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Abstract

Technological advancements have enabled us to find and record genetic dif-
ferences between humans. Yet, the vast amount of data gathered through
next generation sequencing has long since overwhelmed our ability to study
every discovered difference experimentally. Thus, computational approaches
have been developed to cope with the deluge of data and guide experimen-
tal efforts towards prioritizing the most promising candidates. This thesis
focuses on the computational advancements made towards predicting the
effects of genetic variation. It discusses the current state of research and
presents a newly developed method for the prediction of functional effects of
sequence variants. Our new method SNAP2 predicts variants with over 83%
accuracy and is also able to predict effects for variants of orphan proteins.
Both constitute significant and important improvements over other methods.
Furthermore, it not only predicts single variants but offers a comprehensive
view of all possible substitution effects in a protein. This opens up a novel
view on the landscape of protein mutability. Possible applications are pre-
sented that show how this novel view on functional effect predictions can
translate into novel hypotheses and thus aid the identification of targets for
drug development.
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1 Introduction

Understanding human genetic variation is one of the major scientific chal-
lenges of the 21st century. Nearly 15 years after we first sequenced the human
genome, we still understand little of the mechanisms that link differences on
the genetic level to the differences observed on the phenotypic level. Genetic
variations influence phenotypes: from the most obvious, such as the visi-
ble differences between individuals with different ethnic background, to the
least obvious such as the differential response to drug treatment. Therefore,
the genotype-phenotype link is crucial for understanding development and
progression of diseases: it may be the key towards developing personalized
treatment.

1.1 Forms of genetic variation

Differing inheritable traits can either favor or hinder survival and reproduc-
tion. This process is called natural selection. The interplay between genetic
variation and selection pressure is what constantly adapts organisms to best
fit their specific niche in the environment. In nature genetic variation hap-
pens randomly through changes on the molecular level which are caused by
various factors, such as mutations and random mating between organisms
(Krishnamurthy, 2003). There are different forms of genetic variation, which
can be categorized according to their size and type: (i) numerical variation,
(ii) large-scale structural variation and (iii) small-scale sequence variation.

Numerical Variation

Numerical variation can be defined as changes in the number of chromosomes,
referred to as polyploidy (numerical change of the whole set of chromosomes)
or aneuploidy (number of individual chromosomes is altered). A prominent
example of polyploidy is wheat, which through years of hybridization and
human modification has different species that range from diploid (two sets
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of chromosomes) to hexaploid (six sets of chromosomes; today’s common
bread wheat) (Martinez-Perez et al., 2003). In humans polyploidy plays not
only a role in the normal development of certain cell types but also in the
development of cancer (Davoli and de Lange, 2011). For humans, aneuploidy
of most chromosomes results in miscarriage but there are exceptions that
result in live births (Driscoll and Gross, 2009). These children often suffer
from genetic disorders, the most common example being trisomy 21 (known
as Down syndrome), where a third (possibly partial) copy of chromosome 21
is present (Patterson, 2009). Aneuploidy can also be observed in cancer cells
(Sen, 2000).

Large-scale structural variation

The class of large-scale structural variation comprises variations of long
stretches/regions of DNA, typically ranging in size from kilo- to megabases.
These structural variations include rearrangements such as translocations
(exchange of region between chromosomes) or inversions (region is reversed
in the chromosome) but also so-called Copy-Number Variations (CNV; region
is duplicated or deleted). While balanced rearrangements (reciprocal translo-
cations or inversions) do not result in gain or loss of genetic material they
may still affect gene expression through gene fusion or by dissociating genes
from their long-range regulatory elements (Harewood et al., 2010). CNVs, on
the other hand, represent a significant alteration of the genetic material re-
sulting from duplication or deletion of long stretches of chromosomes. These
large-scale variations were found to be widespread and common among hu-
mans (Iafrate et al., 2004; Sebat et al., 2004) accounting for roughly 13% of
the human genome (Stankiewicz and Lupski, 2010).

Yet, with respect to CNVs only 0.4% of the genome significantly differed in
a study comparing eight individual genomes to the reference assembly (Kidd
et al., 2008). This suggests that most of the CNVs are common and shared
by members of the same population. While CNVs have been associated with
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diseases, for instance autism and schizophrenia (Cook and Scherer, 2008), it
appears that gene gains are more common than gene losses and that gene
amplification is favored through positive selection (Zhang et al., 2009). For
example, the salivary amylase gene (AMY1) copy number was found to be
varying significantly in different populations. This was considered an adap-
tion of agricultural societies towards high-starch diet, as higher copy numbers
correlated with higher salivary starch-digesting enzyme levels (Perry et al.,
2007).

Small-scale sequence variation

The last class, the small-scale sequence variation, is the most prevalent form
of genetic variation among humans (ENCODE Project Consortium, 2012).
It comprises short or single nucleotide insertions/deletions (typically abbre-
viated to ‘indels’) and single nucleotide substitutions (so-called point muta-
tions). Indels (that are not a multiple of 3 bases) in genetic regions that
encode proteins or functional RNA change the reading frame. This is prob-
lematic because it affects how the codon triplets are read during transcription
into mRNA (or other RNA). These so-called frameshift mutations have been
shown to be involved in a number of diseases: For instance, the Crohn’s
disease has been associated with an insertion in the NOD2 gene. The inser-
tion of cytosine at position 3020 of the NOD2 gene was shown to produce
a truncated protein. The resulting protein no longer responded to bacterial
lipopolysaccharides, which might lead to increased susceptibility to Crohn’s
disease (Ogura et al., 2001).

Single nucleotide variation

The most frequent human genetic variations are single nucleotide substitu-
tions (called ‘single nucleotide polymorphisms’ – SNPs, or ‘single nucleotide
variants’ – SNVs). The international SNP Map Working Group estimated
that any two haploid genomes differed on average by around 1 nucleotide
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every 1300 basepairs (Sachidanandam et al., 2001), a number which likely
varies between ethnic groups. Estimates suggest that the human genome
contains over 11 million SNPs of which roughly 7 million are common (oc-
curring at a minor allele frequency [MAF] greater than 5%) in the human
population while the remaining 4 million are uncommon (1% < MAF  5%)
(Kruglyak and Nickerson, 2001). These SNPs are estimated to constitute
90% of the genetic variation in humans while the remaining 10% consist of
a vast array of variants that are each rare within the population (Interna-
tional HapMap Consortium, 2003). Researchers suspect to find a tremendous
amount of these rare variants. It is likely that almost every ‘life-compatible’
variant can be observed in at least one of the roughly 7 billion people on
earth (Frazer et al., 2009). The vast majority of SNPs is located in non-
protein-coding regions of the genome, since only around 1.5% of the genome
encode proteins (Lander et al., 2001). Although these SNPs do not directly
alter gene products they may for instance affect gene regulation by chang-
ing transcription factor binding or gene splicing. A more direct phenotypic
impact can be expected for coding SNPs (cSNPs). Due to the degeneracy of
the genetic code, SNPs in coding regions can either be synonymous (sSNPs)
or non-synonymous (nsSNPs). The former change the codon triplets in such
a way that the encoded amino acid is the same as before and thus do not
alter the gene product. The latter, however, change the codon triplet in two
ways. Either it becomes a stop codon (so-called nonsense mutations) or the
codon encodes a different amino acid (so-called missense mutations). While
nonsense mutations cause truncated and thus mostly nonfunctional proteins
(depending on where the new stop codon is located), missense mutations can
have a variety of effects on the resulting protein: They may affect folding
and structure of the protein and thus affect its function. They may also
change residues that are important for binding and thus affect interactions
with substrates or other proteins (e.g. complex formation).

These protein-altering point mutations are of particular importance for
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medical research because they can directly affect phenotypes such as causing
diseases, increasing disease susceptibility or altering drug response (Thus-
berg and Vihinen, 2009). Although these appear to be a small fraction of
variants, there is an estimated average of 6 coding SNPs per gene in the hu-
man population (Collins et al., 1998). Recent studies suggest that any two
unrelated individuals on average differ by one cSNP per gene, half of which
are non-synonymous (1000 Genomes Project Consortium et al., 2010). Thus,
approximately every other protein differs between any two individuals from
the same population and many of these differences are likely instrumental in
defining human diversity.

1.2 Investigating human genetic variation

While genetic variation works on genotypes, natural selection works on phe-
notypes. Selection is likely to favor (or to not penalize) genetic changes that
do not lead to disadvantageous phenotypes. However, not all genetic changes
lead to phenotypic changes. In fact, the majority of genetic variation is hy-
pothesized to be neutral (Kimura, 1968) with respect to any phenotypes,
i.e. they are assumed not to contribute to any phenotype. Yet, the ex-
act ratio of neutral, ‘near-neutral’ (Ohta, 2002) and non-neutral variation
is unknown. Nevertheless, near-neutral variants may contribute (although
with little impact each) to complex traits and even non-synonymous neutral
variants might be important for human individuality (Bromberg et al., 2013).

As mentioned before, the vast majority of human genetic variation is
due to common variants. In other words, the majority of variants in any
given individual are variants that are common within the whole population.
Moreover, when two individual genomes are compared, the vast majority of
differences can be found at positions that are commonly known to be variable
within the population (Frazer et al., 2009). Therefore a great effort has been
made towards cataloging and studying common variation. One observation
towards this end has been particularly important: SNPs in proximity of
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one another on the chromosome are likely to be co-inherited, thus leading
to a strong correlation between SNPs in the same genomic interval. This
complex correlation structure is called linkage disequilibrium (LD) and varies
between populations (Slatkin, 2008). The International HapMap Project
determined that 80% of common SNPs (MAF > 5%) could be categorized
into roughly 550,000 LD groups for individuals of European or Asian ancestry
and roughly 1,100,000 LD groups for African ancestry (International HapMap
Consortium, 2003). This means that information for over 80% of common
SNPs can be gained only by genotyping individual DNA with ’tag’ SNPs from
each LD group (Barrett and Cardon, 2006; Eberle et al., 2007; Pe’er et al.,
2006; Frazer et al., 2009). This remarkable finding significantly reduced the
cost and time required to genotype thousands of individuals and thus enabled
large-scale genotype-phenotype association studies.

In genome-wide association studies (GWAS) large amounts of participants
are genotyped and assigned to either a case or a control group depending on
the phenotype under investigation. However, the power of GWAS is limited
due to several reasons (Frazer et al., 2009): (i) Study cases need to be rep-
resentative and sufficient in number, often requiring over 10,000 samples for
detection (Kiezun et al., 2012). Moreover, participants are typically drawn
from clinical sources, which often do not contain silent, mild or lethal cases
because they do not come to clinical attention. (ii) GWAS are limited to
common variants, as rare variants are generally not tagged. (iii) 20% of the
common variants are not or only partially tagged. Nevertheless, these studies
have significantly furthered our understanding of variants and diseases. Most
common variants have been tested for associations with common traits and
diseases thereby linking more than 1,100 loci to complex diseases (Lander,
2011). Yet, due to their limitations, GWAS cannot find significant asso-
ciations for rare variants and moreover miss known associations for many
common SNPs (Kiezun et al., 2012).

Another approach for detection and investigation of variants and their ef-
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fects are so-called Trio Studies. These typically focus on high-coverage whole
genome sequencing of mother-father-child trios with the aim of discovering
very rare de novo variants (i.e mutations that cannot be found in either
parent). Using this study design, the 1000 Genomes Consortium estimated
the de novo germ-line mutation rate to be 10�8 substitutions per base per
generation (1000 Genomes Project Consortium et al., 2010) - an approxi-
mate average of 30 new mutations (and thus a theoretical average of roughly
30 ⇤ 0.015 = 0.45 protein coding variants) in each newborn that are not ob-
servable in either parent. A different study, however, found 1.2-1.7 coding
variants to be novel with respect to both parents (Rauch et al., 2012).

A complementary approach is provided through exome sequencing stud-
ies. These studies are aimed at comprehensively assessing both common and
rare coding variants by targeted sequencing of the protein coding regions of
the genome rather than sequencing the whole genome or relying on LD pat-
terns as in GWAS. Exome-sequencing profits from the accuracy and coverage
of Next Generation Sequencing combined with efficient DNA capturing while
focussing on a critical region of the genome (Teer and Mullikin, 2010; Kiezun
et al., 2012). This allows for significantly larger sample sizes than currently
feasible for whole genome sequencing but is limited to the detection of coding
SNPs.

This strategy has also been employed in the 1000 Genomes Project (1000
Genomes Project Consortium et al., 2010, 2012) in order to record detailed
information on the variants present in 1,092 healthy individuals from 14
populations. Among their astonishing results were many important findings:
Each individual carries 80-100 variants causing pre-mature stop codons, 40-
50 splice-site disrupting variants, and 220-250 frameshift mutations affecting
roughly 250-300 genes. In other words, everyone carries up to 400 variants
that are likely to completely disrupt protein function (i.e. putative loss-of-
function variants). Moreover, the 1000 Genomes Project revealed that every
individual also carries an average of 50-100 variants that had previously been
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associated with inherited disorders. This clearly shows that the genotype-
phenotype relationship is very complex in most cases and that we need to
learn more about the underlying molecular mechanisms that link genetic vari-
ation to complex traits and diseases. Large-scale exome sequencing studies
give valuable insights on the statistical involvement of coding variants in a
certain phenotype (i.e. typically a certain disease). However, they do not
answer how these particular variants affect protein functions, their pathways
or the interactions that finally lead to the observable phenotype.

1.3 Resources for variants and their molecular effects

Improved sequencing and variant calling methods have led to a flood of ge-
netic variation being discovered over the last decade. The need of storing
these data and making them publicly available gave rise to a variety of
databases that collect, store, and present this variation depending on the
database’s focus. The largest database is dbSNP (Sherry et al., 2001). It
collects not only SNPs but also small-scale indels, retroposable element in-
sertions and short tandem repeats along with the corresponding sequence
context, its frequency, and additional submission data. It does, however, not
provide information on the molecular effect of variants but links to additional
sources if phenotypic information is available. The current build (142, Oct.
2014) comprises over 112 million human variants (so-called RefSNP Clusters)
of which almost 54 million are located in coding regions.

The Online Mendelian Inheritance in Men (OMIM) database focusses on
diseases with a known genetic component (Hamosh et al., 2005). It provides
literature-derived information on mendelian phenotypes and also lists associ-
ated SNPs for over 3,400 entries (Feb. 2015). A similar approach is provided
by the Human Gene Mutation Database (HGMD; Stenson et al., 2003). This
database collects data on germ-line mutations in genes associated with hu-
man diseases and currently covers over 64,000 publicly available missense
and nonsense variants (Feb. 2015). Another disease-association based repos-
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itory is provided through GWAS Central (Beck et al., 2014). This database
contains summary level information from genome-wide association studies,
providing almost 68 million association p-values for almost 3 million unique
dbSNP markers (release 11, Sep. 2013). In addition to these, the Univer-
sal Protein Resource (UniProt; UniProt Consortium, 2015) provides an index
(called HUMSAVAR) for all variant entries with disease association, covering
roughly 70,000 coding variants (release 2015_2 of Feb. 2015). All these re-
sources (OMIM, HGMD, GWAS, HUMSAVAR) offer information on variants
with probable disease association based on literature reports but generally
do not provide information on molecular variant effects. It is however likely
that many of the disease-associated coding variants have functional effects
on the molecular level. This will be discussed later in section 2.1.

Studying variant effects experimentally on the molecular level is costly
and requires significant amounts of time. Effects are mostly investigated for
non-synonymous coding variants because these variants change the protein
product and are therefore most likely to have phenotypic effects. The most
common way of testing molecular effects of coding variants is site-directed
mutagenesis in combination with a certain assay: the effect of a certain
substitution is measured with respect to the specified assay. In most cases
only a few possible variants are tested experimentally. Exceptions are the
comprehensive mutagenesis study of the E. coli LacI repressor (Markiewicz
et al., 1994), in which over 4,000 variants of the lac repressor were tested
(Fig. 1) or the complete mutagenesis of the HIV-I protease (Loeb et al.,
1989).

Studies of structural (impact on the native 3D protein structure) and
functional effects were collected into a literature-derived database termed
the Protein Mutant Database (PMD; Kawabata et al., 1999), whose latest
build (March 2007) contains over 200,000 variant entries for roughly 45,000
proteins. Yet, mutagenesis studies are often not aimed at investigating the
effect of mutations but rather aimed at studying the native protein function
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Figure 1: Mutagenesis of the E. coli lacI repressor. At each position between
residue 2 and 329, 12-13 amino acid substitutions are displayed as a bar.
The height of a bar depicts the relative percentage of substitutions that alter
the repressor function as determined (a) experimentally (Markiewicz et al.,
1994) or (b) by computational prediction using SNAP2. This figure was
adapted from Hecht et al. (2013).

and identifying the residues that are involved. For instance, alanine-scans are
often used to probe the protein for functional hot spots by mutating every na-
tive amino acid into alanine and testing its effect on protein binding (Bogan
and Thorn, 1998). Binding hot spots can be revealed by measuring the dif-
ference in binding free energy upon mutation to alanine (Clackson and Wells,
1995). Thus, such experiments also generate information on the molecular
effects of to-alanine substitutions in these proteins which is collected in the
Alanine Scanning Energetics database (ASEdb; Thorn and Bogan, 2001).

The presented databases constitute only a fraction of the available data
repositories and have been presented because of their particular importance
to this thesis. Yet, there are many other databases that provide invaluable
sources of information for bioinformatics applications.

1.4 Prediction of variant effects

While next-generation sequencing technology becomes increasingly cheaper
and faster, experimental verification of variants remains a bottleneck. Hence,
fast and accurate computational prediction of variant effects becomes more
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and more important in order to guide and prioritize experimental verification
of the ever-increasing deluge of sequencing data. In the following, the term
variant is used as a synonym for ’coding SNP causing a single amino acid
substitution’, while non-coding SNPs will be mostly neglected for simplicity.
Many methods for the prediction of variant effects have been developed in
the past 15 years.

