ager.setTemporalContext(maintenaceDay); 
// security test 
// run test 
try { 
 returnBookForStudent(std1,book1) 
 // security oracle 
 // SecurityPolicyViolationException is ex-
pected because an SP rules is not respected 
 // test failure 
 fail(“ SecurityPolicyViolationException ex-
pected,   returnBookForStudent with student = 
“ + std1 + “ and book = “ + book1); 
} 
catch( SecurityPolicyViolationException e) { 
 // ok security test succeeded log info 
 log.info(“test success for rule :   prohibi-
tion(borrower,return_book,maintenanceDay)”); 
} 
 

3.3 Implementation 
With the exception of the generation of Java code, our 
test generation procedure is fully automated. The sys-
tem takes as input a policy and the respective domain 
description (roles, permissions, contexts) together with 
the strategies to be applied. For each strategy, it returns 
the generated test targets. N-wise test generation—we 
concentrate on pairs in this paper—is performed by a 
tool that is publicly available at 
www.burtleburtle.net/bob/math/ jenny.html. 
In terms of the experiments, mutants of the policy (not 
any respective implementing code—this would almost 
certainly lead to equivalent mutants) are generated by 
the procedure described in §2.4. This procedure has 
been implemented as part of earlier work [7, 12]. The 
mutated polices are translated into Prolog code (motor-
bac.sourceforge.net), and this code is used as the ex-
ecutable oracle. 
 
 
4. Experiments 
The question that we study is concerned with the qual-
ity of tests generated by the different above strategies. 
We consider the following case studies that have all 

been used in various other research projects. Both poli-
cies and systems were designed and implemented in-
dependently of the present study. 
The library management system has already been 
described in §2.1. Its policy is defined via 41 rules on 7 
roles, 10 permissions, and 4 contexts. 
We also consider the access control policy in a hospi-
tal with different physicians and staff. It defines who 
manages the administrative tasks and who performs 
which medical tasks. Its policy is defined in 37 rules 
with 10 roles, 15 permissions, and 3 contexts. In con-
trast to the other systems, the hospital system was not 
implemented in an application. The policy, however, 
was defined in projects on security policies [1]. 
The auction system is inspired by the eBay auction 
sales management system. Sellers can create and sell 
products. Buyers place bids. During an auction, buyers 
and sellers can post comments. They can also give 
marks to the sellers and buyers. In addition, the appli-
cation allows the personnel of the website to manage 
sales and user and personnel accounts. The system’s 
policy is defined on 8 roles, 23 permissions and 4 con-
texts with 130 rules.  
Finally, the meeting management system allows users 
to create and attend different types of meetings. It also 
allows the management to delegate and to transmit 
texts during the meeting. Meetings can be moderated 
by a specific user called the moderator and the number 
of attendees can be fixed. This application also allows 
the personnel to create and manage accounts for meet-
ing users. Its policy consists of 106 rules defined over 
8 roles, 18 permissions, and 3 contexts. 
Procedure. We first generate tests with the two strate-
gies described in §3.1. Our instantiation of n-wise test-
ing is pair-wise testing. As a gold standard, we also 
generate tests purely at random. We count the number 
of generated test targets and measure the generation 
time. This time turns out to be negligible – less than a 
second – which is why we refrain from stating respec-
tive numbers here. In a second step, we assess the qual-
ity of the test suites by using mutation testing (§2.4). 
Generation of test targets. The first strategy does not 
take into account policies but rather the domains only. 
Pair-wise testing is applied to roles, permissions, and 
contexts. In order to get a feeling for the influence of 
randomness when pairs are chosen, we perform the 
generation process thirty times for each strategy and 
for each case study. 
The second strategy does take policies into account. 
For each of the eight sub-strategies, we generate test 
targets for each single rule (that is, each role-
permission-context triple). We make sure that they are 
all independent from each other: we do not first gener-
ate two sets of role names, two sets of permission 
names and two sets of context names and then pick the 



