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Abstract— Human action representation, recognition and
learning is of importance to guarantee a fruitful human-robot
cooperation. In this paper, we propose a novel coordinate-free,
scale invariant representation of 6D (position and orientation)
motion trajectories. The advantages of the proposed invariant
representation are twofold. First the performance of gesture
recognition can be improved thanks to its invariance to different
viewpoints and different body sizes of the actors. Secondly, the
proposed representation is bi-directional. Not only the original
Cartesian trajectory can be converted into the 6 invariant
values, but also the motion in the original space can be
retrieved back from the invariants. While the former aspect
handles robust human gesture recognition, the latter allows
the execution of robot motions without the need to store the
Cartesian data. Experimental results illustrate the effectiveness
of the proposed invariant representation for gesture recognition
and accurate trajectory reconstruction.

I. INTRODUCTION

In the foreseeable future a close daily collaboration be-
tween humans and robots will take place. To guarantee a
smooth and efficient human-robot interaction, the robot needs
to understand human intentions and to react in a proper and
autonomous way.

We aim at making the robot able to recognize human
actions and to execute new behaviors from the recognized
motions [1], [2]. Gesture recognition in real scenarios is
a complicated problem, since the same gesture can be
performed by different people and from different view points.
Thus, it is desirable to have action representations which are
coordinate-free and scale invariant.

Numerous studies have addressed the problem of human
gesture invariant description and recognition. Some authors
proposed to calculate affine transformations (rotation, trans-
lation and scaling) invariant descriptors from the image
coordinates. In [3], [4] invariants under affine and projective
transformations are proposed. To compute these invariants,
one has to track the five fixed points in the image plane
during the whole gesture. The invariants under affine trans-
formations proposed in [5] requires to track the same six
points in all frames.

Other approaches are based instead on Euclidean group
invariants. In [6], [7] the authors propose to represent the
motion with the spatio-temporal curvature of the trajectory,
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which is invariant under roto-translations. In [8] the invariant
signature of a motion is defined in terms of curvature,
torsion and their first-order derivatives. A method is pro-
posed to calculate these quantities without using high-order
derivatives. The resulting representation is invariant to affine
transformation and changes in the speed of the execution. In
[9] a curvature-based 2D invariant representation is proposed
that is invariant to roto-translations and linear scaling. In this
representation the scale invariance is an intrinsic property
and it is not obtained by introducing an artificial scale. The
invariants in [9] are used in [10] to recognize and predict
human tasks.

The aforementioned invariant representations for gesture
recognition do not match our requirements for two rea-
sons. Firstly, the previous approaches usually neglect the
orientation part of the motion. Secondly, none of them can
recover the Cartesian trajectory from the invariant signature.
Hence, it is not possible to learn motions from the invariant
signatures without storing also the Cartesian data.

In order to overcome these limitations, a 6D representation
is proposed by using Instantaneous Screw Axes (ISA) in
[11]. Two of the invariants are the linear velocity along
the ISA and the rotational velocity around the ISA. The
remaining four invariants approximate the motion of the
ISA. The proposed approach is invariant to affine transfor-
mations, time scale and motion profile. Using these invariant
representations the original motion can be recovered back,
except for some special motions. However this representation
requires high-order time derivatives, that are sensitive to
noise. In practical cases, they cannot be estimated reliably
due to the third time derivative of the position [12]. Despite
its bidirectional property, the reconstruction error is not
negligible.

We propose a unified approach that can be advantageous
both for human motion recognition and robot motion gen-
eration. The proposed invariants are minimal, consisting of
6 values (3 for position and 3 for orientation), and invariant
to affine transformations (rotation, translation and scaling).
The proposed invariants are bi-directional, which allows the
conversion from the Cartesian space to the invariant space
and vice-versa, without any loss of information. In contrast to
[11], our proposed representation lies at the velocity level and
is less sensitive to noise. Moreover, we introduce a separation
between the position related invariants and the orientation
related ones. This separation reduces the singular cases, in
which the original trajectory cannot be retrieved from the
invariants.

The rest of the paper is organized as follows. The proposed



invariant representation, the so-called SoSaLe-invariants, is
described in Section II. Preliminary results on gesture recog-
nition and motion execution are shown in Section III. Finally,
we conclude with discussions of further work in Section IV.
For the reader who is not familiar with the rotation vector
representation, an Appendix provides formulas to compute a
rotation vector from a rotation matrix.