Some methods (e.g. DISCERN: Sankararaman et al., 2010, INTERPID:
Sankararaman and Sjölander, 2008) are aimed at finding active sites like
the ones that significantly alter binding energy when mutated to alanine as
annotated in ASEdb. By looking for evolutionary conserved residues these
methods also capture a significant fraction of residues that, if mutated, cause
disorders or other distinct phenotypes. While not being specifically optimized
towards variant prediction, these methods can be used to predict that most
variants of these (often highly conserved) active site residues will have a
strong impact on the protein function.

Methods specifically trained on variants cover the prediction of a vari-
ety of effect aspects, including the explicit prediction of changes in protein-
protein binding affinity upon mutation (e.g. BeAtMuSiC: Dehouck et al.,
2013). Some predict the pathogenicity of coding SNPs (e.g. CADD: Kircher
et al., 2014, SNPs&GO: Calabrese et al., 2009, Mutation Taster: Schwarz
et al., 2010, Mutation Assessor: Reva et al., 2011, PolyPhen-2: Adzhubei
et al., 2010) and non-coding SNPs (CADD, Mutation Taster), in the sense
that they output a score reflecting the likelihood of a specific SNP being dele-
terious. Others focus on predicting effects of variants on protein structure
(Schaefer and Rost, 2012) and stability (e.g. i-Mutant-3: Capriotti et al.,
2008, PoPMuSiC: Dehouck et al., 2009).

Others yet put their focus on predicting whether or not a variant changes
the native protein function (e.g. SNAP: Bromberg and Rost, 2007, SIFT:
Kumar et al., 2009, PolyPhen-2: Adzhubei et al., 2010). Obviously, there
can be significant overlap between these methods’ predictions since the effect
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aspects are related. For instance, a variant that causes a structural change
in the protein may reduce its function and thus cause a certain disease.
However, a pairwise comparison of methods suggests that predictions vary
considerably between methods, even within the same category, which will be
discussed in section 3.

Prediction features

The focus of each method is essentially determined by the features used for
prediction and the data used for training. The single most important feature
for variant effect prediction is typically evolutionary conservation - the extent
to which the native amino acid is conserved between homologous sequences.
If the native amino acid is identical in most (especially also distantly) related
species, it is likely that this is due to functional importance as the amino acid
was retained through purifying selection (i.e. variants causing a disadvan-
tageous phenotype are selected against). This can sometimes be misleading
if the alignment does not contain enough distantly related sequences, as the
apparent conservation may also result from a lack of time (i.e. closely related
species did not have enough time to diverge). This feature therefore requires
a large and sufficiently diverse alignment of homologous sequences, which is
sometimes not available because the required sequences are unknown. An-
other common feature are biophysical properties of native and variant amino
acid. Information such as size, hydrophobicity and charge of the variant is
compared with the native amino acid to estimate substitution compatibility.
For instance, substituting a small, hydrophobic amino acid in the protein
core by a bulky, hydrophilic one is likely to cause a structural change of the
protein. Thus, the extent to which biophysical properties differ can be used
as an indicator of variant effect. Moreover, many other features of protein
and amino-acid features, both experimental and predicted, have been used
for variant effect predictions. These include structural information such as
experimental structures or predicted secondary structures, residue annota-
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tion such as known or predicted functional sites, patterns of protein domains
and substitution probabilities estimated from known sequences. Features for
variant effect prediction will be further discussed in section 2.2.

Classes of predictors

Predictors can usually be classified into two categories: constraint-based
methods and trained classifiers. Constraint-based methods use a custom
definition for their predicted effect aspect, which is based on one or more
biological properties. For instance, a simple definition for “disease-variant”
could be ’over n% residue conservation’ and ’m% different biophysical amino-
acid properties’. The exact definition parameters (here, ’n’ and ’m’) are typ-
ically optimized using available experimental data. The prediction is then
performed based on how similar the specific case is to the selected effect
definition.

Trained classifiers also derive rules or patterns for their prediction task.
However, this happens as part of the training of the corresponding classifier
and is only influenced by the presented data samples. These machine learning
devices use supervised learning (i.e. data samples are labeled; for instance
as ’deleterious’ or ’neutral’) to generalize rules or patterns from the feature
values present in the data. They require both positive and negative samples
and operate under the assumption that the training data is representative
of the prediction task. Popular examples of machine learning devices are
support vector machines (SVM), multilayer perceptrons (MLP; also called
artificial neural networks, ANN), decision trees (DT), random forests (RF),
and rule-based learners. Major differences between these lie in the types of
input features (e.g. numeric, ordinal, nominal) that can be handled and the
way the final prediction is calculated. In terms of result interpretability we
distinguish between black-box and white-box predictors. Black-box predic-
tors (e.g. SVM, MLP, RF) offer no further information on how the result
was generated, in the sense that the classification reasons are hidden in the
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model and thus not interpretable by humans. White-Box predictors (DT,
Rule-based learners) on the other hand can be interpreted by looking into
the model and following the decisions or rules.

The data for training can be retrieved from databases such as the ones
mentioned in section 1.3. Pathogenicity predictors are typically trained or
optimized on variants with probable disease association as their task is to
distinguish between natural variation and disease-causing mutations. This
implies (i) disregarding variants that have molecular effects as long as these
are not associated with diseases and (ii) a focus on human variants, as these
are the ones for which disease annotations are predominantly available and for
which predictions are most wanted. A ’neutral’ prediction from a pathogenic-
ity predictor does not indicate that the variant has no effect but rather
that any possible effects are likely not involved in pathogenic phenotypes.
Functional effect predictors are typically trained/optimized on variants with
experimentally known molecular effects, which are predominantly obtained
from non-human sequence experiments, as these are easiest to conduct. A
positive prediction from a functional effect predictor does neither indicate nor
exclude a possible human disease-association. It is thus difficult to compare
methods with a different focus.

1.5 Thesis motivation and goals

Currently, there are significantly more disease variant predictors than effect
variant predictors, which is attributable to the fact that medical research pru-
dently focusses on revealing and targeting variants with disease association.
However, there is also a need for accurate prediction of molecular variant
effects. For instance also plant geneticists make use of computational meth-
ods to aid their research. Another question that can hardly be answered by
disease prediction is how the human genome evolved functionally. In other
words: what are the functional genetic differences that distinguish humans
and apes? Understanding how variation affects phenotypes like disease onset
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and progression requires us to understand how variants affect the underlying
molecular processes.

In this work we focussed on improving the prediction of functional effects
both in terms of accuracy and in terms of throughput over existing methods.
We developed SNAP2, a classifier that outperformed current state-of-the-art
methods and allows to predict every possible amino acid substitution in a
protein in a time-efficient manner. Furthermore we visualized these predic-
tions in heatmaps. This provides a simple but comprehensive representation
that allows for intuitive interpretation of results and easy generation of hy-
potheses.

2 Methods

2.1 Data

Similar to an earlier publication (Bromberg and Rost, 2007), we used a mix-
ture of experimentally determined neutral and effect variants from the Pro-
tein Mutant Database (PMD) and a set of putative neutral variants derived
using the Enzyme Commission number (EC; Webb, 1992). We also added
several putative effect variants from the disease-association databases OMIM
and HUMSAVAR. In the following, the individual data components and their
extraction will be briefly described:

The PMD provides functional variant annotations retrieved from litera-
ture reports and categorizes effects in seven classes with respect to the native
protein function. We collected all variants and assigned them to either the
’neutral’ or the ’effect’ class in our data set depending on the reported effect.
If the variant protein function was reported to be slightly (’-’), moderately
(’- -’), or substantially (’- - -’) decreased, or if it was reported to be slightly
(’+’), moderately (’++’), or substantially (’+++’) increased, we labeled the
variant as ’effect’ variant. Only if the variant was annotated to cause ’no
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change’ (’=’) in protein function, we assigned it to the ’neutral’ class. In
case of conflicting annotations (e.g. variant is reported as ’no change’ with
respect to one assay but as ’slightly increased’ to another) the variant was
assigned to the ’effect’ class. This procedure yielded 38,179 effect variants
and 13,638 neutral variants (i.e. a total of 51,817 variants) in 4,061 distinct
proteins.

From the Online Mendelian Inheritance In Men (OMIM) and the HUM-
SAVAR we extracted variants associated with heritable diseases. Although,
in many cases, there is no experimental evidence of their molecular functional
effects, we assume these variants to have an effect on protein function. This
is clearly an over-estimate, as these variants may just be in linkage disequilib-
rium with the causative variant or simply affect regulatory elements or splice
sites. Thus, some of these variants may not have any effects on protein func-
tion. However, it is likely that this set is highly enriched in functional effect
variants as they have been shown to exhibit a much stronger functional effect
signal on average than the experimentally verified PMD variants (Schaefer
et al., 2012). We thus collected 22,858 human variants in 3,537 proteins and
assigned these to the ’effect’ class.

From the above extraction steps we collected only 13,638 neutral variants
as compared to 61,037 effect variants. This imbalance of available experimen-
tal ’neutral’ and ’effect’ variants suggests there is a significant selection bias
towards experimental verification of effect variants. Researchers prudently
focus on variants for which the strongest effects are expected, often with
the goal to investigate certain diseases. Moreover, a detected effect variant is
much easier to publish than a variant for which no functional effects could be
measured. However, machine learning typically performs best when trained
on a data set that is representative of the prediction task. While the true
ratio of neutral and effect mutations in nature remains unknown, we chose to
increase the fraction of neutral samples to obtain a close to balanced ratio.

We thus extracted putative neutral variants based on the following as-
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sumption: If two independent experiments reveal that two similar, related
proteins have the same enzymatic function we assume that most differences
between these two are neutral with respect to this enzymatic function. While
this approach explicitly neglects combinatorial effects such as compensatory
mutations or effects on other possible functions, it is likely that this approach
yields a set that is highly enriched in ’neutral’ variants. We thus extracted
all enzymes with experimental EC numbers from Swiss-Prot (UniProt Con-
sortium, 2015) and did a pairwise alignment (using PSI-BLAST; Altschul
et al., 1997) of all enzymes with the same EC number. Two more restrictions
were imposed before considering any differences as neutral substitutions: (i)
The sequences had to be > 40% identical and (ii) have HSSP-values > 0
(Sander and Schneider, 1991; Rost, 1999). Through this approach we ex-
tracted 26,840 variants in 2,146 proteins and assigned them to the ’neutral’
class.

These three data sets were combined into our comprehensive training set.
Thus the final data set consisted of 101,515 variants (40,478 neutral and
61,037 effect) in 9,744 distinct proteins (Hecht et al., 2015). Additionally, we
used the 4,041 variants from the E. coli LacI repressor (Markiewicz et al.,
1994) and the 336 variants from the HIV-1 protease (Loeb et al., 1989) as
independent testing sets.

2.2 Features for variant effect prediction

The ability to predict variant effects through machine learning depends on the
available information. For the task at hand, these features describe certain
properties of proteins and amino acids. As mentioned before (Section 1.4),
evolutionary information is a very important and thus commonly used fea-
ture. It provides information on the extent to which certain amino acids are
observed in other species and other related sequences and thus can be used to
estimate how likely an amino acid substitution is tolerated. Also the afore-
mentioned biophysical amino acid properties are a commonly used feature as
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these may give insights into the structural impact of a substitution. The fea-
ture calculation step involves extracting such information and transforming
them into an appropriate machine-readable format. For instance, informa-
tion on amino acid size may be given as a numeric value. If this is to be used,
it has to be normalized in order to be used as an input value, because oth-
erwise features with inherently large values would have proportionally larger
impact on the prediction than features with inherently small values. Alterna-
tively, that same size value can be transformed into binary or nominal inputs
by defining thresholds (e.g. small < n, n 5 medium < m, large = m). The
exact representation of a feature depends on the machine learning device
and the available information. We extracted information from a variety of
both experimental and predicted sources and calculated normalized numeric
features where possible and multiple binary features otherwise. As the ex-
act calculation is described in Hecht et al., 2015, the features used in the
development of this method will only be briefly presented here.

We extracted evolutionary information from the PSI-BLAST position spe-
cific scoring matrix (PSSM: Altschul et al., 1997), from the position-specific
independent counts profile (PSIC: Sunyaev et al., 1999) and by estimating
co-evolving residues (Fodor and Aldrich, 2004; Kowarsch et al., 2010). Amino
acid properties were retrieved from the AAindex database (Kawashima and
Kanehisa, 2000). We considered biophysical properties (e.g. mass, volume,
hydrophobicity, charge), structural propensities (e.g. c-beta branching, helix-
breaker) and statistical properties (e.g. relative mutability, average flexibil-
ity, distance-dependent contact potentials). Structural variant information
was not included through the use of known 3D structures as these are not
available for most proteins. Instead we used predicted structural informa-
tion such as secondary structure and solvent accessibility (Rost and Sander,
1993, 1994), as well as predicted residue flexibility (Schlessinger et al., 2006).
Information on functional importance of residues was included in multiple
ways. We used predicted protein-protein and protein-DNA interaction sites
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(Ofran and Rost, 2007; Ofran et al., 2007), experimental annotation from
Swiss-Prot if available, and whether a residue and its surroundings match
any Pfam (Punta et al., 2012) or PROSITE (Sigrist et al., 2010) pattern.
Moreover, we included a set of global sequence properties such as the amino
acid composition, the secondary structure and solvent accessibility composi-
tion, the protein length, and low-complexity regions.

Where applicable we also used deltas of these features. These delta-
features were calculated by comparing feature values for wildtype and mu-
tant amino acid and estimating the strength and direction of the change
attributable to the substitution. We also considered the immediate sequence
environment for each substitution by including not only the variant residue
position but also surrounding positions. Thus, we extracted each feature in
a window between 3 and 21 residues (i.e. the central variant position and
each 1-10 residues up- and downstream).

2.3 Prediction method

Machine learning offers a variety of methods for learning patterns from la-
beled data and using these to predict labels for novel samples. In order to
identify the most suitable tool for our problem we initially trained and tested
several tools from the WEKA suite (Frank et al., 2004) on our data. We used
support vector machines, neural networks, decision trees, and random forests
with default parameters and compared their performance. On our data neu-
ral networks and SVMs performed slightly better than decision trees and
random forests. The difference between SVMs and neural networks was not
significant. We proceeded with standard feed-forward neural networks be-
cause of better runtime and memory efficiency when applied through the
Fast Artificial Neural Network (FANN: Nissen, 2003) library. The networks
were designed to have two output nodes, one for ’neutral’ and one for ’effect’.
The following sections describe the method development and previously es-
tablished training procedures (Hecht, 2011).
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2.3.1 Clustering and cross-validation

In order to avoid over-fitting of the model and over-optimistic performance
estimates we created 10 sub-sets from our data in such a way that there
was no significant sequence similarity between any two proteins in different
sub-sets. We first used PSI-BLAST for each sequence against our entire set
and collected all significant hits (E � value < 10

�3) for each sequence. We
then built an undirected graph where each protein was assigned to a vertex
and connected through edges with all vertices for which we had recorded a
significant hit. We then clustered our data through single-linkage clustering
and thus collected all proteins into the same set that were reachable through
a path in a graph. This approach yielded 1,241 clusters with the number of
members ranging from 1 to 1,941. From this clustering we created ten sub-
sets in such a way that we assigned all proteins and all their variants from
the same cluster to one of ten sub-sets while balancing (as far as possible
without separating cluster members) the overall number of variants per set
as well as the ratio of ’neutral’ and ’effect’ variants within each set.

These ten sub-sets were used in the cross-validation of our method by
using eight sets for training, one set for optimization and one set for final
testing. We cycled through these set combinations such that each set was
used exactly once for optimizing and exactly once for testing in different com-
binations. This ensured that no variant from the same or any similar protein
was ever used simultaneously for training and testing. During development
of the method, we always used eight sets for training and one optimization
set for testing. The respective tenth final testing set was only used after
development to reliably estimate the final network performance as reported
in section 3.

This approach effectively yielded ten different networks, each optimized
and tested on a different sub-set of our data. In order to avoid the risk
of over-fitting we did not select the best of the ten networks for the final
method, but instead decided to use all ten networks. The final prediction
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is calculated as a jury-decision by using the average ’neutral’ output and
the average ’effect’ output over all ten networks. From these two scores we
calculated a single output score as the difference between the average ’effect’
output and the average ’neutral’ output which resulted in a score ranging
from -1 (all networks predict 100% neutral probability) to +1 (all networks
predict 100% effect probability). For simplicity, we re-normalized this score
to integers between -100 and +100 in the final method output.

2.3.2 Feature selection and parameter optimization

Determining the optimal feature combination for a prediction task is highly
non-trivial for several reasons: First of all, we do not know for certain to
which extent protein and variant properties are relevant for the task, or even
if we know all the relevant factors. Moreover, the corresponding importance
of each feature varies between different samples (e.g. variant prediction in
membrane proteins has other priorities than in globular proteins). As the
’optimal’ combination depends on the prediction task, it is subject to how
representative the training data is for this task. We developed a general
functional effect predictor by generalizing patterns from different kinds of
proteins, because we lack the data to develop a specialized method for every
problem. This meant sifting through a large space of potentially relevant
features in order to identify those that perform best on this general task.
Moreover, finding the optimal combination is also difficult because it would
involve testing every possible combination for all features, which is possible
but extremely CPU time-consuming. Instead, we used heuristic methods that
are likely to find at least a good combination, while cutting CPU requirements
to a fraction of the exhaustive search.

