
Implementing Trust in Cloud Infrastructures
Ricardo Neisse

Fraunhofer IESE, Germany
ricardo.neisse@iese.fraunhofer.de

Dominik Holling
TU Kaiserslautern, Germany
dominik.holling@holkom.de

Alexander Pretschner
Karlsruhe Institute of Technology, Germany

pretschner@kit.edu

Abstract—Today’s cloud computing infrastructures usually
require customers who transfer data into the cloud to trust
the providers of the cloud infrastructure. Not every customer
is willing to grant this trust without justification. It should be
possible to detect that at least the configuration of the cloud
infrastructure—as provided in the form of a hypervisor and
administrative domain software—has not been changed without
the customer’s consent. We present a system that enables peri-
odical and necessity-driven integrity measurements and remote
attestations of vital parts of cloud computing infrastructures.
Building on the analysis of several relevant attack scenarios, our
system is implemented on top of the Xen Cloud Platform and
makes use of trusted computing technology to provide security
guarantees. We evaluate both security and performance of this
system. We show how our system attests the integrity of a
cloud infrastructure and detects all changes performed by system
administrators in a typical software configuration, even in the
presence of a simulated denial-of-service attack.

I. INTRODUCTION

In cloud computing, resources are outsourced to service
providers on a pay-per-use basis. This model provides advan-
tages both from the economic and the scalability point of view
because additional computing resources can be allocated when
needed. Today’s insufficient solutions to the problem of data
confidentiality and integrity, however, prevent some companies
from moving their services and data to the cloud. Companies
with strict data protection policies miss transparency and
security guarantees of the cloud infrastructures. Moreover, they
are unable to determine where their data is stored, or do not
understand how the cloud infrastructure is managed.

One common approach to improve data protection is en-
cryption of virtual hard disks and network traffic. However,
this does not guarantee data protection from malicious or
negligent infrastructure providers as these have full control
of the cloud infrastructure and are able to configure or modify
it in a way that allows them unrestricted access to the data.
Thus, in current cloud computing scenarios, service providers
have no alternative to trusting infrastructure providers to keep
their data secure, and there is no way to verify the integrity
of the cloud’s hardware/software configuration.

Existing cloud infrastructures use virtualization techniques
with hypervisors to transparently allocate resources of physical
hosts for a service provider’s virtual machines (VMs). In
theory, security in virtualization solutions is provided by
design. This is because VMs are completely isolated from one
another by the hypervisor. In practice, cloud administrators are
still able to load a malicious hypervisor module and access
the memory and disk content of the service provider’s VMs.

Furthermore, cloud infrastructure customers do not know
who has physical or virtual access to their data by using
remote management tools. Therefore, malicious infrastructure
providers or one of their internal administrators can manipulate
the infrastructure to steal or alter customer data. To illustrate
the usefulness of our system, suppose a service consumer
C wants to use a cloud service, say, a special file sharing
service, provided by a service provider S. S does not provide
the physical infrastructure itself but rather runs it on hardware
of a third company, I, the infrastructure provider. In principle,
I has access to all data stored by S, and hence also the data that
C has shipped to S. With our system, we make it possible for
S (and also C) to obtain runtime integrity information about
crucial system components used by I (e.g., kernel modules,
configuration files). Provided that I’s system has been set
up adequately—which of course has to be ensured by a
third party—this in turn provides information about potential
leakage of S’s (or C’s) data. Our approach does not prevent
I from altering crucial components and subsequently stealing
data, but these activities will at least be detected.

Research Problem. We tackle the problem of protecting
entities using the cloud from malicious or negligent entities
providing the cloud infrastructure.

Solution. We present the BonaFides system for remote at-
testations of security-relevant parts of the cloud infrastructure.
It guarantees to service providers at runtime the detection
of unintended or malicious modifications of cloud infrastruc-
ture configurations. Using trusted computing technology, we
protect the BonaFides system itself from tampering. We put
special emphasis on the defense against a denial-of-service
attack and provide performance and security analyses.

Contribution. We are not aware of implementations that
provide guarantees through runtime monitoring of hardware
and software integrity. Existing approaches for integrity veri-
fication of VMs using trusted computing technology perform
integrity measurements at boot time, when a library is loaded,
when a program is executed, or when a VM is migrated
(§VIII). This makes it possible for an attacker to modify the
system in-between integrity measurements in an imperceptible
manner. We go one step further and propose a solution to
verify the integrity of the hardware and software at runtime
whenever changes in the cloud infrastructure are performed.

Organization. §II sets the stage. §III and §IV describe design
and implementation of the BonaFides system. In §V, we revisit
the above example and show how concretely BonaFides helps
protect data. §VI and §VII contain performance and security



analyses and highlight our assumptions. §VIII describes related
work, and §IX concludes.

II. CLOUD COMPUTING

Cloud Computing Model. Cloud computing enables on-
demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with
minimal management effort [15]. We distinguish four differ-
ent roles in a cloud computing scenario: the infrastructure
provider, the service provider, the service consumer, and the
cloud certifier. The entity that coordinates and implements the
resource sharing using a cloud computing model is called the
infrastructure provider. The service provider is the party that
contracts (cloud) outsourcing services from the infrastructure
provider. The service provider deploys a platform or software
that is used by the service consumers. Service consumers
may be the end-users of the service or application deployed
in the cloud. Service consumers may also assume the role
of service providers if they provide a platform or service
in the cloud that is used by someone else. Therefore, it is
possible to have a chain of service consumers that also act
as service providers. The cloud certifier is a party capable
of inspecting the infrastructure provider’s infrastructure and
retrieving information about security and integrity of the
infrastructure used by the service provider. This role might
be assigned to any organization that is also a service provider,
or to a specialized trusted third party.

Reflecting the above roles, in cloud computing, resources
can be outsourced at different layers of abstraction [15],
namely software, platform, or infrastructure. In this paper, we
are concerned with infrastructure outsourcing where infras-
tructure providers lease resources at the VM level (process-
ing, storage, and network). Note, however, that software and
platform outsourcing models also profit from our approach,
since the respective service providers, and consequently, also
the service consumers, can rely on the provided guarantees.

