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Abstract - Human-robot skill transfer has been deeply
investigated from a kinematic point of view, generating
various approaches to increase the robot knowledge in a
simple and compact way. Nevertheless, social robotics
applications require a close and active interaction with
humans in a safe and natural manner. Torque controlled
robots, with their variable impedance capabilities, seem a
viable option toward a safe and profitable human-robot
interaction. In this paper, an approach is proposed to
simultaneously learn motion and impedance behaviors
from tasks demonstrations. Kinematic aspects of the task
are represented in a statistical way, while the variabil-
ity along the demonstrations is used to define a variable
impedance behavior. The effectiveness of our approach
is validated with simulations on real and synthetic data.
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1. Introduction

In real applications, the robot is required to execute
complex tasks and to adapt its behavior to guarantee a
safe interaction with humans and dynamic environments.
Skills acquisition and their compact representation as
motion primitives, as well as on-line adaptation of those
skills to new scenarios [1], are of importance both in in-
dustrial and service contexts.

Leaning from Demonstration (LfD) is a powerful tool
to teach skills in a simple and natural way. In LfD an ex-
pert user provides some demonstrations of a task, phys-
ically guiding the robot or executing the task himself.
Hence, also users that are not familiar with robot pro-
gramming can easily teach new skills. Among the others,
approaches have been developed to learn stable dynam-
ical systems (DS) from demonstration [2, 3]. DS driven
robots are guaranteed to reach the desired position and
can react in real-time to external perturbations, such as
changes in the goal position or unforeseen obstacles [4-
8].

Nevertheless, in dynamic and highly populated envi-
ronments, sudden perturbations are expected and a stiff
controller will generate high forces, making the interac-
tion dangerous. Impedance control [9] is a suitable ap-
proach to control the dynamic response of the robot. The
goal of impedance control is to regulate the mechanical
impedance of the manipulator, i.e. making the robot end-
effector acting as a mass-spring-damping system. Chang-
ing the impedance parameters during the task execution
will generate richer behaviors. Hence, the new problem
arises of how a robot can learn impedance behaviors.

Impedance in humans has been studied to understand

the roles of the different body parts, such as muscles, ten-
dons, brain and spinal cord, in modulating impedance
during the interactions with the environment. A device
capable to measure human stiffness is used in [10] for ex-
amining the so-called equilibrium-point control hypoth-
esis during multijoint arm movements. In [11] a simi-
lar setup is adopted to show that humans learn an opti-
mal variable impedance to stabilize intrinsically unstable
movements. Bio-inspired algorithms have also been de-
veloped to mimic human impedance with robots [12].
The significant differences in kinematics and dynam-
ics make hard for robots to reproduce humans impedance.
Alternative solutions have been developed in the LfD
framework. The main idea is to learn the stiffness from
the variability of human demonstrations, i.e. setting high
stiffness values (accurate tracking) where the demonstra-
tions are similar and low values (compliance) where the
demonstrations exhibit high variability. Obviously, it is
implicitly assumed that the user demonstrates the task
with high variability where he wants the robot to be com-
pliant and low variability where the robot must be stiff.

This idea is applied in [13] to learn the time-
varying proportional gains (stiffness) of a mixture of K
proportional-derivative systems used to represent the de-
sired acceleration trajectory. The time-dependent stiff-
ness is inversely proportional to the variance along the
demonstrations. In [14] collaborative impedance robot
behaviors are learned. The core idea is to virtually con-
nect the robot’s end-effector to a set of virtual springs
driving the robot behavior. The time-varying stiffness
matrices are learned using a weighted least square ap-
proach. Finally, in [15] a technique to modify robot’s
stiffness online is presented. The robot executes a task
with high, constant stiffness in each time instant and the
user can only decrease the stiffness by shaking the robot.

The result of the previous approaches is a time-
varying stiffness. For many tasks, a state-varying, time-
independent impedance behavior is desirable, being more
robust to delays in the execution of the task. Indeed,
a time-varying stiffness can fail to provide adequate
impedance behaviors at the right time and in the right
place when the execution time changes. Our approach
consists in learning a state-dependent stiffness exploring
the variability of human demonstrations. Firstly, the kine-
matic aspects (position and velocity) of the task are en-
coded in a time-invariant DS as in [2]. Secondly, the vari-
ability of the demonstrations, captured by Gaussian mix-
ture models [16], generates a continuous, state-dependent
stiffness matrix. A Cartesian force is then computed that
drives the robot to complete the task.

