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Abstract

Spatially isotropic max-stable processes have been used to model extreme spatial or space-time

observations. One prominent model is the Brown-Resnick process, which has been successfully

fitted to time series, spatial data and space-time data. This paper extends the process to possi-

bly anisotropic spatial structures. For regular grid observations we prove strong consistency and

asymptotic normality of pairwise maximum likelihood estimates for fixed and increasing spatial

domain, when the number of observations in time tends to infinity. We also present a statistical

test for isotropy versus anisotropy. We apply our test to precipitation data in Florida, and present

some diagnostic tools for model assessment. Finally, we present a method to predict conditional

probability fields and apply it to the data.
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Keywords: anisotropic space-time process; Brown-Resnick space-time process; hypothesis test for spa-

tial isotropy; max-stable process; max-stable model check; pairwise likelihood; pairwise maximum
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1 Introduction

Max-stable processes, such as the Brown-Resnick process, have been successfully fitted to time series,

spatial and recently to space-time data. Methods for inference include pairwise likelihood based on the

bivariate density of the models (cf. Padoan et al. [27]), censored likelihood (cf. Wadsworth and Tawn

[32]) or threshold-based approaches (cf. Engelke et al. [15]). In Davis et al. [8] a spatially isotropic

Brown-Resnick space-time process is suggested and applied to precipitation data. Pairwise maximum

likelihood estimates are shown to be strongly consistent and asymptotically normal, provided the

domain of observations increases jointly in space and time. Their approach is restricted to isotropic

spatial dependence.

In the present paper we generalise the Brown-Resnick model to allow anisotropy in space. The

new model allows for different extremal behaviour along orthogonal spatial directions. Anisotropy is
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often observed on Earth, for example in Middle Europe with its westerly winds or near the equator

where trade winds involve predominant easterlies. All dependence parameters are summarised in the

semivariogram of an underlying Gaussian space-time process. This semivariogram then defines the

dependence structure of the max-stable process and, as a consequence, the tail dependence coefficient

between two process values evaluated at two location and two time points.

Furthermore, since in real world applications, observations are often recorded over a large number

of time points, but only at a comparably small number of spatial locations, we consider both a fixed

and increasing spatial domain in combination with an increasing temporal domain. For both settings,

fixed and increasing spatial domain, we prove strong consistency and asymptotic normality of the

pairwise maximum likelihood estimates in the anisotropic model based on regular grid observations.

This requires in particular to prove space-time and temporal mixing conditions in both settings for

the anisotropic model.

We also provide tests for isotropy versus anisotropy again in both settings, which are designed

for the new model. The asymptotic normality of the parameter estimates determines in principle the

rejection areas of the test. However, the covariance matrices of the normal limit laws are not available

in closed form. We formulate a subsampling procedure in the terminology of the Brown-Resnick space-

time process and prove its convergence for fixed and increasing spatial domain.

We conclude with an analysis of space-time block maxima of radar rainfall measurements in Florida.

Firstly, we present a simple procedure to test whether they originate from a max-stable process. As this

cannot be rejected, we fit the Brown-Resnick space-time model to the data, using pairwise maximum

likelihood estimation. Subsequently we apply the new isotropy test. Both the estimation and the test

are based on the setting of a fixed spatial domain and increasing time series. In particular, since the

Brown-Resnick space-time process satisfies the strong mixing conditions for increasing spatial and

time domain as well as for fixed spatial and increasing time domain, the estimation and test procedure

are independent of the specific setting: it works in both settings in exactly the same way, taking the

different asymptotic covariance matrices into account. Finally, we assess the goodness of fit of the

estimated model by a simulation diagnostics based on a large number of i.i.d. simulated anisotropic

Brown-Resnick space-time processes. As a result, there is no statistical significance that the anisotropic

Brown-Resnick space-time process with the fitted parameters should be rejected.

Our paper is organised as follows. In Section 2 we present the Brown-Resnick space-time model,

which allows for anisotropic effects in space, and various dependence measures, including the param-

eterised dependence function. In Section 3 we compute the pairwise maximum likelihood estimates

for the new model and prove their strong consistency and asymptotic normality for both settings,

fixed and increasing spatial domain. Section 4 presents hypothesis tests for spatial isotropy and de-

rives rejection areas based on a subsampling procedure. A data analysis is performed in Section 5

with focus on model assessment. The isotropy test rejects spatial isotropy for these data in favour

of our new anisotropic model. Based on two other test procedures, we conclude that the anisotropic

Brown-Resnick space-time process with the given dependence parameters is an appropriate model

for the block-maxima data. We conclude by predicting conditional probability fields, which give the

probability of a high value (for example of the amount of precipitation) at some space-time location

given a high value at some other location.
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2 Spatially anisotropic Brown-Resnick processes

Throughout the paper we consider a stationary Brown-Resnick space-time process with representation

η(s, t) =
∞∨
j=1

{
ξj e

Wj(s,t)−δ(s,t)
}
, (s, t) ∈ Rd × [0,∞), (2.1)

where {ξj : j ∈ N} are points of a Poisson process on [0,∞) with intensity ξ−2dξ, the dependence

function δ is nonnegative and conditionally negative definite and {Wj(s, t) : s ∈ Rd, t ∈ [0,∞)} are

independent replicates of a Gaussian process

{W (s, t) : s ∈ Rd, t ∈ [0,∞)} with stationary increments, W (0, 0) = 0, E[W (s, t)] = 0 and covariance

function

Cov[W (s(1), t(1)),W (s(2), t(2))] = δ(s(1), t(1)) + δ(s(2), t(2))− δ(s(1) − s(2), t(1) − t(2)).

Representation (2.1) goes back to de Haan [10] and Giné et al. [18]. Brown-Resnick processes have

been studied by Brown and Resnick [5] in a time series context, as a spatial model by Kabluchko

et al. [23], and in a space-time setting by Davis et al. [7] and Huser and Davison [19]. The univariate

margins of the process η follow standard Fréchet distributions.

There are various quantities to describe the dependence in (2.1):

• In geostatistics, the dependence function δ is termed the semivariogram of the process {W (s, t)}:
For (s(1), t(1)), (s(2), t(2)) ∈ Rd × [0,∞), it holds that

Var[W (s(1), t(1))−W (s(2), t(2))] = 2δ(s(1) − s(2), t(1) − t(2)).

• For h ∈ Rd and u ∈ R, the tail dependence coefficient χ(h, u) is given by (cf. Kabluchko et al.

[23], Remark 25 or Davis et al. [7], Section 3)

χ(h, u) := lim
y→∞

P
(
η(s(1), t(1)) > y | η(s(2), t(2)) > y

)
= 2

(
1− Φ

(√
δ(h, u)

2

))
, (2.2)

where h = s(1) − s(2), u = t(1) − t(2), and Φ denotes the standard normal distribution function.

• For D = {(s(1), t(1)), . . . , (s(|D|), t(|D|))} and y = (y1, . . . , y|D|) > 0 the finite-dimensional margins

are given by

P(η(s(1), t(1)) ≤ y1, η(s(2), t(2)) ≤ y2, . . . , η(s(|D|), t(|D|)) ≤ y|D|) = e−VD(y). (2.3)

Here VD denotes the exponent measure, which is homogeneous of order -1.

• The extremal coefficient ξD for any finite set D ⊂ Rd × [0,∞) is defined through

P(η(s(1), t(1)) ≤ y, η(s(2), t(2)) ≤ y, . . . , η(s(|D|), t(|D|)) ≤ y) = e−ξD/y, y > 0;

i.e., ξD = VD(1, . . . , 1). If |D| = 2, then (cf. Beirlant et al. [1], Section 9.5.1)

χ(s(1) − s(2), t(1) − t(2)) = 2− ξD.
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In this paper we assume the dependence function δ to be given for spatial lag h and time lag u by

δ(h, u) =
d∑
j=1

Cj |hj |αj + Cd+1|u|αd+1 , (h, u) = (h1, . . . , hd, u) ∈ Rd+1, (2.4)

with parameters Cj > 0 and αj ∈ (0, 2] for j = 1, . . . , d+ 1.

Model (2.4) allows for different rates of decay of extreme dependence in different directions. This

particularly holds along the axes of a d-dimensional spatial grid, but also for other directions. For

example in the case d = 2, the decreases of dependence along the directions (1, 2) and (2, 1) differ.

Model (2.4) can be generalised by a simple rotation to a setting, where not necessarily the axes, but

other principal orthogonal directions play the major role. The rotation angle then needs to be estimated

together with the other model parameters. A similar approach has been applied to introduce geometric

or zonal anisotropy into a spatial isotropic model (see e.g. Blanchet and Davison [2], Section 4.2, or

Engelke et al. [15], Section 5.2). For a justification of model (2.4) see Buhl [6], Sections 4.1 and 4.2.

There it is shown that Brown-Resnick processes with this dependence function arise as limits of

appropriately rescaled maxima of Gaussian processes with a large variety of correlation functions.

3 Pairwise maximum likelihood estimation

We extend the pairwise maximum likelihood procedure described in Davis et al. [8] for spatially

isotropic space-time Brown-Resnick processes to the anisotropic case. We focus on the difference

introduced by the spatial anisotropy and refer to the corresponding formulas in Davis et al. [8], where

also a short introduction to composite likelihood estimation and further references can be found.