Xen Cloud Platform. We chose the open source Xen Cloud
Platform (XCP) [31] as the basis for our research, a popular
infrastructure that is, among others, used by the Amazon
ElasticCloud and CloudCentral. However, we are confident
that other virtualization solutions, e.g., VMWare [30], suffer
from similar security problems and could equally benefit from
the analysis and solution in this paper. A typical scenario
of an infrastructure provider running XCP is as follows. The
infrastructure provider owns physical hosts that run an instance
of XCP each. Every XCP instance has a hypervisor layer using
a specific version of the Xen hypervisor that manages access to
the physical host’s resources, an administrative domain called
Dom0 (Domain Zero), and a set of unprivileged domains
called DomUs (Domain Unprivileged). The physical hosts
are connected to a network infrastructure and may access
an external storage device. By design, the Xen hypervisor
forbids VMs to access or modify data in the memory of other
VMs. The service provider’s VMs (DomUs) can only access
the CPU and their own predefined memory area, and do not

Xen Cloud Platform Host

dom0 domU_1

Hypervisor

...

Direct Memory Access

I/O MemoryCPU

Customer’s Software

Drivers Frontend
Drivers 

Backend

Platform Management

Drivers

Fig. 1. Physical host running XCP

have direct access to other hardware devices. Furthermore, the
Xen hypervisor version adopted by XCP does not include
management utilities for memory dumping. This prevents
Dom0 from taking a snapshot of the running DomUs’ memory
content. The Dom0 is a special VM instance with special
privileges for hardware access. This is required because, in
the Xen architecture, the hypervisor relies on the Dom0 for
the mapping and management of all virtual disks, network
interfaces, and other device drivers required for hardware
access by the DomUs. For this reason, all the network and
disk traffic is redirected by the Xen hypervisor through Dom0
backend drivers that interact with devices capable of Direct
Memory Access (DMA). Figure 1 depicts the communication
between Dom0, DomU, and the Xen hypervisor.

The Xen hypervisor manages the communication between
the driver frontend in the DomUs and the drivers’ backend
in Dom0 as well as the access to the hardware devices of
the physical host from Dom0. The Dom0 is also home to
other important files including the hypervisor, the kernel, the
drivers (virtual disk and network) and the Xen management
tools. The infrastructure providers’ administrators need full
access to Dom0 for system updates and maintenance of
the infrastructure. This also allows them to modify the Xen
hypervisor including its utilities if required.

Security Issues. Infrastructure providers can perform various
attacks to access or modify the service providers’ (thus, also
service consumers’) data. They can access data directly in the
physical hosts, exploit vulnerabilities in the cloud customers’
VMs, access data directly in the data storage, capture data
using network sniffers, or use backup images to retrieve data.
We focus on security vulnerabilities in the physical host where
XCP is run by an infrastructure provider.

By directly accessing the physical host, an infrastructure
provider can install malicious hardware, perform a side chan-
nel attack, or modify the system software running on it
(Dom0 or DomUs). Modifications of the system software
include the possibility to reset the machine and boot with
a modified hypervisor or operating system tailored to enable
silent modification of access to the service provider’s data [23].

Modifications of hardware devices and drivers that perform
DMA allow access or modifications to the memory without
hypervisor control. DMA allows reads and writes to all the



Cloud Certifier Infrastructure Provider

Xen Cloud Platform Host

Service Provider

Certification 

Dashboard

Storage 

Service

Configuration 

database

Attestation Service

Boot loader

Dom0

Hypervisor

BIOS

Hardware TPM

Attestation

database

Authentication, configuration, 

and attestation results
Attestation summary

Fig. 2. BonaFides Architecture

memory and can be done by inserting a new hardware device,
for example, a specially designed PCI card, or by misusing
already available components (e.g. network cards). It is also
possible to manipulate devices by modifications of the re-
spective drivers. Considering that infrastructure providers have
full control over Dom0 and are able to use specially tailored
drivers, this type of attack allows them to capture disk content
and network traffic of the DomUs.

Attacks on the system software (Dom0) include modifi-
cations of the hypervisor, kernel, or kernel modules. This
potentially allows access to the memory of all VMs from
cloud customers running on the physical host. Infrastructure
providers can also modify the disk utilities and configurations
to create a duplicate of the data stored by the service providers’
VMs. Finally, modifications of the network utilities or config-
urations could allow redirection of all network traffic to a file.

While protection guarantees with respect to side channels,
physical attacks to the infrastructure provider, and detection
of vulnerabilities in the software and hardware components
(e.g. using security testing) are important as well, we focus on
attacks targeting modifications of the hardware and software
that allow access or modification to service provider’s data.

III. DESIGN

Our goal is the remote assessment of the cloud infrastruc-
ture’s integrity by a cloud certifier. We hence need to detect all
changes in the remote system that can possibly compromise
security. All changes in the hardware or software should
be reported to the cloud certifier, even if the infrastructure
provider has superuser access to the machine.

Our BonaFides system monitors the infrastructure provider’s
physical hosts by observing file modifications on a low level
and persistently stores the history of these integrity mea-
surements and file changes. Files are measured at regular
intervals and whenever changes in the files are detected.
BonaFides measures the hypervisor, kernel, kernel modules,
disk and network utilities, and system configuration files in the
Dom0. Depending on whether or not the BonaFides system
is caught in an assumed DoS attack (§IV-C), we perform
the measurements at one of two levels of granularity. In
normal operation, we compute a hash value of the file after its

Cloud Certifier Infrastructure Provider (XCP Host Dom0)

Integrity 
Measurement 

Engine

Attestation 

Service

Trusted 
Computing

API

Storage 

Service

getAuthChallenge(AIK)

nonce

getAttestationConf(SN)

configuration

bootstrap()

Dom0 

OS

setupFileWatchers()

ok

signNonce(AIK, nonce)

signed nonce : SN

fileChangeEvent()
hashFile()

extendPCR()
writeChangeToLog()

ok

ok

ok

Fig. 3. Authentication, configuration, file changes

modification and store this value persistently. This information
can later be used by the infrastructure provider to prove that
the change has been legitimate and was in the best interest of
the customer. This, for instance, is the case if updates were
installed. In contrast, if the system is under heavy load, we
may not be able to perform these computations of hashes for
performance reasons. In this case, we persistently record only
the fact that a file or a set of files have been changed. Upon
forensic analysis, it is then up to the infrastructure provider to
prove that the respective change events have been legitimate.

One problem when designing an integrity measurement
and remote attestation solution is trusted boot as well as
secure storage of authentication keys and measurement logs.
In BonaFides, we make use of the Trusted Platform Module
(TPM) proposed by the Trusted Computing Group (TCG)
standard [29], as explained in §IV.