II. INVARIANT REPRESENTATION OF MOTION
A. Position-Based Invariants

Rigid body motions are usually described as a set of
positions and orientations of a frame attached to the body
(body frame) respectively to a reference (world) frame. In
the Cartesian space, the position p (¢) is, in each time instant
t, the 3D vector connecting the center of the body frame with
the center of the reference frame. The orientation is described
by a 3 x 3 rotation matrix containing the components of each
axis of the body frame in the world frame. Nevertheless,
the minimum number of parameters needed to represent
the orientation is three. In this paper we use a minimal
representation of the orientation, i.e. the so-called rotation
vector r(t) (see Appendix).

In our approach, we consider two frames attached to
the rigid body. The first frame describes how the position
changes in time, while the other describes how the orientation
changes in time'. The position frame is shown in Fig. 1 and
created as follows:

o The x-axis is the unit vector generated by the difference
between two consecutive position vectors, hence it
represents the linear velocity of the body in a unitary
time:
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o The y-axis lies on the common normal between the x-
axis at the current instant ¢ and the x-axis at the next
instant ¢ + At:
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e The z-axis is the cross product between the x-axis and
the y-axis:
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The orientation frame in Fig. 2 is defined in a similar way.

The x-axis is the normalized rotation vector’ Ar(t):

Ar(t)
%o (1) = e @)
' [Ar(®)]]

where Ar(t) represents the relative orientation between the
instants t+ At and ¢. Hence, it represents the angular velocity
needed to rotate the body from ¢ to ¢ + At in a unitary
time. The y-axis and the z-axis are then computed from (2),

'In the formulas, the following notation is used: the subscript p refers to
the position, while r refers to the orientation.

2 As detailed in Appendix the rotation vector represents the orientation as
an axis and an angle (amount of rotation around the axis).

Fig. 1. Position frame in three time instants.

Fig. 2. Orientation frame in three time instants.

(3) by substituting %X, and y,, with X, and ¥, respectively.
The direction of the axes of the position/orientation frames
is chosen to avoid discontinuities (jumps of +7) between
subsequent time instants>.

Once the frames are both defined, the six invariant values
can be defined. Two invariants correspond to the norm of
the relative positions and orientations between consecutive
frames:

my (1) = [Ap@)[ = Ap(t) - %p () (5)

me(t) = [Ar ()] = Ar (t) - %.(1) (6)

where X,(t) and X,(t) are computed using (1) and (4)
respectively. The m, and m, invariants in (5) and (6)
describe the motion of the body. Four more values are used
to describe the rotation of the position frame and orientation
frame.

Let us consider the position frame. The y-axis lies on the
common normal between two consecutive x-axes. According
to the Denavit-Hartenberg notation [13], the frames at ¢ and
t + At can be aligned considering only the rotations about
the x and y axes. As illustrated in Fig. 1, the frame needs
to rotate of an angle 6 about ¥, (¢ + At) in order to align
X,(t) to X,(t + At), and then the frame needs to rotate of
072 about X,,(t + At) in order to align y,,(t) to y,(t + At).

3We simply compute the angle o between the two axis an invert the
second axis if a > /2.



Hence, two more invariants for the position are defined as:
X, (t) x %, (t + At) )
0! (t) = arcta P -p . t 7
b0 =t (5 I 3 0) O
Vv, (1) X ¥, (t+AL) .
02 () = arctan (yAp( 2P X, (t+ At ()
p() yp(t>'YP(t+At) p( )
Following a similar reasoning, two more invariants for the
orientation are defined as:
X, (1) X X, (t + At)
0L (t) = arct % ( s
L) arcan@r(t)_ir(twt)
v (t) X ¥, (t+ At)
93 t) = arctan <yf ( . X, (t+ At) ) (10)
Q Ve (t) -y (t+ At) ( )
Note that (7) and (9), as well as (8) and (10), are formally
the same.

3.0) ©

B. Velocity-Based Invariants

The described procedure can be also used to compute
invariants starting from the linear v and angular w velocities.
The x-axis of the linear and angular velocity frames are
computed as:

) v w(t)
v t w t) = 11
“O=or O eer Y
The related invariants m, and m,, are computed as:
my () = [V =v(t) %) (12)
my (1) = |lw ()] =w(t) xut) (13)

162, 01 and 02 are simply calculated
by substituting %, (¢) with X, (¢) in (2), and %,.(¢) with %X, (¢)
in (3).

