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Abstract. We present the Obligation Specification Language (OSL), a
policy language for distributed usage control. OSL supports the formal-
ization of a wide range of usage control requirements. We also present
translations between OSL and two rights expression languages (RELs)
from the DRM area. These translations make it possible to use DRM
mechanisms to enforce OSL policies. Furthermore, the translations en-
hance the interoperability of DRM mechanisms and allow us to apply
OSL-specific monitoring and analysis tools to the RELs.

1 Introduction

Many kinds of digitally stored and processed data should only be used in re-
stricted ways. Personal data, for example, is collected during activities such as
online shopping, using loyalty cards, interaction with public administrations, and
using mobile phones. To protect the privacy of the data subjects, there exist laws
and regulations governing the use of personal data. Private businesses also have
a keen interest in protecting their trade secrets, which turns out to be difficult,
for example, when different corporations collaborate in virtual enterprises. Sim-
ilarly, the creators of music, video, or other artistic works want their intellectual
property rights to be respected when others use their creations.

Usage control [23,25] is an extension of access control that covers not only
who may access which data, but also how the data may or may not be used
afterwards. We study usage control in the context of distributed systems with
different actors who take the roles of data providers (who distribute data) and
data consumers (who request and receive data). When a data provider gives a
data item to a data consumer, certain conditions apply. Provisions are those
conditions that refer to the past and are concerned with whether the data item
may be released in the first place. Other conditions govern the future usage
of the data, so-called obligations [4]. Examples of obligations include “do not
distribute document D to anyone outside of the organization,” “play movie M
at most 5 times,” and “notify the author whenever document D is modified.”
In this paper, we focus exclusively on obligations because provisions have been
thoroughly studied in the area of access control.



There are two strategies for enforcing obligations [15]. A control mechanism
is a consumer-side component that makes sure that obligations cannot be vio-
lated. Existing control mechanisms have been developed in the DRM area. An
observation mechanism consists of a consumer-side signaling mechanism and a
provider-side monitor. When the monitor detects the violation of an obligation,
it can trigger a compensating action such as a penalty [14].

Problem Statement We address three related problems. The first is the
lack of a general-purpose policy language for usage control that provides ade-
quate support for the common structures encountered in usage control require-
ments. While there exist specification languages both in the area of privacy (e.g.,
EPAL [2] and P3P [30]) and DRM (e.g., ODRL [28] and XrML [31]), these lan-
guages are special-purpose and only cover requirements that are encountered in
their respective areas. The second is that policy languages usually lack a seman-
tics that can be used for specifying or configuring enforcement mechanisms or
for checking the adherence to policies. Conversely, for many mechanisms, it is
not always clear what sort of policies they can enforce. The third problem is
that the different specification languages and enforcement mechanisms in usage
control (particularly DRM) are often not interoperable.

Contributions We present the Obligation Specification Language (OSL),
a language for expressing requirements from many application areas of usage
control. This includes constraints on the duration of a usage and the kinds of
permission-like statements that are often used in digital rights management. We
also define a formal semantics for OSL. Together with other results [14,15]—
which include a model of enforcement mechanisms, analysis techniques for rea-
soning about policies and mechanisms, and an approach to monitoring whether
obligations expressed in OSL are adhered to—this language builds a framework
that provides tools for specifying, reasoning about, and enforcing usage control
requirements.

We also show how to define translations between OSL and a REL, which
we have implemented for subsets of the two most widely used rights expression
languages, namely XrML and ODRL. This yields a formal semantics for these
RELs and has additional benefits. First, defining the translation from a REL to
OSL makes it possible to use the analysis and monitoring techniques mentioned
above for the REL. Second, RELs are often used to configure DRM mecha-
nisms. By translating OSL into a REL, we can employ the mechanisms that use
this REL to enforce OSL policies. We have implemented a proof of concept for
Microsoft’s RMS [20], which uses XrML. Third, once the translations between
OSL and several RELs are defined, we can use OSL as an intermediate language
to translate between the different RELs. This is a step towards increasing the
interoperability of DRM mechanisms.

