When to engage in interaction - and how?
EEG-based enhancement of robot’s ability to sense social signals in HRI
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Abstract— Humanoids are to date still limited in reliable
interpretation of social cues that humans convey which restricts
fluency and naturalness in social human-robot interaction
(HRI). We propose a method to read out two important aspects
of social engagement directly from the brain of a human
interaction partner: (1) the intention to initiate eye contact
and (2) the distinction between the observer being initiator or
responder of an established gaze contact between human and
robot. We suggest that these measures would give humanoids
an important means for deciding when (timing) and how (social
role) to engage in interaction with a human. We propose
an experimental setup using iCub to evoke and capture the
respective electrophysiological patterns via electroencephalog-
raphy (EEG). Data analysis revealed biologically plausible brain
activity patterns for both processes of social engagement. By
using Support Vector Machine (SVM) classifiers with RBF
kernel we showed that these patterns can be modeled with
high within-participant accuracies of avg. 80.4% for (1) and
avg. 77.0% for (2).

I. INTRODUCTION

In everyday lives, humans are embedded in rich social
environments. It is typical of humans to seek social contact,
which is intrinsically very rewarding [1], [2]. In this respect
the willingness or intention to be engaged is a crucial aspect
of social interaction. Humans are capable of expressing and
detecting this intention by many subtle and mainly non-
verbal social cues, such as touch, gestures, and body posture.
Gaze is one of the most important social signals, as it is often
involved in initiation of social contact and engagement [3].

Humanoid robots in contrast are to date still severely lim-
ited in this respect. It is perhaps mostly due to the subtleties
of these signals that make their interpretation based on visual,
auditory and tactile sensors so challenging. This issue is
particularly thwarting the applicability of humanoid robots in
areas where social interaction with humans is crucial, such
as in elderly- and healthcare, household robotics, and social
robotics in general [4], [5].

In this work, we propose a method that bypasses the
interpretation of these cues and instead aims at reading out
human intentions directly from the brain in form of electro-
physiological signals (EEG). We focus our research on two
basic, but very important aspects of social engagement whose
prediction from electrophysiological signals we believe will
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Fig. 1. Two processes of social engagement: initiation of eye-contact for
onset of interaction (top) and distinction between initiator versus follower
when eye-contact is established (bottom).

significantly help enhancing social human-robot-interaction
(see Figure 1):

o The intention to initiate eye-contact for entering into
social engagement with others, in our case the hu-
manoid iCub. This measure is crucial for natural and
efficient onset of interaction [3]. The ability to sense this
measure would give a humanoid a means of deciding
whether and when to engage in social interaction with
a human.

« The distinction between the observer being initiator or
responder of the gaze contact. This distinction is crucial
for the pleasantness and shape of the further course of
interaction [6]. The ability to sense this measure would
give a humanoid a means of estimating its social role
during the interaction. This estimate will help the robot
to adapt its behavior according to the expectations of
the human interaction partner.

The rest of the paper is structured as follows: Section II
introduces related work. Section III describes our proposed
experiment setup for evoking and capturing the related
electrophysiological responses. In Section IV we present our
signal processing and modeling approach. In Section V we
discuss the work and its implications on social HRI. Section
VI concludes the work.

II. RELATED WORK

The approach of utilizing implicit measures from
electro- or psychophysiological signals for human-computer-
interaction (HCI) is a relatively young sub-field of Brain-
Computer Interface (BCI) research and commonly referred
as passive BCI. In contrast to ordinary BClIs, in which users
are requested to voluntarily and consciously modulate their



brain-activity to control a computer device, passive BClIs
aim for continously providing valuable information about the
user’s state (emotional responses, intentions, motivations) to
the technical system - most of the time not to the awareness
of the user [7]. Many works reported so far are focused
on applications in the field of gaming and entertainment
[8]. Gilleade et al. described in 2005 an approach in which
the level of difficulty in a computer game was adapted
based on the psychophysiological measure heart rate [9] in
order to maintain optimal challenge for the player. Another
field is referred as adaptive automation (AA) in which a
task is dynamically alocated between user and machine. In
1992 Yamamoto et al. described a system which constantly
monitored drowsiness via galvanic skin response (GSR). If
arousal dropped an alarm sound was played that indicated the
user to increase concentration [10]. This field of application
is particularly interesting for the automotive sector with
respect to driver monitoring for safety reasons. Not much
work has been found in the area of social human-robot-
interaction. However, one particularly interesting work has
been presented by Szafir and Mutlu in 2012 [11] in which
a humanoid appeared as a story narrator in front of human
participants. Based on a measure of vigilance/attention ac-
quired by EEG, the robot adapted its level of gesticulation,
mimics and gazing during storytelling. The study showed that
this inference could positively influence the vigilance level
in participants who were then significantly better in recalling
details of the story after the experiment.

