
A Technical Architecture for Enforcing Usage Control
Requirements in Service-Oriented Architectures

B. Agreiter, M. Alam,
R. Breu, M. Hafner
University of Innsbruck

Austria

A. Pretschner
∗

Information Security
ETH Zürich
Switzerland

J.-P. Seifert
University of Innsbruck,
Austria, and Samsung

Information Systems America,
San Jose, CA, USA

X. Zhang
Samsung Information Systems

America
San Jose, CA, USA

ABSTRACT
We present an approach to modeling and enforcing usage control
requirements on remote clients in service-oriented architectures.
Technically, this is done by leveraging a trusted software stack re-
lying on a hardware-based root of trust and a trusted Java virtual
machine to create a measurable and hence trustworthy client-side
application environment. We define a model-driven approach to
specifying remote policies that makes the technical intricacies of
the target platform transparent to the policy modeler.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; D.2.11 [Soft-
ware Engineering]: Software Architectures; D.3.2 [Programming
Languages]: Language ClassificationsSpecialized application lan-
guages

General Terms
Security, Design, Languages

Keywords
SOA, Policies, Trusted Computing, Usage Control, Access Control

1. INTRODUCTION
A fundamental security issue in service-oriented architectures

(SOAs) concerns controlling the usage of data, including sharing
of confidential information. In current security models, access con-
trol is enforced on the server side only. This means that the data

∗Corresponding author: pretscha@inf.ethz.ch. The work
of this author was supported by the Bolzano-Innsbruck-Trento Joint
School for Information Technology and done while he worked at
Innsbruck University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SWS’07, November 2, 2007, Fairfax, Virginia, USA.
Copyright 2007 ACM 978-1-59593-892-3/07/0011 ...$5.00.

provider looses control over his data once it is given away. The key
to controlling access and usage of a specific resource object after
delivery to a remote platform is the ability to enforce specific re-
mote policies that are issued by the resource owner on that remote
platform. These policies stipulate so-called usage control require-
ments [20, 22] that restrict future usages of data.

Different business contexts give rise to different trust models. In
outsourcing scenarios, service providers typically have a genuine
interest in enforcing policies that the data owner has imposed. This
is a consequence of the large value (say, hundreds of thousands
of Euros) of the respective outsourcing contracts—if the service
provider does not adhere to the policies, he looses a customer and a
large sum of money. On the other hand, the owners of web services
that implement, for instance, the negotiation of health insurances,
may have a strong interest in keeping sensitive data, even though
this may conflict with respective policies. In these cases, the data
provider (that is, the service requester) is likely to have an interest
in technological means that enforce the respective policies [23].

Most notably in scenarios of that second kind, the heterogene-
ity and openness of SOAs pose a significant challenge on the en-
forcement of remote usage control policies. SOA-based systems
are, in general, open and non-proprietary systems. This is in stark
contrast with closed systems where vendors and resource providers
have some means to enforce their policies on a user’s device or
client host by keeping design and implementation of their hard-
ware and software security controls secret. This approach, found in
many current DRM mechanisms, is supposed to work in practice,
at least in the short run [5]. As an alternative, trusted computing
technologies [21], like the ones put forward by the Trusted Com-
puting Group (TCG [2]), provide the technical underpinning for
the enforcement of a variety of usage control requirements, thereby
bringing some of the properties of closed platforms to open sys-
tems. However, the great variety of hardware and software config-
urations of peer hosts in SOA-based settings results in an equally
great complexity of the respective configuration task.

Problem Statement. We tackle the question of how to technically
enforce usage control policies in SOA-based systems that are not
under direct control of a data provider who requests remote services
and gives away sensitive data.

Contribution. We propose an approach to model and enforce
usage control policies for remote endpoints in SOAs. The granu-
larity of usage control enforcement is that of trusted applications
(as opposed to that of operating system calls or a language API).

That is, once an application is considered trustworthy, it has full
access to the data object for which usage control policies are de-
fined. All other applications do not have access to the (decrypted)
data item. Our architecture is also able to enforce action require-
ments of the kind “notify owner upon access” or “delete data after
30 days” (§2.3). The complex task of managing security policies
for heterogeneous target systems is reduced by model-driven secu-
rity configuration (§4.4).