Structure We analyze usage control requirements in §2 and present the
syntax and semantics of OSL in §3. In §4, we show how to translate between
OSL and a REL. Related work is surveyed in §5 and in §6, we conclude with
an outlook on future work. An extended version of this paper is available as a
technical report [15].



2 Usage Control Requirements

We have performed a requirements study in usage control based on interviews
with public administrations, data protection officers, health care providers, mil-
itary organizations, and numerous commercial organizations [13]. We have also
carried out a detailed study on usage control requirements in mobile commu-
nication [16]. We present the distilled results of our requirements analysis with
respect to obligations. Afterwards, we discuss the two modalities that play a
central role in describing usage control requirements.

2.1 Obligations

Obligational formulae are conditions on the usage of data, e.g., “delete document
D within 30 days” or “do not give D to anybody else.” Examples for data usage
are the processing, rendering, execution, management, or distribution of such
data. An obligational formula becomes an obligation once a data consumer has
received the data and committed to the conditions. We refer to this process of
data reception and commitment as the activation of an obligational formula.
An obligation has thus the form “if (activation) then (obligational formula).” In
OSL, we specify obligational formulae but refer to them as obligations for the
sake of simplicity. Similarly, we also talk about the activation of an obligation.

Obligations can take two different forms. Usage restrictions prohibit certain
usages under given circumstances, and action requirements express mandatory
actions that must be executed either unconditionally (i.e., not in direct connec-
tion with a usage) or after a specified usage has been performed.

Conditions specify circumstances under which usage restrictions or action re-
quirements apply. They are divided into time conditions, cardinality conditions,
event-defined conditions, purpose conditions, and environment conditions. Us-
age restrictions are statements of a form equivalent to “if condition then not
usage.” Examples are “document D must not be printed after more than 20
days” and “movie M may only be played once.” Action requirements are state-
ments of a form equivalent to “if condition then action.” Examples are “delete
data D 30 days after reception” and “notify the data owner after each usage of
data D.” Note that action requirements and usage restrictions may look similar.
For example, “notify the data owner before each usage of data D” is a usage
restriction because it prohibits using D if the notification has not been not sent
before. We briefly discuss each type of condition below. In the examples given,
the respective conditions are typeset in italics.

TiME CONDITIONS include, for example, “file F must be deleted within 7
days”, “F must never be distributed”, or “movie stream M must not be viewed
for more than a total of 5 hours.” We have not encountered examples like “action
A must eventually be executed” where no time limit is given for the execution of
an action. Instead, one sets a time limit like “action A must be executed within 2
years.” CARDINALITY CONDITIONS refer to the number of occurrences of given
events. Examples include “movie M may only be played once” or “view trailer
D at most twice before the movie M is paid.” EVENT-DEFINED CONDITIONS



define situations in terms of the occurrence of events. An example of an event-
defined condition is “if the data provider revokes document D, the document must
not be used anymore,” or “document D must not be further distributed wuntil
the author officially releases D.” PURPOSE CONDITIONS refer to the purpose of
use. For example, objects that are labelled “for personal use only” must not be
used in a business context. ENVIRONMENT CONDITIONS relate to the internal
and external environment of the data consumer. This includes the adherence to
technical or organizational standards (e.g., Common Criteria or the Sarbanes-
Oxley Act) as well as aspects of the physical environment such as the data
consumer’s geographical location. An example is “document D may only be
opened within Europe.”

Conditions can be combined to describe complex circumstances. For exam-
ple, the obligation “movie M may be viewed at most 3 times and only within 30
days” combines a time condition and a cardinality condition. Moreover, usage
restrictions and action requirements can be combined to form complex policy
statements. For example, the following obligational formula combines an action
requirement with a time condition and a usage restriction with a purpose con-
dition: “document D needs to be deleted within 7 days and must not be shown
in public.”

2.2 Modalities

There are different ways of specifying policies. One approach, which is often em-
ployed in informal regulations (e.g., privacy regulations) and system specifica-
tions, is to explicitly define requirements on the system execution. This approach
uses a “must” modality in the sense that every requirement must be satisfied. In
contrast, a REL specifies exclusive rights to execute given actions under specific
conditions. Such rights specify what may happen with data and therefore use
a “may” modality. An exclusive right to perform a usage implies that all other
usages are forbidden, but the prohibited usages are not specified explicitly.