The pairwise likelihood function uses the bivariate distribution function of

(η(s, t), η(s + h, t + u))
d
= (η(0, 0), η(h, u)) (equal in distribution by stationarity) for h ∈ Rd and

u ∈ R, which is given as

G(y1, y2) = exp{−V (y1, y2)}, y1, y2 > 0, (3.1)

where the exponent measure V = VD for D = {(s(1), t(1)), (s(2), t(2))} has the representation

V (y1, y2)

=
1

y1
Φ

(
log(y2/y1)√

2δ(h, u)
+

√
δ(h, u)

2

)
+

1

y2
Φ

(
log(y1/y2)√

2δ(h, u)
+

√
δ(h, u)

2

)
, (3.2)

which is a particular form of Eq. (2.7) in Hüsler and Reiss [20]. The dependence function δ is given

by (2.4). For a derivation of (3.2) see for instance Oesting [26], Satz und Definition 2.4.

From this we can calculate the pairwise density g(y1, y2) = gθ(y1, y2) of G by differentiation. The

parameter vector θ = (C1, . . . , Cd+1, α1, . . . , αd+1) lies in the parameter space

Θ := {(C1, . . . , Cd+1, α1, . . . , αd+1) : Cj ∈ (0,∞), αj ∈ (0, 2], j = 1, . . . , d+ 1} .

We focus on data on a regular spatial grid and at equidistant time points. More precisely, we

assume that the spatial observations lie on a regular d-dimensional lattice,

SM = {s = (s1, . . . , sd) ∈ {1, . . . ,M}d}
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for M ∈ N, and that the time points are given by the set TT = {1, . . . , T} for T ∈ N.

For the computation of the pairwise likelihood it is common not to include observations on all

available space-time pairs, but only on those that lie within some prespecified spatio-temporal distance.

This is motivated by the fact that pairs which lie sufficiently far apart in a space-time sense have

little influence on the dependence parameters, see Nott and Rydén [25], Section 2.1. To express this

notationally, we take inspiration from that paper and use a design mask adapted to the anisotropic

setting,

Hr :=
{
h = (h1, . . . , hd) ∈ Nd0 : h ≤ r

}
, r = (r1, . . . , rd) ∈ Nd0. (3.3)

We are now ready to define the pairwise log-likelihood function and the resulting estimate.

Definition 1 (Pairwise likelihood estimate). The pairwise log-likelihood function based on space-time

pairs, whose maximum spatial lag is r ∈ Nd0 and maximum time lag is p ∈ N0, such that (r, p) 6= (0, 0),

is defined as

PL(M,T )(θ) :=
∑
s∈SM

T∑
t=1

∑
h∈Hr

s+h∈SM

p∑
u=0

t+u≤T

1{(h,u)6=(0,0)} log {gθ (η(s, t), η(s+ h, t+ u))}

=
∑
s∈SM

T∑
t=1

qθ(s, t; r, p)−R(M,T )(θ), θ ∈ Θ, (3.4)

where

qθ(s, t; r, p) :=
∑
h∈Hr

p∑
u=0

1{(h,u) 6=(0,0)} log {gθ (η(s, t), η(s+ h, t+ u))} (3.5)

and

R(M,T )(θ) :=
∑
s∈SM

T∑
t=1

∑
h∈Hr

p∑
u=0

1{s+h/∈SM or t+u>T} log {gθ (η(s, t), η(s+ h, t+ u))}

=
∑
h∈Hr

p∑
u=0

∑
(s,t)∈GM,T (h,u)

log {gθ (η(s, t), η(s+ h, t+ u))} , (3.6)

with

GM,T (h, u) := {(s, t) ∈ SM × TT : s+ h /∈ SM or t+ u > T} . (3.7)

for (h, u) ∈ Nd+1. The pairwise maximum likelihood estimate (PMLE) is given by

θ̂ = argmax
θ∈Θ

PL(M,T )(θ). (3.8)

We derive the asymptotic properties of the PMLE for two scenarios. The first one is based on

regularly spaced observations with an increasing spatio-temporal domain. For this scenario we follow

the proofs in Davis et al. [8] and show that the properties of strong consistency and asymptotic

normality also hold if the dependence structure δ allows for spatially anisotropic effects as in (2.4). In

the second scenario, the observations are taken from a fixed spatial domain and an increasing temporal

domain.
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3.1 Increasing spatio-temporal domain

Lemma 1. For (h, u) ∈ Hr × {0, . . . , p}, it holds that

|GM,T (h, u)| ≤ K2(Md−1T +Md),

where K2 is a constant independent of M and T .

Proof. The number of space-time points within the space-time observation area, from which some grid

point outside the observation area is within a lag (h, u) ∈ Hr×{1, . . . , p}, is bounded byMd−1T
d∑
j=1

rj+

Mdp. Thus we obtain

|GM,T (h, u)| ≤Md−1T
d∑
j=1

rj +Mdp ≤ K2(Md−1T +Md),

where K2 := max
{∑d

j=1 rj , p
}

is a constant independent of M and T .

Theorem 1 (Strong consistency for large M and T ). Let
{
η(s, t) : s ∈ Rd, t ∈ [0,∞)

}
be a Brown-

Resnick process as in (2.1) with dependence structure

δ(h, u) =

d∑
j=1

Cj |hj |αj + Cd+1|u|αd+1 , (h, u) ∈ Rd+1,

where 0 < αj ≤ 2 and Cj > 0 for j = 1, . . . , d+ 1. Denote the parameter vector by

θ = (C1, . . . , Cd+1, α1, . . . , αd+1).

Assume that the true parameter vector θ? lies in a compact set

Θ? ⊂ {(C1, . . . , Cd+1, α1, . . . , αd+1) : Cj ∈ (0,∞), αj ∈ (0, 2], j = 1, . . . , d+ 1} . (3.9)

Suppose that the following identifiability condition holds for all (s, t) ∈ SM × TT :

θ = θ̃ ⇔ (3.10)

gθ (η(s, t), η(s+ h, t+ u)) = gθ̃ (η(s, t), η(s+ h, t+ u)) , h ∈ Hr, 0 ≤ u ≤ p.

Then, the PMLE

θ̂
(M,T )

= argmax
θ∈Θ?

PL(M,T )(θ)

is strongly consistent:

θ̂
(M,T ) a.s.→ θ? as M,T →∞.

Proof. The proof uses the method of Wald [33]. One aim is to show that for some chosen maximum

space-time lag (r, p) ∈ Nd+1
0 \ {0} and θ ∈ Θ?,

1

MdT
PL(M,T )(θ)

=
1

MdT

( ∑
s∈SM

T∑
t=1

qθ(s, t; r, p)−R(M,T )(θ)
)

a.s.→ PL(θ) := E[qθ(1, 1; r, p)]

as M,T →∞. This is done by verifying the following two limit results: Uniformly on Θ?,
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(A)
1

MdT

∑
s∈SM

T∑
t=1

qθ(s, t; r, p)
a.s.→ PL(θ) as M,T →∞,

(B)
1

MdT
R(M,T )(θ)

a.s.→ 0 as M,T →∞.

Furthermore, we need to show:

(C) The limit function PL(θ) is uniquely maximized at the true parameter vector θ? ∈ Θ?.

We show (A). The almost sure convergence holds because qθ(·) is a measurable function of lagged

versions of η(s, t) for s ∈ SM , t ∈ TT . Proposition 3 of Davis et al. [8] implies a strong law of large

numbers. What remains to show is that the convergence is uniform on the compact parameter space

Θ?. This can be done by carefully following the lines of the proof of Theorem 1 of Davis et al. [8],

adapting it to the spatially anisotropic setting. For details we refer to Buhl [6], Theorem 4.4. We find

that there is a positive finite constant K1, independent of θ,M and T , such that

E
[∣∣ log gθ

(
η(s(1), t(1)), η(s(2), t(2))

)∣∣] < K1, (s(1), t(1)), (s(2), t(2)) ∈ Nd+1, (3.11)

and that E
[

supθ∈Θ? |qθ(1, 1; r, p)|
]
<∞. Theorem 2.7 of Straumann [31] implies that the convergence

is uniform.

Next we show (B). Using Proposition 3 of Davis et al. [8] and (3.11) we have that, uniformly on Θ?,

∑
h∈Hr

p∑
u=0

1

|GM,T (h, u)|
∑

(s,t)∈GM,T (h,u)

log {gθ (η(s, t), η(s+ h, t+ u))}

a.s.→ E
[ ∑
h∈Hr

p∑
u=0

log {gθ (η(1, 1), η(1 + h, 1 + u))}
]

as M,T →∞.

By Lemma 1 and (3.11) it follows that, uniformly on Θ?,

1

MdT
|R(M,T )(θ)|

≤ K2

( 1

M
+

1

T

)∣∣∣∣ ∑
h∈Hr

p∑
u=0

1

|GM,T (h, u)|
∑

(s,t)∈GM,T (h,u)

log {gθ (η(s, t), η(s+ h, t+ u))}
∣∣∣∣

a.s.→ 0 as M,T →∞,

Finally, we prove (C). Let θ 6= θ?. For s ∈ SM and t ∈ TT , Jensen’s inequality yields

E
[
log

{
gθ (η(s, t), η(s+ h, t+ u))

gθ? (η(s, t), η(s+ h, t+ u))

}]
≤ log

{
E
[
gθ (η(s, t), η(s+ h, t+ u))

gθ? (η(s, t), η(s+ h, t+ u))

]}
= log

{ ∫
(0,∞)2

gθ(y1, y2)

gθ?(y1, y2)
gθ?(y1, y2) d(y1, y2)

}

= log
{ ∫

(0,∞)2

gθ(y1, y2) d(y1, y2)
}

= 0,

and it directly follows from (3.5) that PL(θ) ≤ PL(θ?). As θ 6= θ?, the identifiability condition (3.10)

yields (C).
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r1 r2 p identifiable parameters

1 0 0 C1

1 1 0 C1, C2

1 1 1 C1, C2, C3

> 1 0 0 C1, α1

> 1 > 1 > 1 C1, α1, C2, α2, C3, α3

Table 1: Identifiable parameters for model (2.4) with d = 2 for some examples of maximum space-time lags (r1, r2, p).