8 combinations from these buckets, but rather regener-
ate them in each turn. This experiment is also per-
formed thirty times (hence 240 experiments per rule). 
In each of the thirty experiments, we remove redundant 
test targets from each of the eight test suites. 
The third strategy also does not consider policies. 
However, test targets are chosen fully randomly, with-
out pair-wise testing. In such a randomly generated test 
suite, we make sure there are no identical tests. This 
generation strategy is also applied thirty times.  
Assessment of tests. The quality assessment proceeds 
as follows (we only consider the level of test targets 
here). We consider each of the four fixed policies in 
turn. We apply the first five mutation operators to 
every rule (§2.4). Replacing a prohibition by a permis-
sion and vice versa yields one mutated policy. When 
applying the other mutation operators, we generate all 
possible mutants rather than just one. For instance, 
when a role is replaced in a rule, we replace it by all 
other possible roles in the system rather than by just 
one other role. Furthermore, the application of the ad-
dition operator yields an entire set of mutated policies. 
Details of the mutation operators are described else-
where [7, 12]. The generated test suites are then ap-
plied to all mutants, and we record the mutation score. 
Observations and Discussion. Figure 6 to Figure 9 
show box-whisker diagrams of the mutation scores for 
the four case studies. Strategy 1 (no policy, only do-
main considered, pair-wise coverage) is labeled no 
policy (N). The test targets generated for strategy 3 are 
labeled random (N). In both cases, N denotes the num-
ber of generated test targets.  
The eight sub-strategies of strategy 2 are labeled pol-
icy 000 (N0), policy 001 (N1), …, policy 111 (N7). The 
Ni correspond to the number of test targets generated 
for each sub-strategy. The binary number rpc in the 
labels encodes the chosen sub-strategy: Let r denote 
whether, for each rule, roles are chosen from the spe-
cializations of the role provided in that rule (1), or from 
the complement of that set (0). Let p denote whether, 
for each rule, permissions are chosen from the speciali-
zations of the provided permission (1) or from the 
complement of that set (0). Finally, let c denote 
whether, for each rule, contexts are chosen from the 
specializations of the provided context (1) or from the 
complement of that set (0). Then, for instance, rpc=010 
(Figure 5) corresponds to: (a) role not below the role 
that is specified in the rule, (b) permission from the set 
of all permissions that are below the permission pro-
vided in the rule, and (c) a context chosen from the set 
of contexts that are not sub-contexts of that provided in 
the rule. In the following, we will denote sub-strategy 
xyz (x,y,z are 1 or 0) of strategy 2 by 2.xyz. 
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Figure 6: Meeting System (432 exhaustive tests) 
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Figure 7: Library System  (280 exhaustive tests) 

0.20 0.40 0.60 0.80

mutation score

no policy (150)
random  (150)

policy 000 (358)
random (345)

policy 001 (285)
random (285)

policy 010 (278)
random (278)

policy 011 (139)
random (139)

policy 100 (240)
random (240)

policy 101 (150)
random (150)

policy 110 (74)
random (74)

policy 111 (37)
random (37)

st
ra

te
gy

 
Figure 8: Hospital System (450 exhaustive tests) 
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Figure 9: Auction System (736 exhaustive tests) 

 
Overall, the variance of the mutation scores in all ex-
periments is small. The number of tests for comparable 
strategies may slightly differ (e.g., for strategy 2.000 in 
all four experiments). This is a result of randomness in 
the pair-wise testing approach. However, as the vari-
ance is small, we may ignore this effect here.  
Furthermore, the eight sub-strategies of strategy 2 re-
sult in different numbers of test targets. This is a con-
sequence of the role, permission, and context hierar-
chies: the number of nodes above or below a node need 
not be identical. Consequently, pair-wise testing is 
applied to variables with different domains. 
Strategy 1 turns out to be as good as random testing, 
and, with the exception of the hospital system, worse 
than all sub-strategies of strategy 2. The number of 
tests is comparatively low: an average 29% of the car-
dinality of the exhaustive test set. However, because of 
better strategies, pair-wise testing that does not take 
into account a policy is, in terms of our assessment 
criterion, a strategy that can safely be discarded. This 
result indicates that taking into account an access con-
trol policy when generating tests on the grounds of 
pair-wise testing is highly advisable. Because of the 
existence of default rules, we would have argued that, 
in general, all requests (or test targets) are equally 
likely to detect faults. The above is hence a result that 
we did not expect and that is probably due to the use of 
mutation testing for assessing tests. 
With the exception of the hospital system, strategy 
2.001 yields exhaustive tests. This will, in general, not 
be the case for all policies. In our examples, however, 
hierarchies are rather flat (which means that the nega-
tion of roles and permissions yields, for every rule that 
is used for test target generation, almost all other roles 
and permissions, respectively). At the same time, the 

number of contexts is small. Taken together, this leads 
to a high probability of generating exhaustive tests 
(note that this is only almost the case for the auction 
system). The exception of the hospital system is ex-
plained by its policy and the mutant generator: for one 
role, there are no rules, and in contrast to the test target 
generator, the mutation generator creates mutants only 
for those elements that occur in any rule (and that are 
not only provided in the policy’s domain description). 
When comparing different strategies to random tests, 
we get the following aggregated results (bold rows 
indicate superiority of the respective strategy): 
 