In the discrete time a simple relation exists between the
position and the velocity-based invariants. Recalling that
Ap and Ar represent respectively the linear and angular
velocities between two consecutive frames in a unitary time,
we have

The other invariants 62
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From (1), (4) and (11) it is easy to verify that %, (¢) = %X, (¢)
and X,(t) = %X,(¢). Then, from (2), (3), it is possible to
prove that [0, 62, 6L, 62] = [0, 67, 6}, 67].

The velocity-based invariants have the same properties of
the position-based ones, being simply obtained by dividing
m,, and m, by the sample time At. Nevertheless, in robot
control, the inverse kinematic problem is usually solved at
the velocity level using the relation [14]:

at) =J'(q) - m (16)
where J(q) is the pseudo-inverse of the Jacobian matrix. In
our experiments, we adopted the velocity-based invariants,
since they can be effectively used to recognize motions and
to reproduce these motions on real robots. The velocity-based
SoSaLe-invariants for the synthetic data in Fig. 3, are shown
in Fig. 4. Linear and angular velocities are computed by
numerical differentiation with a sample time of 0.1s.
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Fig. 3. Synthetic Cartesian data. Positions are in meter, orientations in
radiant.
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Fig. 4. Velocity-based SoSaLe-invariant representation. m,, is in m/s,

me in rad/s and the 917 are in rad.

C. Trajectory Reconstruction

Pose Reconstruction: The rigid body pose (position and
orientation) reconstruction proceeds in three steps. Firstly,
the pose of the position (rotation) frame in each time instant
is calculated as:

1 2
I e
Ry (0;)R.(07) m,
H.(t) = { T 0 (18)
where m, = [m, 0 0]*, m, = [m, 0 0]7, Ry(a) and

R («) are the elementary rotations of an angle « about the
y and x axis [14].

Secondly, knowing the initial pose of the position/rotation
frame respectively to the world frame, namely H,(0) and
H, (0), it is possible to compute:

HY(t) = H,(0) H,(At)----
HY (1) H, (0) - H, (At) - ---

) Hp (t)

19)
(20)



H}'(t) and H;’(t) represent the pose of the position frame
and the rotation frame respectively to the world frame in a
generic time instant .

Finally, the original position in a generic time instant ¢ is
computed as:

P(t) = H;U (t) [1:3,4]

where HJ()(1.3,4) are the first three elements of the fourth
column of H} (t). Following a similar approach we can also
compute Ar(t) = H,’(t)1.3,4]- The original rotation matrix
respectively to the world frame in a generic time instant ¢ is
then computed as:

R (t) = exp(Ar(0)) - -- - - exp(Ar(t))

2L

(22)

where exp(r) transforms a rotation vector into a rotation
matrix (see Appendix).

Velocity Reconstruction: The process to reconstruct the
velocity of the rigid body motion is analogous to that used
to reconstruct the position, but it requires only two steps. We
give the formulas:

H,(t) = {Ry (9;1)37]33: (9;2)) n(;w:| (23)
H,(t) = {Ry (‘9713?1 (07) H(;w] (24)
HY(t) = H,(0) -H,(At)----- H,(t) (25
H, (t) = H, (0) H, (At) """ H., (t) (26)
v(t) = Hy{#)psq(t) 27
w(t) = H(t)n3,4() (28)

The reconstruction error, i.e. the norm of the difference
between the original linear and angular velocity (time deriva-
tive of the data Fig. 3) and the retrieved velocity from
the proposed invariants (Fig. 4), is shown in Fig. 5. For
comparison, the error with the reconstruction approach in
[11] is about 10~3 m/s for the linear and about 103 rad/s
for the angular velocity.
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Velocity reconstruction error of the proposed invariant representa-

D. Invariance Properties

In this subsection the invariance properties of the proposed
representation are investigated. Due to the limited space, we
focus on the velocity-based invariants in the experiments and
the analysis. Note that the following properties are also valid
for the position-based invariants.

Roto-translations: Translations of the reference frame do
not affect the linear and angular velocity. The invariance to
rotations can be easily proved through the proprieties of the
norm, inner product and vector product. Lets us consider
a generic rotation R, applied to the linear velocity*. It is
known that rotations does not affect the norm of a vector,
neither the angle between vectors. Indeed, we have

my = [RAvV]| = [[R[| [Av]| = |Av] (29)
where the property ||R|| is used, and
1 (Rxy (1) x Rx, (L + A) o
0r, = arctan ( Rx, (1) R, (t + A1) Rx, (t)
~ T
~ areton ( (%o (;) X% (L+AD)" propo (t)) s
» ()" RT -Rx, (t + At)
(30)
Following the same reasoning it is easy to prove the invari-
ance of 62.