As mentioned above (Section 2.3.1) we separately trained and optimized
ten networks. For each of these, we individually selected the best feature
combination by standard greedy forward selection. The following steps were
applied for all ten networks separately: First, we trained each network on
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all features individually and estimated their individual performance on the
cross-training set by calculating the area under the receiver operating char-
acteristic curve (Section 2.4). We then selected the best-performing feature,
paired it with all others and selected the best-performing duo. This procedure
was repeated, always adding the best-performing feature of each round to the
previous best-performing combination until no additional feature yielded an
improvement. In the end we tested the best feature combination on the
testing set (the tenth set that had not been used during feature selection)
to assure that the network was not overfitted. A combined feature set was
obtained by collecting all features that improved performance on any of the
ten networks into one feature set. We trained all networks using this feature
set and then performed a backward elimination selection by which we re-
moved all features that could safely be removed without lowering the overall
performance. The remaining features constituted our final feature set.

The final feature set was used to find the optimal network architecture.
For each of the ten networks we applied heuristically selected parameter
combinations: learning rate between 0.005-0.1, learning momentum 0.01-
0.3, and hidden units 10-100. We again tested each parameter combination
separately for each network using the cross-training set and selected the
combination that performed best. In the end, the performance on the cross-
training sets was compared to the performance of the corresponding testing
sets to assure that there was no significant overfitting.

2.3.3 Alignment-free prediction

Of all features, alignments of related protein sequences carry the most infor-
mation on whether or not a variable is acceptable. As many (approximately
10%-20%) sequences in today’s databases continue to not map to any known
sequence, there is no evolutionary information available for these so-called
orphan sequences. In fact, even for human there are currently (Feb 2015)
over 600 sequences for which less than 5 homologs can be found. We thus
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specifically trained a method to perform well when no evolutionary informa-
tion is available. Towards this end, we created a substitution score matrix
from the predictions made by our regular method and used this matrix as
an independent feature along with all other features that did not require
alignments. Networks were trained and optimized as above. The resulting
prediction method constitutes a fall-back mode for the main method. Al-
though by definition weaker than the main method, this enabled predictions
for cases that would otherwise not be predictable.

2.4 Performance measures

We employed several different performance measures to evaluate different as-
pects of method performance. The following standard definitions were used:
True positives (TPs) were correctly predicted variants with experimentally
annotated effect. True negatives (TNs) were correctly classified variants for
which experiments confirmed no effect (i.e. neutrals). And correspondingly,
false positives (FPs) and false negatives (TNs) were incorrectly classified
samples with or without experimentally annotated effect, respectively. We
considered three levels of performance: the inner-class performance, the com-
bined class performance and the overall model performance.

The inner-class performance was estimated using the standard formulas
for precision and recall (i.e. accuracy and coverage, respectively) for both
the ’effect’ and the ’neutral’ class separately:

Precision

effect

= Accuracy

effect

=
TP

TP + FP

, (1)

Recall

effect

= Coverage

effect

= TPR =
TP

TP + FN

, (2)

Precision

neutral

= Accuracy

neutral

=
TN

TN + FN

, (3)
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Recall

neutral

= Coverage

neutral

=
TN

TN + FP

. (4)

The recall value of the effect class also represents the true positive rate
(TPR; Eqn. 2). Combined class performances were measured through the
F1 measure in order to comprehensively estimate the performance for neutral
and effect variants individually:

F1
effect

=
Precision

effect

⇤Recall

effect

Precision

effect

+Recall

effect

, (5)

F1
neutral

=
Precision

neutral

⇤Recall

neutral

Precision

neutral

+Recall

neutral

. (6)

The overall performance was used to compare different models and meth-
ods. We therefor calculated the Matthews correlation coefficient (MCC) and
the overall two-state accuracy (Q2):

MCC =
TP ⇤ TN � FP ⇤ FNp

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
, (7)

Q2 =
TP + TN

TP + FP + TN + FN

. (8)

The false positive rate (FPR) was calculated as

FPR =
FP

FP + TN

. (9)

Moreover the area under the curve (AUC) of the receiver operating char-
acteristic (ROC) was used for model comparisons. This curve was obtained
through plotting the true positive rate (Eqn. 2) against the false positive
rate (Eqn. 9) at all possible decision thresholds (i.e. every score from -100
to +100).
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We estimated standard error and standard deviation by bootstrapping.
The 1000 bootstrap sets were created by randomly selecting 50% of all vari-
ants without replacement. Although this is typically done with replacement,
we experienced that bootstrapping without replacement yields more accu-
rate estimates due to overrepresentation of certain protein families. With
these n=1000 sets we calculated the standard deviation (StdDev; Eqn. 10)
as the average performance difference of each set (x

i

) from the overall per-
formance average (�). The standard error (StdErr; Eqn. 11) was calculated
by dividing the standard deviation by the square root of sets:

StdDev =
qX

(x
i

� �)2, (10)

StdErr =
StdDevp
n� 1

. (11)

2.5 Result visualization

One important achievement of this method is its ability to efficiently pre-
dict large amounts of mutations in a protein. This allowed us to expand the
standard resolution from predicting single mutations to predicting the entire
mutability landscape of a protein (Hecht et al., 2013). For an average-sized
protein (i.e. roughly 300 residues) we can predict all non-native substitu-
tions at every position in less than one hour of runtime, yielding a total
of roughly 5,700 predictions per protein. However, this much information
cannot be reasonably represented in text form and thus requires appropriate
visualization. We therefore implemented a JAVA script component with the
ability to represent this data as a heat map (Yachdav et al., 2014). This
allowed showing all 19 substitutions (y-axis) for every residue of the protein
(x-axis) along with their predicted effect by color-coding the numerical pre-
diction in a color cascade (Fig. 7b,c) ranging from green (Score -100, most
reliable neutral prediction) over white (Score 0, inconclusive prediction) to
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red (Score +100, most reliable effect prediction). This component was in-
cluded in a web-server (available at http://rostlab.org/services/snap2web)
in order to enable users to view and download both the numerical and the
visual output of our method.

3 Results and discussion

During the course of this thesis we developed SNAP2, a neural network
based classifier for the prediction of functional effects of single amino acid
substitutions in proteins. It is able to accurately predict variants even in
orphan proteins and presents prediction results for all possible substitutions
in comprehensive heat maps. The following sections present comparisons to
other state-of-the-art methods and describe the improvements made in our
novel method. We show the heat map representation along with a possible
use-case and discuss difficulties that users may face when interpreting results
from variant effect predictors.

3.1 Better prediction of functional effects

For the final method we estimated an overall performance of over 83% two-
state accuracy. These estimates were obtained from our cross-validation test-
ing sets, that had no part in method development. We first compared our
new method SNAP2 against it’s predecessor SNAP, as both methods shared
a significant amount of training data. Towards this end, we assessed the rel-
ative benefit of the newly implemented features by training our method on
exactly the same data that SNAP was trained on. Through this approach we
observed that the additional features accounted for approximately 1.2% per-
formance increase over the original SNAP (79.8±0.4% up to 81±0.5% Q2;
Eqn. 8). This performance increase was significant, although the original
SNAP had an advantage in this comparison as it had been trained on the

31



same data, while the SNAP2 estimates were taken from the cross-validation
(and had thus not been used in training). Next we assessed the benefit of
adding disease-associated variant data to our training data. We trained our
method on the extended training set but tested against the original SNAP
data set as before. Here we observed an even higher performance increase:
SNAP2 (82.4±0.4% Q2) outperformed its predecessor SNAP (79.8±0.4% Q2)
even more, which suggested that the additional data had indeed improved
performance. The improvement is also visible in figure 2. Next, we compared
our methods against two other state-of-the-art functional effect predictors:
SIFT (Kumar et al., 2009) and PolyPhen-2 (Adzhubei et al., 2010). While
there are many methods for variant effect prediction (Section 1.4), it would
have been inappropriate to test disease-association predictors on our data.
We therefore explicitly only included these two methods because they had
been optimized for functional effect prediction according to the authors. Fig-
ure 2 shows that SNAP2 (again, predictions were taken from cross-validation
sets that were not used for training) compares favorably to other methods.

PolyPhen-2 has been explicitly optimized on human variants. Although
the authors claimed that their method should work equally well on other
eukaryotes, we felt that the above comparison put PolyPhen-2 at a disad-
vantage as only 25% of our data consisted of human variants. We therefore
re-calculated performance values separately for human and non-human PMD
variants (Sections 1.3 and 2.1). As can be seen in Table 1, PolyPhen-2 does
indeed perform significantly better on human variants on which it performs
on par with SNAP2, although PolyPhen-2 values may be overestimated due
to substantial overlap with its training data. Both methods exhibit better
performance than SNAP and SIFT. On non-human variants however, SNAP2
significantly outperformed all other methods in terms of F1

effect

(Eqn. 5),
MCC (Eqn. 7) and Q2 (Eqn. 8).
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Figure 2: Receiver Operating Characteristic (ROC) comparison.
Shown are the receiver operating characteristics for our new method
SNAP2 (dark blue, AUC=0.905), it’s predecessor SNAP (light blue,
AUC=0.880) and the two widely used functional effect predictors SIFT
(green, AUC=0.838) and PolyPhen-2 (orange, AUC=0.853). Curves are sig-
nificantly different (P < 10�4) according to the method by DeLong et al.,
1988. (Figure adapted from Hecht et al., 2015)
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Method F1effect F1neutral MCC Q2

hu
m

an

SNAP2 78.0% ± 0.6 46.3% ± 1.3 0.24 ± 0.01 68.8% ± 0.7
PolyPhen-2 78.4% ± 0.4* 45.1% ± 1.1* 0.23 ± 0.01* 68.9% ± 0.5*

SNAP 74.9% ± 0.5* 46.7% ± 1.1* 0.22 ± 0.01* 65.8% ± 0.6*

SIFT 72.2% ± 0.6 49.0% ± 1.0 0.23 ± 0.01 63.6% ± 0.6

no
n-

hu
m

an SNAP2 79.9% ± 0.3 45.8% ± 0.8 0.26 ± 0.01 70.7% ± 0.4
PolyPhen-2 77.1% ± 0.4 44.7% ± 0.8 0.22 ± 0.01 67.6% ± 0.5

SNAP 77.2% ± 0.3* 45.5% ± 0.9* 0.23 ± 0.01* 67.9% ± 0.5*

SIFT 77.0% ± 0.3 45.8% ± 0.8 0.23 ± 0.01 67.7% ± 0.4

Table 1: Method performances on PMD data. For each method,
SNAP2, PolyPhen-2, SNAP and SIFT, the corresponding performance is
shown separately for human and non-human proteins. Performance values
were calculated for F1

effect

(Eqn. 5), F1
neutral

(Eqn.6), MCC (Eqn. 7) and
Q2 (Eqn. 8) measures. The data consisted of 9,657 human variants in 678
proteins and 42,160 variants in 3,383 non-human proteins. Significantly best
results for each measure are highlighted in bold. Marked values (*) indi-
cate potentially over-estimated performance due to substantial overlap with
training data. SNAP2 values were taken from cross-validation sets that had
not been used for training.
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3.2 Difficult cases and method combinations

When comparing different prediction methods, one will notice that overall
method performance is quite similar. However, predictions can differ sub-
stantially for individual cases. For instance, Liu et al., 2011 found that the
pairwise agreement between any two methods lies between 61% and 77%. To
turn this observation into a concept we grouped the variants that could be
predicted by all four predictors (83,671 variants) into three classes. We found
53,976 ’easy’ cases (every method gets them right), 23,630 ’difficult’ cases (at
least one but not all of the tested methods gave a correct prediction), and
6,066 ’unsolvable’ cases (no method gave a correct prediction). As can be
seen from these numbers, the bulk of method performance is gained from
easy cases. It appears that a well-trained method will achieve a minimum
of 68% accuracy by simply using the most informative features, that almost
every current implementation employs. It is likely that most of these variants
can be predicted by simply looking at the alignment of related proteins. For
unsolvable cases, on the other hand, it might be that alignment information
is either not sufficiently available or misleading.

We thus compared performances on those difficult cases (Figure 3) and
found that our new method significantly outperformed the other methods
with 67.2% accuracy. SNAP and PolyPhen-2 performed similarly with 55.2%
and 57.8% accuracy respectively, although PolyPhen-2 was at a disadvantage
(as it is specifically optimized for human variants). SIFT (45.5%) performed
within the standard deviation of the random prediction model (44.5%), which
assumed a background of 60% effect and 40% neutral like the overall data set
(i.e. it randomly predicted effect variants slightly more often than neutral
variants).

We investigated the properties of these cases by looking into the human
cases that SNAP2 could correctly predict while the others could not. We
found that these were located at positions at which the variant amino acid
was observed in the alignment (and in some cases even more frequently than
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Figure 3: Comparison on difficult cases. The average two-state accuracy
(Q2; Eqn. 8) on all difficult cases is shown for SNAP2 (dark blue), SNAP
(light blue), SIFT (green) and PolyPhen-2 (orange). For reference the ran-
dom prediction model with a 60:40 effect:neutral background is shown in
pink.
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the human native amino acid). As mentioned above, the presence of an
amino acid in the alignment is a strong indicator that such a variant can
be tolerated, thus possibly misleading other methods to predict these as
neutral. This suspicion was further supported by the fact that our alignment-
free version of SNAP2 predicted 75% of the effect variants with over 90%
accuracy - a value that is significantly higher than the average performance
of alignment-free SNAP2. This indicated that for these cases SNAP2 greatly
profited from the variety of additional features rather than over-relying on
alignment information.

Can the reliability of prediction be increased by using multiple methods?
We investigated the benefit of combining prediction methods for the human
variants of our data by employing a combination of SIFT and PolyPhen-2
that only considered predictions if both methods agreed in their prediction.
This naïve combination was compared to our new method SNAP2 and to
each of the individual methods (SIFT and PolyPhen-2). Figure 4 shows
that the method combination performed slightly better than SIFT on the
neutral cases but did not improve over any of the individual methods on the
effect variants. Moreover, the combination did not perform any better than
SNAP2 throughout the curves. This suggests that users should not blindly
combine methods and trust the results if methods agree but rather choose a
method specifically for their problem or employ specifically optimized method
combinations such as PredictSNP (Bendl et al., 2014) or Condel (González-
Pérez and López-Bigas, 2011).

3.3 Neutral variant dilemma

As can be seen from Table 1 and Figure 4, neutral variants from our PMD set
were predicted much worse than effect variants by all methods. In accordance
with the findings reported by Bromberg et al., 2013, this can be attributed
to a bias in both variant selection and experimental verification. The vari-
ant selection bias results from the fact that variants are not investigated
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Figure 4: Naïve method combination is not better than individual
methods. This figure shows accuracy versus coverage separately for neutral
(Panel a) and effect (Panel b) variants. The accuracy curve is the percentage
of correctly predicted neutral (Eqn. 3, panel a) or effect (Eqn. 1, panel
b) variants out of all predictions at the given threshold. Correspondingly
the coverage is the percentage of correctly predicted neutral (Eqn. 4, panel
a) or effect (Eqn. 2, panel b) variants out of all observations at the given
threshold. The default thresholds of each method are marked by arrows
for SNAP2 (dark blue), SIFT (green), PolyPhen-2 (orange) and the naïve
combination of SIFT and PolyPhen-2 (brown). (Figure adapted from Hecht
et al., 2015)
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randomly. Researchers focus on variants for which the most extreme effects
are expected or on variants that are hypothesized to be involved in diseases,
which explains the imbalance in numbers between neutral and effect variants
in today’s databases. This poses a significant obstacle for computational
approaches, which require sufficient amounts of data in all classes in order
to generalize. The lack of experimentally verified neutral variants hampers
the ability to extract relevant patterns for neutral variants and lowers the
predictive performance. The incomplete verification bias, on the other hand,
results from the triviality that ’not observed’ does not necessarily imply ’not
existing’. Negative experiments are much harder to carry out as they would
require to assay every possible effect. Variants are thus typically evaluated
on the basis of one or a few assays. If no effect is observed the variant is
reported as neutral with respect to that assay but it may well have an effect
on a different phenotype/assay. As today’s data is too scarce to develop
specific methods for each phenotype, we have to accept that our general ap-
proach is skewed with respect to neutral variants. This may have effects on
the extraction of patterns for neutral variants as well as on the evaluation of
performance.

3.4 Interpretation and reliability of variant prediction

A major pitfall in the application of variant effect prediction for biologists
and geneticists is the choice of method and the interpretation of results.
There are significant differences between the seemingly similar approaches
of functional effect and disease-association predictors. Disease association
methods predict the likelihood of variants to be involved in diseases by dis-
tinguishing disease variants from the background of natural genetic variation.
For many users ’disease-associated’ implies that a variant must have strong
functional effects. This is however only true for the simplest cases. For in-
stance, in some monogenic or Mendelian diseases, the molecular effect can
be quantified and directly linked to the phenotype (Hamosh et al., 2005).
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Yet, most disorders appear to be complex in the sense that they involve
multiple genes, variations and/or environmental conditions, as was shown by
GWAS (Wellcome Trust Case Control Consortium, 2007; McCarthy et al.,
2008). It has also been shown (1000 Genomes Project Consortium et al.,
2010) that disease-associated variants can be found in healthy individuals.
Moreover, even in seemingly clear cases the definition of a disease variant
can be difficult. For example, certain variants of the hemoglobin B-chain
cause a condition called sickle-cell anemia, which is associated with chronic
health issues. On the other hand, that same condition grants immunity to
some types of Malaria. In other words: the definition of a disease variant
can depend on the environment and genotype of the individual, making the
interpretation of ’disease’-predictions difficult.

A different set of problems applies for functional effect prediction. In con-
trast to disease prediction, functional effect prediction focusses on the native
molecular protein function. These predicted effects are independent of the
individual and often also independent of the environment but offer no simple
interpretation of their biological relevance. For instance, a weakly predicted
effect in p53 may have a massive biological impact on the individual whereas
a strongly predicted effect in another protein may have little biological signifi-
cance. Moreover, functional effect predictors cannot distinguish the direction
of predicted effects. That is, they cannot discern between gain and loss of
function, but simply predict that a variant has an effect on the native protein
function. This means that predictions have to be interpreted with respect to
the protein under investigation.