The rest of the paper is organized as follows. Section



2 describes the adopted control strategy and the proposed
impedance learning algorithm. In Sec. 3 we present the
simulation results. Section 4 states the conclusions and
the future works.

2. Proposed Approach

In this section we present our approach for learning
state-dependent motion and impedance behaviors from
human demonstration. Firstly, we underline some impor-
tant concepts concerning the SEDS algorithm [2], used to
train a motion primitive in the form of a globally asymp-
totically stable (GAS) DS. Secondly, we explain how the
stiffness is estimated from Gaussian regression. Finally,
we discuss the control law used to execute the desired
behavior.

2.1 Learning stable motion primitives

We assume that the set of N demonstrations
{ztn, &'} .1, where € R? is the position and
& € R? the velocity, are instances of a first order, nonlin-
ear DS in the form:

©=f(x)+n, (D

where f(x) : R¢ — R? is a nonlinear continuous func-
tion with a unique equilibrium pointin * = f(z*) = 0,
and n € R? is a zero mean Gaussian noise. Having the
noise distribution a zero mean it is possible to use regres-
sion to estimate the noise-free model & = f ().

To estimate the noise-free DS, a probabilistic frame-
work is used that models f as a finite mixture of Gaus-
sian functions. Therefore, the nonlinear function f is
parametrized by the priors P (k) = ¥, the means p* and
the covariance matrices X* of the k = 1,..., K Gaus-
sian functions. The means and covariance matrices are
defined by:
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A probability density function P(x>™, &""; @), in the
form of a mixture of Gaussian components, is associated
to each point in the demonstrated trajectories:
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where @ = {7l ,pu!, = .. 7K pf =5V are the
prior, the mean and the covariance matrix of each com-
ponent. Taking the posterior mean probability P (&|x) as
an estimation of f yields [16]:
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The nonlinear function f is then expressed as a non-
linear sum of linear dynamical systems. To guarantee that
the DS in Eq. (4) has a GAS equilibrium in «*, the pa-
rameters ® can be estimated solving the following opti-
mization problem [2]:
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where P(x'", &""|@) is defined in Eq. (3).

2.2 Learning variable stiffness

The probabilistic framework described in Sec. 2.1can
be also used to retrieve an estimation of the stiffness for
each position, following the principle that the robot must
be stiff where demonstrations are similar and compliant
otherwise. The variability of the demonstrations, at the
position level', is captured by the mixture regression in
the covariance matrices E,lj (Eq. (2)). Given the current
robot position  we calculate the covariance matrix:

K
= 3 (W (@)t M

k=1

where h¥(z) is defined in Eq. (5). In practise, we weight
the contribution of each matrix using the responsibility
h* (x) that each Gaussian has in z. The computed covari-
ance matrix is symmetric and positive definite. Hence, we
are allowed to calculate its eigenvalues decomposition:

3, =EAE"!, )

where E is the matrix of the eigenvectors (principal di-
rections) and A = diag(\!, ..., \9) is the diagonal ma-
trix of the eigenvalues.

The root square of the eigenvalues of ﬁ)z ot = W
represents the variability (standard deviation) of the data
along each direction. We propose to construct the stiff-
ness saving the principal directions of 3., choosing the
eigenvalues inversely proportional to ¢?. The stiffness
matrix can be written as:

K =ESE™', )

I The variability at the velocity level, or between position and velocity
is not taken into account. We claim, in fact, that the user can hardly take
into account these kinds of variability while he performs the demonstra-
tions.



where § = diag(s',...,s?). Between the eigenvalues

s' of the stiffness matrix and o the following nonlinear
inverse relationship holds:

Smin O'i > Omax
si(oi) = P1 (1 — tanh (p2)) + Smin  Tmin < ot < Omaz
Smax O'i < Omin
(10
where
p1= Smaxz — sz‘n’ P2 = 2ko ot — Omaxz — Omin (1
2 Smax 2