Organization. §2 gives an overview of security in SOAs, trusted
computing technologies, and usage control requirements. §3 shows
how usage control policies can be modeled, and §4 presents our
enforcement technology. §3 and 4 form the core of this paper. §5
puts our work in context, and §6 concludes.

2. BACKGROUND
Our work combines techniques and concepts from three different

areas, namely those of web services and SOA security, trusted com-
puting and usage control. We briefly present the necessary back-
ground in this section.

2.1 Web Services and SOA Security
A comprehensive set of web services security standards has emerged

over the past years, catering to some of the major security concerns
that hamper the broad adoption of web services by businesses. OA-
SIS has proposed a security extension on top of SOAP [11]. This
extension uses the XML encryption and signature mechanism to
add security features to SOAP messages [9, 8]. This way, secu-
rity mechanisms can be integrated into the header and the body of
a SOAP message, and be sent via any transport channel without
compromising security. Beside transport level security extensions,
a variety of standards provides means to manage and exchange se-
curity policies. XACML [29] is a standard to define access con-
trol for resources in a system. Sun has proposed a specific profile
for XACML—called Web Services Policy Language—to define the
reconcilement of access rights between partners. SAML [27] is a
standard for the exchange of security tokens. WS-Policy [6] al-
lows for the definition of protocol-level security requirements. Ac-
cording to one of the core principles of SOA, the main benefit of
these standards lies in the abstraction of the underlying technical
implementation of the security controls. However, implementa-
tions based on these standards still remain very technical. Other
approaches [17, 16] reduce some of the complexity through model
based configurations. Nevertheless, this stack of XML-based se-
curity standards exclusively supports end-to-end security in terms
of, for instance, integrity and confidentiality of data transmitted be-
tween peers—as well as access control—based on the traditional
model of perimeter security.

Currently, there is no way to cope with a non-co-operative client
environment for remote policy enforcement. This points to one of
the biggest security issues in SOAs: the sharing of secure informa-
tion. Once a piece of data has left the provider, it is out of control.

2.2 Trusted Computing
Trusted Computing, an initiative pushed by the TCG, refers to a

concept of integrating cryptographic controls and mechanisms on
a special hardware chip called the Trusted Platform Module (TPM)
for commodity computing systems (e.g., PCs, consumer electronic
devices, PDA’s and other mobile devices) in order to mimic some
of the security properties of highly-secured closed systems.

The TPM is, firstly, empowered with cryptographic mechanisms
to measure the integrity of a software stack running on the device.
This is done through binary hashing. The measurements can be re-
ported to third parties, which can decide whether or not the config-

uration should be trusted (remote attestation). Secondly, by means
of sealed storage, a TPM is able to protect I/O and storage of data
inside the device. Finally, it is able to strictly isolate the data resid-
ing inside memory from other potentially malicious applications. A
comprehensive introduction to trusted computing is given in [10].

This design can effectively counter some threats to the security of
a system, including those caused by malicious code, viruses, Tro-
jans, etc. The conjecture that a trusted and tamper-proof security
basis cannot be achieved using software based solutions alone has
extensively been confirmed in practice. Our SOA-based architec-
ture leverages TC technologies to establish a runtime environment
on a remote host that is trusted by the resource owner to enforce his
policy.

Nevertheless, the problem with current attestation mechanisms
is that they are static, inexpressive and technically complex. This
makes the specification and management of security policies a big
issue in distributed and heterogeneous environments. To overcome
these shortcomings, we propose a model-driven approach to con-
figure the security components with policies.

2.3 Usage Control Requirements
Access control is concerned with the decision of who is granted

access to a data item on the grounds of currently available infor-
mation. Usage control extends this notion to what may and may
not happen to a data item in the future, after it has been given from
a data provider to a data consumer. Usage of data can broadly be
classified into management (storage, deletion), distribution, render-
ing, processing, and execution [13]. Usage control requirements
come in two different forms. Usage restrictions prohibit usages
under specific circumstances (e.g., “access data at most once” and
“view only with a certified viewer”). Action requirements express
mandatory actions that have to be executed in specific circumstances
(e.g., “delete data after thirty days”, “notify owner whenever the
data is accessed”). Specifications of the circumstances come as
time conditions, cardinality conditions, event-defined conditions,
purpose conditions, and environment conditions. A detailed dis-
cussion of this general class of usage control requirements—that
encompasses both data protection and management of intellectual
property—as well as a formal specification language is defined in
[13].