Many usage control requirements are not equally easy to express in both
modalities. In the DRM area, where typically only a few usages are allowed,
rights are often easier to specify. This is particularly the case if the set of prohib-
ited usages is large or even unbounded (e.g., if usages are parameterized). In the
privacy area, where the laws and regulations often express explicit prohibitions,
it is rather the other way around. Furthermore, the requirements document for
ODRL version 2.0 [21] states that expressing prohibitions can also be desirable
in the DRM area. As a consequence, we support both modalities in OSL. The
“must” modality is inherited from temporal logic, and the “may” modality has
been included via dedicated permission operators.

3 The Obligation Specification Language (OSL)

We introduce the syntax and semantics of OSL. We formalize both in Z, a formal
language based on typed set theory and first-order logic with equality. We have



chosen Z because of its rich notation, which we explain as it is encountered. We
have also given a more user-friendly syntax to OSL [15], which we do not present
in this paper due to space restrictions. The current version of OSL supports all
usage control requirements identified above, except environment conditions.

3.1 Events and Traces

The semantics of our language is defined over traces with discrete time steps. At
each time step, a set of events can occur. An event corresponds to the execution
of an action and we use these two terms interchangeably. We formalize different
aspects of events and traces.

Event Classes and Parameters Each Event has a name and parameters,
specifying additional details about the event. For example, a usage event can
indicate on which data item it is performed or by which device. Parameters are
represented using a partial function (-+) from parameter names to parameter
values. We often describe parameters by their function graph. An example of an
event in this syntax is (play, {(object, m)}), where play is the event name and
the parameter with name object has value m (i.e., the object m is played).

Each event belongs to an event class. Possible event classes include usage and
other, the latter standing for all non-usage events, e.g., payments or notifications.
This distinction enables us to prohibit all usages on a data item while still
allowing other events such as payments. The definition of events in Z is shown
below. FventName, ParamName, and ParamValue define basic types for event
names, parameter names, and parameter values, respectively. In Z, basic types
are defined by listing their names in square brackets.

[EventName, ParamName, ParamValue] Params : ParamName + Param Value
EventClass == {usage, other} Event == EventName X Params
getclass : EventName — EventClass

Indexed Events An important usage control requirement is the restriction
of the accumulated usage time. To cater for usages that last a specified time,
we introduce indexed events. We assume that at each step of a trace, there is an
indexed event for each usage that is currently executed. The start of the usage is
represented by an indexed event with the index start, and all following indexed
events have the index ongoing. For example, if the time step is 1 minute and a
user plays a movie m for 3 minutes, the resulting indexed events occurring in
the trace are ((play, {(object, m)}), start), ((play, {(object, m)}), ongoing), and
((play, {(object, m)}), ongoing). In OSL, we can explicitly refer to the start of
an event or to all parts of it (cf. §3.2). IndEvent defines indexed events and
Trace defines traces. The formalization of the above assumption is omitted due
to space limitations but can be found in the technical report [15].

IndEvent == Event X {start, ongoing}  Trace : N — P IndEvent

Event Declarations So far, we have not defined what events can occur
in a concrete system. To this end, we introduce event declarations. An event



declaration contains the event name, the event class, and a partial function that
defines the name and possible values of each parameter. Note that such an event
declaration is purely syntactic and says nothing about the meaning of an event,
i.e., which event in a real system it describes. The specification of dedicated
ontologies is outside the scope of this paper.

EventDecl == EventName x EventClass x (ParamName —+ P Param Value)

3.2 Syntax

An OSL policy consists of a set of event declarations and a set of obligational
formulae. Each obligational formula consists of the data consumer’s name and a
logical expression. SubID is the set of possible names of data consumers.

OSLPolicy == P EventDecl x P OblFormula
OblFormula == SubID x &

@ defines the syntax of the logical expressions contained in obligational for-
mulae. Eyy(e) refers to the start of an event e and Eq;(e) to ongoing events as
well (cf. §3.1). Z allows EBNF-style definitions as used below.