Figure 2 sketches the system structure. The Storage Service
(SS) informs the Attestation Service (AS) about the hardware
and software components of the XCP infrastructure (run by
the infrastructure provider) to be attested. The measurements
are the task of the AS. To do so, it configures the Integrity
Measurement Engine (IME) using the input from the SS.
The IME is an internal component in the AS that performs
integrity measurements when file changes are detected (the
IME is not shown in the figure). The SS retrieves the integrity
measurements by querying the AS on a regular basis, or
whenever changes are detected and signaled by the IME.

The SS stores the attestations in a database for auditing pur-
poses. It notifies the Certification Dashboard when undesired
changes in the hardware or software are detected. Undesired
changes in the XCP are changes of the hardware/software that
possibly allow unauthorized access to the service provider’s
data. The cloud certifier must specify the requirements for the
cloud infrastructure, for instance, that a specific version of the
hypervisor must be in place or that access to DMA devices
should be made only trough certified drivers.



Cloud Certifier Infrastructure Provider (XCP Host Dom0)

Integrity 
Measurement 

Engine

Attestation 

Service

Trusted 
Computing

API

Storage 

Service

requestAttestation()

ok

doAttestation(nonce)

signedPCRs;changeLog

quotePCRs(AIK, nonce)

signedPCRs()

changeLog

getChangeLog()

Fig. 4. Attestation request and execution

Figure 3 shows the bootstrapping of BonaFides and the op-
erations executed when a file change is detected. Bootstrapping
the AS component is triggered by the Dom0 operating system
(OS); this also initiates the authentication and configuration
request operations with the SS component. The authentication
is a public key authentication where the AS requests a nonce
that is signed with a key protected by the TPM chip. The
signed nonce guarantees that replay attacks are not possible
and is used by the AS to request the attestation configuration
from the SS. Upon reception of the attestation configuration,
the AS checks the integrity of all files and configures the IME,
which sets up file change watchers. These file change watchers
are configured using an OS kernel module in Dom0 that
notifies the IME whenever a watched file is modified. Upon
detection of a file modification, the IME receives a respective
event and initiates the integrity measurement operation. This
operation consists of (1) generating a log entry that is hashed
and (2) updating an in-memory log file that records the
changes. The IME stores the hash of the log entry in the TPM
chip (§IV-A), which allows for future integrity checks.

Figure 4 shows the attestation request and execution op-
erations. The SS performs an attestation execution operation
at configurable periodical attestation intervals. The attestation
operation consists of retrieving integrity measurements from
the TPM chip and the change log (which is cleared after each
attestation). The SS uses the integrity measurements from the
TPM to verify that the change log has not been tampered with.
The attestation request operation shown in the upper part of
the diagram is optional. It can also be triggered by the AS
when a threshold of N file changes is reached. We call this an
alarm group, which is a parameter that can be configured by
the cloud certifier for each file being monitored. Files in alarm
group zero do not trigger an attestation request by the AS; files
in alarm group one trigger an attestation request whenever
one file change in any of the files of the group is detected;
files in alarm group N trigger an attestation request whenever
N changes are detected. The alarm group option increases

the response time of the cloud certifier if undesired changes
happen between attestations. Typical files to be configured as
group one include the kernel modules and device drivers that
can be loaded at runtime and possibly allow instant direct
memory access. Changes in files such as the kernel image and
disk configuration files that are effective upon the next booting
of the system can be part of a different alarm group.

We expect BonaFides to be implemented and configured
by the cloud certifier introduced in §II. In specific scenarios,
BonaFides can also be implemented and used directly by
service providers. However, we foresee cloud certifiers to
be globally trusted public key infrastructure providers or
government agencies specialized in market protection.

IV. IMPLEMENTATION

A. Trusted Boot

We implemented authentication and trusted boot support on
the grounds of the TCG proposal [29]. The TCG specifies
a trusted boot procedure where the different software compo-
nents that assume control during the boot process are measured
using a hash algorithm. The hash values of these components
are stored in a tamper-proof chip called the Trusted Plat-
form Module, or TPM. TPMs store hash values in so-called
Platform Configuration Registers, or PCRs. During the boot
process, PCRs are extended and can not be directly written
to or reverted to a previous state. The extension operation
consists of the concatenation of the current content of a PCR
with a TPM-external given hash value, computation of the
hash (SHA-1) of the concatenated value, and storage of the
resulting hash value instead of the old PCR value. This feature
guarantees that once a hash value of a software component
has been extended in a PCR, it is impossible to revert it to the
previous value. The values stored in a PCR can be retrieved
together with a signature that proves the PCR values are in
fact the values stored in the TPM chip. The authenticity of
the TPM chip is guaranteed through a certificate provided by
the TPM manufacturers (that we assume to be trusted).

Trusted boot and remote attestation support of the TCG also
includes pre-OS integrity measurements that are performed by
the BIOS and boot loader of the OS. This makes it possible to
verify that hardware and system software configuration have
not been modified. The boot loader and its configuration are
verified prior to execution of the BIOS. The boot loader then
verifies if the Xen hypervisor, XCP kernel, kernel modules,
and the binaries and configuration files required to start the
AS including the libraries the AS depends on (especially the
trusted software stack to communicate with the TPM) are
correctly configured. The key used for the authentication is
sealed in the TPM using the values of the PCRs from the
pre-OS environment. By sealing the authentication key, we
guarantee that the attestation service is not able to retrieve
the authentication configuration if the PCR values extended
by the pre-boot environment do not contain the exact same
values. The values may not match if the pre-OS is modified,
for example, by updating the BIOS in the physical host. In
case the values do not match, the storage server needs to



perform an attestation and analyze if the new PCR values
correspond to a trustworthy configuration. If the new PCR
values are legitimate, the attestation service generates a new
key that will be accepted from that point on.

B. Attestation Configuration

After trusted boot, the AS requests the attestation configura-
tion. This configuration consists of a list of files and respective
alarm groups that are to be attested and monitored by the
IME. It also includes several configuration parameters that
we explain as we introduce them. The list of files contains
paths to standard files, folders, or executable commands. The
information that is monitored differs depending on the type of
the configuration entry. For standard files, the file content is
monitored; for folders the folder listing; for commands the
output of the command execution as well as the code of
the commands themselves (see §IV-C). Commands come as
binaries or scripts; examples of command executions include
diagnosis tasks, e.g., to list the loaded kernel modules or to
list the active network file systems. Execution and hashing
of the command output is done by the AS only when an
attestation is executed. We limit the list of commands that
can be executed by the AS using a whitelist-based approach,
thus preventing a corrupt SS from executing arbitrary security-
critical commands on the machine that runs the AS.