3. USAGE CONTROL POLICIES FOR SOAS
In order to illustrate some of our framework’s functionality, we

take an example application scenario from a medical domain. In
our case, doctors, nurses and administrators are given restricted ac-
cess to resources (patient data) at the hospital’s main site. When-
ever a service requester attempts to access a patient record, the fol-
lowing steps are performed for authentication and authorization:

1. The service requester authenticates herself to the hospital site
and is assigned to a role (e.g., surgeon, nurse, general practi-
tioner etc.).

2. After authentication, a component called the security gate-
way evaluates the service requester’s eligibility for the re-
quested resource according to her role, as well as static and
dynamic constraints (e.g., access on working days only).

3. If access is granted, the security gateway attaches a remote
policy to the released data item. This policy is specific to the
target.

4. The policy is shipped with the released object/data to the re-
quester.

The policy specifies constraints on the future usage of the object
or information on the service requester’s platform. The ability to
reliably enforce a specific policy is verified through the abovemen-
tioned functionality of remote attestation [25] that a TPM provides—
checking the integrity of the software stack through static binary
hashing.

3.1 Security Model
We base our scenario on a distributed peer-to-peer style applica-

tion model. A peer-to-peer workflow has several peer nodes repre-
senting differing security domains. In accordance with our motivat-
ing example, we have two nodes: a remote client host RCHwfl that
requests a resource, and a remote service provider RSPwfl , who is
in possession of the resource.

In this paper we address threats that materialize in a non-cooperative
client environment. This is defined as a remote host with a runtime
environment that is not under control of the resource owner. We as-
sume that the client cannot by default be trusted to comply with the
usage control requirements imposed by the resource owner. Thus,
the client host has to be considered as basically non-co-operative or
even potentially malicious. This leads to the following basic threat:
The remote object requester may be able to violate usage control
requirements imposed by the remote service provider. For exam-
ple, the client may access the resource beyond the rights granted,
or provide access to unauthorized third parties (further dissemina-
tion). This may have the following reasons.

Untrusted Platform. Although based on a measured and therefore
trusted hardware and system software stack, the configura-
tion of the remote client host’s (RCHwfl) runtime system
(e.g., the Java Virtual Machine) is not such that the remote
service provider (RSPwfl) can be sure that his access control
policy will be enforced.

Untrusted Security Services. The required application and secu-
rity services are not available or not enforced at the remote
client’s side (RCHwfl).

Malicious Applications. An application running on the remote client
host (RCHwfl) can access the resources provided by the ser-
vice provider (RSPwfl) in an unauthorized manner. This
includes applications that have been installed both inadver-
tently (Trojans) and on purpose (unauthorized readers).

In this threat model, the enforcement of usage control require-
ments will be facilitated by (1) the specification of a suitable re-
mote (client) host architecture; (2) the definition of suitable attes-
tation protocols which can be used by the remote service provider
(RSPwfl) to verify whether his security goals will be met by the re-
mote (client) host(RCHwfl); (3) the leveraging of trusted comput-
ing technologies to the host architecture together with domain sep-
aration, essentially to protect unauthorized access to the resource
by other applications; and finally (4) the application of a model-
driven configuration approach to harness the technical complexity
of the security controls in order to provide a correct realisation of
usage control requirements. The subject of this paper is a respective
technical architecture.

3.2 Policy Modelling
SECTET-PL [16] is a predicative language in OCL-like style that

allows the specification of fine-grained data-dependent access per-
missions on the grounds of roles. Originally developed with the
goal of integrating aspects of authorization in use case-based de-
velopment [7], we use this language in our framework to specify
permissions and actions for requesting web services. The approach

is model-driven in the sense that we generate platform independent
XACML policies from the predicative specifications [16, 3]. The
SECTET-PL permission predicates are specified according to the
general structure given in Figure 1.

Figure 1: Syntax of SECTET-PL Constraints

The positive rule perm[rolei] : pcondExpi describes the con-
dition pcondExpi under which some role rolei is permitted to ac-
cess the resource (the class in this case). In contrast, the negative
rule proh[rolej] : ncondExpj describes the condition ncondExpj

under which some role rolej is prohibited to access the resource.
The obligation rule oblig[rolek] : oactExpk describes a sequence
of actions oactExpk that some role rolek must perform after the
release of the resource.