@ = true | false | Epsi(Bvent)) | Eou((Event)) | not(®)) | and{(® x @) | or(® x &)) |
implies (P x D)) | until (P x D)) | always{(P)) | after (N x @) | within{(N x @) |
during((N x @) | repmaz (N x @) | repuntil (N x & x @) |
permitonlyevname (P EventName X Params)) |

permitonlyparam (P Param Value x ParamName x EventName X Params))

We define an additional restriction on the policy syntax (omitted here): we
demand that all events that are mentioned in a policy are compliant with the
event declaration, i.e., they may only contain parameters that are declared and
corresponding values. Fewer parameters are allowed in a policy, because of the
implicit universal quantification over unspecified parameters (cf. §3.4).

3.3 Informal Semantics

We first informally describe the semantics of OSL’s operators. They are classi-
fied into propositional operators, temporal operators, cardinality operators, and
permit operators. An example for a complete OSL policy is given in Section 4.2.

Propositional Operators The operators not, and, or, and implies have
the same semantics as their propositional counterparts =, A, V, and =.

Temporal Operators The until operator corresponds to the weak until
operator from LTL [24]. We use the weak version of the until operator because it
is better suited for expressing usage control requirements (cf. §2.1). We generalize
the next operator of LTL to after, which takes a natural number n as input and
refers to the time after n time steps. With after, we can express concepts like
during (something must hold constantly during a given time interval) and within
(something must hold at least once during a given time interval).




Cardinality Operators Cardinality operators restrict the number of occur-
rences of a specific event or the accumulated duration of an event. The repuntil
operator limits the maximum number of times an event may occur until another
event occurs. For example,

Tepuntil(:gv Ef-gt (playa {(ObjeCt7 m)}):
Efst ((pay, {(currency, USD), (amount, 10), (recipient, r)})))

states that the movie m must not be played more than 3 times until a payment
of $10 is made to r. With repuntil, we can also define repmaz, which is syntactic
sugar for defining the maximum number of times an event may occur in the
unlimited future. For example,

repmaz (5, Eau(play, {(object, 5)}))

requires that the movie stream s must not be played for more than 5 time steps.
This example shows that by using F,;; instead of FEy:, the cardinality opera-
tors can be used to limit accumulated usage time. In the semantics definition
below, we restrict the cardinality operators to arguments of these two forms.
The reason for this restriction is that we allow multiple similar events to occur
within one time step. For example, the movie m may be played on two devices
simultaneously, which counts twice in the repuntil example above.

Permit Operators In OSL, we support both the “must” and the “may”
modalities. The former is given by OSL’s LTL-like semantics, and the latter
is supported by two designated operators: these operators allow one to specify
that out of a given set of usages events, only selected usage events are allowed.
The operator permitonlyevname defines the names of the usage events that are
exclusively allowed with a set of given parameters. For example, the expression

permitonlyevname ({play, print}, {(object, oid)})

states that the only usages permitted on the object oid are play and print. It
does not say anything about non-usage events or events with different parameters
(e.g., if a usage is applied to a different data object). Similarly, permitonlyparam
only allows certain values for a given parameter of an event. It prohibits all other
values for this parameter. For example, the expression

permitonlyparam ({51 , $2}, recipient, send, { (object, doc) })

specifies that out of all send events with doc as the “object” parameter, only
those where the “recipient” parameter has the value s; or sy are allowed. In other
words, doc may only be sent to s; or s3. The first argument of permitonlyparam
is the set of allowed parameter values, the second argument is the name of the
parameter whose values should be restricted, and the third and fourth argument
define an underspecified event.

3.4 Formal Semantics

When specifying events in obligations, we implicitly quantify over unmentioned
parameters. For example, if an obligation prohibits event (play, {(object, 0bjB)}),



then the event (play, {(object, 0bjB), (device, dev123)}) is prohibited as well. To
specify this, we define the relation refinesFEv, which checks whether one event e,
refines another event e;. This is the case iff both have the same event name and
all parameters of e; have the same value in e;. ey can also have additional pa-
rameters. With the help of refinesEv, we can also define the satisfaction relation
for event expressions, |=.. This defines whether an indexed event corresponds to
an expression of the form Eyy(e) or Eqy(e), where e is an event. The semantics
of a logical expression ¢ : ¢ is defined by the binary relation =;.