Remark 1. There are combinations of maximum space-time lags that lead to non-identifiable param-

eters, see Table 1. However, Theorem 1 still applies to all identifiable parameters (cf. Davis et al. [8],

Remark 2).

Next we prove asymptotic normality of the PMLE defined in (3.8). As in the proof of Theorem 1

we follow the lines of proof of Davis et al. [8], Section 5, adapting the arguments to the anisotropic

setting. We start with some basic results needed throughout the remainder of the section.

Lemma 2. Assume that all conditions of Theorem 1 are satisfied. Then for s(1), s(2) ∈ Rd and

t(1), t(2) ∈ [0,∞), the following assertions hold componentwise:

(1) The gradient of the bivariate log-density satisfies

E
[∣∣∣∇θ log gθ(η(s(1), t(1)), η(s(2), t(2)))

∣∣∣3] <∞, θ ∈ Θ?.

(2) The Hessian matrix of the bivariate log-density satisfies

E
[

sup
θ∈Θ?

∣∣∣∇2
θ log gθ(η(s(1), t(1)), η(s(2), t(2)))

∣∣∣] <∞.
Proof. Assume identifiability of all parameters Cj , αj for j = 1, . . . , d+ 1. For y1, y2 ∈ (0,∞) and for

(h, u) ∈ Rd+1 \ {0} lengthy but simple calculations of derivatives of (3.1) yield

∇θ log gθ(y1, y2) =
∂ log gθ(y1, y2)

∂δ(h, u)
∇θδ(h, u),

∂δ(h, u)

∂Cj
= |hj |αj ,

∂δ(h, u)

∂αj
= Cj |hj |αj log |hj |, j = 1, . . . d,

and
∂δ(h, u)

∂Cd+1
= |u|αd+1 ,

∂δ(h, u)

∂αd+1
= Cd+1|u|αd+1 log |u|.

By compactness of the parameter space, as required in (3.9), we can bound those first partial derivatives

as well as the second order partial derivatives from above and below. So it remains to show that for

s(1), s(2) ∈ S and t(1), t(2) ∈ T ,

Eθ?
[∣∣∣∣∂ log{gθ(η(s(1), t(1)), η(s(2), t(2)))}

∂δ(h, u)

∣∣∣∣3] <∞
and

Eθ?
[

sup
θ∈Θ?

∣∣∣∣∂2 log{gθ(η(s(1), t(1)), η(s(2), t(2)))}
∂2δ(h, u)

∣∣∣∣] <∞,
where the function δ(h, u) can be treated as a constant since it is bounded away from 0 by (3.9).

Hence, for the rest of the proof we refer to that of Davis et al. [8], Lemma 1.
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For a central limit theorem we need certain mixing properties for a space-time setting (cf. Davis

et al. [8], Section 5.1 and Huser and Davison [19], Section 3.2).

Definition 2 (Mixing coefficients and α-mixing). Let {η(s, t) : s ∈ Zd, t ∈ N} be a space-time process.

Let d be some metric induced by a norm on Rd+1. For Λ1,Λ2 ⊂ Zd × N let

d(Λ1,Λ2) := inf{d((s(1), t(1)), (s(2), t(2))) : (s(1), t(1)) ∈ Λ1, (s
(2), t(2)) ∈ Λ2}.

(1) For k, `, n ≥ 0 the mixing coefficients are defined as

αk,`(n) := sup{|P(A1 ∩A2)− P(A1)P(A2)| :

A1 ∈ FΛ1 , A2 ∈ FΛ2 , |Λ1| ≤ k, |Λ2| ≤ `, d(Λ1,Λ2) ≥ n}, (3.12)

where FΛi = σ(η(s, t) : (s, t) ∈ Λi) for i = 1, 2.

(2) {η(s, t) : s ∈ Zd, t ∈ N} is called α-mixing if for all k, ` > 0,

αk,`(n)→ 0, n→∞.

Recall from Eq. (2.2) that for (h, u) ∈ Rd+1 with δ as in (2.4) the tail dependence coefficient of

the Brown-Resnick process is given by

χ(h, u) = 2

(
1− Φ

(√
1

2

[
C1|h1|α1 + · · ·+ Cd|hd|αd + Cd+1|u|αd+1

]))
.

Corollary 2.2 of Dombry and Eyi-Minko [12] links the α-mixing coefficients with the tail dependence

coefficients, and we will use this for the next result.

Proposition 1. Let {η(s, t) : s ∈ Rd, t ∈ [0,∞)} be the Brown-Resnick process (2.1) with dependence

function δ given by (2.4). Then the process {η(s, t) : s ∈ Zd, t ∈ N} is α-mixing, where the mixing

coefficients in (3.12) satisfy for Hr as in (3.3)

(1)
∞∑
n=1

ndαk,`(n) <∞ for k + l ≤ 4(|Hr|+ 1)(p+ 1),

(2) α(|Hr |+1)(p+1),∞(n) = o(n−(d+1)) as n→∞,

(3)
∞∑
n=1

ndα(|Hr |+1)(p+1),(|Hr |+1)(p+1)(n)
1
3 <∞.

Proof. Note that for (h, u) ∈ Rd+1, by the equivalence of norms, for some positive constant L,

d((h, u), (0, 0)) ≤ 1

L
max{|h1|, . . . , |hd|, |u|}

Therefore, for n ∈ N, presuming d((h, u), (0, 0)) ≥ n results in max{|h1|, . . . , |hd|, |u|} ≥ Ln, so that

by Corollary 2.2 and Eq. (3) of Dombry and Eyi-Minko [12] we get

αk,`(n) ≤ 2k` sup
d((h,u),(0,0))≥n

χ(h, u) ≤ 2k` sup
max{|h1|,...,|hd|,|u|}≥Ln

χ(h, u), (3.13)

αk,∞(n) ≤ 2k
∑

d((h,u),(0,0))≥n

χ(h, u) ≤ 2k
∑

max{|h1|,...,|hd|,|u|}≥Ln

χ(h, u). (3.14)
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In the following we use the notation ‖(h, u)‖∞ := max{|h1|, . . . , |hd|, |u|} for (h, u) ∈ Zd × N. Using

1− Φ(x) ≤ exp{−1
2x

2} for x > 0 and Eq. (2.2) and (3.13), we find for all k, ` ≥ 0,

αk,`(n) ≤ 4k` sup
‖(h,u)‖∞≥Ln

(
1− Φ(

√
δ(h, u)

2

)

≤ 4k` sup
‖(h,u)‖∞≥Ln

exp

{
−δ(h, u)

4

}
= 4k` sup

‖(h,u)‖∞≥Ln
exp

{
−1

4
[C1|h1|α1 + . . .+ Cd|hd|αd + Cd+1|u|αd+1 ]

}
≤ 4k` sup

‖(h,u)‖∞≥Ln
exp

{
−1

4
min{|C1|, . . . , |Cd+1|}‖(h, u)‖min{α1,...,αd+1}

∞

}
≤ 4k` exp

{
−1

4
min{|C1|, . . . , |Cd+1|}(Ln)min{α1,...,αd+1}

}
(3.15)

→ 0 as n→∞.

This implies α-mixing.

By similar arguments we obtain by (3.14) for all k ≥ 0,

αk,∞(n) ≤

4k
∑

‖(h,u)‖∞≥Ln

exp

{
−1

4
min{|C1|, . . . , |Cd+1|}‖(h, u)‖min{α1,...,αd+1}

∞

}
. (3.16)

We use the above bounds to prove assertions (1)-(3).

(1) For k + ` ≤ 4(|Hr|+ 1)(p+ 1) we have by (3.15),

∞∑
n=1

ndαk,`(n) ≤ 4k`

∞∑
n=1

nd exp

{
−1

4
min{|C1|, . . . , |Cd+1|}(Ln)min{α1,...,αd+1}

}
< ∞.

(2) First note that the number of grid points (h, u) ∈ Rd+1 with ‖(h, u)‖∞ = i for i ∈ N equals

(i + 1)d+1 − id+1, and is therefore of order O(id). We use (3.16) and a more precise estimate than in

part (1) to obtain for sufficiently large n

nd+1α(|Hr |+1)(p+1),∞(n)

≤ 4nd+1(|Hr|+ 1)(p+ 1)∑
‖(h,u)‖∞≥Ln

exp

{
−1

4
min{|C1|, . . . , |Cd+1|}‖(h, u)‖min{α1,...,αd+1}

∞

}

≤ K3n
d+1(|Hr|+ 1)(p+ 1)

∞∑
i=bLnc

id exp
{
− 1

4
min{C1, . . . , Cd+1}imin{α1,...,αd+1}

}
→ 0 as n→∞,

where K3 is a positive constant. Convergence to 0 follows using the integral test for power series

convergence and Lemma 4, Eq. (A.1).

