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Abstract. Distributed usage control is concerned with controlling how
data may or may not be used after it has been given away. One strategy
for enforcing usage control requirements is based on monitoring data
usage and reacting to policy violations by imposing penalties. We show
how to implement monitors for usage control requirements using run-
time verification technology.

1 Introduction

The vast amount of data collected in digital form necessitates controlling the
usage of sensitive data. The use of personal data is governed by data protection
regulations. Likewise, the protection of intellectual property such as copyrighted
artworks or trade secrets is in the financial interest of the data owners. Usage
control [8, 9] is an extension of access control that not only addresses who may
access which data, but also what may or may not happen with the data after-
wards. We study usage control in the context of distributed systems where the
participating subjects can take the roles of data providers (who give data away)
and data consumers (who request and receive data). When a data provider gives
data to a data consumer, the latter must adhere to obligations, which are condi-
tions on the future usage of data. Examples include “do not distribute document
D,” “play movie M at most 5 times,” “delete document D after 30 days,” and
“notify the author whenever document D is modified.”

There are two basic strategies that data providers can employ for enforcing
obligations. With control mechanisms, they can restrict the usage of objects or
ensure that certain actions are executed at a certain point in time, thus prevent-
ing obligation violations. The second strategy is based on monitoring whether
an obligation is violated and penalizing the data consumer when this happens.
This is similar to law enforcement where the police cannot always prevent peo-
ple from breaking the law but fine or sentence delinquents when catching them.
This strategy is implemented by observation mechanisms, which consist of two
parts. Provider-side obligation monitors are used to decide whether an obli-
gation is adhered to, and consumer-side signaling mechanisms notify the data
provider about events that happen at the data consumer’s side.

In this paper, we present the implementation of an obligation monitor that
adapts run-time verification techniques. The obligation monitor has been de-
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signed to monitor a wide range of usage control requirements that were identified
in earlier studies. This is the first application of run-time monitoring to usage
control to the best of our knowledge.

2 Background

Obligations The Obligation Specification Language (OSL) [6] is a language for
expressing obligations in usage control. OSL is a temporal logic similar to LTL
and includes constructs for expressions that frequently occur in usage control
requirements and that are difficult to express with standard LTL operators.
In particular, OSL is able to express cardinality conditions, conditions on the
accumulated usage time, and both permissions and prohibitions. An obligation
expressed in OSL formulates a property that every execution trace of a data
consumer must satisfy.

We call an obligation o fulfilled in a trace t at time n if t with every possible
extension after n satisfies o. In contrast, o is violated in t at time n if t with
every possible extension after n does not satisfy o [5]. Violation and fulfillment
correspond to the notions of bad and good prefixes introduced by Kupferman
and Vardi [7]. We use them to decide the points in time when penalties should
be triggered (i.e., when an obligation is violated) or when the monitoring of an
obligation can be stopped (when it is either violated or fulfilled).

Related Work Monitoring as an enforcement strategy for obligations has
been proposed by Bettini et al. [1]. There are many different approaches to the
monitoring of temporal formulae. These approaches differ depending on the ex-
pressiveness of the input language and the techniques used for monitoring. Gen-
eral overviews of such systems are given in [2, 3]. In terms of the implemented
techniques, we can differentiate between rewriting-based and automata-based
approaches. Automata-based algorithms have an initialization overhead that
results from building the automata, and this overhead is usually exponential in
the length of the monitored formula. However, they are only linear in the size
of the formula at run-time, whereas the rewriting-based algorithms do not have
any initialization overhead but are less efficient at runtime [10].

3 Observation Mechanisms

An observation mechanism consists of a provider-side obligation monitor and
a consumer-side signaling mechanism. The signaling mechanism observes the
actions of a data consumer and informs the monitor about these observations by
sending dedicated signals. If the monitor detects the violation of an obligation,
the corresponding penalty is triggered. If an obligation is fulfilled or violated, its
monitoring is stopped. The signaling mechanism may send signals corresponding
to single actions or sequences of actions. In the latter case, obligation monitors
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can also be deployed at the consumer side. In the extreme case, the whole
monitoring functionality may be included in the signaling mechanism, which
then informs the data provider in case an obligation is violated.

The signals received by the data provider must be trustworthy in the fol-
lowing sense: (1) the observations of the signaling mechanism must correspond
to what really happens at the data consumer (correctness and completeness);
(2) the signaling mechanism itself must not be tampered with; and (3) the sig-
nals must not be altered or blocked during transmission. How these guarantees
can be provided is outside the scope of this paper. However, monitoring also
makes sense even when only some of them hold. If signals cannot always be
transmitted, for example, then the monitoring functionality can be integrated
into the signaling mechanism. This way, the signaling mechanism can go online
periodically and tell the data provider whether violations have occurred.

4 Obligation Monitors

Monitoring Algorithm The process of finding good and bad prefixes for
temporal formulae has been studied in the discipline of run-time verification
[2, 3]. An important criterion for selecting an algorithm was efficient support
for all operators of OSL. While all OSL formulae can be translated into LTL
formulae, direct translation results in poor performance. For instance, OSL can
express exclusive permissions such as the obligation that a given data item may
only be sent to two subjects. Enumerating all subjects that are not allowed,
which is necessary when translating permission expressions to LTL, not only
makes the resulting monitors potentially very large, but also poses problems
when new subjects are dynamically added to the system. Thus, such exclusive
permissions should be directly supported by the monitoring algorithm as well.

The algorithm we have chosen is based on the work of Geilen and Dams
[4]. It is a tableau construction that constructs a timed automaton for every
obligation. When a transition is not defined, this indicates the violation of the
obligation, and when a special state is reached, then the obligation is fulfilled.
We have extended the algorithm to efficiently support cardinality conditions by
introducing dedicated counters, which are similar to timers. Further, we have
introduced special support for the permission operators of OSL.

Implementation We have prototypically implemented the obligation monitor
in Java. Tests have shown that the following factors impact the monitoring
performance: the number of simultaneously monitored obligations, the size of
the obligations, the frequency at which signals are received, and the duration
of the clock cycle. The number of actions that are prohibited by an exclusive
permission does not have an effect on the performance of the monitor, and
neither does the size of the number in a cardinality condition. Determining the
exact performance of the monitor is outside the scope of this paper, especially
as the implementation itself is not yet optimized towards heavy workloads.
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However, tests on a Pentium M with 1.6GHZ and 1GB of RAM where 1000
obligations were monitored simultaneously and signals were sent every 150ms on
average showed that the monitor was able to process all signals within less than
100ms. The fact that we have achieved this performance on a low-end system,
without dedicated performance optimizations of the code and the platform,
suggests that creating industrial-strength obligation monitors is not an illusion.

5 Conclusion

Observation mechanisms are an important means for usage control enforce-
ment. A widespread adoption of observation mechanisms will lead to a wider
applicability of usage control enforcement. We have characterized those mech-
anisms and have shown how to adapt existing run-time verification techniques
for obligation monitoring in usage control. We have also built a prototype of
an obligation monitor based on these ideas. Future work includes creating a
performance-optimized implementation of the monitor, determining how trust-
worthy signaling mechanisms can be built, and integrating observation mecha-
nisms into business information systems.
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