The stiffness values in each direction are bounded by
the tunable parameters s,,;, and Sy,q,. The parameters
Omin» Omin and kg are also tunable parameters for the
learning system. The nonlinear relationship in Eq. (10),
(11) is shown in Fig. 1. There are two saturation ar-
eas corresponding to 0® > 0,40 and 0¥ < 0,,;, Where
the eigenvalues assume the values s, and S, 4, respec-
tively. Among them there is an almost linear area in
which s’ is inversely proportional to . The size of the
saturation areas and, consequently, the slope of the lin-
ear part can be modulated by varying ky. To avoid rapid
changes in the stiffness values, the adopted function guar-
antees a smooth transition between the linear area and the
saturation ones.
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Fig. 1 Nonlinear relationship between covariance and
stiffness matrices eigenvalues.

2.3 Control law

We assume that our robot can be controlled by an
impedance control law (torque feedback) [9]. Given the
desired velocity, position and stiffness, the following con-
trol law realizes the desired motion-impedance behavior:

T=J"F+n(q.q.§), (12)

where T is the input torque, J is the Jacobian of the ma-
nipulator and n(q, ¢, q) compensates the nonlinearities
in the dynamical model of the robot.

The force term F' is chosen as:
F=Kx+ Dz, (13)

where K is the state-dependent stiffness matrix in Eq.
(9), « is the velocity computed in Eq. (4) and x is ob-
tained integrating . The damping matrix D is cho-
sen to have the same eigenvectors (principal directions)

of the stiffness matrix (Eq. (9)) with eigenvalues d' =
2\/5, t = 1,...,d. Being the DS in Eq. (4) glob-
ally asymptotically stable and K, D positive definite, the
force term drives the robot towards the desired position
imposing a state dependent impedance behavior.

3. Simulation Results

In this section we validate the effectiveness of our ap-
proach in two cases. The first simulation is used to show
how the task constraints are learned from demonstrations.
Synthetic 2-dimensional data are used. In the second ex-
periment, a point-to-point task is learned from demon-
strations.

3.1 Learning task constraints

In this simulation we generate three 2-dimensional po-
sition trajectories® that are constrained at the beginning
and at the end of the motion. The trajectories start almost
identical, exhibit variations and end again identical.

The results obtained learning the DS in Eq. (4) with
three Gaussian components are shown in Fig. 2. As ex-
pected, the algorithm is able to detect constraints in the
demonstrations and to return coherent values in terms of
position and stiffness. The covariance matrices 257 k=
1,..., 3 are represented as ellipses in Fig. 2(a), where the
dimension of each axis of the ellipse is proportional to the
standard deviation in that direction. The two covariance
matrices close to the constrained areas have a small vari-
ance, while the other has a big variance. As a results, the
covariance matrix 3, computed by the regression tech-
nique in Sec. 2.2 has a small standard deviation for points
close to the constrained areas, big otherwise (Fig. 2(b)).
Conversely, the learned stiffness is big where the motion
is constrained and small otherwise (Fig. 2(c)).

3.2 Point-to-point motion

In this simulation we learn a point-to-point motion
task from human demonstrations. The data, collected by
kinesthetic teachingz, are shown in Fig. 3(a). The demon-
strations have high variability at the beginning of the mo-
tion, while they converge to the goal position at the end.

Again, the learning algorithm is able to capture this
variability. The two learned covariance matrices Zﬁ, k=
1, 2 are represented as ellipsoids in Fig. 3(a), where the
dimension of each axis of the ellipsoid is proportional
to the standard deviation in that direction. The covari-
ance matrix closer to the initial points in the trajectories
has bigger covariance than the other, being the variabil-
ity at the beginning of the motion considerably bigger.
The generated motion, obtained integrating the learned
DS velocity with a sample time ¢ = 0.01s, is shown in
Fig. 3(b). As expected, the trajectory converges to the
goal position, being the learned DS globally asymptot-
ically stable. Figure 3(c) shows the eigenvalues of the
covariance matrix 3,. The eigenvalues have big values
at the beginning of the motion (high variability) and de-
crease while the trajectory converges to the goal position