Today’s methods can distinguish between sets of variants that are highly
enriched in effects and sets that are not (Schaefer et al., 2012), but pinpoint-
ing the one mutation that causes a certain phenotype within an individual
genome is often beyond our reach. In order to aid the prioritization of exper-
imental variant testing, users need to be able to focus on the most promising
candidates. Towards this end, we provided a reliability index (RI) that allows
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users to zoom in on the most reliable predictions. We first fixed the thresh-
old for the binary categorization of our prediction by selecting a threshold
on our balanced data set (Fig. 5a) that provided the highest overall perfor-
mance for both classes. We then calculated reliability bins from the output
score by projecting the score onto integers between 0 and 9. From these bins
we estimated the performance of each reliability index for our training data,
thus providing users with an estimate of accuracy for each index. Figure 5b
depicts the cumulative accuracy and coverage that can be expected above
each reliability threshold and to how many samples of our data this applied.
For example, the grey arrows mark predictions made at reliability index of 7
or above, which applied to over 58% of our data. For this most strongly pre-
dicted half of our data, we estimated over 90% accuracy for neutral samples
and almost 95% for effect variants. Focussing on these variants with RI 7
or better can thus be considered a reasonable approach towards prioritizing
promising candidates for experimental verification.

3.5 Variant prediction in orphan proteins

Orphan proteins are sequences that find no (or, by extension, only very few)
related sequences in today’s databases. In other words, there is no meaningful
alignment available for the prediction of variant effects. Most methods today
rely heavily on the evolutionary information encoded in alignments and thus
perform poorly at best for these cases. Ongoing sequencing efforts continue
to bring in novel sequences and reveal novel protein families. In fact, the
number of orphan families keeps increasing. In October 2012 the UniRef50
consisted of roughly 5.5 million sequence clusters of which over 3.5 million
contained only one sequence, meaning that approximately 64% of all known
protein clusters (clustered at 50% sequences identity) were represented only
by a single orphan protein. Over the last 2 years, this number has more than
doubled. The current release of UniRef50 (Feb 2015) lists over 13.2 million
sequence clusters with roughly 8.2 million consisting of a single sequence. For
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Figure 5: Threshold and reliability index. Panel (a) shows accuracy
(solid lines, Eqn. 1 and 3) and coverage (dashed lines, Eqn. 2 and 4) for
both effect (red) and neutral (green) variants over the entire spectrum of pos-
sible thresholds. A black arrow marks the threshold selected for the binary
prediction. Panel (b) depicts the same measures above certain reliability in-
dices (RI). The leftmost point (RI=9) corresponds to predictions with the
highest reliability, while the rightmost point (RI�0) includes all predictions.
Shown are the cumulative accuracy (solid lines) and cumulative coverage
(dashed lines) above the corresponding reliability value (ranging from 0, low-
est reliability to 9, highest reliability) separately for effect (red) and neutral
(green) variants. Grey arrows mark the reliability index that applies to the
most strongly predicted half of the tested data. (Figure adapted from Hecht
et al., 2015)
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these 8.2 million proteins/families no other sequences can be found that are
more than 50% identical. While sequences can be quite similar in structure
and function with less than 50% sequence identity, this still suggests that
many proteins in today’s databases are orphans or will have very sparse and
thus possibly uninformative alignments.

We specifically aimed at predicting variants for these proteins by training
a method that did not require alignments (Section 2.3.3). SNAP2

noali

was
first tested on our entire data set through cross-validation. With an overall
accuracy of Q2=68% it performed significantly worse than other methods on
our entire data set, which was to be expected and highlighted the importance
of alignment information (Fig. 6).

Figure 6: Method performances on the entire training data. Shown
are the accuracy versus coverage curves for SNAP2 (dark blue), SNAP (light
blue), SIFT (green), SNAP2

noali

(black) and the random (pink) prediction
model with 60:40 effect:neutral background for neutral (panel a) and effect
(panel b) variants.

To test the performance of our method on orphan proteins we sorted our
data by the amount of sequences in the corresponding alignments. We found
no real orphan (i.e. no protein for which no significant hit was found) in
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our data. However, by raising the threshold to less than five hits, we identi-
fied a small number of 8 ’orphan’ proteins with a total of 248 variants. On
these, our alignment-free method SNAP2

noali

achieved an accuracy of 62%,
while our regular method SNAP2 performed at 61% accuracy. PolyPhen-2
predicted only three of the eight proteins (103 variants) at 60% and SIFT
gave no predictions, which corresponds to random. Although this was a very
small test set, the results indicate that the alignment-free method consti-
tutes an important alternative for predicting variants in proteins with small
alignments and is likely the best solution for orphan proteins.

3.6 The protein mutability landscape

The high computational power of today’s processors and the improved effi-
ciency of our algorithm allowed us to shift the predictive scope of our method.
Instead of only predicting one mutation at a time, we expanded the view by
sketching the entire mutability landscape of a protein. This landscape can
be defined as the predicted effects of each non-native substitution at each
position in the protein (Fig. 7b).

This comprehensive view of functional effects in proteins brings about
opportunities but also a number of challenges. The human beta-2-adrenergic
receptor (UniProt ID: ADRB2_HUMAN, UniProt AC: P07550) is an inte-
gral membrane protein with seven transmembrane helices crossing the lipid
bilayer. These seven transmembrane helices are clearly visible from the pre-
dicted effects shown in Figure 7b and align with the DSSP-assigned (Kabsch
and Sander, 1983) secondary structure elements (Fig. 7a) based on the high
resolution structure 3PDS (Rosenbaum et al., 2011) in the Protein Data
Bank (PDB; Bernstein et al., 1977). This could be expected, as transmem-
brane regions are often well conserved due to the specific biophysical and
structural restrictions imposed upon them. Still, there is a remarkably high
number of effect predictions even for amino acids that fulfill the transmem-
brane requirements (i.e. that are likely structurally acceptable/neutral) as
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Figure 7: Mutability landscape of the human beta-2-adrenergic re-
ceptor. Figure caption on the next page.
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Figure 7: Mutability landscape of the human beta-2-adrenergic re-
ceptor. Panel (a) shows secondary structure assignments from DSSP based
on the protein structure PDB: 3PDS. The predicted mutability landscape is
shown in panel (b) with the x-axis representing the entire sequence. Predicted
effects (ranging from green/neutral over white/inconclusive to red/effect) are
shown on the y-axis for all 19 non-native substitutions. Panel (c) zooms in
on the region spanning from residue 91 to residue 210. It shows the two bind-
ing sites D113 and T118 along with the two strongly predicted and highly
correlated residues W99 and Y199. Panel (d) shows the 57 predicted high
effect residues on the structure colored according to their predicted effects.
Grey represents no or little effect (SNAP score  20), yellow depicts low
effects (20 < score  40) , medium effects are marked in orange (40 < score
 60), and high effects are shown in red (score > 60). Panel (e) shows
the structure (PDB: 3PDS) of human beta-2-adrenergic receptor (UniProt
ID: ADRB2_HUMAN; UniProt AC: P07550) with an irreversibly bound
agonist (cyan sticks), the two known binding site residues D113 and T118
(blue spheres) and the two predicted high effect residues W99 and Y199
(red spheres) that exhibit strong residue couplings with each other and the
binding site. (Figure adapted from Hecht et al., 2013)
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well as for non-transmembrane variants. We found 57 residues that were
predicted to cause strong effects upon mutation (average substitution effect
score of over 60). To visualize these we used the available structure (PDB:
3PDS; Fig. 7d) and colored all residues according to their average predicted
substitution effect. Figure 7d shows no or very small effects (SNAP score 
20) in grey, strong effects (SNAP score > 60) in red, medium effects (40 <
SNAP score  60) in orange, and weak effects (20 < SNAP score  40) in
yellow. Notably, the vast majority of effect predictions are facing the two
known binding site residues (blue spheres) or are located in their proxim-
ity. Only few of these have been experimentally tested for functional effects,
which makes an assessment difficult: among these 57 positions, we could
only find 11 experimental effect annotations. What about the remaining 46
residues without experimental evidence? Some of these may simply be false
positives or predicted to have an effect because of structural importance but
it appears likely that some of these may also be directly relevant for function
and their involvement is yet unknown. A similar observation had previously
been made by Bromberg et al. (2009) in an in-silico mutagenesis study of
the human melanocortin-4 receptor. Following their example, we filtered our
results by only considering variants that could be considered neutral given
their biophysical properties. Towards this end we used the PHAT matrix
(Ng et al., 2000) for transmembrane regions and the BLOSUM (Henikoff
and Henikoff, 1992) for all other regions and filtered out all predictions for
variants with a negative substitution score in these matrices. This filtering
left us with twelve predicted high-effect positions that are likely to directly
affect function upon mutation. These twelve can already be considered rea-
sonable candidates for experimental testing in this protein but other proteins
may exhibit significantly more high-impact sites. In order to further narrow
down candidates, we studied these variants in the light of correlated muta-
tions by applying EVfold (Marks et al., 2012; Hopf et al., 2012). This tool was
designed to predict inter-residue contacts from correlated sequence variation
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and thus possibly predict the 3D structure. We looked at the correlation pat-
terns for our twelve candidates and found that only two of these had residue
couplings among the top 5%. W99 and Y199 (Fig. 7e, red spheres) were
strongly correlated with each other and the two known binding site residues
(Fig. 7e, dark blue spheres). A visual inspection of the protein structure
(PDB: 3PDS) with irreversibly bound agonist (Fig. 7e, cyan sticks) also
suggested functional importance. This example shows how the protein mu-
tability landscape of functional effects can be used to generate hypotheses
for drug development and variant prioritization.

4 Conclusion

This thesis presents a newly developed method for the prediction of func-
tional effects of amino acid substitutions in proteins. The method is shown
to perform better (on non-human variants) or on par (on human variants)
with current state-of-the-art methods, while significantly outperforming all
competitors on the difficult cases. The novel features, that no other method
uses, allowed to make accurate predictions where other methods struggled
and even allowed to make non-random predictions for orphan proteins. The
method presented in this thesis is the most reasonable choice for all proteins
with little or no evolutionary information and capable of making predictions
where other methods cannot.

Better CPUs and an improved algorithm allowed us to shift the predic-
tive focus of our method from single variants to entire mutability landscapes.
These landscapes have been shown to be promising and may enable new
insights into protein engineering, drug development and variant prioritiza-
tion. They may be the key for studying the genotype-phenotype link on
a molecular level if we learn how to correctly interpret them. While the
experimental counterparts remain constrained by the substantial amount of
resources required for mutagenesis studies, computational prediction is cur-
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rently constrained by the amount of available experimental data. Compre-
hensive testing studies such as performed for the HIV protease or the LacI
repressor are invaluable sources of information as they help overcome the neu-
trality dilemma and broaden our understanding of functional variant effects.
Still, computational prediction of variant effects is crucial for coping with the
ever-increasing amount of sequencing data and will likely play a major role
in understanding the molecular mechanisms that link genetic variation and
diseases.
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Appendix

This work constitutes a cumulative dissertation and the methodologies and
results presented in this thesis have been published in peer-reviewed journals.
The corresponding articles are appended to this dissertation and will be
briefly summarized in the following:

• Maximilian Hecht, Yana Bromberg, and Burkhard Rost (2013). News
from the protein mutability landscape. Journal of Molecular Bi-
ology, 425(21):3937-48.

• Maximilian Hecht, Yana Bromberg, and Burkhard Rost (2015). Bet-
ter prediction of functional effects for sequence variants. BMC
Genomics, 16(Suppl 8):S1.
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News from the protein mutability landscape

In this publication we present a novel approach towards variant effect pre-
diction by expanding the view from single variants to complete in-silico mu-
tagenesis predictions. We widely review the field of variant effect prediction
by presenting methods and discussing the current state-of-the-art. We show
that methods are able to computationally predict the effects of most vari-
ants and that effect predictions tend to cluster around important functional
regions. Although most methods perform comparably there is a significant
difference between individual methods’ predictions, which are attributable to
the features and data used in method development. In this article we more-
over present functional effect predictions for a complete in-silico mutagenesis
experiment in the human beta-2-adrenergic receptor. We show the generated
predictions as a heat map and how these correlate with secondary structure
elements in the protein. To further visualize our results, we used the known
experimental 3D structure and highlighted it according to our predictions
thus making high-impact regions in the protein immediately visible in the
structure. This example shows how computational predictions of the muta-
bility landscape can translate into novel hypotheses on protein function and
possibly aid drug development.

Author contributions: Maximilian Hecht, Yana Bromberg and Burkhard
Rost conceived the study design and methodologies. Maximilian Hecht col-
lected the necessary data and carried out the experiments. Results were
analyzed by Maximilian Hecht, Yana Bromberg and Burkhard Rost. The
manuscript was written, revised and approved by Maximilian Hecht, Yana
Bromberg and Burkhard Rost.
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Better prediction of functional effects for sequence vari-

ants

This article describes the development and evaluation of our novel method
SNAP2, a machine learning-based classifier for the prediction of functional
effects of sequence variants. We show that SNAP2 compares favorably with
other state-of-the-art methods and that it is capable of producing non-random
predictions for orphan proteins. Our analysis shows that certain variants
cannot be predicted equally well by different methods and that our novel
method performs remarkably well on variants where multiple methods dis-
agree. Moreover, we show that a naïve method combination, that is often
employed by biologists and geneticists, performs worse than the individual
methods on our data. We present the improvements made to our method
and discuss how these affect the results in different testing scenarios. We also
discuss how data bias affects computational predictions of variant effects and
what users can expect from using these methods.

Author contributions: Maximilian Hecht, Yana Bromberg and Burkhard
Rost conceived this work and designed the experiments. Maximilian Hecht
wrote the software and carried out the experiments. Maximilian Hecht and
Yana Bromberg collected the data and analyzed the results together with
Burkhard Rost. The manuscript was written, revised and approved by Max-
imilian Hecht, Yana Bromberg and Burkhard Rost.
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Abstract

Some mutations of protein residues matter more than others, and these are often conserved evolutionarily.
The explosion of deep sequencing and genotyping increasingly requires the distinction between effect and
neutral variants. The simplest approach predicts all mutations of conserved residues to have an effect;
however, this works poorly, at best. Many computational tools that are optimized to predict the impact of point
mutations provide more detail. Here, we expand the perspective from the view of single variants to the level of
sketching the entire mutability landscape. This landscape is defined by the impact of substituting every
residue at each position in a protein by each of the 19 non-native amino acids. We review some of the powerful
conclusions about protein function, stability and their robustness to mutation that can be drawn from such an
analysis. Large-scale experimental and computational mutagenesis experiments are increasingly furthering
our understanding of protein function and of the genotype–phenotype associations. We also discuss how
these can be used to improve predictions of protein function and pathogenicity of missense variants.

© 2013 The Authors. Published by Elsevier Ltd.

Introduction

Lewis Carroll—Through the Looking Glass:
“Why, sometimes I've believed as many as six
impossible things before breakfast.”

Understanding Genetic Diversity—A
Central Challenge for Deep Sequencing

Elucidating which human genetic variations have
which phenotypic effect and how the variation
impacts disease is one of the major scientific
challenges in the 21st century. While the vast majority
of genetic variants are hypothesized to be neutral [1],
that is, are assumed not to contribute to any
phenotype, the relative percentage of neutral, near-
neutral [2] and non-neutral variants remains unclear.

Most likely, the precise ratios heavily depend on the
particular protein under investigation (e.g., the human
immunodeficiency virus gp120 is likely to be much
more robust against mutation than p53 simply
because many of the p53 residues are involved in
binding and therefore “vulnerable” to mutation). A key
aspect in the development of strategies for diagnosis
and treatment of genetic diseases is to further our
understanding of the underlying mechanisms that link
genotypes and phenotypes.
Sequence variants such as single nucleotide poly-

morphisms (SNPs) are the most prevalent form of
human genetic variation [3]. It has been estimated that
more than 11 million SNPs will be observed among
people; 7 million of these are frequent (common
variants), that is, occur with a minor allele frequency
above 5%, while the remaining (minor allele frequen-
cy, b5%) are considered as rare [4]. Many of both rare
and common variants may be instrumental in defining
individual's differences [5–7]. Increasingly, however,

0022-2836 © 2013 The Authors. Published by Elsevier Ltd. J. Mol. Biol. (2013) 425, 3937–3948
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researchers begin to suspect that every possible point
mutation might ultimately be observed.
For medical biology, non-synonymous SNPs

(nsSNPs) or missense variants that change the
amino acid sequence of the protein are particularly
interesting. These variants are more likely to affect
function than synonymous SNPs. Single-amino-acid
variants can change the resulting phenotype, for

example, by altering protein function directly or
indirectly by impacting structure and/or binding.
Such changes can lead to pathogenic phenotypes
[8]. Recent studies suggest that every pair of
individuals differs by almost one amino acid variant
in each protein while individuals have about 1.2–1.7
variants (nsSNPs) that are novel with respect to both
parents, that is, not observed in either parent [7].

Fig. 1 (legend on next page)
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Knowing how these changes affect function can
give, for instance, insight into a child's disease
predisposition.
GWAS (genome-wide association studies) has

evolved as the most widely used approach relating
human genetic variation to phenotypic diversity [9].
Results of these studies greatly increased our
understanding of molecular pathways underlying
specific human diseases. Most common SNPs
have been assessed for statistical associations with
many complex traits and common diseases. Howev-
er, for the vast majority of complex trait associations,
the underlyingmechanisms remain unknown, and for
many of the known common SNPs related to
complex disease phenotypes, GWAS misses the
known associations [10]. Rare variants are missed
due to limited numbers [4,11]. The hope is that deep
sequencing will address some of these issues by
revealing variations between the full sequences.