C. Integrity Measurement Engine

The IME monitors the integrity of files and guarantees
that all changes to relevant files in the system are detected
and reported. To this end, it subscribes to a special kernel
module, the inotify module [14]. The inotify module notifies
the IME about all file change events related to files, folders,
and commands listed in the configuration. The IME also
subscribes to change events for commands because we need to
monitor changes to the command scripts or binary files. This
is necessary because, if we attest the output of the command,
we must also ensure that the integrity of the command itself
is respected. For each received file change event, the IME
generates a log entry that is hashed and extended in a PCR
in the TPM module. A log entry consists of the index of
the file changed, a change counter, the timestamp when the
change was received, the timestamp when the change event
was processed, and the hash of the changed file’s content.

Denial of Service. One limitation of the inotify kernel mod-
ule is that the event buffer has a limited size. In case this buffer
is full, file change events might be overwritten. This gives
rise to a Denial of Service (DoS) attack: The infrastructure
provider’s administrator floods the inotify kernel module with
file change events, thus becoming able to modify a set of
files without being noticed. A possible attack is a superuser
script that overwrites one byte in each of the monitored files
with its original content, hence not changing the hash of the
file. If a malicious infrastructure provider manages to write
and execute this script, and overloads the inotify file change
queue, the IME might use too much system memory and CPU
to hash files and keep the log of file changes. Such an attack

can be detected by counting the number of file change events.
Since too many file change events should not occur in normal
operation, we could simply scramble the PCRs by extending
zeros and leave it to the infrastructure provider to justify these
changes to the cloud certifier. This simple approach, however,
makes later forensic analysis difficult because no further useful
information is stored in the PCRs. In the remainder of this
paragraph, we describe a solution that records some more
useful forensic information when a DoS attack occurs. We
consider this kind of DoS attacks particularly relevant in our
approach because it is the only possibility for an attacker to
modify files in Dom0 without being noticed.

Internal Queue. To counter this threat, we have implemented
an internal buffer in the IME that directly dequeues all
elements of the inotify queue and thus allows us to capture
all change events. If two events for the same file are received,
only the newest event is kept in the queue, and a counter
is incremented for that specific file. This reduces memory
overhead and also enables detection of unsafe states: If a
file change event is in the queue to be processed and one
more change happens, this indicates that the file was in a
non-measured state during a specific time interval. The time
difference between the first event received and the time the
change event is processed represents the length of the time
interval the watched file was in a non-measured state. This
time interval is also written to the log. Since we do not
enqueue changes twice for the same file, the size of the internal
buffer is equal to the number of files being monitored.

If a change event is in the queue and the change counter is
not greater than one, it is of no significance how long it takes
to process the file change event. In this situation, we are sure
that we are hashing the one and only version of the changed
file. However, if the change counter is greater than one for
unprocessed change events—meaning that two modifications
have been performed in a small time interval—we can not be
sure about the previous states of the file when the change event
is processed. Our approach is to record this fact in the log for
further investigation; the infrastructure provider will have to
provide evidence that these changes have been legitimate.

Virtual PCR. In addition to a possible overload in terms of
processing power and memory, the IME is not able to hash and
extend a PCR in the TPM if the number of change events is
too large. We have done performance measurements on three
different systems to assess the throughput of a TPM to extend
PCRs. The average time for one TPM PCR extend operation
computed over 100 executions is .49 seconds for a Windbond
TPM 1.1; .084 seconds for an Infineon (IFX) TPM 1.2; and .04
seconds for an Atmel TPM 1.2. If we ignore the time it takes
to detect and process a file change (e.g. computing a file hash),
the maximum throughput we can achieve with the fastest TPM
we have measured is hence roughly 28 PCR extend operations
per second. An attacker is able to generate file change events at
a much faster rate (§VI). If too many changes are detected, the
queue will hence take a long time to be processed. However,
when file change events are not processed sufficiently fast, an
attacker has a rather large time window to possibly circumvent



the system by corrupting the in-memory log of file changes.
Fortunately, as long as there is no vulnerability in the system
that would explicitly make this possible—of course a strong
assumption—this can be excluded: it is possible to ensure that
only the process which owns the memory region, and not even
the kernel, can modify it. We discuss this in §VII. Because the
length of the internal queue is bounded by the number of files
to be measured, it is unlikely that the queue uses too much
physical memory in the machine to store the change events.

The IME strategy in case of overload is to continue process-
ing the file change events in the queue while a PCR extension
operation is being executed in the TPM. The log entries for
the change events continue to be written to the in-memory log.
Now, in the overload situation, in order to ensure integrity of
the log, we extend a virtual PCR image with the hash of the
log entry rather than the real PCR [27]. Like the physical
PCR extension, the virtual operation consists of overwriting
the virtual PCR with the digest (sha1) of its current content
appended to the hash to be extended. Because this computation
is performed by the CPU and not by the TPM, performance
problems are not an issue. The virtual PCR image is an image
of the real PCR value received from the TPM in the last extend
operation. When the TPM finishes executing the PCR extend
operation, the IME extends the real PCR with the updated
value of the (virtual) PCR image and overwrites the in-memory
PCR image with the new PCR value returned.

This strategy guarantees that all file changes processed (and
logged) by the IME while the TPM is busy extending a real
PCR are chained using the in-memory PCR image. To corrupt
our in-memory log, an attacker has to search in the memory of
the IME process for the PCR image value (which cannot be
prepared in advance), overload the IME with change events
to trigger the in-memory PCR extension, and overwrite the
PCR image value at precisely the moment after the last change
event has been generated, but before the IME extends this
value in the real TPM. Moreover, the TPM device is single-
threaded and does not allow access to PCR values by other
processes during an extend operation. This gives the IME an
advantage in guaranteeing the integrity of our log even if the
attacker manages to read and write to the IME’s memory log
(which can be excluded; see §VII). Note that it is also not
possible for an attacker to reproduce the TPM PCR extensions
and predict the current value of the PCR in the TPM. This is
because the log entry that is hashed and extended includes fine-
grained timestamp information that is practically impossible to
predict. The attacker would need to know the timestamp with
a nanosecond precision when the file change event generated
was received and processed by the IME.