III. EXPERIMENT
A. Objective

The purpose of this experiment was collecting electro-
physiological data related to two aspects of social engage-
ment: the intention to initiate eye-contact and the distinction
between the observer being initiator or responder of the
gaze contact. In order to evoke and capture these responses,
our experiment made use of a belief manipulation that
intended to make participants believe that they were able to
willfully influence the robot’s behavior (provoking the robot
to engage in social interaction with them). Once captured, the
respective EEG patterns can be identified and translated into
predictive models ultimately applicable in social HRI in line
with the passive BCI approach. Note, that this experiment
was not a passive BCI approach, but a preliminary study to
collect data with the purpose of developing a passive BCI.

B. Environment and data recording

The experiment took place in a quiet room which was
partitioned into two sections by means of a movable wall.
On the right side of the room, a participant was seated
on a comfortable chair approximately 2 meters in front of
the humanoid iCub (see Figure 2). iCub is a 53 degrees
of freedom humanoid [12] which has an in-build control
unit communicating with an external workstation via local
network based on TCP/IP. For the robot control and thus the
implementation of the experiment protocol we used Yarp [13]
and iCub [14] libraries. Furthermore, we equipped the robot

with a speech synthesis system by including the package
iSpeak, which acquires sentences over a yarp port and lets
the robot utter them. The robot was arranged as if standing
behind a table and looking at a computer screen (see 2, top).

The left side of the room was reserved for the experimenter
monitoring the experiment protocol and a live-visualization
of the recorded EEG data. For EEG data recording we used a
separate PC. Besides controlling the robot, the robot worksta-
tion is further responsible for sending, in specific moments
of the experiment protocol, event-triggers via parallel port
(LPT) to the EEG amplifier. These triggers appear in the EEG
data as event-codes facilitating later segmentation of the data.
EEG data was acquired with a BrainProducts actiChamp
amplifier equipped with 32 active EEG electrodes arranged
according to the international 10-20 system. All leads were
referenced to Cz and sampling rate was set to 500 Hz. The
impedance levels of all leads were kept below 10 kQ. The
amplifier is battery-driven and was located on a tray nearby
the participant. The data was transferred via USB to the
recording PC. Participants were given earplugs for minimiz-
ing auditory distractions. Speech and beep-indications were
played back via Logitech stereo desktop speakers with an
appropriate loudness. The participants were asked to sit still,
but comfortably during the experiment and try to move as
little as possible.
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Fig. 2. Top: experiment setup with participant. Bottom: iCub attending
computer screen (averted gaze) versus iCub establishing gaze contact with
participant.

C. Experiment protocol

In our experiment the robot was attending a computer
screen to its left side for most of the time. This was realized
with a neck angle of 42°, the robot’s torso was directed
towards the participant. Our experiment was arranged in
a trial-based fashion with consecutive gaze-contact events.
Figure 3 illustrates one such a trial. Each trial started with a
5 seconds pause, indicated by the auditory spoken cue “break
till beep!”. Then a beep-tone occured which indicated exactly
one upcoming gaze-contact event to the participant. The
gaze-contact event followed within a random-time between
5-8 seconds after the beep and had a total duration of 3
seconds: First, the robot turned its head to 0° neck angle
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Fig. 3. One trial consists of an initial rest of 5 sec. followed by a 5-8 sec.
task depending on the condition. Afterwards follows the gaze-event of 3
sec. duration. The trial ends with another resting period of 2 sec. The trials
are repeated for 10 times per block.

with an angular velocity of 50°/s and lowered its gaze by
-5° in order to meet the eyes of the participant (parameters
were calibrated prior to the start of the experiment). After
approx. 3 seconds the robot moved back its head and eyes
to the initial position. The gaze-contact event was followed
by another break of 2 seconds. Each trial had a duration of
15-18 seconds.

The trials were arranged in a block-wise fashion of 12
consecutive blocks; one block consisted of 10 trials and gaze-
contact events respectively (see Figure 4). We introduced
two conditions (types of interaction with the robot) which
alternated randomly from block to block. The randomization
was controlled such that no more than 2 consecutive blocks
would belong to one condition. The two conditions were:

e ”YOU INITIATE” interaction: The participants were
instructed that we have built an algorithm capable of
extracting relevant information from their EEG signals
that is associated with the intention to initiate eye-
contact with an interaction partner. The participants
were told that this algorithm worked in real-time and
influenced the robot’s behavior based on the participants
will to engage in social interacion with the robot.
Participants were instructed that whenever the beep-
tone occured in the ”YOU INITIATE” blocks they
would be able to willfully influence the robot’s behavior
(provoking the robot to look at them).

« "ROBOT INITIATES” interaction: The participants
were instructed that in this condition the above-
mentioned information was not provided to the robot
(connection was turned off). The robot would be rather
entering the social interaction on its own intention”.
Participants were instructed that whenever the beep-
tone occurs in the "ROBOT INITIATES” blocks they
just had to await the robot gazing at them.