(3) We find, using again (3.15),

∞∑
n=1

ndα(|Hr |+1)(p+1),(|Hr |+1)(p+1)(n)
1
3
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≤
(
4
[

(|Hr|+ 1)(p+ 1)
]2) 1

3

·
∞∑
n=1

nd exp
{
− 1

12
min{C1, . . . , Cd+1}(Ln)min{α1,...,αd+1}

}
<∞

as in (1).

Because of Lemma 2 and Proposition 1 the following central limit theorem of Bolthausen [3] holds.

Corollary 1. Consider the process {∇θqθ?(s, t; r, p) : s ∈ Zd, t ∈ N}. Then

1

M
d
2

√
T

∑
s∈SM

T∑
t=1

∇θqθ?(s, t; r, p)
D→ N (0,Σ1) as M,T →∞,

where

Σ1 :=
∞∑

s1=−∞
· · ·

∞∑
sd=−∞

∞∑
t=1

Cov [∇θqθ?(1, 1; r, p),∇θqθ?(s1, . . . , sd, t; r, p)] . (3.17)

Now we formulate the main result of this section.

Theorem 2 (Asymptotic normality for large M and T ). Assume the same conditions as in Theorem

1. Then

√
MdT (θ̂ − θ?) D→ N (0, Σ̃1) as M,T →∞, (3.18)

where Σ̃1 := F−1
1 Σ1(F−1

1 )> with Σ1 given in (3.17) and

F1 := E
[
−∇2

θqθ?(1, 1; r, p)
]
.

Proof. A Taylor expansion of the score function ∇θPL(M,T )(θ) around the true parameter vector θ?

yields for some θ̃ ∈ [θ̂,θ?] :

0 = ∇θPL(M,T )(θ̂) = ∇θPL(M,T )(θ?) +∇2
θPL

(M,T )(θ̃)(θ̂ − θ?).

Therefore,

M
d
2

√
T (θ̂ − θ?) = −

( 1

MdT
∇2
θPL

(M,T )(θ̃)
)−1( 1

M
d
2

√
T
∇θPL(M,T )(θ?)

)
= −

( 1

MdT

∑
s∈SM

T∑
t=1

∇2
θqθ̃(s, t; r, p)− 1

MdT
∇2
θR(M,T )(θ̃)

)−1

( 1

M
d
2

√
T

∑
s∈SM

T∑
t=1

∇θqθ?(s, t; r, p)−
1

M
d
2

√
T
∇θR(M,T )(θ?)

)
=: −(I1 − I2)−1(J1 − J2).

Note the following:

• Corollary 1 implies that J1
D→ N (0,Σ1) as M,T →∞.
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• Using representation (3.6) of the boundary term R(M,T )(·) and Lemma 1, we find

‖J2‖ =
1

M
d
2

√
T

∥∥∥∥ ∑
h∈Hr

p∑
u=0

∑
(s,t)∈GM,T (h,u)

∇θ log{gθ?(η(s, t), η(s+ h, t+ u))}
∥∥∥∥

≤
√
K2

√
Md−1T +Md

M
d
2

√
T∥∥∥∥ ∑

h∈Hr

p∑
u=0

1√
|GM,T (h, u)|

∑
(s,t)∈GM,T (h,u)

∇θ log{gθ?(η(s, t), η(s+ h, t+ u))}
∥∥∥∥

≤
√
K2(

1√
M

+
1√
T

)∥∥∥∥ ∑
h∈Hr

p∑
u=0

1√
|GM,T (h, u)|

∑
(s,t)∈GM,T (h,u)

∇θ log{gθ?(η(s, t), η(s+ h, t+ u))}
∥∥∥∥

In the same way as done in Corollary 1 for the process {∇θqθ?(s, t; r, p) : s ∈ Zd, t ∈ N}, we can

apply Bolthausen’s central limit theorem to the processes {∇θ log{gθ?(η(s, t), η(s+h, t+ u))} :

s ∈ Zd, t ∈ N} for h ∈ Hr, u ∈ {0, . . . , p}. We conclude that

∑
h∈Hr

p∑
u=0

1√
|GM,T (h, u)|

∑
(s,t)∈GM,T (h,u)

∇θ log{gθ?(η(s, t), η(s+ h, t+ u))}

converges weakly to a normal distribution as M,T →∞, and it follows that J2
P→ 0 as M,T →

∞.

• As {η(s, t) : s ∈ Zd, t ∈ N} is α-mixing, the process

{∇2
θqθ(s, t; r, p) : s ∈ Zd, t ∈ N}

is α-mixing as a set of measurable functions of mixing lagged processes. Furthermore, as θ̃ ∈
[θ̂,θ?] and θ̂ is strongly consistent, we have that I1

a.s.→ −F1 as M,T → ∞. The convergence is

uniform on Θ? by Lemma 2 which implies that

E
[

sup
θ∈Θ?

∣∣∇2
θqθ(1, 1; r, p)

∣∣] <∞.
• Concerning I2, the law of large numbers applied to{

∇2
θ log{gθ(η(s, t), η(s+ h, t+ u))} : s ∈ Zd, t ∈ N

}
results in the fact that, in the same way as in part (B) of the proof of Theorem 1, I2

a.s.→ 0 as

M,T →∞.

Finally, summarising these results, Slutzky’s Lemma yields (3.18).
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3.2 Fixed spatial domain and increasing temporal domain

As before we compute the PMLE based on observations on the area SM × TT , but now we consider

M fixed, whereas T tends to infinity.

We define the temporal α-mixing coefficients (cf. Ibragimov and Linnik [21], Definition 17.2.1 or

Bradley [4], Definition 1.6).

Definition 3 (Temporal mixing coefficients and temporal α-mixing). Let {η(s, t) : s ∈ SM , t ∈ N} be

a space-time process. Consider the metric d(·) of Definition 2.

(1) Let T (1), T (2) ⊂ N. For n ≥ 0 the temporal α-mixing coefficients are defined as

α(n) := sup{|P (A1 ∩A2)− P (A1)P (A2)| :

A1 ∈ FSM×T (1) , A2 ∈ FSM×T (2) , d(SM × T (1),SM × T (2)) ≥ n}, (3.19)

where FSM×T (i) = σ(η(s, t) : (s, t) ∈ SM × T (i)) for i = 1, 2.

(2) {η(s, t) : s ∈ SM , t ∈ N} is called temporally α-mixing, if

α(n)→ 0, n→∞. (3.20)

Proposition 2. Let {η(s, t) : s ∈ Rd, t ∈ [0,∞)} be the Brown-Resnick process (2.1) with dependence

function δ given by (2.4). Then the process {η(s, t) : s ∈ SM , t ∈ N} is temporally α-mixing, where the

mixing coefficients (3.19) satisfy

∞∑
n=1

|α(n)|
1
3 <∞. (3.21)

Proof. We use Eq. (3) and Corollary 2.2 of Dombry and Eyi-Minko [12] and (2.2) to obtain for n ∈ N

α(n)

≤ 2 sup
d(SM×T (1),SM×T (2))≥n

∑
(s(1),t(1))

∈SM×T
(1)

∑
(s(2),t(2))

∈SM×T
(2)

χ(s(1) − s(2), t(1) − t(2))

= 4 sup
d(SM×T (1),SM×T (2))≥n

∑
(s(1),t(1))

∈SM×T
(1)

∑
(s(2),t(2))

∈SM×T
(2)(

1− Φ
(√1

2

[
C1|s(1)

1 − s
(2)
1 |α1 + · · ·+ Cd|s

(1)
d − s

(2)
d |αd + Cd+1|t(1) − t(2)|αd+1

]))
≤ 4M2d sup

d(SM×T (1),SM×T (2))≥n

∑
(t(1),t(2))

∈T (1)×T (2)

(
1− Φ

(√1

2

[
Cd+1|t(1) − t(2)|αd+1

]))

≤ 4M2d sup
d(SM×T (1),SM×T (2))≥n

∑
(t(1),t(2))

∈T (1)×T (2)

exp
{
− 1

4
Cd+1|t(1) − t(2)|αd+1

}
,

where the last inequality follows from 1 − Φ(x) ≤ exp{−1
2x

2} for x > 0. We bound α(n) for large n

further by

α(n) ≤ 4M2d
∑

t(1)∈{−∞,...,0}

∑
t(2)∈{n,...,∞}

exp
{
− 1

4
Cd+1|t(1) − t(2)|αd+1

}
.
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In the double sum a temporal lag u = |t(1) − t(2)| ≥ n appears exactly u− (n− 1) times. This yields

α(n) ≤ 4M2d
∞∑
u=n

(u− (n− 1)) exp
{
− 1

4
Cd+1u

αd+1

}
≤ 4M2d

∞∑
u=n

u exp
{
− 1

4
Cd+1u

αd+1

}
.

Convergence of the series (3.21) now follows by the integral test and Lemma 4.

In the following we show that strong consistency of the PMLE also holds, if the spatial domain

remains fixed.

Theorem 3 (Strong consistency for fixed M and large T ). Assume the same conditions as in Theo-

rem 1 restricted to the fixed space SM . Then the PMLE

θ̂
(M,T )

= argmax
θ∈Θ?