Mutability Landscapes May Be THE Key
to Understanding Diversity

Meanwhile, a different approach toward under-
standing the genotype–phenotype association is to
study functionally important regions, robustness and
evolvability of proteins by investigating the mutability
landscape. Themutability landscape of, for example,
protein function, can be defined as the effect of all
possible point mutations/variants upon protein func-
tion, that is, of substituting the native amino acid at
each residue position against all 19 non-native
amino acids, one at a time (Fig. 1 [20,21]). Studying
such a landscape may help us a lot in understanding
protein function and evolution.
In this review, we exclusively focus on the effects

of varying the protein sequence by single-amino-a-
cid substitutions (SAASs). In order to avoid obscur-
ing acronyms, we will simply use the term variant as
synonym for SAAS. We review comprehensive
mutagenesis in which each position in a protein is

changed and complete mutagenesis in which each
position is replaced by every non-native amino acid.
However, we largely discard effects of varying
multiple residues at the same time. Obviously,
even such a reduced version of the protein mutability
landscape already carries very important information
about protein function. We attempt to sketch how this
landscape brings about new challenges and new
possibilities. In fact, we have to learn to understand
what we see in this new looking glass.

Most Variant Effects Predicted Correctly
In Silico

Several computational methods predict the effect
of variants (SAAS or nsSNPs). Some predict the
effect on protein function {e.g., sorting intolerant from
tolerant (SIFT) [22,23] or screening for non-accep-
table polymorphisms (SNAP) [24,25]}, others predict
the effect with respect to their pathogenicity (e.g.,
MutPred [26], SNPs&GO [27], Mutation Assesor [28]
or MutationTaster [29]) and others yet predict the
effect on protein structure directly [30] or cannot be
easily fit into these categories (e.g., PolyPhen-2 [31]
or PON-P [32]). These methods use a diverse
spectrum of input features, typically combining
evolutionary information with biophysical features
and experimental information about protein structure
and function where available. There are several
outstanding reviews on the prediction of functional
effects [33–35], and the community puts great effort
into assessing such predictions. For instance, CAGI
(Critical Assessment of Genome Interpretation)
aspires to assessing method performance in pre-
dicting phenotypic impacts of genomic variation [36].
More formal studies assess predictors specifically
with respect to their performance in identifying
pathogenic variants [37]. The results of these studies
suggest that each method has strengths and
weaknesses, possibly resulting from the data used
for development and the types of information

Fig. 1. Mutability landscape of a protein. The top line (a) sketches the sequence and secondary structure
(transmembrane helices) of the adrenergic receptor (ADRB2_HUMAN, ID: P07550 [12]; assignment of secondary from
the high-resolution structure PDB ID: 3PDS [13] using DSSP [14]). For each of the 413 residues (x-axis) of the receptor, (b)
shows the predictions for the effects of all 19 non-native variants (y-axis; the stronger the predicted effect, the redder; the
stronger the predicted neutrality, the greener). (c) Zoom of the fragment spanning from residue 91 to residue 210 and the
relative positions of binding sites (D113 and T118) and proposed target residues (W99 and Y199). (d) The predicted
functional effect of variants for the 3D structure (PDB ID: 2RH1 [15]); both known binding sites (positions 113 and 118) are
shown as blue spheres. Shown are the average scores [SNAP score ranges from the most neutral (−100) to the strongest
effect (+100)] over amino acids that would be considered as “neutral” given the biophysical amino acid features as
captured in the PHAT substitution matrix [16] for transmembrane regions and in the BLOSUM62 matrix [17] for all other
residues. Red depicts high average scores (score N 60), orange depicts intermediate scores (40 b score b 60), yellow
depicts low scores (20 b score b 40) and gray marks sites with SNAP scores b20 (predicted as neutral or with little effect).
(e) The 3D structure (PDB ID: 3PDS [13]) with a bound agonist and the two residues (W99 and Y199) that exhibit a high
overall predicted effect and are under strong evolutionary constraint (predicted by EVfold [18,19]) with each other and the
two binding sites.
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included in prediction. Good in silico methods
correctly predict the experimentally observed effects
for most variants.
Typically, only 5–10% of all residues relate directly

to function [38–40]. Some of these are revealed in
the substitution profiles of protein families. A whole
generation of methods targets the prediction of such
functional sites through analyzing evolutionary infor-
mation (e.g., ET [41], INTREPID [42] or DISCERN
[43]). Since these methods predict functional sites, it
is not surprising that they also capture some of the
signal that variants impact function (V. Link and K.
Sjölander, unpublished results). Thus, the ability to
predict the functional effect of variants is clearly
related to predicting protein function.
Predictions of variant effects have helped us

prioritize mutations for large-scale reverse genetics
projects, where mutations are randomly introduced
into the genome. An example for such strategies is
TILLING (targeting induced local lesions in ge-
nomes), a method that combines chemical muta-
genesis with a sensitive DNA screening technique in
order to allow direct identification of mutations in a
specific gene. TILLING uses the functional effect
predictions from SIFT [22,23] to prioritize the
post-processing of variants [44]. Another important
application is to the assessment of disease-related
human variants [20,45,46]. For instance, mutations
that directly cause a disease, such as those found in
OMIM [47], are clearly identified by methods that
predict the functional effect of variants [48]. Existing
in silicomethods can even be good enough to reveal
problems with experimental data: today's assess-
ment of functional neutrality of variants seems
particularly problematic [100]

Peeking Experimentally into the Protein
Mutability Landscape

Alanine scans reveal function and interaction
hot spots

The experimental study on how site-directed
mutagenesis affects phenotypes may be THE most
essential experimental tool for determining protein
function. By substituting residues that are assumed
to be important and measuring substitution effect,
researchers identify the residues that are important
for the hypothesized protein function. Over the last
decade, the power of experimental and computa-
tional mutagenesis has grown considerably: a
decade ago, many publications reported on single
point mutations; today, 50 times more may no longer
satisfy reviewers.
The ability of proteins to interact with substrates or

other proteins is essential. The most important
function of a protein can therefore be defined as its

role within an interaction pathway [49]. Typically,
only a few residues in a protein interaction interface
contribute most of the binding affinity. These can be
identified by the change in binding free energy upon
mutation to alanine and are often referred to as
binding hot spots [50,51]. One definition for a hot
spot is that the binding free energy is altered by
≥1 kcal/mol upon mutation [52]. While the precise
definition might be subject to debate, hot spots are
“real” in the sense that they can be predicted
accurately by methods that do not even assume
that hot spots exist [53]. We moreover might
anticipate the observation that the residues or
positions contributing most to the energy of binding
might also be the residues used more frequently
when choosing sites that bind to many binding
partners. Indeed, hot spots have been observed to
have a high propensity for interaction with multiple
partners [54].
Substituting the native amino acid by alanine is

typically experimentally easiest and expected to be
most revealing. Thus, alanine scans are most
common, but increasingly, glycine, proline and
cysteine scans are also carried out [55–57]. In
these scans, all native residues of a protein are
individually substituted by one of the above amino
acids and the effect upon a given functional assay is
measured. ASEdb, the Alanine Scanning Energetics
database, provides a central repository for such data
[58]. Residues that significantly change protein
function are usually considered important. What
constitutes a significant change depends on the
type of function. In silico predictions suggest that
when looking at the effect of all 19-non-native
mutations, alanine substitutions are most represen-
tative (correlate most with the average over all
mutations) [21]. Although this observation is based
on one single protein (HXK4) and may therefore not
be representative, the fact that in silico methods
accurately reproduce such expert knowledge should
be appreciated as an independent evidence of their
success in predicting essential aspects of the
mutability landscape.

Mutability landscape constrained by correlation
networks?

Comprehensive experimental mutagenesis stud-
ies confirmed that the effect of point mutations
(SAAS) upon function depends crucially on their
positions in the protein sequence [59–61]. Even
within a unit as familiar as the DNA binding domain of
the Escherichia coli LacI [62,63] repressor, almost
any variant can be tolerated at some positions while,
at others, all variants affect function (Fig. 2a). Simple
structural constraints might suffice to explain this
variability: to accommodate the negatively charged
DNA, binding regions of the repressor contain
positively charged residues. Furthermore, binding
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requires helix formation. These two simple biophys-
ical realities constrain the mutability landscape
significantly in a specific, identity-revealing manner
like a fingerprint. The differential sensitivity to
mutation might just be a complex overlay of many
such simple biophysical constraints.
The same constraints are written into the profile

of evolutionary conservation of changes observed
within families of related proteins [64–66]. These
evolutionary imprints are strong enough to aid the
prediction of protein structure [67–70] and function
[39]. One particular idea that uses the constraints
imposed by the mutability landscape is that of
compensating/correlated mutations [71–73]. To
simplify this, imagine a salt bridge, that is, the
interaction between a positively charged residue
and a negatively charged residue. If the negative
one is mutated into a positively charged amino acid,
the affected protein may malfunction. A compensa-
tory mutation that also flips the charge of the
positive position will again allow salt-bridge forma-
tion. If we could identify correlated mutations, we
could use them to predict inter-residue contacts
within [72] and between proteins [74,75]. After
many years of development [18,76], this concept
has finally brought about de novo predictions for
three-dimensional (3D) structure of globular [77]
and large membrane proteins [18,19], several of
those are not similar to any protein structure we
know today. Such predictions may even lead the
way beyond structure [19]: many residues that are
evolutionarily coupled and not close in space may
be relevant for protein function. In fact, in a study of
over 14,000 variants related to disease from over
1000 human proteins, correlated positions
appeared significantly more likely to harbor disease
mutations than average positions [78]. Compensa-
tory mutations involve coupled variants and might
rashly be considered to go beyond the focus of this
review. We show that the correlated mutations

perfectly highlight the importance of analyzing the
mutability landscape.
Other recent studies carry the theme of coevol-

ving positions even further. Patterns of correlated
mutations in the WW domain nearly suffice to
synthetize artificial WW domains with native-like
folding and function [79,80]. Applying statistical
coupling analysis to the S1A protein family, the
Ranganathan laboratory introduced the “sector
hypothesis” [81] that proteins are organized into
distinct subunits or networks (sectors) of coevolving
residues that are essential to structure and function.
Such sectors involve only about every fifth residue;
they are built around active sites, and they connect
to other functional sites distant in sequence and
structure through “networks” of contiguous residue
interactions in the protein core [82]. These networks
of coevolving residues may have resulted from the
need for rapid adaptive variation arising from
fluctuating selection pressure and that the organi-
zation into networks of cooperatively acting resi-
dues may provide such rapid adaptive potential
through only a few mutations [82]. If so, structure
and function may mostly be affected by mutations at
sector positions while non-sector positions may
tolerate variation. This hypothesis was tested
through a complete single mutagenesis (individually
substituting each residue by all 19 non-native amino
acids) in one representative member of the PDZ
family (PSD95pdz3) [82]. The study showed that the
statistical correlation between mutations with signif-
icant functional effect and sector positions was very
strong; it was, in fact, stronger than that between
mutations in the protein core (buried positions) and
positions with ligand contacts. Moreover, a combi-
nation of two mutations at sector positions was
sufficient to change the binding specificity of
PSD95pdz3 for a class-switching ligand. This adap-
tion is exclusively initiated through mutations in the
sector. While awaiting large-scale confirmation,

Fig. 2. Mutagenesis of E. coli LacI repressor. At each position between residue 2 and 329, 12–13 amino acid
substitutions are displayed as a bar. The height of a bar depicts the relative percentage of substitutions that alter the
repressor function as determined (a) experimentally [59] or (b) by computational prediction using SNAP2. With a
correlation of 0.76 over all residues and an accuracy of 78.2% over all variants, this constitutes a below-average prediction
of SNAP2 (~82% estimated overall accuracy).
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these findings already highlight the importance of
annotating correlated mutational behavior for the
prediction of pathogenicity/functional effects of
missense variants.

Penetrating the Protein Mutability
Landscape In Silico

Predicting the mutability landscape of the
human exome

Ultimately, we want to study the entire protein
mutability landscapes for at least some hundreds of
representative proteins by assaying changes in
protein function and their impact upon the organism.
Despite tremendous breakthroughs in high-through-
put experimentation, this analysis falls more into the
world of Lewis Carroll than into that of a scientific
grant proposal. However, such a landscape can be
easily predicted, for example, for all human proteins.
The downside is that we do not yet fully understand
how to interpret the results. Nevertheless, in the
context of understanding the deep sequencing data,
such views are needed.
Finding the causal variants for a particular disease

continues to be a challenging endeavor despite the
continued decrease of the cost in sequencing entire
genomes and entire exomes [83]. Accordingly,
researches prioritize zooming in onto candidate
variants in these studies by including computational
effect predictions [84]. It has been suggested to
combine several prediction methods (e.g., through
majority vote) in order to overcome individual
weaknesses and obtain most reliable predictions
[85]. The dbNSFP [86] database is built to simplify
this endeavor by providing effect predictions and
scores from various methods for every potential
variant in the human genome (approximately 76
million variants). Differences between methods
become most apparent when comparing predictions
on this large scale. The pairwise agreement between
the four methods in dbNSFP ranges from 61% to
77%. The fraction of all potential substitutions
predicted to be deleterious by individual methods
ranges from 40% to 56%, suggesting that methods
disagree strongly. Overall, methods accurately
predict Mendelian disease-causing variants to
strongly effect function. Unfortunately, this does not
imply that the same methods can find a single
disease-causing variant among the thousands of
variants observed between any pair of individuals
from the same population.
To visualize the predictive behavior of the two

widely used methods SNAP [24,25] and SIFT
[22,23], we compiled a pairwise amino acid substi-
tution matrix over all theoretically possible variants in
the human proteome based on the predictions of

each method (Fig. 3; note that not all of those
variants can be observed since not all amino acids
can be transformed into all others through a SNP).
Although SNAP predicts more effect substitutions
than SIFT, trends appear to be largely similar. For
instance, both methods predict substitutions from
and to tryptophan as highly damaging on average.
This is plausible due to its structural importance to
proteins. Similarly, both methods predict substitu-
tions of phenylalanine by any other residue, except
for leucine and tyrosine, as rather damaging.
Phenylalanine is preferentially exchanged with
tyrosine, which differs only in that it contains a
hydroxyl group in place of the ortho hydrogen on the
benzene ring. The preference for leucine seems
plausible due to its hydrophobic character. Exam-
ples of SNAP and SIFT differences are in the
predictions for substitutions of arginine and by
proline. SNAP might be closer to the truth for these
two because they may be difficult to treat via a purely
evolution based method. “To proline” mutations are
likely to be rare due to their disruptions. For arginine,
the explanation seems less clear. How can we cast
such predictions into new methods that, for example,
predict active sites? How can we use them to guide
protein design?

Outcome of alanine scans predicted

Methods that predict functional effects have rarely
been assessed in large-scale mutagenesis experi-
ments. One reason is obviously the shortage of such
experiments. Another might be the perception that
computational methods typically predict neither the
severity nor the direction of the effect (increase or
decrease of function/affinity). It is true that today's
prediction methods cannot directly distinguish be-
tween variants that increase and those that de-
crease binding. Instead, both tend to be predicted as
effects. Nevertheless, prediction scores (i.e., the
signal strength) on average correlate with the
severity of the effect [24]. The concept of “impor-
tance for function” never entered the data set choice
or development phase when creating SNAP. Still,
when applied for residues in ASEdb that the method
had never “seen” before, it correctly identified over
70% of the functionally important sites and correctly
predicted many to-alanine variants (up to 84%,
depending on cutoff) [21].

Comprehensive in silico mutagenesis helps
studying disease-related proteins

A detailed study of the human melanocortin 4
receptor (hMC4R) demonstrated the value of study-
ing the mutability landscape in silico [20]. hMC4R is
related to diabetes and to weight regulation. Muta-
tions in hMC4R have been shown to account for
approximately 3% of all severe obesity cases (body
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mass index, N40), and consequently, they are the
most frequent cause of monogenic obesity in
humans [87,88]. MC4R, a member of the G-pro-
tein-coupled receptor (GPCR) family, is an integral
membrane protein that crosses the lipid bilayer with

seven transmembrane helices. SNAP assessed the
functional essentiality for each of the 332 residues in
hMC4R and the functional impact of all possible
variants; predictions were compared to all available
experimental data. The predictions of variants with

Fig. 3. Effect of pairwise amino acid substitutions in the human exome. Shown is the fraction of substitutions predicted
to have an effect for every substitution of every amino acid (y-axis) by any other (x-axis) in the entire human exome.
Results were obtained by locally calculating the predictions for (a) SNAP and (b) SIFT for every possible SAAS in every
reviewed protein in the Swiss-Prot database [12] with human origin. Cells are colored according to the fraction of
deleterious predictions with high values in red and low values in white. For every prediction for substitutions of amino acid
“m” (y-axis) by “n” (x-axis), we applied the default threshold for each method (SNAP, 0; SIFT, 0.05).
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functional effect and predictions of important regions
in hMC4R largely agreed with experimental evi-
dence [20]. Toward this end, we down-weighted
mutations expected to be neutral for structure (e.g.,
hydrophobic to hydrophobic in membrane regions).
Despite this scoring, the computational mutagen-

esis predicted as many as 118 residues to be
functionally important. This seems a substantial
over-prediction. Indeed, so far, we have experimen-
tal evidence for only 18 residues to be important for
function; 15 of these 18 were in the set of 118
residues predicted to have strong impact [20], which
is not an impressive performance but much higher
than the random 6 in 18. The nsSNP database of
effects (SNPdbe [89]) provides experimental links to
obesity for 27 residues, 17 of those were in the 118.
Only one single residue is found in both sets. Thus,
in silico mutagenesis correctly predicted 31 of the
known 44 positions reported to influence function
if mutated.
What about the 74 residues with predictions but

without observation (118 predicted, 44 so far
experimentally known)? At this point, 74 mutations
constitute a relatively large number of high-effect
predictions, which cannot be verified due to lack of
data. Re-evaluating the predictions, we might
apply a more stringent threshold to consider an
effect important. For instance, at a threshold with
an expected accuracy N95%, 22 residues are
predicted to impact function; 10 of those corre-
spond to experimentally known sites, 1 corre-
sponds to a site implicated with obesity and 11
remain without experimental annotations. These
might constitute ideal starting points for designing
new experiments [20].