The virtual PCR image hence guarantees the integrity of
our in-memory log considering the limited throughput of the
TPM device. However, if too many file changes are generated,
the IME is not able to compute the hash of the file content for
all changes in the queue (which is done by the CPU). In these
cases, the IME does not hash the file content for each file event
in the queue but only logs the number of changes without the
hash of the file content. The referenced file is marked with a

flag which indicates that the file should be hashed later. When
the inotify queue is empty, the IME works on the backlog:
it hashes and logs all the files that have been marked, until
new file change events are enqueued again. This approach
prioritizes the logging of the number of file changes over the
content of these changes, which is useful to indicate that a
possible DoS attack took place. We have explained above that
these cases must be justified by the infrastructure provider.

Log size. The IME supports a configuration parameter to
limit the in-memory size of the change log. If the size of
the log is larger than this value, the file change event is not
recorded. Instead, the system enters panic mode and the PCR
value is scrambled. We consider this a critical situation where
nothing can be guaranteed anymore. In this case, BonaFides
cannot even provide information about which file was changed
but rather that too many changes have happened. This, in turn,
will have to be explained by the infrastructure provider.

D. Tamper Detection

The AS can detect malicious operations from infrastruc-
ture providers. We have implemented a tampering detection
mechanism that detects when the superuser of the Dom0 tries
to sandbox the AS using ptrace [17], reduce the priority of
the process, or change the apparent disk root of the process
(chroot). If this is detected, BonaFides scrambles the PCR
values using random numbers. This tells the cloud certifier
that something went wrong. The only way of having the AS
operational again is to reboot the physical host.

V. EXAMPLE REVISITED

To illustrate how BonaFides helps secure a cloud infrastruc-
ture, we revisit the example described in §I where a service
provider S runs its service on the hardware of an infrastructure
provider I. Now we present four examples in which I wants
to steal the data of S’s customers (i.e. C’s data).

Modified hypervisor or hardware. In the first example, I
changes the master boot record (MBR) to load a malicious
hypervisor like the Blue Pill hypervisor [22]. This hypervisor
allows arbitrary modifications of the system’s memory and raw
access to hardware devices such as hard disks and network
cards. It is very hard to detect, but to load it during system
startup, the MBR must be modified. This MBR modification is
detected by the SS as the BIOS measures the MBR and extends
this value into the PCRs. The SS immediately learns that the
system has been tampered with because the AS is unable to use
the authentication sealed to the pre-OS PCRs. In the second
example I exchanges the file containing the hypervisor with a
version that allows I to read arbitrary memory addresses and
thus gains direct access to the VM’s memory. During the boot
process the boot loader measures the file of the hypervisor and
extends the measurement into the PCRs. The SS immediately
knows that the system has been tampered with because the
sealed authentication key can not be used. The same tampering
detection can be used when inserting a hardware device to
access arbitrary memory locations and thus the VM’s memory;



possibly also changing the kernel or one of its modules in order
to gain access to the stream of data to/from the disk.

Modified configuration. Our third example consists of I
changing the configuration file of a common virtual switch,
Open vSwitch, that allows I to mirror a VM’s network port
in the internal network bridge. I can thus capture and inject
data in this channel. The Open vSwitch configuration file is in
the highest alarm group because there is the direct possibility
of a data leak if this single file is changed. Once I changes
the Open vSwitch configuration file, the AS is notified by the
inotify kernel module, and processes the change by measuring
the file. It logs the change and extends the hash of the log entry
to the PCR. An attestation is immediately requested from the
SS because of the highest alarm group. Moreover, the cloud
certifier is notified by the SS as the configuration of Open
vSwitch does not correspond to the expected configuration.

Modified commands. The last example shows how I can
modify the XCP to steal C’s data by changing the binary of
the disk utility tapdisk. By doing so, I can duplicate the stream
of data to/from the disk as tapdisk manages the requests of the
VMs for data to be read from/written to the storage. Because
of its criticality, the cloud certifier is likely to include this file
into the configuration of the AS in the highest alarm group.
Once I modifies the binary, the AS is immediately notified of
the change by the inotify kernel module and processes it by
measuring the file and creating a log entry, which is once more
hashed and extended to a PCR. An attestation is immediately
requested from the SS, which is able to determine that the
binary has been tampered with.

Conclusions. By adopting BonaFides, a cloud certifier C
can provide a service provider S with guarantees that the
hypervisor, Dom0 kernel, and Dom0 kernel modules are
indeed the ones expected to be running in I’s physical hosts.
Furthermore, all changes in I’s software infrastructure are
detected and reported to C through the remote attestation
procedure. Consequently, C informs S about changes that
might have had an impact on data protection policies required
by S. We emphasize that we do not protect against stealing or
modification of data itself but make it possible to detect this.

VI. PERFORMANCE

BonaFides impacts resource consumption for hashing files
and resource consumption for the IME to process file change
events. The communication overhead is negligible. To assess
the impact, we performed a set of experiments on an Intel
Core 2 Quad Q9650 processor with 8GB of system memory,
a TPM chip, and a WD Velociraptor hard disk running Ubuntu
with a 2.6.32 Linux kernel.

Computation of Hashes. Our experiments suggest that, not
surprisingly, the hashing time is linear in the size of the files
and that caching has an impact on hashing. In our prototypical
implementation, we manage to hash 40 files with 40 MB each
in about 5 seconds CPU time, 160 files with 40 MB each in
about 20 seconds. At this point, in-memory caching becomes
impossible; 210 files with 40 MB each require 40 seconds,
300 files with 40MB each require 60 seconds. Depending on

the size of the attested files, this linear overhead may turn out
to be problematic. For directories we measured the attestation
of 1 to 300 directories containing 40 files and found a linear
correlation with respect to CPU usage, but had fluctuations
in the CPU time, which we also attribute to caching and
recursive reading of directory contents. The attestation of 300
directories consumed 180 ms. We observed the same results
when measuring the time it takes to execute an attestation of
300 commands each producing 400 bytes of output.

In sum, measuring files is the main part of the CPU
usage when performing an attestation. The time to measure
directories and commands is negligible. Thus, when setting up
BonaFides, the overall size of all files to be attested is relevant.
Similarly, it is important to know the time it will take for an
attestation. We conclude that the AS memory requirement is
equal to the overall estimated size of all files to be attested.