2The velocity is computed by numerical differentiation.
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Fig. 2 Results of the learning algorithm on the synthetic dataset. (a) Demontrations (black lines) and learned model.
(b) Smooth motion retrieved using GMR and related covariance matrix 3. (c) Learned stiffness.
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Fig.3 Results of the learning algorithm on the point-to-point motion dataset. (a) Demontrations (black lines) and learned
model. (b) Smooth motion retrieved using GMR. (c) Eigenvalues of the covariance matrix 3, for the generated
motion. (d) Eigenvalues of the stiffness matrix, normalized to 1.

(low variability). Conversely, the learned stiffness ma-
trix eigenvalues in Fig. 3(d) are small at the beginning of
the motion (high variability) and increase while the tra-
jectory converges to the goal position (low variability).
The eigenvalues in Fig. 3(d) are obtained firstly scal-
ing the standard deviation along each direction, i.e. the
square root o® of the eigenvalues of 3, in the interval
[Omin = 1, Omax = 4] and then applying the inverse
relationship in Eq. (10) with [s;,in, = 0, Spae = 1].
The learned DS and stiffness are then used to generate
the impedance behavior in Eq. (12)-(13). To this end,
we used a dynamic simulator of a KUKA lightweight
7 degree-of-freedom robot [17]. The manipulator end-
effector is driven by the learned DS to reach the tar-
get position g = [—0.6 0.18 0.25] m (the orientation
is kept constant), starting from x(0) = [-0.56 —

0.42 0.22] m. The stiffness eigenvalues range is cho-
sen as [Smin = 50, Smae = 300], while the sample
time is chosen as 6t = 1ms. For comparison, the same
DS is used to drive the robot with a constant stiffness
K = diag(300, 300, 300).

Firstly, we compare the end-effector position error be-
tween the executed trajectory and the generated (integrat-
ing the DS) one. As expected, the robot is able to reach
the target both with constant and variable stiffness (see
Fig. 4). With constant high stiffness, the robot stays sig-
nificantly closer to the reference trajectory. Hence, as al-
ready mentioned, if the goal is an accurate tracking an
high stiffness is required.

Secondly, we test the proposed approach when a col-
lision occurs. To simulate a collision, an impulsive ex-
ternal force f = [20 0 0] N is applied for 5ms starting
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Fig. 4 Norm of the end-effector position error with
constant (blue dashed line) and variable (black solid
line) stiffness.
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Fig. 5 End-effector position and acceleration when
an impulsive force of 20NV is applied along the z;
direction. To clearly show the effects of the applied
force, only the x; axis (the most affected) and the
first 1.55 of the trajectory are considered.

att = 0.5s. As shown in Fig. 5, when the robot has a
small stiffness, the external force generates a big devia-
tion from the reference trajectory. In this case, in fact, the
robot accomplish the applied force. Instead, with high
stiffness, the robot generates higher accelerations at the
end-effector to suddenly react to the external disturbance.
This results in a considerably smaller deviation, but into a
possibly dangerous behavior. Hence, the learned behav-
ior guarantees a compliant and safe interaction with the
environment in a certain area of the state space (until a
certain distance from the target). The high stiffness close
to the target point guarantees instead to reach and keep
the desired final position.

4. Conclusions

We presented an approach to simultaneously learn
kinematic and dynamic aspects of a task from human
demonstrations. The probabilistic framework offered by
Gaussian mixture models was adopted to represent the
task in the compact form of an asymptotically stable dy-
namical system. Hence, the convergence of the motion
trajectory to a desired goal position is always guaranteed.
The covariance matrices of the mixture components, rep-
resenting the variability along the demonstrations, were
used to retrieve a smooth estimation of a state dependent

stiffness matrix. The resulting stiffness is small (compli-
ant behavior) where the demonstrations exhibit high vari-
ability, big otherwise. A suitable impedance control law
is also presented to realize the desired impedance behav-
ior.

The approach has been currently validated only in sim-
ulation and on a simple point-to-point motion task. Our
future research will focus on considering more complex
tasks, as well as on implementing and testing the pro-
posed solution on real robots.
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