As an example, Figure 2 shows a security constraint attached
to the entity PsychiatricDisease using SECTET-PL. The constraint
formalizes a high-level security requirement which states that the
information about the psychiatric health of the patient could be dis-
closed to “Psychiatric Clinic X” only. Moreover, the constraint
restricts, by means of obligations, the PhysicianRole for the
maximum duration that the medical record can be read after its
first successful instantiation. The obligation constraint makes use
of the external function duration(), defined in the interface
ExternalFunctions. Note that these constraints extend be-
yond classical access control.

This interface ExternalFunctions refers to the security in-
frastructure in order to verify a certain relationship between the
requester of the web service and a particular element of the policy
model. The identification variables (e.g. subject) associated with
these external functions distinguish different types of requesters.
For instance, subject.map(T) allows the connection of the
calling actor with his/her internal representation to the business
logic enabling permissions such as “the actor has access to his/her
own data”.

Other obligations can be specified in a similar way. For in-
stance, one can specify that the information can only be retrieved
in a specific location, or that the latest anti-spy ware software must
be installed using the external functions defined in the interface
ExternalFunctions. Detailed information on obligations and
their different types can be found in [13].

The policy model is then transformed into an XACML policy file
to the end of configuring the policy decision point of the Enforcing
Agent (§4.4).

4. ENFORCING POLICIES IN SOAS

4.1 Target Architecture
The general idea consists of establishing of a trusted relation-

ship between a service provider, delivering some document or in-
formation, and a service requester, where the provider can trust the
remote client to enforce his policy on the delivered object.

Figure 3 shows the client-side target architecture. Our approach
for remote policy enforcement leverages the trusted platform mod-
ule (TPM) by providing the hardware based root of trust (A.), a

Figure 2: Sample policy model with associated usage control constraint

Figure 3: Target Architecture

trusted system software stack, consisting of the BIOS (B.), the
Bootloader, and the Operating System (C.). As application run-
time we assume a Java virtual machine with the OSGi service plat-
form (D.).

The OSGI Framework [19] plays a key-role in the architecture.
It ensures domain separation for independent Java services, also
called Bundles. It provides functions for provisioning, adminis-
tration and life cycle management of services. Together with the
hardware components (A.), the two layers of the system software
stack (B. & C.) provide the foundations for the trusted run-time en-
vironment (D.) that may host a diverse range of applications. We
subsequently abstract from these layers and concentrate on the ap-
plication and security services running ontop of these. A detailed
technical account on how the lower layers (especially the OS) may
enforce application level security is provided elsewhere [31, 18,
15]; [4] shows how these layers may be configured through mod-
els.

The following applications and security services (S1.–S3.) run
in strictly separated domains as OSGI Bundles. They ensure that

the object is used according to the policy of a remote user (policy
modeling is treated in §3.2).

Secure Viewer (SV). Whenever a user wants to work on or read a
document, the first step is to open the appropriate SV (Component
S2). The application bundle offers an interface to either browse
documents stored locally, or to request documents from a remote
resource owner. It can be distributed independently of any other
application or document, may even be provided by a third party.
The only requirement is that it is signed by a trusted application
provider, otherwise it will not be started.

The Enforcing Agent (EA) acts as a security proxy for appli-
cations (e.g., the SV) which want to access a protected document.
It determines access and usage constraints to be enforced in com-
pliance to a Usage Policy which, like the Application Policy, is
also issued by the object owner. This OSGI bundle comes as a
signed JAR file implementing Sun’s Policy Decision Point [1], for
XACML-policy file evaluation. If the EA denies access, no further
action will be performed on the document.

The Attestation Agent (AA) checks application and security prop-
erties of other application bundles (e.g., Viewer and Gateway) ac-
cording to the Application Policy for their ability to enforce a policy
(e.g., patient records are only viewable with the appropriate appli-
cation). This component also implements an XACML-PDP and
supports the specification and download of tests via XACML-files.

The Gateway (GW) acts as a single point of entry into the ob-
ject requester’s domain and has to be trusted by the remote party
(achieved by binary attestation as described in the next section). It
provides very restricted functionality. The goal is to keep this bun-
dle lightweight and unaware of document contents. Its purpose is
to communicate to the remote document providers, to decrypt in-
coming documents with its own private key (KRC) and to start the
appropriate bundles when documents are opened. It additionally
offers a notification service for the EA. The GW is started together
with a trusted Java VM and the OSGi framework. EAs can regis-
ter themselves to be invoked at regular intervals. This allows for
instance a protected object document to be deleted after 48 hours.
This application-level functionality exemplifies behaviour that is
checked by the AA.