The relations refinesEv, =, and =5 are defined in Figure 1. We specify them
using an aziomatic definition in Z: the upper part of an axiomatic definition
contains the signature and in the lower part, the properties of the functions
and relations are specified. In Z, relations are declared with <. We also use the
following Z notation: e;.2 refers to the second component of e;, # denotes the
size of a set, and dom refers to the domain of a function.

A policy is satisfied by a trace iff all obligations specified in the policy are
satisfied by the trace. The definition of obligation satisfaction builds on the above
semantics but requires a system model that includes activations of obligations
(cf. §2.1). Such a system model is presented in [15].

4 Language Translations

In this section, we present translations between OSL and the most widely used
rights expression languages, ODRL and XrML. We use the term license for
policies expressed in a REL. We start by explaining our reasons for translating
between OSL and rights expression languages, show how to define such trans-
lations, and highlight several key issues using the example of the translations
between OSL and a subset of ODRL. We have published the formal specifica-
tion of these translations in a technical report [15]. We have also implemented
these translations in software, both for the ODRL subset mentioned above and
for a comparable subset of XrML.

4.1 Purpose

There are several reasons for defining the translations between OSL and different
RELSs. The first reason is the need for enforcing OSL policies. Current enforce-
ment mechanisms are almost exclusively from the DRM area and use licenses
or rights objects written in a REL. Thus, the ability to translate OSL policies
into rights objects makes it possible to re-use such mechanisms to enforce OSL
policies. As OSL is not limited to DRM, this opens the door to automatically
enforcing non-DRM policies (e.g., privacy policies) with DRM mechanisms. By
defining translations from privacy policy languages into OSL (which is future
work), we will be able to close the gap between the areas of privacy and DRM,
which are seen as antipodes by many people.

The second reason for providing translation schemes is that the translation
from a REL to OSL gives a formal semantic to the REL. While the formal
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AV pv : ParamValue | pv ¢ ex e
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V3P, x: P e p=1implies(,X) A (t,n) |y or(not(y), x)
V3@ e o= always(®) A (t,n) = until(y, false)

n—1
V3iiN; ¢ b e o= within(i, ) A (t,n) = \/ after(i, o)

i=0
n—1

VI3i:N; ¢: P e o= during(i,) A (t,n) =y /\ after(i, )

i=0
VAN ¢: D e p=repmaz(l,¢) A (t,n) =5 repuntil(l, 1, false)

Fig. 1. Semantics of OSL



semantics for some parts of ODRL and XrML have been defined in earlier work,
the translations that we present immediately provide a formal semantics to parts
of ODRL, including parts for which this has not yet been done (cf. §5). It is
important to note that the formal semantics of OSL makes it possible to perform
logical analysis on policies [15] and to check for adherence to obligations at
runtime [14]. So we gain both (1) the possibility to use control mechanisms from
the DRM area to enforce OSL policies as described above and (2) the possibility
to analyze DRM licenses and to use our observation mechanisms to enforce them.

Finally, there is a need for more interoperability among DRM technologies
in order to increase user acceptance. One problem in this area is that different
mechanisms use different languages for describing their licenses [18,10]. There
are two possible solutions to this problem. One solution is to standardize a lan-
guage for describing licenses and use it for all developed mechanisms. However,
such a solution is currently not on the horizon. The other solution is to translate
between the different RELs. Some attempts have been made to directly trans-
late between RELSs (e.g., [8]). In contrast, by defining translations from OSL to
the different RELs and vice versa, we enable the use of OSL as an intermediate
language for translating between different RELs. This approach scales up well
and is not only limited to XrML and ODRL, but also other RELs like PDRL
[1] or Octopus [19]. However, we have not yet defined the translations for more
languages; this remains as future work.

4.2 Specification and Implementation

We have implemented the translations between OSL and a subset of ODRL as
well as between OSL and a subset of XrML. The XrML subset used is comparable
to the ODRL subset, which is described below. As the translations for ODRL
and XrML are similar, we focus here on ODRL and use this example to point out
the strengths and weaknesses of our approach. More details about translating
ODRL into OSL are published in a technical report [15].