Time, linear and angular scale: The invariance with re-
spect to the time scale is useful to compare motions executed
at different speeds. Following the approach in [11] we define
a dimensionless time:

v="1

ty

where ¢ is the duration of the motion. Invariants indepen-

dent on the time scale are then obtained by multiplying the
six m}, and ¢}, by t; and by substituting ¢ with ¢’.

The invariance with respect to the scaling factors is of
importance in gesture recognition with different users [9].
The four 6?, representing angles between unit vectors, are
independent on linear and angular scales. To make the two
m; values invariant to scaling factors, we can divide the

invariants by the linear and angular scale of motion:

My (t) / My (t)
my,(t) =

f 2o lmu(t) f Zo1mu(t)

where t; is the duration of the motion. In the discrete time

case, the integral in (32) becomes the sum over all samples.
Reverse motion: In some cases it can be useful to have

the same representation for motions executed in a direction

or in the reverse one. To get this property m,, and m,, should
be considered in the reverse way:

my (t) = my (ty — 1)
my (t) = my, (tf — 1)

w
where t; is the duration of the motion. The remaining four
invariants need not only to be considered in the reverse way,

€1y

my(t) = (32)

(33)
(34)

“4For angular velocity is analogous.



but also to be shifted by a certain value (At or 2At), as
follows:
O (1) = L (ty —t+ At)

n (35)
027U (t) = 02 (t; —t+ 2At)

(36)

n=u,w

n=uv,w

Speed invariance: The invariance to the motion profile
(velocity of execution) can be achieved only in theory. In
real situations, due to the discrete sample time of real sensor,
changes in the speed can strongly affect the measured motion
and the resulting invariants [8].

Noise sensitivity: The proposed representations lies at
velocity level and do not require high order derivatives of
the Cartesian trajectory. Hence, in real application, a simple
filtering technique (such as first-order or moving-average
filters) can be adopted.

Samples delay: To compute the invariants in a time instant
t one has to know the Cartesian trajectory in ¢ and in the
two next time instants. Hence, a delay of three samples is
introduced. The representations in [11], instead, depend only
on the current time instant, but they require the third-order
derivative of the position (orientation). In real applications,
time derivatives have to be computed numerically from the
position level, introducing the same delay of three samples.

E. Special Motions

Singularity occurs when an axis cannot be defined. It
happens when the denominator of a function results equal to
zero or it cannot be calculated. We discuss these cases and
propose effective solutions. Note that, in contrast to [11],
the original motion can be reconstructed also in the singular
cases.

Pure Rotation: %,(t) is set as the previous one. Hence,
from (5), m,, is equal to zero. The remaining values 911] and
912) are normally computed from (7) and (8).

Pure Translation: X, is set as the previous one. Hence,
from (6), m, is equal to zero. The remaining values 6} and
93 are normally computed from (9) and (10).

Translation along a straight line: If X, (t) and %, (¢t + At)
are coincident, yp(t) is set as the previous one, in order to
be normal to X, (t) and, therefore, also normal to X, (t+ At).

Rotation about parallel axes: If %.(t) and X,.(¢t + At)
are parallel y..(t) is set as the previous one, in order to be
normal to X,(t) and, therefore, also normal to X, (t + At).

III. EXPERIMENTAL RESULTS

In this section we compare the performances of the
proposed invariants (SoSale-invariants) with two other in-
variants: SaLe-invariants in [7] and DS-invariants [8]°.

A. Synthetic data - noise sensitivity

This experiment aims at showing the robustness to noise
of the SoSale-invariants. We use the synthetic data in Fig. 3.
Linear and angular velocities and accelerations are computed
by numerical differentiation with a sample time of 0.1 s.

SFor simplicity, we name these invariants after the names of authors:
SoSalLe (SOloperto SAveriano Lee), Sale (SAveriano LEe) and DS (De
Schutter).

A new series of samples is generated by adding a Gaussian
noise with increasing power to the original data (decreasing
signal noise ratio (snr) from 100 to 5). The noisy sequence is
compared with the original one by computing their Dynamic
Time Warping (DTW) distance. The results in Fig. 6 clearly
show that our velocity-level SoSale-invariant representation
exhibits a reduced noise sensitivity, compared to the Sal.e-
invariants (acceleration level) and the DS-invariants (jerk
level).

45

40 +
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30 +

dtw distance

SoSaLe
SaLe
DS
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snr

Fig. 6. DTW distances for the Sale, SoSalLe and DS invariants when
increasing Gaussian noises are applied to the original trajectory.