PL(M,T )(θ)

is strongly consistent, that is,

θ̂
(M,T ) a.s.→ θ? as T →∞.

Proof. For θ ∈ Θ? and t ∈ N, set

qMθ (t; r, p) :=
∑
s∈SM

∑
h∈Hr

s+h∈SM

p∑
u=0

t+u≤T

1{(h,u)6=(0,0)} log {gθ (η(s, t), η(s+ h, t+ u))} .

Then

PL(M,T )(θ) =
T∑
t=1

qMθ (t; r, p).

Following carefully the lines of the proof of Theorem 1, the following conditions hold for fixed spatial

domain:

(A)
1

T

T∑
t=1

qMθ (t; r, p)
a.s.→ PLM (θ) := E[(qMθ (1; r, p)] as T → ∞ uniformly on the compact parameter

space Θ?. The main argument is that qMθ (·) is a function of temporally mixing lagged processes,

then we apply again Theorem 2.7 of Straumann [31].

(B) The limit function PLM (θ) is uniquely maximised at the true parameter vector θ? ∈ Θ?.

Now we formulate the main result of this section.

Theorem 4 (Asymptotic normality for fixed M and large T ). Assume the same conditions as in

Theorem 1 restricted to the fixed space SM . Then

√
T (θ̂ − θ?) D→ N (0, Σ̃2) as T →∞, (3.22)

where Σ̃2 := F−1
2 Σ2(F−1

2 )> with

F2 := E[−∇2
θq
M
θ?(1; r, p)]
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and

Σ2 := Var[∇θqMθ?(1; r, p)] + 2
∞∑
t=2

Cov[∇θqMθ?(1; r, p),∇θqMθ?(t; r, p)].

Proof. By its definition as a function of lagged temporally mixing processes,

(∇θqMθ?(t; r, p))t∈N is also temporally α-mixing with coefficients α′(n) = α(n− p). Furthermore,

E [∇θ log {gθ? (η(0, 0), η(h, u))}] = 0, (h, u) ∈ Nd+1
0 ,

because Lemma 2 implies regularity conditions of the pairwise log-likelihood (3.4) allowing to inter-

change differentiation and integration. Now note that Lemma 2 and Proposition 2 imply that

• E[|∇θqMθ?(t; r, p)|
3] <∞ for t ∈ N and every maximum spatial lag r and time lag p, and that

•
∞∑
n=1
|α′(n)|

1
3 <∞.

Therefore, the conditions of Theorem 18.5.3 of Ibragimov and Linnik [21] (see also Bradley [4], Theo-

rem 10.7) are satisfied and we conclude that

1√
T

T∑
t=1

∇θqMθ?(t; r, p)
D→ N (0,Σ2) as T →∞. (3.23)

Taylor expansion of the score function ∇θPL(M,T )(θ) around the true parameter vector θ? yields for

some θ̃ ∈ [θ̂,θ?] :

0 = ∇θPL(M,T )(θ̂) = ∇θPL(M,T )(θ?) +∇2
θPL

(M,T )(θ̃)(θ̂ − θ?).

Therefore,

√
T (θ̂ − θ?) = −

( 1

T
∇2
θPL

(M,T )(θ̃)
)−1( 1√

T
∇θPL(M,T )(θ?)

)
= −

( 1

T

T∑
t=1

∇2
θq
M
θ̃

(t; r, p)
)−1( 1√

T

T∑
t=1

∇θqMθ?(t; r, p)
)

=: −I−1J.

Note the following:

• (3.23) implies that J
D→ N (0,Σ2) as T →∞.

• Uniform convergence holds because of Lemma 2 which implies that componentwise

E
[

sup
θ∈Θ?

∣∣∇2
θq
M
θ (1; r, p)

∣∣] <∞.
By temporal α-mixing, since θ̃ ∈ [θ̂,θ?], and θ̂ is strongly consistent, we have I

a.s.→ −F2 as

T →∞.

Finally, summarising those results, Slutzky’s Lemma yields (3.22).

Throughout this section we have proved asymptotic properties of the parameter estimates of model

(2.4) by classical results for ML estimators in combination with a spatio-temporal central limit theo-

rem. Such results can also be applied to other models like geometrically anisotropic models, provided

the required rates for α-mixing hold.
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4 Test for spatial isotropy

We use the results of Section 3 to formulate statistical tests for spatial isotropy versus anisotropy

based on the model (2.4),

δ(h, u) =
d∑
j=1

Cj |hj |αj + Cd+1|u|αd+1 ,

for spatial lags (h, u) = (h1, . . . , hd, u) ∈ Rd+1. We derive the necessary results for d = 2. Generalisa-

tions to higher dimensions are possible, but notationally much more involved. Again we consider the

two cases of an increasing and fixed spatial domain.

Due to the structure of model (2.4) a test for isotropy versus anisotropy is a test of

H0 : {C1 = C2 and α1 = α2} versus H1 : {C1 6= C2 or α1 6= α2}. (4.1)

4.1 Increasing spatial domain

From Theorem 2 we know that, under suitable regularity conditions, the PMLE

θ̂ = (Ĉ1, Ĉ2, Ĉ3, α̂1, α̂2, α̂3)

is asymptotically normal; more precisely, for M2 spatial observations on a regular grid and for T

equidistant time points we have

M
√
T



Ĉ1 − C1

Ĉ2 − C2

Ĉ3 − C3

α̂1 − α1

α̂2 − α2

α̂3 − α3


D→ N (0, Σ̃1) as M,T →∞, (4.2)

where Σ̃1 ∈ R6×6 is the asymptotic covariance matrix given in Theorem 2.

Our test is based on the spatial parameters only. Moreover, we test the two equalities in H0

separately and use Bonferroni’s inequality to solve the multiple test problem.

Lemma 3. Assume the conditions of Theorem 2. Setting A1 := (−1, 1, 0, 0, 0, 0) and A2 := (0, 0, 0,−1, 1, 0),

we have that, as M,T →∞,

M
√
T ((Ĉ2 − Ĉ1)− (C2 − C1))

D→ N (0, A1Σ̃1A
>
1 ), (4.3)

M
√
T ((α̂2 − α̂1)− (α2 − α1))

D→ N (0, A2Σ̃1A
>
2 ). (4.4)

Proof. We obtain the left hand side of (4.3) and (4.4) by multiplying A1 and A2 to (4.2), respectively.

This yields the limits on the right hand side by the continuous mapping theorem.

We define

θC := (C2 − C1), θ̂C := (Ĉ2 − Ĉ1), θα := (α2 − α1), θ̂α := (α̂2 − α̂1).
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Then the multiple test problem (4.1) becomes

H0,1 : {θC = 0} versus H1,1 : {θC 6= 0} (4.5)

H0,2 : {θα = 0} versus H1,2 : {θα 6= 0}. (4.6)

Since the variances in (4.3) and (4.4) are not known explicitly, we find the rejection areas of the two

tests by subsampling as suggested in Politis et al. [29], Chapter 5. Their main Assumption 5.3.1, the

existence of a weak limit law of the estimates, is satisfied by Lemma 3.

We formulate the subsampling procedure in the terminology of the space-time process {η(s, t) : s ∈
SM , t ∈ TT }. We choose space-time block lengths

b = (b1, b2, b3) ≥ (1, 1, 1) and the degree of overlap e = (e1, e2, e3) ≤ (M,M,T ). The blocks are

indexed by i = (i1, i2, i3) ∈ N3 with ij ≤ qj for qj := bM−bjej
c+ 1, j = 1, 2 and q3 := bT−bjej

c+ 1. This

results in a total number of q = q1q2q3 blocks, which we summarise in the set

Ei,b,e =
{

(s1, s2, t) ∈ SM × TT : (ij − 1)ej + 1 ≤ sj ≤ (ij − 1)ej + bj , j = 1, 2,

(i3 − 1)e3 + 1 ≤ t ≤ (i3 − 1)e3 + b3
}
.

Now we estimate θC and θα based on all observations in a block, hence getting q different estimates,

which we denote by θ̂C,b,i and θ̂α,b,i.

In order to find rejection areas for the isotropy test, we will use Lemma 3, and take care of the

unknown variance in the normal limit by a subsampling result.

Theorem 5. Denote by τM,T := M
√
T and τb =

√
b1b2b3 the square roots of the number of observa-

tions in total and in each block, respectively. Assume that the conditions of Theorem 2 hold and, as

M,T →∞,

(i) bi →∞ for i = 1, 2, 3, such that bi = o(M) for i = 1, 2, and b3 = o(T ) (hence, τb/τM,T → 0),

(ii) e does not depend on M or T .

In the following θ̂ stands for either θ̂C or θ̂α. Define the empirical distribution function

L
b,θ̂

(x) :=
1

q

q1∑
i1=1

q2∑
i2=1

q3∑
i3=1

1{τb|θ̂b,i−θ̂|≤x}, x ∈ R, (4.7)

and the empirical quantile function

c
b,θ̂

(1− β) := inf
{
x ∈ R : L

b,θ̂
(x) ≥ 1− β

}
, β ∈ (0, 1). (4.8)

Then the following statements hold for M,T →∞:

(1) Denote by Φσ(·) the distribution function of a mean 0 normal random variable Z with variance

σ2 =

A1Σ̃1A
>
1 , in case of θ̂C ,

A2Σ̃1A
>
2 , in case of θ̂α,

and recall that 2Φσ(·)− 1 is the distribution function of |Z|. Then

L
b,θ̂

(x)
P→ 2Φσ(x)− 1, x ∈ R.
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(2) Set J
θ̂
(x) := P(τM,T |θ̂ − θ| ≤ x) for x ∈ R, then

sup
x∈R

∣∣∣Lb,θ̂(x)− J
θ̂
(x)
∣∣∣ P→ 0.