A Brief Introduction to ODRL ODRL [28] is an XML-based language for
describing the terms and conditions of using intellectual property in digital form.
We give a short, incomplete overview of ODRL. ODRL subjects are intellectual
property rights holders and end users. Data objects are called assets. ODRL
expresses offers, which are proposals from rights holders for specific rights on
their assets, and agreements, which result when two parties commit to a set of
rights on an asset. Agreements in ODRL can be compared to obligations, while
offers are outside of the scope of this paper.

A permission is the right to perform certain activities with an asset and can
be accompanied by constraints and requirements. Examples of activities are play,
print, display, and execute. In our model, these activities correspond to usages.
Constraints express conditions that the end user must satisfy to be allowed to
perform the corresponding activity, and requirements specify additional actions
that the end user must execute, such as payments. An example for an ODRL
license is provided at the end of this section.

10



The ODRLc Subset of ODRL We have defined the translations for a
subset of ODRL to keep the definition of the translation reasonably sized and
because ODRL contains concepts that are not within the scope of OSL. The
subset we consider, ODRLc (“ODRL compact”), is very close to the REL used
by the Open Mobile Alliance (OMA) [22] and therefore of practical relevance. We
have introduced a few structural simplifications with regard to the OMA REL
that do not limit the expressiveness of the language. Also, we have not included
those elements of the OMA REL that are not part of ODRL. However, we also
support a few ODRL concepts that are not included in the OMA REL. For
example, we have included a reduced set of payment requirements in ODRLc
to illustrate that such requirements can easily be expressed in OSL. We also
support device constraints, which restrict the set of devices that are allowed to
perform a usage. A more detailed description of ODRLc can be found in [15].

Translating ODRLc into OSL The translation from ODRLc to OSL
is defined for all ODRLc licenses because OSL is strictly more expressive than
ODRLc. Since both OSL policies and ODRL licenses are tree structured, we
define the translation top-down on the ODRLc tree. Because an ODRL license
specifies rights, we use a permitonlyevname expression to prohibit all usages
not explicitly permitted in the license. In ODRL, all specified constraints and
requirements must be simultaneously satisfied and therefore form a logical con-
junction. In OSL, we create a separate obligation for each of them. Since all
obligations inside an OSL policy are implicitly conjoined, the conjunction of the
constraints and requirements naturally follows.

Translating OSL into ODRLc Because OSL is strictly more expressive
than ODRLc as mentioned above, only a subset of OSL can be translated to
ODRLc. Identifying this subset is the difficult part of defining the translation. We
take a pragmatic approach to this by employing pattern matching over syntax.
For example, all formulae of the form (sz'd, repmam(n,Efst(ue))), where sid is
a subject ID, n € N, and we is a usage event, are translated into a <count>
constraint in ODRL, which expresses a cardinality condition. The problem is that
(subjA, and(repmaz(n, Eps ((backup, {(object, mov)}))), true)) is semantically a
cardinality condition as well, but not a syntactic instance of the above pattern.
Because syntactic pattern matching requires obligations to be in an implicitly
defined canonical form, the translation for this obligation is therefore undefined.

This limitation on the translation could be lifted by extending it to semanti-
cally equivalent representations. This would, however, involve computationally
expensive deductive reasoning. In particular, since LTL can be completely em-
bedded into OSL and checking the semantic equivalence of two LTL formulae is
PSPACE-complete [29], checking the semantic equivalence of two OSL formulae
is PSPACE-hard.

Example We now show an example of a translation from ODRLc to OSL.
The corresponding ODRLc license is shown below. This license states that Alice
may play the movie mov for at most 5 hours, and only on player pl. Furthermore,
Alice may create at most one backup of the movie. No usage other than play
and backup is allowed.
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<o-ex:rights>
<o-ex:agreement>
<o-ex:asset>
<o-ex:context><o-dd:uid>mov</o-dd:uid></o-ex:context>
</o-ex:asset>
<o-ex:permission>
<o-dd:play>
<o-ex:constraint><o-dd:accumulated>P5h</o-dd:accumulated></o-ex:constraint>
<o-ex:constraint><o-dd:hardware>
<o-ex:context><o-dd:uid>pl</o-dd:uid></o-ex:context>
</o0-dd:hardware><o-ex:constraint>
<o-ex:constraint><o-dd:individual>Alice</o-dd:individual></o-ex:constraint>
</o-dd:play>
<o-dd:backup>
<o-ex:constraint><o-dd:count>1</o-dd:count></o-ex:constraint>
<o-ex:constraint><o-dd:individual>Alice</o-dd:individual></o-ex:constraint>
</o-dd:backup>
</o-ex:permission>
</o-ex:agreement>
</o-ex:rights>