B. English letter dataset

In this experiment we show the recognition and recon-
struction performance of the proposed representation on real
data. The five capital letters A, M, N, O, X are used. As
shown in Fig. 7, ten repetitions for each letter are provided.
Data are collected from one user by tracking his right hand

position at 30 Hz with an RGB-D camera®.

(d) O

(e) X

Fig. 7. The 10 repetition of the English letters collected from a human
demonstrator.

1) Recognition: To show the benefits of the invariance
to affine transformations, we extend the dataset by adding
forty repetitions for each letter. These series are obtained

The hand tracking is performed using the OpenNI (openni.org) library.
The used version (OpenNI v1.5.4) does not provide the hand orientation.



samples

Fig. 8.  SoSaLe-invariant representation for the letter O. The blue dot
dashed lines represent the invariants for each demonstration. Only 10 lines
are visible due to the invariance to affine transformations. The black solid
line is the model obtained with the dynamic time warping approach in [9].

by applying a random affine transformation (rotations, trans-
lations and scaling are in the interval [—1, 1]) to the
original data. After this procedure, the dataset consists of
50 demonstrations for each letter.

We tested the proposed SoSale-invariants against the
Sale-invariants and the DS-invariants. For the recognition
we used the DTW-based averaging approach in [12], that
shows high recognition rates also for complex datasets [9].
The results of the training procedure for the letter O are
shown in Fig. 8. The results, obtained using half of the
samples for training and the rest for testing, are shown in
Fig. 10. The proposed approach outperform both the Sale-
invariants and the DS-invariants. This is probably due to the
higher noise sensitivity that the Sale-invariants and the DS-
invariants have with respect to the SoSale-invariants.

2) Reproduction: In this experiment, we make use of
the NAO humanoid robot to reproduce the English letters
dataset. The trained models of each letter are transformed
into Cartesian references for the robot, as discussed in Sec.
II-C. In this dataset only positions are considered. Hence, we
are in one of the special cases, namely the pure translation,
in Sec. II-E. Note that in the case of pure translations the
DS-invariants cannot be converted to a Cartesian trajectory.
The trajectory reconstructed using the “human” linear scale
Shum = f::fo |my, (t)] in (32) cannot be executed on the NAO
robot, due to its physical limitations. A trajectory suitable
for the NAO robot can be generated using a linear scale
Snao smaller than Spy.,. The value of sp,, = 1/12 is
chosen considering the NAO’s arm length and the maximum
allowed speed. The results of this simple but effective scaling
technique are shown in Fig. 9, where the robot reproduces
the letter sequence N-A-O.

IV. CONCLUSION AND FUTURE WORK

This paper proposes a new invariant representation, called
SoSale-invariants, for robust human motion recognition

(b) A

(c) O

Fig. 9. Snapshots of the reproduction of the letter sequence N-A-O.

and robot motion reproduction. Two types of the SoSale-
invariants (position-level and velocity-level) are introduced.
The representation is minimal (six values), invariant to
changes in the reference frame, reverse motions, linear, angu-
lar and time scale. The representation is also bi-directional,
giving the possibility to accurately reconstruct the Cartesian
trajectory directly from the invariant trajectory. Analytical
formulas are provided to compute the invariant values, and
to reconstruct the original motion. The proposed approach
presents a clear division between position and orientation of
the rigid body trajectory, which makes this solution more
practical for different applications. Singular cases can be
simply detected and their solutions are provided. Compared
to state-of-the-art approaches our representation presents a
simpler formulation and it is less sensitive to noise. As future
work, we plan to extend the approach from one rigid body
motion to motion of articulated bodies.

APPENDIX

Given a rotation matrix R the relative rotation vector r is
compute as:

r=0f, 37
where
§ = arccos (trace (2R) — 1) ; (38)
1 R(3,2) —R(2,3)
Fo= - - |R(1,3) —R(3,1) (39
2sin 6 R(2,1)—R(1,2
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(a) Confusion matrix for the DS-invariants
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(c) Confusion matrix for the SoSaLe-invariants

Fig. 10. Recognition results for the English letters dataset.
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The unit vector I represents the axis around the rigid body
has rotated of an angle 6.
Given a rotation vector r the relative rotation matrix R is
computed using the exponential map:
S(r) S%(r)

R=exp(r) =1+ 5 sin(6) + 972(1 —cos(0)) , (40)

where the skew-symmetric matrix S(r) is given by:

0 T, Ty

S(r)=| 7. 0 —ry| . (41)
—Ty T 0
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