Detailed analysis of mutability landscape for a
GPCR, the beta-2-adrenergic receptor

To visualize the results of such an in silico
mutagenesis, we applied SNAP2 (M.H., unpublished
results) to another GPCR, the beta-2 adrenergic
receptor for which experimental high-resolution 3D
structures are available in the Protein Data Bank
(PDB) [90] (PDB ID: 2RH1 [15], Fig. 1d; PDB ID:
3PDS [13], Fig. 1e). The predicted high-effect
regions cluster around the binding sites and are
significantly more abundant on the inside (facing the
binding sites) than elsewhere. Strong effects
(SNAP N 60; note: score ranges [−100,+100]) are
predicted for 57 residues (Fig. 1d, red highlighting)
including the two Swiss-Prot annotated [12,91]
binding sites D113 and T118. Nine more sites with
functional effect annotation in SNPdbe [89] were
found. Among these, we find (1) D79, for which a
mutation to N was shown to affect binding of
catecholamines and to produce an uncoupling
between the receptor and stimulatory G-proteins
[92,93], and (2) D130, for which mutations to A or N

were shown to increase pindolol-stimulated cAMP
accumulation [94,95]. Although located in the cyto-
plasmic region, strong signals also highlight (1)
Y141, for which a substitution by F is known to
abolish insulin-induced tyrosine phosphorylation and
insulin-induced receptor super sensitization [96],
and (2) C341, for which a mutation to G was
shown to alter binding (uncoupling of receptor) [97].
Thus, 46 sites (57 predicted, 11 experimentally

observed) remain with strong effect predictions for
which no variants have been tested experimentally.
Again we observe a rather large discrepancy
between observed and predicted “sensitive to
mutation” positions. Some of these predictions will
likely just be false positives. However, due to being
located in the protein core, others may in fact affect
function by structural alterations/misfolding. Applica-
tion of an even more stringent threshold (score N 80
at N95% expected accuracy) weeds out 38 of these,
leaving 12 residues with very strong effect pre-
dictions and without current variant annotations. We
studied these also in light of EVfold [18,19] (predic-
tion of inter-residue contacts through correlated
mutations). Only 2 of the 12 had residue couplings
in the realm of the top 5%, namely, W99 and Y199
(Fig. 1e). We could not find any experimental
annotation about these two. However, a visual
inspection (Fig. 1e) of a 3D structure with irreversibly
bound agonist (PDB ID: 3PDS [13]) appears to
suggest the two as reasonable targets for experi-
mental verification.
This detailed view of the beta-2-adrenergic recep-

tor provides another example for how useful it might
be to analyze the mutability landscape through a
complete in silico mutagenesis; it highlights func-
tionally important regions and may help in experi-
ment design to probe function locally or test entire
regions for docking and drug development. The
example also suggests that variant effect prediction
might benefit from including inter-residue contact/
evolutionary coupling predictions.

Perspective

Comprehensive mutagenesis experiments have
furthered our understanding of protein function and
continue to provide insight into the mechanisms of
pathogenicity and adaption. Novel methodologies
and technical advancements reduce the cost of
experimental mutagenesis and enable research that
was previously impossible. Still, studying the coop-
erative behavior of amino acids and the combined
effect of mutations will remain a laborious and costly
task. This is where computational methods are
useful to predict the effects of variants upon protein
function, structure and pathogenicity. These
methods have grown in accuracy both in predicting
functional effect (Fig. 2b) and disease-causing
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mutations. Can they reach the next level? Can they
be used to study the mutability landscape of a
protein, that is, to unravel the effects of all possible
variants? Here, we argue that the study of such a
mutability landscape provides immensely important
value and that currently neither experimental nor
computational methods completely mine the poten-
tial of studying this landscape. Experimental
methods remain constrained by the substantial
amount of resources such studies would consume.
Computational methods remain constrained by the
degree to which we can interpret their results. At this
point, lack of comprehensive experimental data
seems a crucial problem for the development of
better computational tools. However, in silico ana-
lyses of mutability landscape already help to design
experiments and are crucial for the intelligent
interpretation of deep sequencing/next generation
sequencing data.
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Abstract
Elucidating the effects of naturally occurring genetic variation is one of the major challenges for personalized health
and personalized medicine. Here, we introduce SNAP2, a novel neural network based classifier that improves over
the state-of-the-art in distinguishing between effect and neutral variants. Our method’s improved performance
results from screening many potentially relevant protein features and from refining our development data sets.
Cross-validated on >100k experimentally annotated variants, SNAP2 significantly outperformed other methods,
attaining a two-state accuracy (effect/neutral) of 83%. SNAP2 also outperformed combinations of other methods.
Performance increased for human variants but much more so for other organisms. Our method’s carefully calibrated
reliability index informs selection of variants for experimental follow up, with the most strongly predicted half of all
effect variants predicted at over 96% accuracy. As expected, the evolutionary information from automatically
generated multiple sequence alignments gave the strongest signal for the prediction. However, we also optimized
our new method to perform surprisingly well even without alignments. This feature reduces prediction runtime by
over two orders of magnitude, enables cross-genome comparisons, and renders our new method as the best
solution for the 10-20% of sequence orphans. SNAP2 is available at: https://rostlab.org/services/snap2web

Definitions used: Delta, input feature that results from computing the difference feature scores for native amino
acid and feature scores for variant amino acid; nsSNP, non-synoymous SNP; PMD, Protein Mutant Database; SNAP,
Screening for non-acceptable polymorphisms; SNP, single nucleotide polymorphism; variant, any amino acid
changing sequence variant.

Introduction
Some sequence variations matter, changing native pro-
tein function or disease-causing potential, while others
do not [1]. The distinction between the variants that
change protein function and those that are neutral is one
key to making sense of the deluge Next Generation
Sequencing (NGS) or Deep Sequencing data. Many
methods have been developed that address this challenge,
spanning a wide range of goals and applications. Some
tools are focused on non-coding regions [2-4]; others
focus on coding regions and predict the effects of single
amino acid variants (non-synonymous single-nucleotide

polymorphisms, nsSNPs, or single amino acid substitu-
tions, SAAS) on aspects such as protein structure [5],
stability [6-8], binding affinity [9], and function [10,11].
Some methods focus exclusively on the human genome
[12,13] and some aspire to identify disease-causing
variants [14-16]. Applications to personalized health are
obviously important considerations for the developers of
such tools. Generally, today’s methods are able to distin-
guish between a set with 100 disease-causing and another
with 100 less impacting variants [17,18]. However, identi-
fying one or several variants in an individual responsible
for a certain disease is often beyond our reach. Methods
have improved significantly by using more protein and
variant annotations, as demonstrated in particular in the
advance from PolyPhen [12] to PolyPhen-2 [13]. Despite
many advances, good data remains missing, in particular
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careful annotations of variant neutrality, partially because
it is to difficult to carry out “negative experiments”
(absence of change [19]).
The best variant effect prediction methods typically use

evolutionary information, and a wide variety of features
descriptive of protein function and structure. Performance
decreases substantially for proteins without informative
multiple alignments. Today few human proteins do not
map to well-studied sequence families. However, most fully
sequenced organisms, predominantly prokaryotic, contri-
bute a substantial fraction of “orphans” (10-20%) [20].
Today’s state-of-the-art prediction methods focus on

discerning disease-causing variants from the background
variation. They, e.g. differentiate between human cancer-
causing mutations and common variation. This implicitly
disregards many variants with functional effects that are
not associated with disease. In contrast, the current
version of our SNAP (Screening for Non-Acceptable Poly-
morphisms) method, SNAP2, does not predict the variant
effect as “disease or not” but rather as “change of molecu-
lar function or not”. Similar to most experimental assays,
SNAP2 does not directly connect “molecular change” to
“impact on organism"; i.e. the goal is not to support state-
ments of the type “this single variant improves survival
rate”. Also similar to many experimental methods, we
avoid distinguishing gain-of-function from loss-of-function
variants, as these outcomes are often subjective. For
instance, gaining in the ∆∆G of binding does NOT imply
a “better molecular function” and even the gain of “mole-
cular function” might decrease survival. Here, we intro-
duced several concepts each of which importantly
improved over our previous method, SNAP [11]. SNAP2
outperforms its predecessor in three major aspects: better
performance, better predictions without alignments, and
many orders of magnitude lower runtime.

Methods
Data sets
The training set for SNAP2 resembled that used for devel-
opment of the original SNAP [11]. In particular, we used
the following mixture: variants from PMD (the Protein
Mutant Database [21]), residues differing between
enzymes with the same experimentally annotated function
according to the enzyme classification commission (EC),
retrieved from SWISS-PROT [22,23], variants associated
with disease as annotated in OMIM (Online Mendelian
Inheritance in Men [24]), and HumVar [25].
PMD. We extracted all amino acid changing variants

from the Protein Mutant Database [21] (PMD) and
mapped these to their corresponding sequences. PMD
annotations with ‘no change’ (‘=’) qualification (function
equivalent to wild-type) were assigned to the ‘neutral’
class, while variants with any level of increase (‘+’, ‘++’,

‘+++’) or decrease (‘-’, ‘- -’, ‘- - -’) in function were
assigned to the ‘effect’ class. Variants with conflicting
functional effect annotations were also classified as
‘effect’. This approach identified 51,817 variants (neutral:
13,638, effect: 38,179) in 4,061 proteins.
EC. 74% of the PMD data were ‘effect’ annotations. We

balanced this with evidence for neutral variants from
enzyme alignments. Assume independent experiments
reveal two enzymes to have the same function, i.e. the
same EC number (Enzyme Commission number [26]).
If these two proteins are very sequence similar, most var-
iants between them are likely ‘neutral’ with respect to the
EC number. While not always correct, the procedure cre-
ates a set heavily enriched in truly ‘neutral’ variants. To
turn this concept into data, we aligned all enzymes with
experimentally assigned EC numbers in SWISS-PROT
[22] using pairwise BLAST [27]. We retrieved all enzyme
pairs with pairwise sequence identity >40% and HSSP-
values>0 [28-30]. This yielded 26,840 ‘neutral’ variants in
2,146 proteins [11].
Disease. We extracted 22,858 human disease-associated

variants in 3,537 proteins from OMIM [24] and HumVar
[25]. All disease-associated variants were classified as
‘effect’. For many of these variants the change in protein
function has not explicitly been demonstrated. These
variants may be not causative but, possibly, in linkage
disequilibrium with the actual disease-causing variants.
Alternatively, they may be affecting splice-sites and/or
regulatory elements in the DNA, finally showing up as
amino acid substitutions. Hence, by compiling these into
the effect class we may be over-estimating functional
changes. However, we previously established that rela-
tionships to disease provide much stronger evidence for
functional effect of variants than any other experimental
evidence [17]. Thus, disease variants are clearly strongly
enriched in functional significance.
Protein specific studies. We also included data from

comprehensive studies of particular proteins, namely
LacI repressor from Escherichia coli [31] (4,041 variants)
and the HIV-1 protease [32] (336 variants). Variants
functionally equivalent to wild-type were considered
‘neutral’; all others were deemed ‘effect’. These variants
were not included in training, overlaps (same variant in
one of the sets above and these) were removed.
Evaluation sets. We created three subsets of our data

for evaluation/development of SNAP2. First, PMD + EC
+ Disease were compiled into one comprehensive set
termed ALL with 101,515 variants (40,478 neutral,
61,037 effect) in 9,744 proteins. We also split the PMD
data into two subsets: one containing only human muta-
tions (PMD_HUMAN; 9,657 variants in 678 human
sequences) and one consisting of all others (PMD_NON-
HUMAN; 42,160 variants in 3,383 sequences).
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Cross-validation
We clustered our data such that the sets used for training
(optimizing neural network connections), cross-training
(picking best method) [33,34], and testing (results
reported) were not significantly sequence similar. Toward
this end, we all-against-all PSI-BLASTed all proteins in
our data sets and recorded all hits with E-values<10-3.
Starting with these, we built an undirected graph, where
vertices are proteins and edges link vertices to the corre-
sponding BLAST hits. We then clustered all proteins
using single linkage clustering; i.e. all connected vertices
were assigned to the same cluster. This yielded 1,241 clus-
ters of related protein sequences with 1 to 1,941 members.
We randomly grouped the clusters into ten subsets of
roughly similar size. This approach ascertained that no
two proteins between any sets were significantly sequence
similarity. Due to extremely varied cluster sizes one of
these subsets was nearly three times larger than the others.
This imbalance was acceptable since the cross-validation
procedure ensured sufficiently more training data than
testing data in each rotation. In tenfold cross-validation,
we rotated through the subsets using eight for training,
one for cross-training and the tenth for testing, such that
each subset (and therefore each protein) was used for test-
ing exactly once. As a result no variant, protein sequence,
or even close homologue, was ever used simultaneously
for training and testing. All performance estimates that we
reported were solely based on the testing set.

Prediction method
We applied the different machine learning tools in the
WEKA suite [35] to our data with default parameters.
Support Vector Machines (SVMs) and Neural Networks
performed similarly and slightly better than Decision
Trees and Random Forests. Due to runtime efficiency,
we decided to proceed with standard neural networks.
As in similar applications [11,36], we used two output
units: one for ‘neutral’, the other for ‘effect’. All free net-
work parameters were optimized on the training (opti-
mizing connection weights) and cross-training
(optimizing number of hidden units, learning rate, and
momentum; stop training before over-fitting) sets. Ten-
fold cross-validation implies training ten networks:
which one to use for future applications? Taking the
“best” of the ten risks over-training. We avoid this by
using all ten networks to predict for new proteins, com-
piling separate averages for ‘neutral’ and ‘effect’ over all
ten networks. The final prediction is the difference
between these averages that ranges from -100 (strongly
predicted ‘neutral’) to +100 (strongly predicted ‘effect’).

Input features
Biophysical amino acid features and predicted aspects of
protein function and structure help to predict the

impact of variants. Not knowing connections between
residues (our method does not require the knowledge of
3D structures), we scanned sliding windows of up to 21
consecutive residues around the central variant position.
We compiled the original SNAP features: biophysical
amino acid properties, explicit sequence, PSIC profiles
[37], secondary structure and solvent accessibility
[38-40], residue flexibility [41], and SWISS-PROT anno-
tations. Additionally, we introduced new features for
SNAP2: amino acid properties as provided by the AAin-
dex database [42], predicted binding residues [43], pre-
dicted disordered regions [44], proximity to N- and
C-terminus, statistical contact potentials [45], co-evolving
positions, residue annotations from Pfam [20] and PRO-
SITE [46], low-complexity regions, and other global fea-
tures such as secondary structure and solvent accessibility
composition (Additional File 1, Input feature calculation).

Feature selection
In order to determine the optimal feature combination,
we systematically sieved through our feature space using
greedy bottom-up feature selection. For the following
procedure one of the ten training folds (specific to each
network) was kept out so that it had no part in feature
selection and parameter optimization at any point. We
trained ten networks, using 9 of the 10 data subsets: 8 for
training and 1 for cross-testing as described above, using
each feature and selecting the highest scoring feature
separately for each network (highest AUC, Area Under
ROC Curve, in cross-training). In the next round, the
selected feature was combined with each of the remain-
ing features to train another round of ten networks and
the best performing combination of features was selected
- again, for each network separately. We repeated until
no additional feature improved performance. We consid-
ered different sequence window sizes for each feature
independently; i.e. each feature could be selected in a
window of w = 1,5,9,13,17, or 21 consecutive residues
around the observed variant at the center of the window.
We tried to avoid local maxima in training via the fol-

lowing steps: S1: Train with balanced data sets [38,40].
S2: Determine the AUC on the cross-training set after
each repetition. Record the step with maximal AUC. S3:
Train and determine AUC for the cross-training set at
least another ten repetitions from the highest-scoring
step. Repeat S2-S3 until no additional improvement is
recorded.
We collected all features that improved performance on

any of the individual networks into a single combined fea-
ture set and trained all networks on this set. In a subse-
quent backward elimination, we removed all features the
removal of which did not alter the average overall predic-
tion accuracy. After determining the final feature space,
we optimized the number of hidden nodes, learning rate,
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and learning momentum to obtain the best-performing
network architecture. As an exhaustive screening of the
entire parameter space was not intended, we heuristically
selected parameter combinations for optimization: learn-
ing rate 0.005-0.1, learning momentum 0.01-0.3, and hid-
den nodes 10-100. The best-performing architecture for
each network, as determined by its performance on the
corresponding cross-training set, was chosen for the final
method.
Finally, we tested the resulting trained networks (of

specific feature space and the network architecture
each) against the test sets that were initially kept out of
feature selection and parameter optimization. Since the
performance on these test sets did not differ signifi-
cantly from that estimated during the optimization pro-
cedure, we concluded that we had not over-fitted the
networks to the data.

Predicting effects without alignments
We repeated the above feature selection restricted to
global features (features based on the entire protein,
such as amino acid and secondary structure composi-
tions), amino acid indices, alignment-free secondary
structure predictions, and the biophysical amino acid
properties. We explicitly left out evolutionary informa-
tion. We wanted to add a generic average for ‘potential
effect’. Toward this end, we used the complete version
of SNAP2 to predict effects for all possible variants at
each residue position in our entire ALL set. From these
results, we generated a novel amino acid substitution
matrix of effect probabilities [47] which we included as
an additional feature in the feature selection. This pro-
cedure was aimed at developing a method that can be
applied without alignments. The resulting method
(SNAP2noali) predicts functional effects using only single
sequences. Note that our SNAP2 implementation selects
the best method given the available information, SNAP2
by default and SNAP2noali for orphans. In the latter
case, users are notified about the possibly reduced accu-
racy of predictions.