We illustrate the performance impact with an example.
Suppose that a cloud certifier wants to attest an XCP Dom0
physical host and the installed Oracle Java Runtime Envi-
ronment. The disk size for a standard XCP installation is
approximately 785 MB, with the average file size below 1
MB. The complete JRE consists of 700 files, also with less
then 1 MB average size per file. The XCP boot loader, boot
configuration, hypervisor, kernel, kernel modules, and the JRE
system library dependencies consist of approximately 2300
files. In our experiment, hashing and attestation of all these
3000 files, with a total size of around 300 MB, does not take
more than 2 seconds. We may conclude that our system can be
used to remotely attest the integrity of realistic infrastructures.

Event Processing Overhead. To examine the implications
of the DoS attack described in §IV-C, we created 700 files with
1 MB each in one folder. In the experiment, we simulate an
attacker who keeps the system as busy as possible. To do so,
we apply the smallest possible change—one byte—ten times
to every file, one after the other, and restart after all 700 files
have been changed. In two separate experiments, we selected
this byte randomly, or always picked the first byte. The results
confirm the intuition that when always changing the first byte,
the system caches this byte after the first loop. In contrast,
when changing a random byte, the system needs to re-access
the disk in every loop, thus making the attack significantly
slower. To double check, we also performed this experiment
on a RAM disk. As expected, in this case there is no difference
when using either method since both the random and the first
byte are already in the system memory.

For 700000 file changes (100 loops), Figure 5 shows the
length of the queue over time when using a RAM disk as
underlying storage medium. The queue never exceeds 700
entries which is the number of files in the configuration. In
the beginning, the queue is empty, then quickly fills up to the
maximum. This is because the changes are coming in at a
fast and steady rate. Then, processing of events (that is, PCR
extension) starts. Execution of this thread, which is dequeuing
the events, causes the fluctuations visible in the figure. The
burst of file changes ends after 1.5 seconds, causing the queue
to be completely processed shortly afterwards, and starting to



0

100

200

300

400

500

600

700

800

0 0,5 1 1,5

Time (s)

Queue length

Fig. 5. Queue length, DoS attack on RAM disk

hash all files that were changed. The same experiment on a
physical hard disk yielded qualitatively identical results.

Conclusions. We conclude that BonaFides can handle DoS
attacks both on RAM and hard disks with file changes at
a maximum rate. BonaFides is able to capture the number
of changes as well as the final state and extend the PCRs.
Space restrictions forbid a detailed description, but we have
conducted experiments to find out that we would still need to
use our approach with the internal queue to capture all file
change events if the TPM chip was 1000 times faster.

VII. SECURITY

We can guarantee that BonaFides monitors and reports all
changes to a set of files, folders, and commands to the cloud
certifier. We do not overload the system memory in case of
a DoS attack. Even in the presence of this type of attack, all
changes in the monitored files are detected and reported. The
load of the system depends on the configuration parameters
and on the size of the attested files.

By monitoring the kernel, kernel modules, network and disk
utilities and configurations we guarantee that the infrastructure
provider is not able to perform raw access to the memory
through software, and to access the disk and network data.
Considering that BonaFides relies on trusted computing sup-
port to verify the integrity of hardware devices and firmware
capable of DMA, BonaFides inherently provides this guar-
antee. From our performance measurements in §VI, we may
conclude that this can be done for realistic infrastructures.

In order to provide these guarantees we must assume that the
infrastructure provider will not attack the machine physically
using side channels, cold boot, or platform reset attacks. A
malicious infrastructure provider is able to physically remove a
memory card from the physical host and read information from
it in another computer [9]. The TPM chip is also vulnerable
to a platform reset attack where the TPM chip is cleared
without resetting the whole machine; a skilled attacker could
theoretically manipulate the PCR values [4].

We need to assume that if external storage is used by the
infrastructure provider, the data is encrypted with keys that
are stored in the service providers’ VMs. In the trusted boot
process we must assume that BIOS and boot loader are con-
figured to verify the pre-OS boot environment (which is part

of the BonaFides system). We have to assume that none of the
hardware and software components contain vulnerabilities that
would allow the infrastructure provider unauthorized access to
the service providers’ data (a problem shared by all solutions
that use the TPM). We have to assume that the TPM chip has
been initialized, that ownership has been taken by the cloud
certifier, and that we can trust the TPM manufacturer.

To avoid direct memory access by the superuser from
user space, and consequently, modifications to the running
BonaFides system including the in-memory log, we assume
that the Dom0 kernel is properly configured. We assume it
is compiled with option NONPROMISC DEVMEM enabled
which restricts direct access to the physical memory from
user space through /dev/mem. A Linux kernel compiled with
this option enabled only allows user space access to specific
memory areas used by PCI devices and the BIOS code, which
is required by some specific applications (e.g. X server).
Access to all other physical memory areas is forbidden.

Using loadable kernel modules (LKM), the superuser can
overwrite the interrupt table; overwrite the system calls table;
patch the running kernel code or any memory region; modify
the network stack; and manipulate kernel internal structures
[18], thus circumventing BonaFides. To prevent LKM attacks
we assume that Dom0 does not allow loading of dynamic ker-
nel modules or that a control mechanism for this functionality
is in place. An example control mechanism available for the
Fedora Linux distribution is a kernel module that implements a
white list functionality [28]. Only the kernel modules that are
in the list of names of allowed kernel modules can be loaded.
However, no signatures or hashes for integrity checks are used.
If this control mechanism is in place, BonaFides can monitor
this list and the kernel modules themselves to guarantee that
only trustworthy kernel modules are loaded.

To avoid unloading of the inotify and TPM device driver
kernel modules, which are used by the attestation service,
we assume that the Dom0 kernel is compiled with the option
MODULE FORCE UNLOAD disabled. This prevents the su-
peruser from removing kernel modules that are in use. We also
assume that a guardian kernel module is loaded at startup to
prevent the Trusted Computing Daemon and AS from being
terminated or stopped, or have their priority reduced (nice
value) by the superuser [19], [21]. The AS component has
built-in functionality to detect its process priority.

Infrastructure providers are likely to create backups of the
customers’ VMs (which itself must be allowed by BonaFides).
Using customer encryption keys, the storage areas of these
VMs can be considered secure. We have to assume that
the backup servers are recursively secured by BonaFides.
Infrastructure providers can also suspend consumer VMs and
write them to disk. BonaFides can monitor the (by design
fixed) folder in which the suspended VMs are stored. If the
VM images are copied from this location and thus leave the
realm of BonaFides, no guarantees can be provided; but the
infrastructure provider will have to justify where the copies
went. Akin to suspension, VM images are sent to a network
socket whenever the VM is migrated. In this case, we have



of course to assume that the receiving end is protected by
BonaFides as well; once more, we can detect that a migration
has taken place. This puts the infrastructure provider in a
position to prove that the migration was legitimate.

