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Abstract—In this paper, we present a novel approach towards
the integration of visual attention, object based attention and
object recognition. Our system is scalable in regard to the
required framerate or usage of computational power. Therefore,
it is perfectly suited for robotic applications, where time is a cru-
cial factor. We enhance and evaluate our previously presented
visual attention system based on sampled template collation
(STC) to fit into a humanoid robotic context by dynamically
adjusting the required computational speed. We modify STC
for object-based attention to segment the attended object from
the surrounding background. Subsequently we combine it with
a biologically-inspired object recognition system. We show that
our approach significantly improves the recognition accuracy.

I. INTRODUCTION AND RELATED WORK

Visual information in technical systems is processed quite

differently compared to the human brain. The brain handles

information in a highly parallel and hierachical manner to be

able to cope with a vast variety of different inputs and situ-

ations, whereas technical systems are built with a focus on

very specific scenarios like recognition of faces or tracking of

persons. Another reason is that we still know little about how

the large amount of information in the visual cortex is used to

make sense of the perceived sensory input. The human visual

system is however still one of the better explored areas in the

brain. Visual Attention in particular is a broadly investigated

research area, because it concerns a wide field of scientific

disciplines like psychology, neuroscience or robotics. Over

the last decades visual attention has vastly been applied in

the field of computer vision, because it can help in various

problems like visual tracking[1], image segmentation[2],

rapid scene classification[3] or object recognition[4]. In the

field of humanoid robotics, visual attention naturally has

been a area of interest since these type of robots often

embody an active camera system [5], [6], [7].

In this work we specifically want to focus on the combina-

tion of visual attention and object recognition in humanoid

robots by emphasizing an object-based attention approach

based on STC as a segmentational preprocessing step for the

subsequent object recognition. We apply a modified version

of HMAX, a feed-forward computational model of the visual

cortex described by Riesenhuber and Poggio[8], [9]. Our

modifications enable the static HMAX model to be usable

in time-crucial real-world scenarios [10], [11].
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Fig. 1: Processing Overview. First a saliency map of the

aquired image is calculated using sampled templates colla-

tion (STC), then the most salient area is fixated with an

active camera. The focussed object area is then segmented

using a STC-based approach to object-based attention. After

eliminating areas that don’t contain the object, the resulting

map is used to subsample templates for object recognition.



The main contribution of this work is 1.) The enhance-

ment and evaluation of our visual attention system STC for

applicability in a humanoid robot. 2.) The development of

a object-based attention system by the modification of STC.

3.) The integration of all components into a vision system

for object recognition.

II. SAMPLED TEMPLATE COLLATION

In [12] we presented sampled template collation (STC) - a

fast and efficient method for comparing different regions in

an image. We applied this method for generating saliency

maps and salient points and showed that it was able to

outperform state-of-the-art visual attention systems - both in

terms of performance and computational speed. STC is used

in both of our models for visual attention and object-based

attention. Here we briefly introduce STC:

Our model calculates the saliency map by sampling tem-

plates randomly over the image. Each template is then

compared to the other templates by calculating a dissimilarity

score. Higher scores mean lower similarity, lower responses

higher similarity. Templates with a higher overall dissimilar-

ity score therefore originate from areas in the image which

stick out from the rest. We consider these areas salient and

use the templates’ dissimilarity score to generate our saliency

maps. See figure 1 for an overview of the model.

A. Sampling

First we sample templates from random positions on

the image. For the evaluation we used templates of three

different sizes (8,16,24). The different sizes account for

the different dimensions a salient region might have. The

number of sampled templates can be adjusted according

to computational or accuracy requirements. Less templates

can be calculated faster and are useful for generating single

fixation points, more templates give a finer resolution and a

more accurate and complete saliency map.

B. Collation Calculation

After the sampling process, each template T is compared

with each other template of the same size. This leads to a

complexity of O( 1
2
n(n + 1)), as long as the used dissimi-

larity score is a commutative function, so that f(T1, T2) =
f(T2, T1). The complexity can be reduced by introducing a

distance threshold (see II-B.2). Different characteristics can

be used to calculate the difference between the templates. For

our evaluation we used color space, distance and entropy.

The model can easily be extended to take different and

more complex measures into account, like for example the

correlation coefficient.