Performance measures
We evaluated performance via a variety of measures. For
simplicity, we used the following standard annotations:
True positives (TP) were correctly predicted experimental
‘effect’ variants, while false positives (FP) were experimen-
tally ‘neutral’ substitutions incorrectly predicted to have an
effect. True negatives (TN) were correctly predicted
neutrals and false negatives (FN) were effect variants
incorrectly predicted to be neutral. Here, like everywhere
else in computational biology, we accept incorrect esti-
mates originating from the triviality that “not observed”
does not always imply “not existing”, i.e. some of the FP
might have an effect that was not experimentally tested.

We calculated accuracy (precision) and coverage (recall)
separately for ‘effect’ (Eqn. 1) and ‘neutral’ (Eqn. 2) predic-
tions:

Accuracyeffect = Precisioneffect = Positive predictive value =
TP

TP + FP

Coverageeffect = Recalleffect = Sensitivity =
TP

TP + FN

(1)

Accuracyneutral = Precisionneutral = Negative predictive value =
TN

TN + FN
Coverageneutral = Recallneutral = Specificity =

TN
TN + FP

(2)

We used the F-measure (F1-Score; Eqn. 3) to asses
‘neutral’ and ‘effect’ variants individually. Combined per-
formance was measured by the overall two-state accu-
racy (Q2; Eqn. 4) and the Matthews Correlation
Coefficient (MCC; Eqn. 5).

Feffect = 2 ·
precisioneffect · recalleffect
precisioneffect + recalleffect

Fneutral = 2 · precisionneutral · recallneutral

precisionneutral + recallneutral

(3)

Q2 = Accuracy =
TP + TN

(TP + FP + TN + FN)
(4)

MCC =
TP · TN − FP · FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(5)

Standard deviation and error for all measures were
estimated over n = 1000 bootstrap sets; for each set we
randomly selected 50% of all variants from the original
test set without replacement. Note that due to over-
representation of certain protein families, in our experi-
ence, bootstrapping without replacement typically yields
error estimates that are more accurate than those with
replacement. Standard deviation was calculated as the
difference of each test set (xi) from the overall perfor-
mance 〈x〉 (Eqn. 6). Standard error was calculated by
dividing s by the square root of sample size (Eqn. 7).

Standard deviation (SD) =

√∑
(xi − ⟨x⟩)2

n
(6)

Standard error (SE) =
SD

√
(n − 1)

(7)

The reliability index (RI; Eqn. 8) for each prediction
was computed by normalizing the difference between
the two output nodes (one for ‘neutral’, the other for
‘effect’) into integers between 0 (low reliability) and 10
(high reliability):

RI = 10 · |int(Outputeffect − Outputneutral)| (8)
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Results
SNAP2 significantly improves predictions
First, we assessed the performance of SNAP2 via cross-
validation on the original SNAP data. Here, we observed
a performance increase over our original SNAP, originat-
ing from novel features used in SNAP2. However, by
adding in more and better variant data, we found a
further (and significantly higher) improvement in perfor-
mance over SNAP. Many computational methods predict
variant effects. As most of these methods focus on pre-
dicting disease-associated variants, assessing their perfor-
mance on our data is inappropriate. Therefore, we
explicitly compared SNAP2 only to widely used methods
that explicitly aim at the prediction of functional effects:
SIFT [10] and PolyPhen-2 [13]. All estimates for the per-
formance of SNAP2 given in this work are based on full
cross-validation testing, i.e. on data never used for any
step in the development. Note that this is not true for
other methods in our comparisons.
On the ALL data set (Methods), SNAP2 outperformed

its predecessor SNAP [11], as well as both PolyPhen-2
and SIFT (Figure 1). However, the direct comparison is
complicated due to a variety of issues. Firstly, the

original SNAP was trained on PMD, suggesting a perfor-
mance overestimate. Secondly, SIFT scores were nor-
malized and optimized for simple defaults. This is
implicitly ignored by showing ROC-curves that provide
values for a wide set of thresholds that had been
deemed non-optimal by the developers. Thirdly, Poly-
Phen-2 is optimized on human variants that account for
only 25% of our ALL data. For these, we over-estimate
PolyPhen-2’s performance. Although the authors
assumed that PolyPhen-2 would perform similarly for
other eukaryotes, it might not. To address these compli-
cations we compared the methods using additional data
sets.

Performance differed between the human and non-
human PMD data
The F-measure for predicting effect (Feffect, Eqn. 3), the
two state-accuracy (Q2, Eqn. 4), and the Matthew’s cor-
relation coefficient (MCC, Eqn. 5) were slightly higher
for SNAP2 when tested on the non-human than on the
human set (Table 1). For the human PMD data, Poly-
Phen-2 performed on par with SNAP2, while SIFT was
best for predicting neutrals. For the non-human data,
SNAP2 was either on par (Fneutral, Eqn. 3) or outper-
formed (Feffect, Q2, MCC) all other methods (Table 1).
Again, this comparison is not entirely fair to SNAP2
and SIFT since the human PMD variants overlapped
substantially with the PolyPhen-2 training set, i.e. Table
1 likely over-estimates PolyPhen-2.

Blind method combinations might be worse than a
good single method
If in doubt which method is best, users often mix sev-
eral methods. One strategy is to exclusively consider
predictions for which several methods agree. We
assessed the benefit of this strategy by applying SNAP2,
SIFT and PolyPhen-2 on the PMD_HUMAN data set.
All methods performed significantly worse for neutral
than for effect variants. This can largely be attributed to
the difference in the number of variants. The combina-
tion of SIFT and PolyPhen-2 improved slightly over
SIFT alone for neutral variants (green curve vs. brown
arrow/triangle in Figure 2A) and, in terms of accuracy
(Eqn. 2) over PolyPhen-2 alone (orange curve vs. brown
arrow/triangle in Figure 2A). However, for effect var-
iants combining PolyPhen-2 and SIFT did not improve
over the individual methods at all. Moreover, through-
out the curves (Figure 2) of both neutral and effect var-
iants, the combined method did not improve over using
SNAP2 alone. Methods such as PredictSNP [48], Condel
[49], and MetaSNP [50] have been explicitly optimized
to combine different methods, mostly to annotate dis-
ease-variant relationships (as opposed to functional
changes). Such meta-methods often tend to improve

Figure 1 SNAP2 performs best for the ALL data set. This figure
shows performance estimates for the ALL data set. Our new
method SNAP2 (dark blue, AUC = 0.905) outperforms its
predecessor SNAP (light blue, AUC = 0.880), PolyPhen-2 (orange,
AUC = 0.853) and SIFT (green, AUC = 0.838) over the entire
spectrum of the Receiver Operating Characteristic (ROC) curve.
Curves are significantly different from each other at a significance
level of P < 10-4 as measured by the DeLong method [59]. All
SNAP2 results were computed on the test sets not used in training
after a rigorous split into training, cross-training and testing. Results
for PolyPhen-2 and our original SNAP included some of those
proteins in their training, suggesting over-estimated performance.
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over the simple combinations individually attempted by
many users and tested here.

SNAP2 is clearly best for difficult cases
Although overall performance levels were similar for all
methods tested on the ALL data set, the actual predic-
tions for a single variant differed substantially between
methods. Variants for which methods agree could be
considered “easy” (every method right) or “unsolvable”
(no method right). In contrast, variants for which meth-
ods disagree could be considered “difficult”. This classifi-
cation yielded 67,912 easy (~68% of the total; 27,370
neutral and 40,542 effect), 9,624 unsolvable (~10% of the
total; 4,750 neutral and 4,874 effect), and 22,625 difficult
variants (~22% of the total; 7,504 neutral and 15,121
effect). SNAP2 outperformed others on the difficult
cases, correctly predicting 69%, as compared to SNAP

with 53% and SIFT with 41% compared to 53±1% for
random.
We repeated the same analysis for the PMD_HUMAN

subset (Figure 3). For the 3,963 human variants (1,374
neutral and 2,589 effect) for which any two of the methods
disagreed, SNAP2 and PolyPhen-2 were correct in ~58%
of the cases compared to 50% for SNAP, 46% for SIFT
and 44±1% for random predictions. Again, the PolyPhen-2
training set overlapped with these data, suggesting a per-
formance over-estimate.
In this set of 3,963 human variants, 305 (45 neutral

and 260 effect) were only correctly predicted by SNAP2.
We investigated these cases in detail, and found that the
effect variants in this set often localized to positions at
which the variant residue had been observed in another
protein in the alignment. For most methods, this implies
“neutral” prediction. Indeed, SNAP2noali, the version of

Table 1. Method performance on PMD *
Method Feffect (Eqn. 3) Fneutral (Eqn. 3) Q2 (Eqn. 4) MCC (Eqn. 5)

human SNAP2 78.0% ± 0.6 46.3% ± 1.3 68.8% ± 0.7 0.24 ± 0.01

PolyPhen-2 78.4% ± 0.4 ** 45.1% ± 1.1 ** 68.9% ± 0.5 ** 0.23 ± 0.01 **

SNAP 74.9% ± 0.5 46.7% ± 1.1 65.8% ± 0.6 0.22 ± 0.01

SIFT 72.2% ± 0.6 49.0% ± 1.0 63.6% ± 0.6 0.23 ± 0.01

non-human SNAP2 79.9% ± 0.3 45.8% ± 0.8 70.7% ± 0.4 0.26 ± 0.01

PolyPhen-2 77.1% ± 0.4 44.7% ± 0.8 67.6% ± 0.5 0.22 ± 0.01

SNAP 77.2% ± 0.3 45.5% ± 0.9 67.9% ± 0.5 0.23 ± 0.01

SIFT 77.0% ± 0.3 45.8% ± 0.8 67.7% ± 0.4 0.23 ± 0.01

* Data set consisting of 9,657 variants (2,788 neutral, 6,869 effect) from 678 human proteins in the top rows and 42,160 variants (10,850 neutral, 31,310 effect)
from 3,383 non-human proteins in the bottom rows. For each measure and species group, significantly best results are highlighted in bold. Measures with no
bold highlighting indicate absence of a statistically significant best performer.
** Values might over-estimate performance for PolyPhen-2 due to overlap between data set used here and one used for training PolyPhen-2.

Figure 2 Naïve combination is not better than individual methods for PMD_HUMAN data. This figure shows accuracy-coverage curves for
the PMD_HUMAN data. The x-axes indicate coverage (also referred to as ‘recall’; Eqn. 1.2), i.e. the percentage of observed neutral (a) and of
observed effect (b) variants that are correctly predicted at the given threshold. The y-axes indicate accuracy (also referred to as ‘precision’; Eqn.
1.2), i.e. the percentage of neutral (a) and effect (b) variants among all variants predicted in either class at the given threshold. Arrows mark the
performance at the default thresholds for our new method SNAP2 (dark blue), for SIFT (green), and for PolyPhen-2 (orange). A brown triangle/
arrow marks the performance of a (non-optimized) method that combines PolyPhen-2 and SIFT. This combination did not perform better than
SNAP2 alone (brown triangle vs. blue SNAP2 curves).
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our method that does not use alignments, predicted 75%
of these effect variants at over 90% accuracy, i.e. reached
a performance substantially above its average for these
cases. Thus, one important source of SNAP2 improve-
ment for difficult cases originates from its use on var-
ious pieces of information, not just alignments. One
example of this improvement is the R109Q variant in
the IL4 sequence (interleukin-4 isoform 1 precursor;
NCBI reference sequence: NP_000580.1), a pleiotropic
cytokine produced by activated T-cells and involved in
B-cell activation as well as co-stimulation of DNA
synthesis [51]. Variations in this gene were shown to be
associated with susceptibility to ischemic stroke [52] and
knee osteoarthritis [53]. While our R109Q was not
explicitly found to increase disease susceptibility, there
is evidence [54] that it reduces T-cell proliferation and
receptor binding activity. In this case, the variant gluta-
mine is more conserved in the protein alignment than
the human native arginine (11% Q vs. 8% R), making
predictions difficult for methods that over-rely on
alignments.
Another potential source of improvement, although one

for which we could not find explicit and experimentally
verified examples in our data, lies in the usage of informa-
tion about co-evolving residues (Additional File 1, Input
Feature Calculation). Specifically, some of the variant posi-
tions in this set exhibited (computationally-determined)

strong correlations with other positions in the protein,
suggesting that this particular feature also made a
difference.

Evolutionary information most important, other features
vary
The input features related to evolutionary information
were consistently most informative for SNAP2 (Addi-
tional File 1, Fig. SOM_1: SNAP2 vs. SNAP2noali).
Which other input features best distinguished neutral
from effect depended on the data set. This dependency
might originate from annotation inconsistencies and/or
set size differences or it might genuinely reflect the data.
By selecting the best features separately for subsets of
related proteins, we tried to differentiate between these
alternatives. The majority of our subsets considered
structural features (secondary structure and solvent
accessibility) informative, followed by biophysical amino
acid properties (more precisely: charge and hydrophobi-
city). However, the optimal window sizes (number of
consecutive residues used as input) for these features
differed. For instance, residue flexibility was considered
informative by most subsets, but the optimal window
size for this feature varied between three and nine resi-
dues around the variant.
The final SNAP2 network included the following

features: global features (amino acid composition, sec-
ondary structure and solvent accessibility composition,
and protein length), PSI-BLAST [27] profiles and deltas,
PSIC [12] profiles and deltas (differences between mutant
and wild-type residue annotations; see Methods for
details), residue flexibility, sequence and variant profiles,
disorder, secondary structure and relative solvent accessi-
bility and their deltas, physicochemical properties
(charge, hydrophobicity, volume, and their deltas), con-
tact potential profiles and deltas, correlated positions and
low complexity regions. In addition to these, SWISS-
PROT [22] annotations and SIFT [10] predictions were
included in SNAP2, if available. For the sequence-only
network (SNAP2noali) the following features where
included: amino acid composition, protein length,
sequence and variant profiles, contact potential profiles
and delta, volume and hydrophobicity along with the
corresponding delta features as well as several amino
acid indices from the AAindex [42] (Additional File 1,
Table SOM_1).

SNAP2noali important for many proteins
For eight proteins in the ALL data set we found fewer
than five PSI-BLAST hits in UniProt when we first
checked in Oct. 2012. On this tiny set SNAP2noali
appeared better than SNAP2 (Eqn. 4: Q2SNAP2noali =
61% vs. Q2SNAP2 = 60%; Eqn. 5: MCCSNAP2noali = 0.19
vs. MCCSNAP2 = 0.17). PolyPhen-2 made predictions for

Figure 3 SNAP2 and PolyPhen-2 are best for difficult human
variants. Bars mark the two-state accuracy (Q2; Eqn. 4) at the
default thresholds for SNAP2 (dark blue), SNAP (light blue), SIFT
(green), and PolyPhen-2 (orange). Random prediction performance
assuming 60:40 effect:neutral background are given in pink. Analysis
is based on 3,963 ‘difficult’ cases (2,589 effect; 1,374 neutral) from
PMD_HUMAN set. Difficult cases were defined as variants where any
of the above method’s predictions disagreed; i.e. cases where not all
methods, excluding random, gave the same prediction.
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only three of these eight proteins (103 variants, Q2Poly-
Phen-2 = 60%) and SIFT gave no predictions. Recently
repeating the analysis, we found homologues for all
eight. SNAP2, SIFT and PolyPhen-2 now outperformed
SNAP2noali. Our “outdated” analysis was important. On
the one hand, over 600 human proteins (~3% of all
human) still find less than 5 homologues today. On the
other hand, for most organisms for which we know the
sequences, the corresponding value is much closer to
10-20%, i.e. millions of the proteins we know today can
only be handled well by SNAP2noali.
For our entire training data, SNAP2noali reached Q2 =

68%, i.e. seven percentage points more than for the sub-
set of proteins with small/no families (68% on ALL vs.
61% on NOALI eight protein set). About 10-20% of all
proteins in newly sequenced organisms continue not to
map anywhere else in today’s databases [33,34,55]; for
those 10-20% of proteins, SNAP2noali appears to be the
best method available to predict the effect of mutations.

Performance confirmed for additional data sets
We avoided over-optimistic performance estimates by
removing sequence similarity between proteins used for
method development (training/cross-training) and test-
ing. In addition, we also tested our final method on two
data sets of variants from the Escherichia coli LacI
repressor and from the HIV-1 protease (Additional File
1, Table SOM_2). Given the small size and lack of
diversity, these results are likely to be more error-prone
than our cross-validation estimates. However, they pro-
vide independent evidence to estimate the performance
of SNAP2: Q2 = 78% for 4,041 LacI variants and Q2 =
72% for 336 HIV-1 variants. None of these variants was
used during method development. Moreover, our train-
ing data did not contain variants from any homologs of
these proteins.

Reliability index allows zooming into best predictions
The difference between the raw output units reason-
ably estimates prediction confidence [11,36]. We used
this difference to define a reliability index (RI, Eqn. 6)
and demonstrated its excellent correlation to predic-
tion strength, i.e. the reliability index and performance
(Figure 4). The final binary predictions (neutral/effect)
of SNAP2 are calculated from the network outputs
based on the user-defined decision threshold (default:
-0.05). By moving the threshold, users can vary the
accuracy-coverage balance. Higher thresholds result in
more accurate predictions at the cost of covering fewer
variants; lower thresholds cover more variants while
reducing accuracy. By dialing through the entire
threshold spectrum for our non-disease data (PMD/EC
data), we estimated and fixed the default decision
threshold (Figure 4A). To put this into perspective:

when predicting effect/neutral for all variants, SNAP2
is correct in about 75% of its neutral predictions and
in 86% of its effect predictions (Figure 4B rightmost
points). If users focus on the 50% strongest predictions
(Figure 4B; x-axis at 0.5), they could expect the ~92%
of the neutral predictions and ~96% of the effect pre-
dictions to be correct (RI≥8, Figure 4B). Note that for
the purposes of simplified visualization, to display
SNAP2 reliability with one digit per residue (e.g. to
view along with multiple sequence alignments), we
projected the actual RI onto integers from 0 (low relia-
bility - worst prediction) to 9 (high reliability - best
prediction, Figure 4B).