All bundles can be distributed independently of each other. The
only requirement for them is to be signed by a trusted application
provider, otherwise they will not be started. The application pol-

icy, which is used by the AA checks whether the SV complies to
requirements for the respective document (e.g. patient records are
only viewable with the appropriate application). The interaction
between the different components is described in §4.3.

4.2 Establishing Trust
The establishment of a trusted relationship between a service

provider (RSPwfl) who owns the object and a remote client host
(RCHwfl) requesting the object is ensured by the following proce-
dure.

1. Authentication. The initial authentication of RCHwfl oc-
curs in a traditional way at the server-side (RSPwfl) based
on certificates and credentials.

2. Remote Attestation. In terms of usage control, the goals of
the remote service provider (RSPwfl) are:

(a) RSPwfl can verify that the RCHwfl is capable to en-
force the application’s usage control policy.

(b) RSPwfl can define a policy that will be enforced on
RCHwfl .

Basic trust establishment occurs through remote attestation:
two peer node measurements PNMH1 and PNMH2 capture
the configuration values of the complete host software stack.
At start up, the system software stack and the runtime envi-
ronment of the client platform (object requester) are checked
to be compliant to a known good configuration value. This
is performed by measuring the software stack up to the op-
erating system (including BIOS, Master Boot Record, Op-
erating System) through binary hashing and reporting the
value PNMH1 to the object owner, thereby leveraging the
hardware-rooted trust of the TPM by a procedure called “trusted”
bootstrap as described in [18]. In a second step, the run-time
environment (Java Virtual Machine and OSGi Framework)
that guarantee a strict separation of execution domains for
the security services is measured in the same way by the op-
erating system. Again, measurement PNMH2 is reported to
the remote object owner, who can decide whether to accept
the current client configuration as a trusted environment by
comparison to a “known good value". After the establish-
ment of a trusted relationship between the object owner and
the requester, everything is in place for document and policy
delivery. Attestation through binary hashing for the applica-
tion bundles is not necessary, because the OSGi framework is
configured to only execute signed code (including the mecha-
nisms that enforce usage control requirements). This implies
that downloaded bundles can be trusted. Furthermore, it is
still possible to restrict the permissions of these bundles us-
ing the Java SecurityManager for an even finer grained
access.

3. Handing over Authorization for Domain Secret. The Asym-
metric Authorization Transfer Protocol (AATP [2]) allows
the transfer of authorization data for some kind of object
locked in the TPM to a remote entity (which in our case is the
object owner) such that the issuing entity has no knowledge
of the authorization data. In a first step, the runtime envi-
ronment of the remote host (OSGi and trusted Java virtual
machine) generates a “domain secret” in the form of a secret
key. The domain secret will be used to grant or deny access
to local objects through en- and decryption. This domain se-
cret is then encrypted with a TPM key and ownership over
the encryption key is transferred to the object owner through

AATP. The TPM of the object requester will only grant ac-
cess to the domain secret (stored within the TPM) if owner-
ship of the new authorization data is proven. Authorization
information comes with the enforcing component and is per-
formed according to the Object Independent Authorization
Protocol [2, 18].

4.3 Document and Policy Delivery Protocol

Document Delivery..
The object owner having decided to trust the remote requester

according to the protocols described in §4.2, document delivery is
performed according to the following protocol (cf. Figure 4):

1. At first, the party requesting the object has to download and
install two security applications called Attestation Agent (S3a)
and Enforcing Agent (S3b). Both are signed JAR files and
may be provided either by the object owner or a third party.
The signature guarantees application integrity and guaran-
tees the code’s ability to act on behalf of the object owner.
In case the document is already available locally (e.g., by
restarting a previously ended session) this downloading step
is omitted.

2. The document together with a Usage- and an Application
Policy are sent to the object requester. The document and
the policy files are encrypted with the remote client’s key
(KRC), so that it is protected against interception when sent
by the object owner. The document and the policies are
signed.