Strategy Better than random Equal Worse 
1 0 4 0 
2.000 1 2 1 
2.001 1 3 0 
2.010 0 0 4 
2.011 4 0 0 
2.100 0 2 2 
2.101 4 0 0 
2.110 2 1 1 
2.111 3 1 0 
 
Strategies 2.011, 2.101, and 2.111 perform better than 
random tests; strategies 2.000, 2.001, and 2.110 per-
form approximately like random testing; and strategies 
2.010 and 2.100 perform worse than random testing. 
However, we also have to consider the number of tests 
that achieve these results. The following table shows 
the relative number (x 100) of test cases that achieved 
the mutation scores, i.e., number of tests divided by the 
cardinality of the exhaustive test set.  
 
000 001 010 011 100 101 110 111 System 
99 100 90 58 76 63 39 25 Meeting 
85 100 80 35 79 43 34 15 Library 
80 63 62 31 53 33 16 8 Hospital 
89 100 80 34 74 59 50 18 Auction 
88 91 78 40 71 50 35 17 Average 
 
1. Strategies that take into account positive context 

definitions (i.e., do not make use of the comple-
ment set: strategies 2.001, 2.011, 2.101, 2.111) 
provide better or identical results than random 
tests. Out of these, 2.011 and 2.101 perform their 
results with 40%-50% of the tests, and 2.111 with 
only 17%.  

2. Conversely, strategies that take into account the 
complement set of the contexts (strategies 2.000, 
2.010, 2.100, 2.110) provide worse results than 
random tests. Three of them require 71%-88% of 
the tests; only strategy 2.110 requires a mere 35%. 

3. Strategies that do not negate both roles and per-
missions at the same time and that negate contexts 
(strategies 2.010 and 2.100) perform worse than 



random tests. This is with a comparably high num-
ber of tests: 71-78%. 

4. With the exception of strategy 2.111, strategies 
that either negate or do not negate both roles and 
permissions perform as good as random tests 
(2.000, 2.001, 2.110). Strategies 2.000 and 2.001 
require 88%-91% of the tests while strategy 2.110 
(that may also be classified as performing better 
than random tests) only requires 35% of the tests. 

In terms of the number of necessary tests—that tends 
to be relatively high when compared to the exhaustive 
test set—strategies 2.011, 2.101, 2.110, and 2.111 ap-
pear promising. In terms of the mutation scores, 2.001, 
2.011, 2.101 and 2.111 appear promising. The intersec-
tion consists of strategies 2.011, 2.101 and 2.111.  
When compared to random testing, strategy 2.111 
(positive role, positive permission, positive context) 
performs particularly well. Good mutation scores are 
obtained for rather small numbers of tests (17%). The 
number of test targets for strategy 2.111 equals the 
number of rules. The reason for this equivalence is the 
rather flat hierarchies in all example systems, and as it 
turns out (in hindsight), if a rule is defined for a non-
leaf node of a hierarchy, then there are always com-
plementary rules for all sub-nodes. Since redundant 
tests are removed in all strategies, this explains that 
exactly the number of rules is obtained. This result 
suggests that simply using one test per rule (possibly 
with exactly the elements that define the rule) provides 
surprisingly good results. We cannot really explain this 
finding, and we do not dare to generalize it. We will 
use it to scrutinize the mutation operators.  
Summary. Because of the many degrees of freedom in 
the policy language of our examples (default rule, 
specification of both permissions and prohibitions, 
priorities), we think it is too early to draw generalized 
results in terms of which strategy is better. We also 
conjecture that this depends on the policies—ratio of 
permissions and prohibitions, and on the depth of the 
different hierarchies. However, we believe that our 
work, firstly, suggests that using policies for test gen-
eration with pair-wise algorithms is preferable to only 
using domain knowledge (roles, permissions, and con-
texts).  Secondly, while it is too early to decide on the 
best strategies, there are notable differences between 
the different strategies that use combinatorial testing. 
This suggests that research into combinatorial testing 
for access control policies is a promising avenue of 
research. Thirdly, our generation procedure that uses 
pair-wise testing is stable in the sense that it is not sub-
ject to random influences, as suggested by the small 
variances in a thirty-fold repetition of our experiments. 
Our conclusions are of course subject to several valid-
ity threats. The main problem with any generalization 
is obviously the small number of systems and the small 

number of roles, permissions, contexts, and rules for 
each policy. A set of four domain definitions with four 
hierarchies is unlikely to be representative of all possi-
ble hierarchies. Furthermore, as with all mutation test-
ing, the relationship between mutants and actually oc-
curring faults needs to be investigated [2]. 
 