This ODRL license is translated into the OSL policy shown below. The first
obligation prohibits all usages except play and backup. The second one corre-
sponds to the <accumulated> constraint on the play action, the third one to
the <hardware> constraint on the play action, and the fourth obligation to the
<count> constraint on the backup action. In the OSL policy shown below, we
assume that the time step in a trace is set to 1 hour.

{

( (play, usage, {(object, ObjID), (device, DevID)}),
(backup7 usage, { (object, ObjID), (device, DevID)})7

A
(Alice, permitonlyevname({play, backup}, {(object, mov)})),
(Alice, repmaz (5, Eau((play, {(object, mov)})))),
(Alice, permitonlyparam({pl}, device, play, {(object, mov)})),
(Alice, repmaz (1, Efst ((backup, {(object, mov)}))))

})

Summary of the Results While the translation from ODRLc to OSL
is total, the translation in the other direction is only partial. This is partly
because OSL is more expressive than ODRLc and partly because the translation
is defined by syntactic pattern matching. Using deductive reasoning to compute
semantic equivalence classes would allow us to extend the translation, but this is
computationally expensive. The same issues also apply to the translations that
we have implemented for XrML.

The translation from ODRLc to OSL yields a formal semantics for a signifi-
cant subset of ODRL. Within the limitations mentioned above, the translations
from OSL to ODRL and XrML enable us to issue licenses for existing DRM
mechanisms based on OSL policies. We have implemented both translations in
Java. On the basis of the OSL-XrML translator, we have implemented a proof of
concept that automatically creates licenses for Microsoft’s RMS [20] from OSL
policies.
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The translations between OSL and ODRL/XrML can be composed to trans-
late between ODRL and XrML, using OSL as an intermediate language. We
have done this using the above mentioned implementations. Of course, this only
works for requirements that can be expressed in both RELs. For the subsets we
have defined for ODRL and XrML, this is not a problem because they are similar
in their expressivity. But generally, this issue must be taken into account.

There is one additional point worth noting: XrML contains so-called stateful
conditions that use an external piece of data to store the effect of previous usages
on the license. For example, cardinality conditions may be specified with the help
of an external counter that has to be checked each time a usage is attempted.
This approach mixes the specification of a requirement (how many times a usage
may be performed in total) with the implementation of its enforcement (where
the counter is located and when it must be decremented). Because OSL is a pure
specification language, we have excluded state references from the XrML subset
we use in the translations and only specify the initial values instead.

5 Related Work

Some specification languages for usage control requirements have been developed
in the area of privacy protection. P3P [30] is a language for stating the privacy
practices of websites. It is tailored to this domain and not extensible. EPAL [2] is
a more flexible language for privacy policies that adds the purpose of use to the
access decision. It also allows for obligations, but does not treat them in detail.
We have already mentioned XrML [31] and ODRL [28] as the most prominent
policy languages in DRM.

There have been previous attempts to give a formal semantics to ODRL and
XrML. Pucella and Weissman [27] give a formal semantics to a subset of ODRL
by a translation into many-sorted first-order logic. They treat temporal aspects
rather rudimentarily and the duration of events is not considered. Furthermore,
their semantics is not suited for monitoring the adherence to policies at runtime.
Holzer et al. [17] present a semantics based on automata. They present automata
for different conditions but do not define how they compose for multiple rights
and conditions. For example, the automaton presented on the lower half of page
7 cannot cope with events other than display. Garcia et al. [9] formalize ODRL
policies using the OWL-based framework IPROnto [7], which is an ontology for
DRM. Like other approaches, this formalization cannot, in its current state, be
used for checking the adherence to complex policies at runtime and does not
consider the duration of usage. We are only aware of one formal semantics that
has been defined for XrML. Halpern and Weissman [12] have chosen an approach
similar to the one for ODRL mentioned above [27], with similar strengths and
weaknesses.