3. Upon reception, the client side’s Gateway (GW) checks the
integrity of the policies and the document. The GW has
access to a secure keystore containing its own private and
public keys for the document and the applications. If the
signature is valid and the GW succeeds in decrypting the
document, a protected domain is instantiated by the OSGi-
Framework as an isolated run-time environment for the AA
and the EA.

4. The GW passes the document and two policies in XACML-
format to this newly instantiated bundle in plaintext. The
Usage Policy determines access and usage constraints to be
enforced by the EA, whereas the Application Policy defines
which properties are to be tested by the AA.

5. (This step is optional and only applies if the framework is
also equipped with remote semantic attestation that allows
the host to run certain tests on the client.) The AA then runs
checks on the status and capabilities of the platform. These
tests are based on information contained in the Application
Policy, an XACML-based file which describes requirements
to the applications and the system e.g. check whether the
document repository is accessible only as specified, check
the capabilities of the secure viewer and testing of security
properties of the gateway etc. The tests should help to estab-
lish trust in application-level security properties.

6. After successful installation of the bundles, the OSGi - Frame-
work first generates the Domain Secret, which is a symmet-
ric key (KDoc), encrypts the document and stores it into the
document repository, and finally transfers control over the
Domain Secret to the remote object owner according to the
AATP and OAIP as described in §4.2. The key KDoc, now
protected by the TPM of the object requester’s host, is only

Figure 4: Overview of document and policy delivery

released (by decryption with the key stored within the TPM)
when shown the authorization secret chosen by the object
owner during AATP. The authorization secret is a 20-bytes
long SHA-1 digest passed to the enforcer once trust is estab-
lished [2].

7. The EA is “activated” by getting the authorization secret from
the object owner. It can get the Domain Secret guarded by the
TPM, decrypt the document and grant access to the secure
viewer on request. It is a valid assumption to trust the EA to
behave in the interest of the document provider, because it is
provided and signed by him. In case testing of application
properties failed, the document is discarded and the Enforc-
ing and Attestation Agents are deleted. Otherwise, the EA
now directly communicates with the viewer and sends it the
document. On every action the viewer wants to take on the
document (e.g. change elements, print etc.) it asks the EA,
who has to allow all actions.

Usage Control. Usage rules require ongoing checks (e.g., delete
the document after 48h) which are enforced through the EA on a
regular basis. If a document is opened while the enforcer realizes
that the policy disallows further usage, it stops the bundle with the
according viewer. This is possible because the enforcer is in pos-
session of the reference to this bundle. Usage information is stored
with the TPM and only accessible to applications in possession of
the domain secret (e.g., the EA). In case of a system re-boot, the EA
will first load usage information and check with the policy.

Trusted Applications. Attestation through binary hashing for the
application bundles is not necessary, because the OSGi framework
is configured to only execute signed code. This implies that down-
loaded bundles can be trusted, and it is still possible to restrict the
permissions of these bundles using the Java SecurityManager
for an even finer grained access control.

4.4 Configuring the Enforcing Agent
The EA is configured with XACML policy files which are re-

ceived by the client along with the document. This usage policy
is generated from the policy model or, more precisely, from the
SECTET-PL constraints attached to a usage control restricted re-
source. Referring to our example, Figure 5 shows an example pol-
icy for a physician who is allowed to only read a document. Note
that the example is given in simplified XACML syntax.

The policy generated for the physician contains the authoriza-
tion and obligation constraints in the form of <Rule>s. The
<Target> element contains the name of the document (line 08)
and of the operation (line 11) to which the <Rule> applies. A
<Condition> element additionally specifies an authorization
constraint. If the authorization constraint is met by the subject, ac-
cess will be granted. The <Condition> element defines autho-
rization constrains in the form of XACML functions for extended
X-Path, X-Query, Date, Time etc.

An Obligation Constraint constitutes the main exten-
sion in the XACML policy. Figure 5 partially describes an example
Obligation Constraint described in Figure 2. According
to this obligation, the Hospital restricts the service requesters for
reading the document for 48 hours only. The extended obligation
function SECTET: obligation:function:duration ob-
ligates the EA to make the document inaccessible after 48 hours
have passed.

5. RELATED WORK
When compared with approaches that focus on the enforcement

of usage control policies on remote client platforms, our work es-
sentially differs in that we apply a model-driven engineering frame-
work advancing aspects of usage control. In the following we give
an overview of related work.