(3) For β ∈ (0, 1),

P
(
τM,T |θ̂ − θ| ≤ cb,θ̂(1− β)

)
→ 1− β. (4.9)

Proof. We apply Corollary 5.3.1 of Politis et al. [29]. Their main Assumption 5.3.1; i.e., the existence

of a continuous limit distribution, is satisfied by Lemma 3. Assumptions (i)-(ii) are also presumed by

Politis et al. [29]. The required condition on the α-mixing coefficients is satisfied similarly as in the

proof of Proposition 1 by Lemma 4 and the result holds.

From (4.9), we find rejection areas for the test statistics τM,T θ̂ at confidence level β ∈ (0, 1) as

(recall that θ̂ stands for either θ̂C or θ̂α)

Rej
(M,T )

θ̂
:= (−∞,−c

b,θ̂
(1− β)) ∪ (c

b,θ̂
(1− β),∞) = [−c

b,θ̂
(1− β), c

b,θ̂
(1− β)]c.

Bonferroni’s inequality

P(reject H0,1 or H0,2) ≤ P(reject H0,1) + P(reject H0,2) ≤ 2β,

applies and solves the multiple test problem.

4.2 Fixed spatial domain

First note that an analogue of Lemma 3 holds with rate
√
T instead of M

√
T and with the asymptotic

covariance matrix Σ̃2 as given in Theorem 4.

The subsampling statement corresponding to Theorem 5 then reads as follows.

Theorem 6. Denote by τT :=
√
T and τb3 =

√
b3 the square roots of the number of time points of

observations in total and in each block, respectively. Assume that the conditions of Theorem 4 are

satisfied and that Lemma 3 holds for T →∞ with rate
√
T instead of M

√
T and with the asymptotic

covariance matrix Σ̃2 as given in Theorem 4. Assume further that as T →∞,

(i) b3 →∞ such that b3 = o(T ) (hence, τb3/τT → 0),

(ii) e does not depend on T ,

(iii) b1, b2 →M .

Let b = (b1, b2, b3), τb =
√
b1b2b3 and τM,T = M

√
T . With Σ̃1 as in Theorem 5 replaced by M2Σ̃2,

conclusions (a), (b), and (c) of Theorem 5 remain true as T tends to infinity.

Proof. We apply Corollary 5.3.2 of Politis et al. [29]. The required temporal mixing condition is

satisfied similarly as in the proof of Proposition 2 by Lemma 4.

Remark 2. We can in practice apply the same procedure of subsampling as in Section 4.1. This is

justified by the fact that τb3/τT → 0 implies that τb/τM,T → 0 as T → ∞ under conditions (i)-(iii)

of Theorem 6. In particular, the rejection area for τT θ̂ (where again θ̂ stands for either θ̂C or θ̂α) is

found as

Rej
(T )

θ̂
:=

1

M
Rej

(M,T )

θ̂
.
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Figure 1: Rainfall observation area in Florida

5 Data analysis

We fit the Brown-Resnick space-time process (2.1) with dependence structure given by the model (2.4)

to radar rainfall data, which were provided by the Southwest Florida Water Management District

(SWFWMD). The data used for the analysis are rainfall measurements on a square of 120km×120km

in Florida (see Figure 1) over the years 1999-2004. The raw data consist of measurements in inches on

a regular grid in space every two kilometres and every 15 minutes. Since there exist wet seasons and

dry seasons with almost no rain we consider only the wet season June-September. Moreover, the area

is basically flat with predominant easterly winds due to its closeness to the equator and, therefore,

existing trade winds. Hence, (2.4) with parameters that possibly differ along both spatial axes fits well

without introducing a rotation matrix.

5.1 Data transformation and marginal modelling

We carry out a block-maxima method in space and time as follows: We calculate cumulated hourly

rainfall by adding up four consecutive measurements. Then we take block-maxima over 24 consecutive

hours and over 10km×10km areas; i.e., the daily maxima over 25 locations, resulting in a 12 × 12

grid in space for all 6 × 122 days of the wet seasons giving a time series of dimension 12 × 12 and

of length 732. Taking smaller areas than 10km×10km squares or a higher temporal resolution (e.g.

12-hour-maxima) results in observations that are not max-stable and the max-stability test described

in Section 5.2 would reject.

By removing possible seasonal effects, we transform the data to stationarity. We obtain the obser-

vations

{η̃((s1, s2), t) : s1, s2 = 1, . . . , 12, t = 1, . . . , 732} . (5.1)
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Taking daily maxima removes for every location most of the dependence in the time series. This

implies that marginal parameter estimates found by maximum likelihood estimation are consistent

and asymptotically normal.

To give some details: for each fixed location (s1, s2), we fit a univariate generalised extreme value

distribution (cf. Embrechts et al. [14], Definition 3.4.1) to the associated time series. The estimated

shape parameters are all sufficiently close to 0 to motivate a Gumbel distribution as appropriate model.

We therefore fit a Gumbel distribution Λµ,σ(x) = exp{−e−
x−µ
σ } with parameters µ = µ(s1, s2) ∈ R

and σ = σ(s1, s2) > 0 and obtain estimates µ̂ = µ̂(s1, s2) and σ̂ = σ̂(s1, s2).

Depending on different statistical questions and methods, we transform (5.1) either to standard

Gumbel or standard Fréchet margins. In the first case we set

η1((s1, s2), t) :=
η̃((s1, s2), t)− µ̂

σ̂
, t = 1, . . . , 732, (5.2)

and in the latter case, with Λµ̂,σ̂ denoting the Gumbel distribution with estimated parameters,

η2((s1, s2), t) := − 1

log
{

Λµ̂,σ̂(η̃((s1, s2), t))
} , t = 1, . . . , 732. (5.3)

We assess the goodness of the marginal fits by qq-plots of the observations (5.2) versus the standard

Gumbel quantiles for every spatial location. Figure 2 depicts the qq-plots at four exemplary spatial

locations (1, 1), (6, 8), (9, 4) and (11, 10). 1 Confidence bounds are based on the Kolmogorov-Smirnov

statistic (cf. Doksum and Sievers [11], Theorem 1 and Remark 1). All graphs show a reasonably good

fit.

In the following data analysis we regard (5.3) as realisations of the space-time Brown-Resnick

process (2.1) with dependence structure δ as in (2.4):

δ(h1, h2, u) = C1|h1|α1 + C2|h2|α2 + C3|u|α3 , (5.4)

with h1 = s
(1)
1 − s

(2)
1 , h2 = s

(1)
2 − s

(2)
2 , u = t(1) − t(2), for two spatial locations s(1) = (s

(1)
1 , s

(1)
2 ) and

s(2) = (s
(2)
1 , s

(2)
2 ) and two time points t(1) and t(2).

5.2 Testing for max-stability in the data

We first want to check if the block-maxima data originate from a max-stable process. A diagnostic

tool is based on a multivariate Gumbel model (cf. Gabda et al. [16]), and we explain first the method

in general. We assume a space-time model of a general spatial dimension d ∈ N. As before, we denote

the regular grid of space-time observations by

SM × TT = {1, . . . ,M}d × {1, . . . , T}.

We define a hypothesis test based on the standard Gumbel transformed space-time observations (5.2)

by

H0 : {η1(s, t) : (s, t) ∈ Rd × [0,∞)} is max-stable. (5.5)

1We use the R-package extRemes (Gilleland and Katz [17]).
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Figure 2: qq-plots of the Gumbel transformed time series values versus the standard Gumbel distribution for four

locations: (1,1) (top left), (6,8) (top right), (9,4) (bottom left) and (11,10) (bottom right). Dashed blue lines mark 95%

confidence bounds. Solid red lines correspond to no deviation.

Under H0 all finite-dimensional margins are max-stable; particularly, for every D ⊆ SM × TT , the

multivariate distribution function of {η1(s, t) : (s, t) ∈ D} is given by

GD(y1, . . . , y|D|) = exp{−VD(ey1 , . . . , ey|D|)}, (y1, . . . , y|D|) ∈ R|D|,

where VD is the exponent measure from (2.3). Since VD is homogeneous of order -1, the random

variable

ηD := max{η1(s, t) : (s, t) ∈ D}

has univariate Gumbel distribution function

P(ηD ≤ y) = GD(y, . . . , y) = exp{−e−yVD(1, . . . , 1)} = e−e−(y−µD)
, y ∈ R; (5.6)

i.e., µD := log VD(1, . . . , 1) is the location parameter and, since 1 ≤ VD(1, . . . , 1) ≤ |D|, we have

0 ≤ µD ≤ log |D|. These considerations can be used to construct a graphical test for max-stability:

First, choose different subsets D with the same fixed cardinality. Then extract several independent

21



Figure 3: R independent realisations of ηD for different subsets D of the space-time observation area.

realisations of the random variables ηD from the data and test by means of a qq-plot, if they follow a

Gumbel distribution.