Gunter et al. [11] present a semantics for DRM licenses that is based on
sequences of events, but they do not apply this semantics to any existing REL.
Chong et al. [5] present LicenseScript, a language for expressing DRM licenses.
The main difference between LicenseScript and OSL is that OSL is a language
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for specifying policies (i.e., we describe which executions are allowed), whereas
LicenseScript can express complicated licenses (e.g., involving cardinalities) only
by including instructions that concern the enforcement of the licenses (i.e., de-
creasing counters). Therefore, licenses expressed in LicenseScript do not explic-
itly tell the data consumer what is allowed and what is not allowed. Pucella
and Weissman [26] present a logic for reasoning about digital rights based on
temporal logic. The main focus of their work is to define whether a set of poli-
cies permits or obligates certain actions. Only one action is permitted per time
step and neither temporal conditions nor cardinality conditions can be expressed
conveniently. Barth et al. [3] have developed a privacy policy language that is
based on LTL and has data subjects as a central concept. Their language is only
concerned with the distribution of data.

UCON 23, 32] extends access control with the concepts of decision continuity
and attribute mutability. In UCON, an access can last for some duration with
multiple related and subsequent actions, for example, performing calculations
on data on a server. Access decisions can be made before or during the access
(decision continuity) and subject or object attributes can change during an ac-
cess (attribute mutability). While in OSL, we specify what the data consumer
is allowed to do (for example, playing a movie for at most 20 minutes), UCON
can be used to specify how a mechanism counts the elapsed time and compares
it to the maximal allowed value. In this regard, UCON is complementary to
our approach because it can be used for implementing mechanisms on different
devices. What UCON cannot cover, however, are action requirements. For ex-
ample, UCON-based mechanisms cannot enforce that a piece of data is deleted
after 30 days, independently of whether it is used during that time. Also, we can
use OSL to specify that the above movie may be played for maximal 20 minutes
even if different players are involved, which cannot be expressed in UCON.

Cooper and Montague [6] discuss differences between ODRL and XrML and
suggest that the usage of profiles that reduce a language to the part that
can be translated into the other language is a good way to proceed. Other
interoperability-related work is surveyed in §4.1.

6 Conclusions

We have presented OSL, a rich language that can specify policies from many
different application areas. We have determined the usage control requirements
that OSL supports in dedicated requirements studies. The semantics of OSL is
based on temporal logic, which enables the use of different analysis methods
and runtime monitoring techniques, as has been shown in related work [14, 15].
The translations that we have presented allow us to enforce, in part, policies
specified in OSL using existing enforcement mechanisms from the DRM area.
Our goal is to be able to flexibly employ different mechanisms for enforcing OSL
policies, depending on which mechanism is applicable to a given requirement.
The proof of concept that we have implemented for RMS is just a first step in
this direction. The formal semantics we get for the RELs goes beyond what has
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been previously defined for XrML and ODRL and we have also provided a step
towards more interoperability in DRM.

We conclude by discussing current limitations of OSL and suggest directions
for future work. From the types of conditions we have identified in our require-
ments study, OSL cannot fully cover environment conditions. Some environment
conditions can be expressed with the help of event parameters but others would
require the introduction of subject attributes into our model, which is future
work. The fact that OSL uses abstract events instead of concrete system events
comes at a cost: the need to define the semantics of these events. One prob-
lem here is that the mapping from abstract events like “play” or “display” to
concrete events of a system is usually done by the mechanism vendors and is
not transparent. This complicates the selection of suitable mechanisms for a
given requirement. The definition of dedicated ontologies for events is an area
for future work. It is not entirely clear how to assign a semantics to events and,
while it seems desirable to have device-independent policies, the device-specific
semantics cannot be ignored. Additional areas for future work are addressing
rights propagation, defining a translation based on semantic equivalence classes
of OSL policies, defining translation schemes for additional RELs, and the im-
plementation of these translations. Last but not least, the ideas presented in this
paper should be evaluated in case studies.
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