1) Color Space: We convert the color space to CIE Lab

and use a L2 norm to calculate the difference of lightness

L and color-opponent dimensions a and b between two

templates T1 and T2.

l = ||T1L − T2L ||L2
=
√

∑

(T1L − T2L)
2 (1)

a = ||T1a − T2a ||L2
=
√

∑

(T1a − T2a)
2 (2)

b = ||T1b − T2b ||L2
=
√

∑

(T1b − T2b)
2 (3)

2) Distance Weight: We include a distance weight to

the dissimilarity score to account for local salient areas.

Templates which are closer together have a higher weight

than templates which are e.g. on the opposite side of the

image. We compute the distance weight w by

w = 1−
d(T1, T2)

max(d)
(4)

with d(T1, T2) being the euclidean distance between the

template center T1 and T2 and max(d) being the maximum

possible distance, which is the diagonal of the image. We set

the distance weight to zero, if d(T1, T2) is above a certain

threshold (in our case half the maximum distance), this

greatly improves computational performance while having no

impact on the accuracy. The complexity can now be approxi-

mated by assuming that we calculate the k nearest neighbours

of each template which has complexity O(n log n) and the

number of dissimilarity score calculations becomes n ∗ k.
The complexities combined are

O(n log n) +O(n ∗ k) = O(n log n) +O(n)

= O(max(n log n, n)).
(5)

The inequation n log n > n is true for all n > 2. As the

number of sampled templates will always be larger than 2
for a working system, we can say that the overall complexity

is O(n log n).

3) Entropy: There exist numerous visual attention models

which are built on information theoretic foundation to find

the most salient areas [13], [14], [15]. We integrate the self-

information of a template X in our model by using:

H(X) = −
∑

∀m

pm log pm (6)

with pm being the relative frequency of brightness value

m within the template. Using entropy we gain slightly better

results (see [12]), as areas which would be salient because

of their lightness and color uniqueness - e.g. a small area of

a blue sky in the top of an image are not salient to a human

subject.

We finally calculate the overall dissimilarity score s by

calculating:

s = l(a+ b) ∗ w ∗H(T1)H(T2) (7)



C. Frame Rate Control

In the context of real-time processing it is important

to be able to adaptively react to different computational

scenarios and to maintain a certain degree of low-latency

computation. We enhanced our approach to dynamically

adapt the sampling rate to achieve a desired frame rate using

the following equation:

samplesnew =

√

fpscurrent

fpsdesired
∗ samplescurrent (8)

which assumes a complexity of O(n2) for the worst case

scenario with no distance weight. By reducing the sampling

rate, the frame rate can be kept constant even if computa-

tionally intensive programs run on the same computer.

III. OBJECT-BASED ATTENTION

Desimone and Duncan describe two basic phenomena

that define the problem of visual attention [16]. The first

one is the limited capacity for processing the information

available on the retina. The second one is the ability to

filter out currently unnecessary information, which enhances

the visual representation of objects, even if spatially oc-

cluded in cluttered real-world scenarios. This object-based

attention describes a pattern-specific attentional filtering in

the visual cortex. Activity patterns in early visual areas are

strongly biased in favour of the attended object [17]. This

phenomenon contributes towards the recognition of objects

in higher cortical areas [4], [18].

Our object-based attention approach is based on STC as a

segmentational preprocessing step for the subsequent object

recognition. One single seed template is taken from the area

with the highest salient point computed by the previous

STC procedure. All following sampled templates are then

compared to this seed template using a similar metric as in

equation 7:

s = (a+ b) + (α ∗ l) + |H(T1)−H(T2)| (9)

with α = 1

3
. Areas with a lower response are therefore

more likely to contain the object. We only use a single

template as seed, because a set of templates with a larger

spatial distribution might not contain the attended object.

We experienced the best results when resizing the image to

160x120, then blurring and applying morphological dilation

and erosion before further processing. This step helps to

smooth out textures on the attended objects. After threshold-

ing on the resulting heatmap we then apply simple contour

finding and remove all contours which don’t contain the most

salient point used as the seed template. This way we avoid

areas which have a similar response to the center object, like

the two areas top right and left in figure 1 at ”Object Saliency

Map”.