If BonaFides itself is not implemented correctly or exhibits
vulnerabilities, we cannot give any guarantees. We hence
assume that our implementation is correct and not vulnerable.
Moreover, we assume that the complete software stack on
which BonaFides relies (e.g. C compiler and libraries) does not
contain vulnerabilities, and that all communication between
storage server and attestation service is encrypted and the keys
are protected using the TPM chip. Note that integrity-based
security measures, by definition, do not make any statement
about the functional correctness of the measured artifacts.

BonaFides does not provide guarantees with respect to the
behavior of the attested system. It is possible to guarantee that
a binary is present, and that an initialization script executes
this binary file at boot time. However, at the current stage
of development, it is not possible to guarantee that the binary
file will successfully start and continuously run when executed
by the initialization script. A primitive support to check if a
specific process is running could be added, using a command
configuration option that attests the output of the ps command.

VIII. RELATED WORK

Schiffman et al. [26] describe a system for integrity mea-
surements of VMs. In their work, the trustworthiness of
the machines depends on the input given to the VMs for
processing, not on actions taken on the physical host. Thus, the
possibility of a malicious insider modifying the physical host
is not addressed. Quynh and Takefuji [20] describe a real-time
integrity monitor for Xen VMs addressing functionalities that
are not covered by existing file system integrity measurement
tools. In their work the assumption is that Dom0 is trusted to
perform and store integrity measurement reports. Jansen et al.
[10] present a solution to the problem of attesting VMs by
deploying security services in Dom0. This enables the secure
creation and execution of VMs, including the ability to attest
VMs at runtime. An essential part of the solution is the TPM,
which enables secure storage of security policies in Dom0.

Santos et al. [16] focus on integrity measurements and
attestation of physical hosts when VMs are migrated, which
guarantees that physical hosts are trustworthy only at the time
of migration. Furthermore, by adopting Terra [7], attestations
of the physical host are also made upon request by using a
trusted VM monitor (TVMM) as a hypervisor. The TVMM
provides isolation and separation of VMs plus additional
sealed storage for the attestation values using the TPM. The
hypervisor has the responsibility to provide the hardware level
attestations of the system in a trusted way to software running
in one of the VMs.

Descher et. al. [5] proposes to use encrypted VMs in
encrypted partitions (EP) to increase security. Upon execution
on a physical host, the VM owner is given access to the boot
system (BS) and has to provide a decryption key for the EP
in order to start the VM. The access to BS is protected using

public-key cryptography where the physical host is only given
a public key to install in the BS. All other keys received by
the BS (including the key to decrypt EP) are only stored in
volatile memory thus ensuring that potential intruders need
“substantial control over the infrastructure.”

The Integrity Measurement Architecture [25] is a general
purpose solution that checks the integrity of system com-
ponents (kernel, kernel modules, system libraries, etc.) by
computing hashes of system files at boot time. In the context
of grid solutions that rely on virtualization, Löhr et al. also
measure the integrity of system components at boot time [13]
to guarantee that only nodes in a safe state are able to decrypt
jobs submitted to them. Haldar et al. [8] and Sadeghi et al. [24]
propose to attest system properties instead of hashing binary
system files. The attestation of system properties is possibly
better in case of system updates, however, the problem of
specifying and assessing sound and relevant system properties
is not extensively addressed in their work. In contrast to all
existing approaches, we propose to measure the integrity of the
system components not only at boot time but also at runtime.
In a recent overview of attestation in trusted computing, Lee-
Thorpe identifies this as one of the open problems [12].

Berger et al. [1] and Krautheim et al. [11] propose virtual
TPM (vTPM) devices to prevent virtualization customers from
sharing the same TPM in a physical host. England and Jork [6]
propose a para-virtualized solution where one real TPM device
is shared among virtualized hosts. According to Krautheim et
al. their solution is preferable because it is the only one that
provides complete support to all TPM functionality. These ap-
proaches to TPM virtualization and sharing are fundamentally
different from the work described in this paper. Their focus
is on the provisioning of trusted computing services to guest
VMs rather than on attestations of the host platform.

Some companies and research studies [2] have indicated
their intent to follow a similar direction as we have done to
enable trust in cloud infrastructures. Intel, VMWare and RSA
announced [3] that they are collaborating to build the Data
Loss Prevention Enterprise Manager to measure and monitor
cloud infrastructure security. This system uses the Intel trusted
execution rechnology CPU extension, RSA software compo-
nents to collect the data, a dashboard for security evaluation,
and a component to prevent data loss. We are not aware of
technical details or implementations of this product.

Delta. In contrast to these approaches, our system is de-
signed to be flexible and independent from operations taking
place in the system. It records the trustworthiness of the host
system by performing measurements at boot time, and also
afterwards whenever a preconfigured change event happens
including its measurement in a trustworthy log. Attestations
are performed periodically, on demand, or after a specified
number of files has been changed. Thus our solution works
with a standard hypervisor and kernel and does not require
a special implementation of the hypervisor or changes of the
kernel. Moreover, our approach works in a distributed scenario
and needs only one service running in the administrative
domain of each physical host, plus a central service for the



attestation collection that runs separated from the cloud.

IX. CONCLUSIONS

We provide a solution to the problem of malicious infras-
tructure providers stealing or modifying the service providers’
or service consumers’ data. Our system can remotely monitor
and attest the integrity of crucial system files, thus filling
a gap in the Xen Cloud Platform and other Linux-based
cloud operating systems. We have discussed assumptions and
security guarantees that we can provide.

Our system does not ensure data protection. Instead, it
serves as a tool to assess the integrity of the infrastructure
provider’s hardware and software. The data that it creates
in a tamper-proof way is supposed to be used for forensic
purposes: the infrastructure provider must—and, sometimes
more importantly, can—prove that all recorded change events
have been legitimate. It is up to the cloud certifier to identify
the specific files and configuration parameters that must be in
place and that guarantee specific security properties.

BonaFides complements existing intrusion detection sys-
tems of infrastructure providers because it yields information
on whether or not systems are compromised, and which
sensitive files were modified. This strengthens protection for
the service provider because an attack not originating from the
infrastructure provider can now also be detected.

While our work is based on the XCP, BonaFides can be used
in other environments such as VMWare ESXi without major
changes in the general architecture and concepts. For example,
the SS component provides a generic database for specifica-
tion of integrity measurement configurations considering that
different cloud solutions could be used.