We apply this test to the standardized Gumbel transformed data (5.2). As indicated above, taking

daily maxima removes for every location most of the dependence in the time series. For this test we

want to take every precaution to make sure that we work indeed with independent data. Preliminary

tests show that spatial observations, which are a small number of B2 days apart (to be specified below),

show only very little time-dependence.

Consequently, we define time blocks of size B1 of spatial observations, which are in turn separated

by time blocks of size B2 as

SM × T (i) = {1, . . . ,M}2 × {(i− 1)(B1 +B2) + t : t = 1, . . . , B1}, (5.7)

for i = 1, . . . , R = b T
B1+B2

c. The numbers B1 and B2 need to be chosen in such a way that the blocks

can be considered as independent. This results in R independent time blocks of length B1 of spatial

data and thus in R independent realisations of ηD for every D ⊆ SM × {1, . . . , B1}. The procedure is

illustrated in Figure 3.

We use these i.i.d. realisations to estimate µD for every D by maximum likelihood estimation

restricted to [0, log |D|]. Since the MLE of the location parameter of a Gumbel distribution is not

unbiased (cf. Johnson et al. [22], Section 9.6), we perform a bias correction.

For the diagnostic we take K ∈ N and consider subsets D with cardinality |D| = K. As the

total number
(
B1M2

K

)
of those subsets is in most cases intractably large, we randomly choose m :=

min{R,
(
B1M2

K

)
} subsets and obtain in totalN = m·R subsets, which we denote byD

(i)
j for j = 1, . . . ,m

and i = 1, . . . , R. For every j = 1, . . . ,m we estimate µDj by MLE based on the i.i.d. random variables

η
(i)
Dj

:= η
D

(i)
j

, i = 1, . . . , R. Then we perform qq-plots of

η
(1)
D1
− µD1 , . . . , η

(m)
Dm
− µDm
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Figure 4: qq-plots of theoretical standard Gumbel quantiles versus the empirical quantiles (black dots). The latter

correspond to the empirical distribution of maxima taken over groups of cardinality K. Dashed blue lines mark 95%

pointwise confidence bounds obtained by block bootstrap. Solid red lines correspond to no deviation.

versus the standard Gumbel distribution. As a measure of variability of the estimates, non-parametric

block bootstrap methods (cf. Politis and Romano [28], Section 3.2) are applied to obtain 95% pointwise

confidence bounds. Using bootstrap methods, we preserve the dependence between different subsets

D in the confidence intervals. Under H0, the bisecting line should lie within these confidence bounds.

The Florida daily rainfall maxima show only little temporal dependence beyond one day. Hence

we choose B1 = 2 and B2 = 1, which yields R = b732
3 c = 244 mutually independent time blocks of

spatial data. We perform the described procedure for K = 2, 3, 4, 5, which entails m = R = 244. Thus

we obtain a total number of N = 2442 = 59 536 subsets. The power of this diagnostic test increases

with K (cf. Gabda et al. [16]) as it gets less likely to include sets of space-time points that are K-wise

independent. Figure 4 shows the results for the different choices of K. The solid red bisecting lines

lie inside the confidence bounds. Hence, there is no statistically significant evidence of the space-time

process generating the data not to be max-stable.
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5.3 Pairwise maximum likelihood estimation

We apply the pairwise maximum likelihood estimation to the standard Fréchet transformed data

(5.3). The parameters to estimate are those of the function δ in (5.4); i.e., C1, C2, C3 ∈ (0,∞) and

α1, α2, α3 ∈ (0, 2].

In the definition of the pairwise log-likelihood function (3.4), the maximum spatial and temporal

lags are specified by the numbers r1, r2 and p, respectively. Immediately by model (5.4) for δ, the

parameters of the three different dimensions (space and time) are separated in the extremal setting.

This has also been noticed in Davis et al. [8], where a simulation study in Section 7 for the isotropic

model shows that estimating the spatial and temporal parameter pairs individually leads to very

good results in terms of root-mean-square error and mean absolute error. Hence, for example for

parameter estimates for C1 and α1, we can set the maximum lags corresponding to the remaining

parameters equal to 0 (i.e., we set r2 = p = 0). This means that we basically fit univariate models

to the respective spatial and temporal parts of the dependence function (5.4). Hence, this separation

simplifies the statistical estimation. However, proving asymptotic properties of the pairwise likelihood

estimator in the special case of a univariate model would for instance still involve showing the required

mixing conditions and thus not remove much of the complexity.

Furthermore, we know that we should not include too many lags in space or time into the likelihood,

since independence effects can introduce a bias in the estimates, see for example Nott and Rydén [25],

Section 2.1, or Huser and Davison [19], Section 4. On the other hand, an empirical analysis showed

that extremal spatial dependence of the Florida daily rainfall maxima ranges up to lag 4 and extremal

temporal dependence does not last more than one or two days, cf. Figure 7.2.6 in Steinkohl [30]. Hence,

we perform the PMLE for maximum spatial and temporal lags up to 4 and 2, respectively, thus also

assuring identifiability of all parameters according to Table 1. The results are summarised in Table 2.

Setting r1, r2 or p equal to 1 results in non-identifiability of the corresponding parameters α1, α2 or

α3, respectively; cf. Table 1. Therefore, they are not shown in Table 2.

The combination of a rather large estimate for Ĉ3 and a rather small estimate for α̂3 indicates

that there is only little extremal temporal dependence, see Steinkohl [30], Section 7.2. Asymptotic

95%-confidence intervals are based on asymptotic normality of the parameter estimates and estimated

using subsampling methods (cf. Section 4).

5.4 Isotropic versus anisotropic model

Using the results of Section 4, we want to apply the test (4.1) for spatial isotropy to the hypothesis

H0 : {C1 = C2 and α1 = α2} versus H1 : {C1 6= C2 or α1 6= α2}.

For the block maxima of the precipitation data we have d = 2, M = 12 and T = 732. This

corresponds to the situation of a fixed spatial domain with τT =
√

732.

We use the spatial PMLEs based on maximum lags 2-4, which can be read off from Table 2. We

obtain the rejection areas from Theorem 6. We choose b1 = b2 = 5, thus ensuring that the full range

of spatial dependence is contained in the subsamples and simultaneously achieving that their number

is large. Concerning the number of time points in each subsample, we take b3 = 600. Here we choose a

large number to ensure that Theorem 6, where T →∞, is applicable. This results in τb3 =
√
b3 =

√
600.
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max. lags Ĉi α̂i

(2,0,0) 0.6287

[0.5928, 0.6646]

0.9437

[0.9065, 0.9808]

(3,0,0) 0.6358

[0.5989, 0.6728]

0.8599

[0.8189, 0.9009]

(4,0,0) 0.6438

[0.6051, 0.6825]

0.8107

[0.7690, 0.8525]

(0,2,0) 0.7271

[0.6492, 0.8050]

0.9517

[0.8715, 1.0320]

(0,3,0) 0.7370

[0.6586, 0.8154]

0.8521

[0.7737, 0.9305]

(0,4,0) 0.7476

[0.6677, 0.8275]

0.7931

[0.7039, 0.8822]

(0,0,2) 4.8378

[4.4282, 5.2474]

0.1981

[0.0177, 0.3784]

Table 2: Estimates of the parameter pairs (C1, α1), (C2, α2) and (C3, α3) for different maximum spatial and temporal

lags. Intervals below the point estimates are asymptotic 95%-confidence bounds based on subsampling.

In order to obtain a large number of subsamples, we further choose e1 = e2 = e3 = 1 as the degree of

overlap.

max.

lag

τT Ĉ2−Ĉ1 τT (Ĉ2 − Ĉ1) Rej
(T )

θ̂C
97.5%-CI

for C2 − C1

Reject

C1 = C2

2 27.055 0.098 2.651 [−2.400, 2.400]c [0.010, 0.187] yes

3 27.055 0.101 2.738 [−2.392, 2.392]c [0.013, 0.190] yes

4 27.055 0.104 2.808 [−2.393, 2.393]c [0.015, 0.192] yes

Table 3: Test results for parameters C1 and C2. All values are rounded to three positions after decimal point.

max.

lag

τT α̂2− α̂1 τT (α̂2 − α̂1) Rej
(T )

θ̂α
97.5%-CI

for (α2 − α1)

Reject

α1 = α2

2 27.055 0.008 0.216 [−2.162, 2.162]c [−0.072, 0.088] no

3 27.055 -0.008 -0.216 [−2.130, 2.130]c [−0.087, 0.071] no

4 27.055 -0.018 -0.477 [−2.342, 2.342]c [−0.104, 0.069] no

Table 4: Test results for parameters α1 and α2. All values are rounded to three positions after decimal point.

Tables 3 and 4 present the results of the two tests at individual confidence levels β = 2.5% giving

a test for (4.1) at a confidence level 2β = 5% by Bonferroni’s inequality. The differences (Ĉ2 − Ĉ1)

and (α̂2 − α̂1) can be obtained from Table 2.

Since we can reject the individual hypothesis that C1 = C2 at a confidence level of 2.5%, we

can reject the overall hypothesis H0 of (4.1) at a confidence level of 5% and conclude that our data
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originate from a spatially anisotropic max-stable Brown-Resnick process. Further note the interesting

fact that, although the asymptotic confidence interval for the difference C2 − C1 does not include 0,

the individual intervals for C1 and C2 overlap, see Table 2. This is due to the fact that the individual

confidence bounds are estimated independently of each other, whereas the estimated bounds for the

difference reflect how far the parameter estimates lie apart in one fixed particular (sub)sample.