Object Recogniton greatly benefits from the object-based

attentional approach for two reasons. 1) It provides a seg-

mentation of the fixated object from the surrounding areas

Fig. 2: Functional Overview of the HMAX model.

which are likely to contain objects that interfere with the

classification performance. 2) It greatly reduces the region

of interest and therefore the area to get subsampled. Sub-

sequently less templates are needed to represent the object,

which accounts for a faster processing speed. The sampling

process in the object recognition step (see section IV) is

particularly computationally intensive as the feature vector is

generated calculating the response of every template in the

dictionary to every newly sampled template, which results

in a complexity of O(n ×m), with n being the number of

sampled templates and m being the number of templates in

the dictionary.

IV. OBJECT RECOGNITION

A. HMAX

The object recognition module presented in this paper is

built on Serre et al.’s HMAX [8], which presents a feed-

forward model of the visual cortex described by Riesenhuber

and Poggio [9]. An overview is given in Figure 2. Each layer

in the classical model consists of four alternating layers of

simple cells (S1, S2) and complex cells (C1, C2) [19].

S1 Layer: The first layer is based on a representation of

simple cells which react to oriented edges and bars in the

receptive field. The response of these cells are quite similar

to Gabor filters.

C1 Layer: Complex cells have a larger receptive field

than simple cells and add some degree of spatial invariance

and shift tolerance to the system. S1 cells of same scale

band, same orientation and adjacent filter size are connected

to a complex cell. The functionality can be described as a

kind of max pooling operation; The maximum value of two

adjacent filters of different sizes is calculated by using a

sliding window approach.

S2 Layer: In the third layer small templates are chosen

from random positions in the receptive field of C1 and

then compared to a before randomly collected dictionary of

templates. The S2 cell response is similar to a Gaussian radial

basis function and can be calculated as follows



ri,k = exp(−β||Xi − Pk||
2) (10)

where β is the sharpness of the tuning. Xi is one of the

temples created in the S2 layer and Pk is one of the templates

in the earlier created dictionary.

C2 Layer: Like in C1, the complex cells in the C2 layer

now again perform a max operation over all the responses.

For each element in the dictionary the maximum response for

equation 10 is calculated using all the RBF responses of the

templates. Using equation 10 a feature fk can be calculated

using

fk = max(exp(−β||Xi − Pk||
2)); ∀i (11)

with results in the feature vector F = {f0, f1, . . . , fd}
for all k in the dictionary, with d being the length of the

dictionary. The feature vector can now be further used for

training a classifier. We used a SVM classifier with RBF

kernel like Serre in [8].

B. Modifications

We modified the standard HMAX model in [10] to be

usable in time-crucial real-world scenarios by applying meth-

ods for optimization from signal detection theory, informa-

tion theory, signal processing and linear algebra. We will

shortly explain our enhancements here:

1) Gabor Filter: Gabor filters have been shown to provide

a good estimate for the response of cortical simple cells and

so they are used in all of the HMAX-like implementations.

The model presented in [20] uses four different orientations

with different sizes and parameters resulting in 64 different

filters. We combined Gabor filter of different orientations by

creating an orientation-free Gabor filter:

Gλ,ψ,σ,γ (x, y) =

exp

(

−
x2 + y2γ2

2σ2

)

cos

(

2π

√

x2 + y2

λ
+ ψ

)

(12)

This approach reduces the computational cost of convo-

lution from n orientations to one - in our case from 64 to

16. Using singular value decomposition (SVD) we are able

to factorize a circular Gabor filter into separable matrices.

The average computation time of the S1 layer using our

approach with 16 orientation-free Gabor filters takes under

16 ms on GPU compared to about 256 ms for 64 filters on

CPU with the standard system ( 16 times faster).

2) Entropy: In [21] and [22] we enhanced the HMAX

model by adding an information theoretic approach in the S2

layer of the system. It is sensible in regard to the information

a single template carries and adaptively rejects templates

which don’t account for the overall information gain. We

calculate the entropy of each template using equation (6).

In order to further reduce the computation time of the

system we approximated the entropy in a template using the

difference of the maximum and minimum occurring intensity

in a template T :

H(X) ≈ max(T )−min(T ) (13)

The intensity difference approach was about 1.5× faster

than the entropy approach, with similar results.

3) Radial Basis Function: The computation time of the

S2 layer highly depends on the number of sampled templates

and the size of the dictionary. We approximate the RBF

function response by applying a simpler L1-norm using:

ri,k ≈ 1−
||Xi − Pk||L1

θ
(14)

with θ being the maximum possible value a L1-norm can

have for the specific patch size. Hereby we normalize r from

a range from [0; 1] with 1 meaning identical templates. This

speeds up the computation by a factor of 2 over the normal

approach.