In order to improve on the expressiveness of the attestation pro-
cedure, [24] proposes a framework for property-based attestation.

Figure 5: Example policy with generated authorization and obligation constraints

The approach is a good starting point for understanding the concept
and the motivation for semantically-enriched attestation. However,
one of the major drawbacks of the approach is that property-based
attestation is delegated to a trusted third party, which is then respon-
sible for setting up an attestation communication with the client
platforms. In our approach, we elaborate on an efficient property-
based attestation without a third party in the context of SOAs.

Franz et al. [12] propose semantic remote attestation to encapsu-
late program behaviour and make attestation more dynamic, flexi-
ble and expressive. The approach attests the high-level properties
of Java programs, e.g., which class can inherit from a given class,
and how the behaviour of a given class can be restricted. While the
focus of this work is on Java programs only, we leverage the idea
to SOAs.

A distributed usage control policy language and its enforcement
requirements are presented in [14, 22]. Similar to our objective, this
work targets control over data after its release to third parties. The
significant difference between this and our work is that our work
relies on the underlying trusted computing services of a platform.

Jaeger et al. [15] have recently proposed a framework which is
an extension to IMA [26]. Their framework focuses on the im-
provement of efficiency during the integrity measurement of the
platform by limiting the number of measured entities. Compared
to our approach, PRIMA does not discuss the specification of TC-
related requirements at all. Their model can be incorporated within
the Trusted SECTET for efficient integrity measurement.

Remote Attestation for web services, called WS-Attestation, has
been proposed in [30] and with a slight variation in [28]. How-
ever, both approaches directly bind Web services standards to the
TC technologies to increase trust and confidence in integrity re-
porting. In our case, shipping XACML policies with the protected
object/information are better suited for secure information sharing
and leverages policy oriented TC approach which is a novel aspect.

6. CONCLUSION
We have presented a technical architecture for the enforcement

of usage control policies in SOAs. Before a service provider sends
data to a requester, the former checks if the latter has sufficiently
technological means to enforce a usage control policy and if this
technology has not been modified. The usage control policy is then
tied to the resource and shipped to the requester. At the requester’s

side, a dedicated enforcement component is then configured with
this policy, and this ensures that the policy will be adhered to.
Methodologically, our approach makes use of model-driven engi-
neering technologies that make it possible to graphically specify
policies that, after the necessary transformations, are used to con-
figure the enforcement component of our architecture. Technolog-
ically, our solution leverages trusted platform technology to SOAs.
We have described the threat model that our architecture is able
to counter, and described the system configurations and protocols
that are necessary to transfer data items and subsequently enforce
the usage control policies. As far as we know, there is no general
technical architecture for the enforcement of usage control require-
ments, which we consequently see as the main contributions of this
paper.

There are some limitations of our approach. We restrict the gen-
eral concept of usage control in the following way: only trusted
applications are run—and the underlying assumption is that these
applications will not violate the policies. That is, we do not im-
plement the usage restrictions at the level of Java API or operating
systems calls but rather assume that this is done by the trusted ap-
plications (this assumptions can clearly be justified in the running
example of this paper). In other words, the enforcement compo-
nent restricts usages by providing a key to trusted applications, in
addition to implementing required actions [13] (e.g., deleting a data
object).

Future work includes an implementation of the architecture on
the grounds of existing trusted computing technology as well as
case studies that will allow us to better assess benefits and short-
comings of our approach. We will also have to understand precisely
in which contexts the enforcement of usage control at the level of
trusted applications is sufficient, and in which contexts operating
systems or language API calls are the more appropriate level of
granularity.

7. REFERENCES
[1] SUN XACML Implementation . Available at

sunxacml.sourceforge.net.
[2] Trusted computing group (tcg).

https://www.trustedcomputinggroup.org/specs/.
[3] M. Alam, R. Breu, and M. Breu. Model Driven Security for

Web Services (MDS4WS). In Proc. INMIC, 2004.

[4] M. Alam, M. Hafner, J.-P. Siefert, and X. Zhang. Extending
SELinux Policy Model and Enforcement Architecture for
Trusted Platforms Paradigms. Accepted for Annual SELinux
Symposium.

[5] R. Anderson. Security in open versus closed systems — the
dance of Boltzmann, Coase and Moore. In Open Source
Software Economics 2002, 2002.