5.5 Model check

Finally, having fitted the Brown-Resnick space-time model (2.1) to the precipitation data, we want to

assess the quality of the fit. We take inspiration from Section 5.2 of Davison et al. [9] and compare

maxima taken over subsets of the space-time precipitation data with simulated counterparts.

Similarly as in Section 5.2, we consider subsets of the observations on a regular grid for L spatial

locations and for time points 1, . . . , B1,

D = {(s(`)
1 , s

(`)
2 , 1), . . . , (s

(`)
1 , s

(`)
2 , B1) : ` = 1, . . . , L}.

We follow the procedure as in (5.7) to extract R independent realisations of {η1(s, t) : (s, t) ∈ D} from

the standard Gumbel transformed space-time observations (5.2). This yields in turn R independent

realisations of ηD = max{η1(s, t) : (s, t) ∈ D}, which we summarise in the ordered vector ηdata :=

(η
(1)
D , . . . , η

(R)
D ). Now we simulate a corresponding vector, denoted by η̂sim := (η̂

(1)
D , . . . , η̂

(R)
D ). To this

end we need reliable Monte Carlo values as elements of η̂sim. We obtain them by simulating empirical

order statistics as follows. We simulate m · R independent copies of the Brown-Resnick space-time

process on D with dependence structure δ as in (2.4) with the PMLEs from Table 2, where we take the

estimates based on maximum lag 4 (for the spatial parameters) and 2 (for the temporal parameters),

which are the maximum lags, where dependence is still present. We transform the univariate margins

to standard Gumbel. This results in corresponding m·R independent simulations of ηD and we consider

them as m blocks of size R. We order the R values in each block and define η̂
(i)
D as the mean of all

simulated ith order statistics for i = 1, . . . , R, which gives η̂sim := (η̂
(1)
D , . . . , η̂

(R)
D ).

The vectors ηdata and η̂sim are compared by qq-plots. If the fit is good, the points in the plots lie

approximately on the bisecting line. Pointwise 95%-confidence bands are determined by the 2.5% and

the 97.5% quantiles of the simulated order statistics. As in Section 5.3, we choose B1 = 2. The number

of simulations is N = m · R = 100 · 244 = 24400. Figure 5 presents the results for four exemplary

groups of locations. The plots reveal a good model fit.

We carried out the simulations using the exact method recently suggested in Dombry et al. [13],

Sections 3.3 and 5.2. For an overview and comparison of different simulation methods for Brown-

Resnick processes we refer to Leber [24].

5.6 Application: conditional probability fields

Based on the fitted model, we want to answer questions like: Given there is extreme rain at some

space-time reference point (s?1, s
?
2, t

?) ∈ {1, . . . , 12}2 × {1, . . . , 732}, what is the estimated probability

of extreme rain at some prediction space-time point (sp1, s
p
2, t

p)? In other words, we want to estimate

the probabilities

P (η̃((sp1, s
p
2), tp) > z | η̃((s?1, s

?
2), t?) > z?) , (5.8)
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Figure 5: Goodness of fit qq-plots for different spatial locations and different L. Top left: L = 2: (1,1) and (1,2). Top

right: L = 3: (1,1), (1,2) and (3,1). Bottom left: L = 4: (1,1), (1,2), (3,1) and (3,2). Bottom right: L = 5: (1,1), (1,2),

(3,1), (3,2) and (2,1). PMLEs underlying the simulations are based on maximum spatial and temporal lags 4 and 2,

respectively. Dashed blue lines mark 95% pointwise confidence bounds. Solid red lines correspond to no deviation.

where {η̃((s1, s2), t) : s1, s2 = 1, . . . , 12, t = 1, . . . , 732} are the stationary observations (5.1) and z and

z? are prediction and reference rainfall levels, respectively. Denote by Λµ,σ the Gumbel distribution

with location and scale parameters µ and σ (cf. Section 5.1) and set µ̂p := µ̂(sp1, s
p
2), σ̂p := σ̂(sp1, s

p
2),

µ̂? := µ̂(s?1, s
?
2) and σ̂? := σ̂(s?1, s

?
2), which are the marginal Gumbel parameter estimates. Simple

computations show that (5.8) can be estimated by

1

1− Λµ̂?,σ̂?(z?)

(
1− Λµ̂?,σ̂?(z

?)− Λµ̂p,σ̂p(z)

+ exp
{
− V̂D

(
− 1

log
{

Λµ̂p,σ̂p(z)
} ,− 1

log
{

Λµ̂?,σ̂?(z?)
})}),

where V̂D is the estimate of the exponent measure (3.2) obtained by plugging in the PMLEs of the

parameters of the dependence function δ. Figure 6 shows four predicted conditional probability fields

for the reference points (1, 1, 1), (5, 6, 1), (8, 10, 1) and (10, 7, 1) and for high empirical rainfall levels
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Figure 6: Predicted conditional probability fields based on daily maxima for reference space-time points (1,1,1), (5,6,1),

(8,10,1) and (10,7,1) and rainfall levels z = z? = 2.5 (clockwise from the top left to the bottom right).

z = z? = 2.5. Because of the little temporal dependence in the daily maxima, we only consider equal

time points for spatial predictions.

Acknowledgements

We take pleasure in thanking Anthony Davison and his group for an extremely pleasant and interesting

time at EPFL Lausanne, and SB also at a Summer School in Leukerbad. SB also thanks Christina

Steinkohl for her constant support, when writing his Master’s Thesis. Discussions with Richard Davis

and Jenny Wadsworth are gratefully acknowledged. We also thank Chin Man Mok for providing the

Florida rainfall data and acknowledge that the data are provided by the Southwest Florida Water

Management District (SWFWMD). We thank the referees for fruitful comments and remarks. SB

additionally acknowledges that he was supported by Deutsche Forschungsgemeinschaft (DFG) through

the TUM International Graduate School of Science and Engineering (IGSSE).

References

[1] J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels. Statistics of Extremes, Theory and Appli-

cations. Wiley, Chichester, 2004.

[2] J. Blanchet and A. Davison. Spatial modeling of extreme snow depth. Ann. Appl. Stat., 5(3):

1699–1724, 2011.

28



[3] E. Bolthausen. On the central limit theorem for stationary mixing random fields. Ann. Probab.,

10(4):1047–1050, 1982.

[4] R. Bradley. Introduction to Strong Mixing Conditions, volume I. Kendrick Press, Heber City,

Utah, 2007.

[5] B. Brown and S. Resnick. Extreme values of independent stochastic processes. J. Appl. Probab.,

14(4):732–739, 1977.

[6] S. Buhl. Modelling and Estimation of Extremes in Space and Time. Master’s thesis, Technis-

che Universität München, 2013. Available under https://mediatum.ub.tum.de/doc/1145694/

1145694.pdf.
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[14] P. Embrechts, C. Klüppelberg, and T. Mikosch. Modelling Extremal Events. Springer, Berlin,

1997.

[15] S. Engelke, A. Malinowski, Z. Kabluchko, and M. Schlather. Estimation of Hüsler-Reiss distri-
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A An auxiliary lemma

Lemma 4. The following two bounds hold true for r ≥ 1, α ∈ (0, 2] and C > 0:

∞∫
y
ure−Cu

α
du ∼ 1

Cαy
r−α+1e−Cy

α
, y →∞, (A.1)

∞∫
1

( ∞∫
y
ure−Cu

α
du
) 1

3
dy <∞. (A.2)

Proof. First note that integrals of the form
∫∞

0 ure−Cu
α

du are finite for every r > −1, α ∈ (0, 2], and

C > 0, since they are transformations of the gamma function Γ(x) =
∫∞

0 tx−1e−t dt, which exists for

positive x. We prove (A.1) by an application of l’Hôpital’s rule:

lim
y→∞

∫∞
y ure−Cu

α
du

1
Cαy

r−α+1e−Cyα
= lim

y→∞

−yre−Cyα(
−yr + r−α+1

Cα yr−α
)

e−Cyα
= lim

y→∞

yr

yr
(
1− r−α+1

Cα y−α
) = 1.

In order to prove (A.2) first note that it follows from (A.1) that for every ε > 0 there exists y0 = y0(ε)

such that for all y ≥ y0,

( ∞∫
y

ure−Cu
α

du
) 1

3 ≤ (1 + ε)
( 1

Cα

) 1
3
y
r−α+1

3 e−
C
3
yα . (A.3)

Now we split the double integral of (A.2) up into

y0∫
1

( ∞∫
y

ure−Cu
α

du
) 1

3
dy +

∞∫
y0
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y

ure−Cu
α

du
) 1

3
dy =: I1 + I2.

For I1 we obtain

I1 ≤
y0∫

1

( y0∫
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α

du
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3
dy +

y0∫
1
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y0

ure−Cu
α

du
) 1

3
dy =: I

(1)
1 + I

(2)
1 .

I
(1)
1 is obviously finite, and to bound I

(2)
1 we use (A.3), which yields

I
(2)
1 ≤ (y0 − 1)(1 + ε)

( 1

Cα

) 1
3
y
r−α+1

3
0 e−

C
3
yα0 <∞.

Concerning I2, note that

I2 ≤ (1 + ε)
( 1

Cα

) 1
3
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y0

y
r−α+1

3 e−
C
3
yα dy,

which is finite by finiteness of the gamma function.
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