Discussion
Performance related to experimentally biased balance of
neutral vs. effect variants
Machine learning tends to work best when testing and
training data are sampled from the same distribution.
What are the true data that we want to assess our
method upon? One proxy for this type of truth might be
the next “one million variants” experiment: test 1,000
randomly selected naturally occurring variants in 1,000
representative proteins. One question is: how many var-
iants will be identified as being neutral with respect to
protein function? The answer remains importantly vague.
Several seemingly contradictory findings are the follow-
ing. On the one hand, for almost every sequence position
(residue) there is a non-native variant that has very little
effect on one particular experimental assay [56]. Loosely
put: “sequence can change without effect”. On the other
hand, for almost every residue there is a variant that
affects function somehow [56]. Loosely put: “every resi-
due in a protein matters and its variation can change
function”. There is evidence that individuality of people
is partially caused by many slightly non-neutral variants
[19]. However, this does not help in estimating the “true”
ratio neutral/effect for the next one million. Clearly,
today’s data sets are strongly biased toward effect var-
iants, simply because it is simpler to measure and easier
to publish an effect than a neutral variation. Unfortu-
nately, most of our performance estimates crucially
depend on the true ratio neutral/effect. Thus, our esti-
mates remain almost as incomplete as the experimental
data.

What to expect from variant prediction?
Methods that identify variants related to disease try to
pick up changes that are strong enough to cause pheno-
typic effects that can be classified as disease. This is dif-
ficult for two reasons. Firstly, the causality between
variant and disease is only clear for the simplest cases
such as monogenic or Mendelian diseases. Most diseases
appear to be complex, in the sense that they are onset
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only in the presence of several variants and proper envir-
onmental conditions. GWAS have shown that variants
associated with disease are found in healthy individuals,
and vice versa. Loosely put: the definition of a disease var-
iant may depend on other variants present in the particu-
lar genotype of the phenotype carrier. Secondly, even for
seemingly clear-cut cases, the classification of “disease”
might be misleading. Consider the example of the sickle-
cell anemia variants of the hemoglobin B-chain, which can
result in a number of chronic health problems on the one
hand but grant immunity to some malaria types on the
other. In other words, the definition of a disease variant
may depend on the environment of the individual.
In contrast to disease, the prediction of the effect of a

variant upon molecular function focuses only on the
native function of one particular protein. For many
examples, such effects are independent of the individual
and, often (although not always), of the environment.
However, such a focus bears another set of problems: (1)
Today’s computational methods cannot reliably distin-
guish between gain and loss of function. They simply
predict whether or not the mutation affects native func-
tion at all. (2) It is often difficult to relate the strength of
a functional effect to its biological relevance. For
instance, a “bit” of change in p53 functionality may cause
severe phenotypes, whereas a “large” functional effect on
other proteins may have little biological impact. In other
words, predicted effects have to be put into perspective
of the protein in question.

SNAP2 not limited to human variants
Functional effects of sequence variations are not limited
to pathogenicity in humans. As most experimental data
are human-centric, and as the disease variants are gener-
ally most consistent with functional effect [17], SNAP2
performed best for those. This might also explain why for
these SNAP2 performed similar to PolyPhen-2 that has
been optimized to human data. On non-human variants,
however, SNAP2 predictions were most accurate and
reliable as compared to other methods. This suggests
SNAP2 as a valuable tool for the preliminary analysis of
variants in any organism. Specifically, SNAP2 might be
the ideal starting point for the comparison of variants
between species, e.g. human vs. chimp vs. mouse.

Neutral variants predicted worse
All methods performed significantly better for effect
than for neutral variants. This in agreement with find-
ings reported in Bromberg et al [19] and can be
explained in two ways.
(1) The imbalance might originate from incomplete

experimental evidence. The effect of variants is typically
evaluated on the basis of one or a few phenotypes/
assays. If these produce no visible difference as com-
pared to wild-type control the variant is reported as
neutral. However, it might still have an effect on other
assays that are not performed.
(2) The variants for experimental analysis are usually

not selected at random. Instead, researchers prudently

Figure 4 SNAP2 threshold and reliability. The reliability index provides a means of focusing on the most accurate predictions. Panel (a) shows
SNAP2 performance on the balanced PMD/EC data set over the entire spectrum of accuracy (solid lines) and coverage (dotted lines) for both effect
(red) and neutral (green) variants depending on the chosen threshold (x-axis). The default threshold was set to -0.05, where neutral and effect
predictions performed alike (black arrow). By moving the decision threshold users can optimize predictive behavior towards their research needs:
predictions at higher absolute scores (e.g. TP>0.5 or TN<-0.5) are much more likely correct but they are not available for all variants. Panel
(b) directly relates the reliability index (RI) to the performance on our data. Shown is the cumulative percentage of predictions (x-axis) against
accuracy (solid lines) and coverage (dotted lines) above a given reliability index (RI; Methods). Accuracy and coverage are shown separately for
neutral (green) and effect (red) predictions. Each marker depicts a reliability threshold ranging from 0 (right most marker, low reliability) to 9 (left
most marker, high reliability). Labels for RI >= 2, 4 and, 6 are skipped for simplicity. For instance, 58% of all predictions in our cross-validation were
made at reliability levels of 7 or higher (gray arrows). At this reliability, 95% of all effect predictions and 90% of all neutral predictions were correct.
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focus on the most important changes; often those
changes are related to diseases. Such a prioritized selec-
tion samples the feature space incompletely. This may
hamper computational detection of relevant patterns for
neutral variants. The incomplete sampling may also
skew performance estimates: the variants most trivially
expected to be neutral might be predicted by the meth-
ods but might not be tested experimentally because they
are simple to guess. For this reason, comprehensive test-
ing as performed for the E. Coli LacI repressor or the
HIV-1 protease is an invaluable source of information
for computational prediction of variant effects. Such
data will likely be crucial in overcoming the neutrality
dilemma and will significantly further our understanding
of the underlying molecular mechanisms of variant
effects.

SNAP2noali succeeded where others failed
We specifically trained a classifier to predict functional
effects without using evolutionary information. This
unique novel resource might become increasingly useful
as ongoing sequencing efforts bring in more data. The
current release of the UniRef50 (March 2014) contains
~9.5 million sequence clusters of which over 6.5 million
(~68%) contain only one protein, i.e. are proteins so far
unique to one organism. For those over 6.5 million, very
little evolutionary information is available to guide other
variant effect predictions and the fraction of orphan
clusters appears to be increasing; i.e. in October 2012,
the UniRef50 contained ~64% orphan clusters - a 4%
increase over 1.5 years. This difference might originate
from the decreasing quality of increasing sequencing
data. However, a similar trend had been observed
12 years ago with arguably more accurate sequencing
data [57]. Except for SNAP2noali, all methods perform
significantly worse for orphans and, in some cases, at
the level of throwing a coin. Often they produce no
results, which also is at the random level. By including a
variety of specific features, we developed a classifier that
still achieves a two-state accuracy Q2 around 68% from
sequence alone even for these 6.5 million orphan
families. This unique type of predicted information
might become very relevant for uncharacterized protein
families.

Best prediction of difficult cases
By comparing predictions for variants for which com-
monly applied methods disagreed, we extracted variants
that were difficult to classify. For these difficult cases, our
new method SNAP2 significantly outperformed SNAP
(set ALL-difficult: Q2(snap2) = 69%, Q2(snap) = 53%)
and SIFT (Q2(sift) = 41%). For the difficult variants from
human PMD, SNAP2 performed just as well as Poly-
Phen-2, although this comparison gave PolyPhen-2 an

unfair advantage because the data set used had partially
been used to train PolyPhen-2.

More and better data needed to advance further?
SNAP2 and PolyPhen-2 reached similar levels of perfor-
mance with rather different approaches, but we made so
many so important changes to SNAP that we were sur-
prised not to improve more. Was this because predic-
tion performance has reached a plateau, i.e. have we
reached the limits for a method using only sequence
information as input? Many observations suggest that
our data sets remain importantly incomplete. For
instance, we observed that our EC data was inconsistent
but that we fared worse by leaving it out. We improved
a little through the addition of the OMIM data, but pos-
sibly only so much so because the data had implicitly
already been predicted correctly [17]. In other words:
OMIM samples exhibit, on average, extreme signals that
are somewhat ‘easy’ to predict. Thus, adding samples
from the top end of the effect distribution did not help
improve our prediction of difficult cases where we often
find unclear/contradicting signals. Another indication of
incompleteness of experimental data was the result that
we needed to use all available data to achieve peak perfor-
mance, i.e. smaller subsets reduced performance (data not
shown). Still, are we close to a saturation of performance,
or can we expect another leap? The lessons learned from
advancing secondary structure prediction through the
combination of machine learning and evolutionary infor-
mation suggest that there is yet no way to tell.

Conclusions
We significantly improved over our seven-year-old
method SNAP for the prediction of functional effects
from single point variants or mutations in the amino
acid sequence. SNAP2, the new method improved
through more and better data and through more input
features. SNAP2 annotates functional effects of variants
with little preference to particular species and/or parti-
cular types of effects. This allows users to perform bias-
free cross-species comparisons, such as looking at
sequence positions that differ between human and
mouse. We believe that this might be helpful for under-
standing and predicting disease-causing variation, as
well as for facilitating drug development. A measure of
prediction reliability (Reliability Index; RI) allows users
to focus on the most promising candidates. Additionally,
a big achievement of this work is the development of
SNAP2noali - a model that predicts effects of variants
without using evolutionary information. Ongoing deep-
sequencing efforts bring in novel sequences and novel
variants alike. Many of these variants occur in sequences
without families. Possibly for millions of proteins
SNAP2noali provides a reliable prediction of variant
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effects and allows for a quick assessment of functionally
relevant positions in novel proteins. Both versions of
SNAP2 have been optimized towards runtime efficiency
to enable large-scale in silico mutagenesis studies that
probe the landscape of protein mutability [56,58] to
learn important news about protein structure and
function.
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Short description of Supporting Online Material 
This SOM contains a detailed description of features and their extraction for use in 
the neural network predictor. We also included three tables (1) listing the cluster 
representatives from the AAindex database, that were selected as helpful features 
in SNAP2noali, (2) a performance comparison on independent protein-specific data, 
namely the HIV-1 protease and the Escherichia Coli LacI repressor and (3) a table 
showing performance values on our comprehensive ALL (main manuscript, 
methods section) data set. Moreover, this SOM includes a figure (Fig. SOM_1) 
showing the performance of SNAP2 and SNAP2noali in comparison to SIFT and 
random predictions. 
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Material 

Input feature calculation. In order to use amino acid and protein properties in 
neural networks these have to be presented as normalized numerical values. The 
following section describes the exact calculation or extraction of these values. 

Delta features.  Where applicable, we calculated delta features that describe 
the change in certain features between the native amino acid and its variant.  All 
delta features are encoded by two nodes per residue: one for the “severity” 
(absolute difference between wildtype and mutant value) the other for the 
“direction” (‘1’ if positive and ‘0’ if negative) of change.  

Biophysical properties.  In addition to mass, volume, charge, hydrophobicity 
and the presence of C-beta branching amino acids (as already present in SNAP) 
we collected one representative for each cluster of correlated amino acid indices 
from the AAindex database 1.  These indices are matrices containing values for 
each amino acid (or pair of amino acids) that cover a variety of amino acid 
properties and features derived from these (Table SOM_1). We extracted the 
corresponding (already normalized) value for each residue in the window, resulting 
in w input values. Then we calculated the two-node delta feature. The first node 
was the absolute difference between the wildtype and the mutant value.  

Binding residues.  We used ISIS 2 to predict the protein-protein binding sites 
and DISIS 3 to predict the protein-DNA binding sites.  We extracted both the binary 
prediction (binding/non-binding) and the raw prediction score for each residue in 
the window (21 * 2 = 42 input nodes). 

Disordered regions.  We used the META-Disorder predictor tool (MD; 4) tool 
to calculate a three-node disorder feature for all residues in the window: We 
extracted the binary per-residue prediction (disordered/not-disordered) and the 
prediction reliability.   

Proximity to N- and C-terminus.  We calculated the proximity of the variant 
position to each terminus individually as the normalized number of residues 
between terminus and the position of interest (2*1 = 2 input nodes). 

Contact potentials.  We extracted normalized distance-dependent statistical 
potentials (for contacts within 5 Ångstrøms=0.5nm) 5.  For both native amino acid 
and variant, we extracted the potential as a 20-node feature.  Additionally, we 
calculated the delta values for this feature (difference between native and variant) 
for their eight (four residues before and after) sequence neighbors (20*2 + 8*2 = 56 
input nodes). 

Co-evolving positions.  We estimated the co-evolution of positions in a 
multiple sequence alignment following the approach from 6.  For each position in 
the multiple alignment we used the OMES 7 algorithm to calculate the correlation 
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with any other position.  The OMES method compares the observed co-occurrence 
of amino acid X at position i and amino acid Y at position j to the expected co-
occurrence at positions i and j.  This pairwise comparison yielded a ranking of all 
positions based on their pairwise correlation to any other position.  From these, we 
extracted a six-node feature indicating the rank and the score (i.e. the deviation 
from the expectation value) for the three positions most correlated with the 
mutation position (2*3 = 6 input nodes).  

Residue annotation.  In addition to SWISS-PROT annotations and SIFT 
predictions as already used in SNAP we considered residue annotation from Pfam 
8 and PROSITE 9 to describe native and variant amino acids: (i) We determined 
whether the position was part of a PfamA domain.  If so, we collected metrics of 
domain conservation and the posterior probability of native and variant belonging to 
that domain (4 input nodes).  (ii) From PROSITE we extracted a binary single-node 
feature for all residues in the window indicating whether the specific residue is part 
of a PROSITE pattern (21 input nodes).   

Low-complexity regions.  We used the SEG 10 algorithm to mask protein 
regions with low-complexity.  From this masking, we extracted a feature of 21 
binary input nodes indicating whether a mutation is in or close to a low-complexity 
region. 

Global features.  We added global sequence information by calculating four 
features: The amino acid composition as the relative frequency of each amino acid 
(20 amino acids + 1 unknown = 21 input nodes); the sequence length feature 
encoding the protein length in 6 bins (0-60, 61-120, 121-180,181-240, 241-300, 
>300; 6 input nodes); the secondary structure composition and the solvent 
accessibility composition, each as a twelve-node binary feature using four bins (0-
25%, 26%-50%, 51%-75%, 76%-100%) for each state: helix-strand-other or buried-
intermediate-exposed (2 * 12 = 24 input nodes). 
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Table SOM_1: Input features selected from AAindex * 

AAindex 1 
accession 

Description 

VINM940103 Normalized flexibility parameters (B-values) for each residue 
surrounded by one rigid neighbour 11 

BLAM930101 Alpha helix propensity 12 
DAYM780201 Relative mutability 13 
QIAN880123 Weights for beta-sheet 14 
KLEP840101 Prediction of protein function from sequence properties; 

Discriminant analysis of a data base: Net charge 15 
SNEP660101 Relations between chemical structure and biological activity in 

peptides: Principal component I 16 
RICJ880113 Relative preference values of amino acids at C2 17 
SIMK990101 Distance-dependent statistical potential (contacts within 0-5 

Angstroms) 5 
 
* We listed the best-performing input features, i.e. amino acid indices that were 

selected by the feature selection procedure.  Other indices from the 
corresponding clusters performed similarly.  For each of these features both 
window-based and delta features were included into the final sequence-only 
network SNAP2noali. 

 

Table SOM_2: Performance on independent data sets *  

Method LacI repressor HIV-1 protease 
SIFT 72.2% ± 1.0 79.5% ± 3.2 
SNAP 72.0% ± 1.0  78.3% ± 3.0 
SNAP2 78.3% ± 0.9 74.1% ± 3.2 

• Shown is the overall two-state accuracy (Q2 value; Method section) on 4041 
LacI mutants and 336 HIV-1 protease mutants for SIFT, SNAP and SNAP2. 
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Table SOM_3: Performance estimates on ALL data set. 

 
*  Performance estimates were obtained from cross-validation for SNAP2. For 
all methods the default thresholds were applied. Estimates are based on all 
variants from our ALL data set (see methods section; Data).  
  

 Q2 F1 (neutral) F1 (effect) MCC ROC AUC 
SNAP2 83.5% 0.79 0.87 0.65 0.91 
SNAP 80.1% 0.76 0.83 0.59 0.88 
SIFT 77.4% 0.74 0.83 0.54 0.84 
PolyPhen-2 80.8% 0.75 0.84 0.60 0.85 
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Figure SOM_1: Accuracy-Coverage curves for ALL data.  These figures show 
performance on the ALL data set.  Our new method SNAP2 (dark blue) 
outperforms its predecessor (SNAP, light blue), and SIFT (green) for both the 
variants that do not affect function (neutral, a) and for those that affect function (b).  
The x-axes indicate coverage/recall (Eqn. 1,2), i.e. the percentage of observed 
neutral (a) and effect (b) variants that are correctly predicted at the given threshold.  
The y-axes indicate accuracy/precision (Eqn. 1,2), i.e. the percentage of neutral (a) 
and effect (b) variants among all variants predicted in either class at the given 
threshold. The dark line (SNAP2noali) marks the performance of a SNAP2 version 
that does not use any information from sequence alignment. All results are 
computed on the test sets not used in training. A pink line marks the performance 
of a random predictor.  
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Figure SOM_2: Score distribution for SNAP2 on ALL data.  Shown is the 
number of instance (y-axis) for each score (x-axis). Effect variants (red) mostly 
have predicted scores > 0 while neutral variants (green) are predominantly 
predicted at scores < 0.  
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