[6] S. Bajaj. Web services policy framework (wspolicy). March
2006, Version 1.2.

[7] R. Breu and G. Popp. Actor-centric modelling of access
rights. In FASE 2004. Springer LNCS Vol. 2984, p. 165-179,
2004.

[8] D. Eastlake and J. Reagle. XML Encryption Syntax and
Processing. W3C Rec. 10/12/2002.

[9] D. Eastlake and J. Reagle. XML-Signature Syntax and
Processing. W3C Rec. 12/02/2002.

[10] D. Grawrock. The Intel Safer Computing Initiative Building
Blocks for Trusted Computing. Intel Press,
http://www.intel.com/intelpress/sum_secc.htm, 2005.

[11] M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, and
C. Nielsen. Soap version 1.2 part 1: Messaging framework.
W3C Recommendation 24 June 2003.

[12] V. Haldar, D. Chandra, and M. Franz. Semantic remote
attestation - a virtual machine directed approach to trusted
computing.

[13] M. Hilty, A. Pretschner, C. Schaefer, and T. Walter.
Enforcement for Usage Control: A System Model and a
Policy Language for Distributed Usage Control. Technical
Report I-ST-20, DoCoMo EuroLabs, 2006.

[14] M. Hilty, A. Pretschner, C. Schaefer, and T. Walter. Usage
control requirements in mobile and ubiquitous computing
applications. In Proc. of Intl. Conf. on Systems and Networks
Communications, 2006.

[15] T. Jaeger, R. Sailer, and U. Shankar. PRIMA: Policy-reduced
Integrity Measurement Arch. In Proc. 11th ACM symp. on
Access Control Models and Technologies, pages 19–28,
2006.

[16] M. Alam et al. Modeling Permissions in a (U/X)ML World.
In IEEE ARES, 2006.

[17] M. Hafner, M. Alam, R. Breu. A MOF/QVT-based Domain
Architecture for Model Driven Security . In IEEE/ACM
Models 2006 LNCS 4199.

[18] H. Maruyama, F. Seliger, N. Nagaratnam, T. Ebringer,
S. Munetho, and S. Yoshihama. Trusted platform on demand.
Technical report, IBM Research, 2006.

[19] OSGI Alliance. OSGi—The Dynamic Module System for
Java. www.osgi.org.

[20] J. Park and R. Sandhu. The UCON ABC Usage Control
Model. ACM Transactions on Information and Systems
Security, 7:128–174, 2004.

[21] S. Pearson. Trusted Computing Platforms: TCPA Technology
in Context. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2002.

[22] A. Pretschner, M. Hilty, and D. Basin. Distributed usage
control. Communications of the ACM, 49(9):39–44,
September 2006.

[23] A. Pretschner, F. Massacci, and M. Hilty. Usage Control in
Service-Oriented Architectures. In Proc. TrustBus, 2007. To
appear.

[24] A. Sadeghi and C. Stï¿ 1
2

ble. Property-based attestation for
computing platforms. Caring about properties, not
mechanisms. In Proceedings of the workshop on new
security paradigms, pages 67–77, 2004.

[25] R. Sailer, T. Jaeger, X. Zhang, and L. van Doorn.
Attestation-based policy enforcement for remote access. In
Proc. CCS ’04, pages 308–317.

[26] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
implementation of a tcg-based integrity measurement
architecture. In USENIX Security Symp., 2004.

[27] SAML 2.0 Specification. http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=security.

[28] Z. Song, S. Lee, and R. Masuoka. Trusted web service. In
The Second Workshop on Advances in Trusted Computing
(WATC ’06 Fall), 2006.

[29] XACML 2.0 Specification Set. http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml.

[30] S. Yoshihama, T. Ebringer, M. Nakamura, S. Munetoh, and
H. Maruyama. WS-Attestation: Efficient and Fine-Grained
Remote Attestation on Web Services. In Proceedings of the
IEEE Int. Conf. on Web Services (ICWS’05), pages 743–750,
Washington, DC, USA, 2005. IEEE Computer Society.

[31] X. Zhang, F. Parisi-Presicce, and R. Sandhu. Towards remote
security enforcement for runtime protection of mobile code
using trusted computing. In Proc. of the 1st Int. Workshop on
Security (IWSEC), 2006. LNCS Kyoto, Japan.