4) Dictionary: Usually the dictionary is created by ran-

domly selecting templates from a set of responses in C1.

This approach bears the risk to select a non-optimal set with

over-represented and redundant features. To deal with this

problem our method follows an approach, which only keeps

the most significant features of each class. For a detailed

description of the enhancements, we refer to the original

publication [10].

V. INTEGRATION

We integrate the different system components using ROS

(see figure 3). The active camera system receives position

parameter from the visual attention (VA) node and sends the

image to the object-based attention, the object recognition

(OR) and the VA node. The OR node receives the object-

based attention map and samples templates only from the

relevant object area. The OR node sends the probabilities of

an object’s class membership to the temporal reasoning node,

which predicts the object over time. It receives information

about eye movement to be able to reset the current believe

state (for more information see [11]).

VI. EVALUATION

A. Visual Attention

We evaluated the effects of the sampling process on the

stability of the saliency map and the salient point position.

The more templates are sampled, the less the deviation

between the maps and the higher the stability of a generated

saliency map. We measure the deviation by calculating the

L1-norm of two generated saliency maps of the same input

image. The deviation of the most salient point is measured

by the euclidean distance between the two points in the

image. The results are displayed in figure 4. Both values

are normalized, so that 100% deviation means the maximal

possible deviation. From about 100 sampled templates, the

deviation in the saliency map and the most salient points

are constant with about 0.2 ∗ 10−3% and 4% deviation,

respectively.



Fig. 3: System Architecture.

We verify that our visual attention approach can be applied

in a real-time scenario on a humanoid robot. Our model’s

main aspect is the sampling process which has the major

benefit, that it can be adjusted online. To estimate the com-

putational speed of our performance we adaptively change

the number of sampled templates to match a standard camera

image frequency of about 30 fps at 640x480 pixels. If the

processing is slower than 30 fps, less templates are sampled;

if faster, more are sampled. This can of course be adjusted to

personal requirements. We tested this setting on an intel i7

with 3.4 GHz and were able to sample about 130 templates

using one core and about 440 templates using four cores for

every camera frame captured at 30 Hz. Figure 5 shows the

frame rate control from equation 8 with a desired frame rate

of 15Hz.

In [12], we showed that our approach is able to outperform

state-of-the-art visual attention systems - both in terms of

performance and computational speed. We achieved a ROC

score of 0.794 on Judd’s saliency benchmark dataset [23].

B. Object-Based Attention and Object Recognition

We tested our object-based attention approach on various

objects (see figure 7). The tests show good results also

with cluttered objects (see also submitted video). The Object

Recognition greatly benefits from this object segmentation

step. Before, it was not possible to classify an image with two

known objects of different classes in it. The OBA approach

now enables a distinct classification of objects in the same

image. Additionally the probabilistic classification over time

function converges faster, because templates are sampled

only from the object and therefore the classifier outputs a

higher probability of the object’s class.

We evaluate our approach by measuring the probabilistic

responses of the classification with and without object based

attention. The results in figure 6 show, that the classification

with OBA is more accurate and consistent compared to the

previous approach. The probability estimates have less vari-

ance and are around 97%, whereas without OBA the results

show higher fluctuation and significantly less accuracy with
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(a) Input Image (b) Object Heat Map (c) Intersection

Fig. 7: Object-based Attention using STC. The center of the

input image (a) is used as template seed to create the object-

based attention heatmap (b). Column c shows the result of

intersecting heat map and input image.

around 70%. This also benefits the probabilistic summation

over time approach - the believe system achieves 100% al-

most immediately, without OBA it takes three times as long.

We also compared results of images with two known objects

in it. The old approach was not able to distinguish between

objects, whereas the new approach showed no difference in

classification performance to single object images.

VII. CONCLUSIONS

This paper presented our work on a vision system for

technical applications like humanoid robots. It comprises a

visual attention system, an object-based attention system and

an object recognition system. Each of those segments were

evaluated and demonstrate improved results compared to

previous approaches. Especially the newly developed object-

based attention system showed very good results on object

recognition accuracy and usability in real-world scenarios.
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