 
5. Related Work 
In earlier work, we have defined mutation operators 
and mutation-based coverage criteria for assessing tests 
for access control policies [7]. The concern of that 
work was not the automated generation of tests but 
rather their assessment. Martin and Xie [10] define a 
fault model and mutation operators for XACML poli-
cies. Their mutation operators may well lead to equiva-
lent mutants which, because of the higher level of ab-
straction we use for mutation, can be avoided in our 
approach. This is crucial because with no equivalent 
mutants, we can measure the quality of a test suite in 
terms of failure detection. The respective mutation 
score is less significant when equivalent mutants exist. 
The same authors also generate tests [11] without rely-
ing on the ideas of combinatorial testing and measure, 
among other things, the mutation scores. These num-
bers are difficult to compare with ours because we 
work at a different level of abstraction and, as a conse-
quence, employ mutation operators at the level of rules 
rather than at the level of XACML code. 
Among other things, a tool [5] developed by Fisler et 
al. performs change-impact analysis on a restricted set 
of XACML policies. Given an original and a modified 
policy, the tool proposes requests that lead to different 
decisions for two PDPs that implement the two poli-
cies. This tool can be used for test case generation on 
the grounds of XACML which is not the level of ab-
straction that we target in this paper. 
Several researchers have generated tests from access 
control policies given by various forms of state ma-
chines [8,9]. This work does not contain an evaluation 
of the generated tests. 
 
 
6. Conclusions 
We have presented a methodology for testing access 
control requirements, technology for automatically 
generating test targets, and an evaluation of the genera-
tion procedure. In sum, our results suggest, firstly, that 
using a policy for test generation is beneficial when 
compared to only using domain knowledge, i.e., the 
roles, permissions, and contexts (cf. the related contro-
versy on partition-based testing). Given that policies 
are usually equipped with a default rule and that hence 
any request to a system is relevant for testing, this 



comes as a surprise and requires further investigations. 
Secondly, we find that pair-wise testing yields, for 
some strategies, tests with higher mutation scores than 
purely random tests. Because we have considered only 
four examples of moderate size, we refrain from draw-
ing generalized conclusions as to which strategy is the 
best. However, we believe that our results provide evi-
dence that combinatorial testing for access control 
policies is a promising avenue of future research. 
In addition to overcoming the threats to validity dis-
cussed in §4, there are many possibilities for future 
work. We deliberately only use the policies, and not 
any code, for generating and assessing tests (generation 
is simple and the assessment does not run into the 
problem of equivalent mutants). The concretization of 
the tests, in contrast, is a manual process today. We 
believe in the potential of automatically generating this 
code from requirements in the form of sequence dia-
grams. However, by their very nature, these sequence 
diagrams are likely to only modify one small part of 
the system’s state space. Yet, tests (that is, requests for 
accessing a resource) should be run in many different 
states. This suggests that one test target should be con-
cretized into many concrete tests. This is currently not 
considered in our approach. Because of the separation 
of test target generation from all application logics, 
once the problem of putting the system in “interesting” 
states is solved, however, it seems easy to integrate this 
with our test target generation procedure. 
In our examples, the exhaustive number of test targets 
is rather low. Assuming that automation for generating 
and executing concrete tests is available, one might ask 
why not to perform exhaustive testing (exhaustive at 
the level of the policy, not the code). Test case minimi-
zation nonetheless reduces effort, and for huge poli-
cies, exhaustive testing may not be possible. The better 
of our generation procedures generate in-between 17% 
and 50% of the number of exhaustive tests. We do not 
know these numbers for larger policies. 
In terms of the size of the test suite, the benefits of 
combinatorial testing become increasingly apparent if 
more than three parameters (roles, permissions, con-
texts) have to be taken into account. ORBAC [1], for 
instance, explicitly splits permissions into activities 
and resources, and adds the dimension of organiza-
tions, which gives a total of five parameters. We are 
currently conducting a respective study. The concreti-
zation of tests, however, is not entirely trivial because 
many activities are not defined for all resources. 
If the reduction of test suites turns out to result in lar-
ger gains (say, of an order of magnitude), then one 
interesting application of our approach would be the 
manual validation of policies.  
Finally, we will have to better understand the suitabil-
ity of our mutation operators, and how they relate to 

actual faults in policies and the respective implementa-
tions. In other words, the respective fault model for 
policies needs to be investigated. In this vein, among 
other things, we will have to look into the difference 
between first-order and second-order mutants. 
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