In addition to whether or not the assumptions in §VII
are realistic, there is a number of limitations and open
questions. We have not yet implemented a solution for the
situation when backups or migrations within the infrastructure
providers’ cloud take place (§VII). Moreover, we have not
yet investigated possible approaches to remotely deploying
BonaFides. We believe that new infrastructure providers can
ship BonaFides with new machines and pre-owned TPMs. In
existing infrastructure providers the installation and ownership
procedure of the TPM device would require physical presence
or remote serial access. Integrity can only be guaranteed in
this case if the existing machines are inspected to ensure that
no malicious software is running when BonaFides is installed.

Acknowledgment. C. Moucha provided valuable technical
advice. This work was supported by FhG Internal Programs
Attract 692166 as well by the EU-funded IP MASTER.

REFERENCES

[1] S. Berger, R. Cáceres, K. A. Goldman, R. Perez, R. Sailer, and L. van
Doorn. vtpm: virtualizing the trusted platform module. In Proceedings
of the 15th conference on USENIX Security Symposium, 2006.

[2] R. Chow, , P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka,
and J. Molina. Controlling data in the cloud: outsourcing computation
without outsourcing control. In Proceedings of the 2009 ACM workshop
on Cloud computing security, CCSW, 2009.

[3] S. Curry et al. Infrastructure security: Getting to the bottom of
compliance in the cloud. http://www.rsa.com/innovation/docs/CCOM
BRF 0310.pdf, Mar 2010.

[4] Dartmouth College PKI/Trust Lab. Tpm reset attack. http://www.cs.
dartmouth.edu/∼pkilab/sparks/, Sep 2010.

[5] M. Descher, P. Masser, T. Feilhauer, A. M. Tjoa, and D. Huemer.
Retaining data control to the client in infrastructure clouds. International
Conference on Availability, Reliability and Security, 2009.

[6] P. England and J. Loeser. Para-virtualized tpm sharing. In Proceedings
of the 1st international conference on Trusted Computing and Trust in
Information Technologies, Trust ’08. Springer-Verlag, 2008.

[7] T. Garfinkel, , B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra:
a virtual machine-based platform for trusted computing. SIGOPS Oper.
Syst. Rev., 37(5), 2003.

[8] V. Haldar, D. Chandra, and M. Franz. Semantic remote attestation - a
virtual machine directed approach to trusted computing. In USENIX VM
Research and Technology Symposium, 2004.

[9] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest
we remember: Cold boot attacks on encryption keys. In Proceedings
17th USENIX Security Symposium, Jul 2008.

[10] B. Jansen, H. Ramasamy, and M. Schunter. Flexible integrity protection
and verification architecture for virtual machine monitors. In Proceed-
ings Second Workshop on Advances in Trusted Computing, August 2006.

[11] F. Krautheim, D. Phatak, and A. Sherman. Introducing the trusted
virtual environment module: A new mechanism for rooting trust in cloud
computing. In Trust and Trustworthy Computing, volume 4734 of LNCS.
Springer Berlin / Heidelberg, 2010.

[12] A. Lee-Thorp. Attestation in Trusted Computing: Challenges and
Potential Solutions. Technical report, Royal Holloway, University of
London, 2010.

[13] H. Löhr, H. Ramasamy, A. Sadeghi, S. Schulz, M. Schunter, and
C. Stüble. Enhancing grid security using trusted virtualization. In
Autonomic and Trusted Computing, volume 4610 of LNCS. 2007.

[14] R. Love. Kernel korner - intro to inotify. Linux Journal, Sep 2005.
[15] P. Mell and T. Grance. The nist definition of cloud computing. Technical

report, National Institute of Standards and Technology, 2009.
[16] K. P. G. Nuno Santo and R. Rodrigues. Towards trusted cloud

computing. In Proceedings of the Workshop On Hot Topics in Cloud
Computing (HotCloud), San Diego, CA. MPI-SWS, October 2009.

[17] P. Padala. Playing with ptrace. Linux Journal, 103, November 2001.
[18] R. S. Pelaez. Linux kernel rootkits: protecting the system’s

”ring-zero”. http://www.sans.org/reading room/whitepapers/honors/
linux-kernel-rootkits-protecting-systems 1500, Sep 2010.

[19] Pragmatic and THC. Complete linux loadable kernel modules. http://
packetstormsecurity.org/docs/hack/LKM HACKING.html, March 1999.

[20] N. A. Quynh and Y. Takefuji. A real-time integrity monitor for xen
virtual machine. In Proceedings Intl. Conf. on Networking and Services,
page 90, Los Alamitos, CA, USA, 2006. IEEE Computer Society.

[21] M. Reiter. Exploiting loadable kernel modules. http://www.thedarkside.
nl/honeypot/extra/expl lkm.html, September 2010.

[22] J. Rutkowska and R. Wojtczuk. Bluepilling the xen hypervisor. http:
//invisiblethingslab.com/resources/bh08/part3.pdf, August 2008.

[23] J. Rutkowska and R. Wojtczuk. Virtualization (in)security. http://www.
blackhat.com/html/bh-us-10/training/bh-us-10-training jrk-virt.html,
Sep 2010. Black Hat USA 2010 Weekday Training Session.

[24] A. Sadeghi, C., Stüble, and M. Winandy. Property-based tpm virtualiza-
tion. In Proceedings of the 11th international conference on Information
Security, ISC ’08. Springer-Verlag, 2008.

[25] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
implementation of a tcg-based integrity measurement architecture. In
Proc. of the 13th conference on USENIX Security Symposium, 2004.

[26] J. Schiffman, , T. Moyer, C. Shal, T. Jaeger, and P. D. McDaniel.
Justifying integrity using a virtual machine verifier. In IEEE ACSAC,
2009.

[27] B. Schneier and J. Kelsey. Secure audit logs to support computer
forensics. ACM Trans. Inf. Syst. Secur., 2(2), 1999.

[28] M. Trmac. Modprobe whitelist. http://fedoraproject.org/wiki/Features/
ModprobeWhitelist, Sep 2010.

[29] Trusted Computing Group. Tpm main specification 1.2, July 2007.
[30] VMWare. Vmware to collaborate with google on cloud computing. http:

//www.vmware.com/company/news/releases/vmware-google.html, May
2010.

[31] XenProject. Xen cloud platform. http://www.xen.org/products/cloudxen.
html, May 2010.