Unbeknownst to the participants no such an algorithm
existed, hence the blocks were entirely identical, the gaze-
contact always followed within a random time in between
5-8 seconds. With this belief-manipulation we aimed to
evoke brain activity patterns specific for the intention to
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Fig. 4. One block consists of 10 gaze-contact events (trials) under one of
both conditions ”YOU INITIATE”/’ROBOT INITIATES”. The participant
will be informed verbally about the type of interaction prior to the start of
the next block.

engage into social interaction. Participants could self-pace
the start of each new block: After hitting a specific key on
a keyboard they first received verbal instruction from the
robot speech synthesis system about the type of interaction
in the next block ("The next block will be your turn!” for
the ”YOU INITIATE” condition; ”The next block will be my
turn!” for the "TROBOT INITIATES” condition). After hitting
another key the next block started. The total duration of the
experiment was approx. 45 minutes. For the entire duration
of the experiment the robot’s facial expressions were set to
happy.

The participants were first instructed (verbally and by
means of written instruction) about the experimental setup
and handed a questionnaire about personal details. To test
whether participants believed the experiment instructions
they were given another questionnaire after the experiment
that included questions e.g. about how well they thought
the robot responded to their intention to engage into gaze-
contact.

D. Farticipants

Six healthy participants (age: 27.54+3.82, all males) par-
ticipated in the experiment. The participants covered a va-
riety of nationalities (China, Germany, Iran, Spain, Turkey)
and thus a considerable spectrum of cultural background.
Educational background was predominantly in engineering
and computer science majors (5 out of 6 subjects). Prior
experience and familiarity with humanoids varied widely
among the participants and scored 4.17+1.57 on a scale
of 1 “non-familiar” to 7 “familiar”. All participants were
equally instructed about the experiment setup and agreed on
having their data acquired by signing a consent form. Each
participant was paid a honorarium of 15 EUR.

IV. DATA ANALYSIS AND RESULTS
A. Questionnaire

In order to check if participants believed they could will-
fully influence the robot’s behavior in the ”YOU INITIATE”
condition we asked them after the experiment how well they
thought the robot responded to their intention to engage in
eye contact. Participants rated 5.33+0.94 on a scale from
1 ”non at all” to 7 ”very well”. Furthermore, we asked in




which condition they felt generally more comfortable. No
tendency could be observed as 2 of 6 participants rated " YOU
INITIATE”, 2 of 6 participants rated "ROBOT INITIATES”
and 2 of 6 participants rated “no difference”. Participants
were also asked in which condition they felt rather positive
emotional responses during the gaze contact. The majority
of participants (3 out of 6) rated that the ”YOU INITIATE”
condition caused stronger positive responses (2 out of 6
rated “no difference”). For negative emotional responses
most participants rated “no difference” (4 out of 6). All
participants except for one found the experimental conditions
corresponding properly to the instructions provided by the
experimenter. The remaining participant missunderstood how
the robot was actually supposed to react to the participant
in the ”YOU INITIATE” condition, but still believed that
he was able to willfully influence the robot. We therefore
decided not to exclude his data from the analysis. The
questionnaire responses indicated that all subjects appro-
priately believed the experiment instructions througout the
experiment.

B. Preprocessing and artifact removal

Data preprocessing was carried out using BrainProducts
BrainVisionAnalyzer (BVA). BVA comes with a set of in-
built signal processing functions particularly relevant for
EEG data preprocessing and visualization. During manual
data inspection we noticed large voltage drifts in participant
(p01) which were not simply to be filtered out. We therefore
decided to remove this dataset from the analysis. For the
remaining datasets we carried out the following steps: (1)
We re-referenced each single EEG channel to the average
of all leads and reconstructed channel Cz (originally used
as reference). (2) We downsampled the data to 250 Hz to
reduce processing time in all further steps. (3) We bandpass-
filtered the data using a Butterworth zero phase IIR-filter
with a low cutoff around 0.5 Hz and a high cutoff around
70 Hz (12dB/octave). (4) In the next step we manually cut
out the data in between blocks as they did not contain any
relevant information and might have negatively influenced
the next steps of preprocessing. (5) We transformed the
data to the component-level using 512 steps Infomax ex-
tended Independent Component Analysis (ICA). (6) Next,
we manually selected those components which were most
probably associated with eye-blinks, removed them and (7)
transformed the data back to channel-level using inverse ICA.
The data was then exported for further analysis in MATLAB.

C. Data segmentation

According to the purpose of the experiment, we aimed
at exploring and modeling the electropsychological patterns
of two specific processes of social engagement with a
humanoid: (1) the intention to initiate eye-contact and (2)
the distinction between gaze contact based on whether the
human was the initiator or the responder of gaze contact. For
both analyses we extracted and compared different segments
of the EEG data using functions provided by the MATLAB
EEGLAB toolbox:

1) Intention to initiate eye-contact: In order to compare
and model the EEG patterns we contrasted them against
an ideally perfectly clean baseline which we decided to
take from the initial resting period in the trials of the
”ROBOT INITIATES” condition where no patterns related to
intentions were assumed to be present. We decided to extract
the latest 3 seconds of the resting-trials since the first second
of the resting period might still be affected with auditory
processing of the robot’s speech cue “break til beep!”. With
this processing step we obtained 60 baseline segments of
length 750 samples per channel and participant. Based on
our experimental design we assumed to find brain activity
patterns for the intention to initiate eye contact directly after
the beep-tone in those trials which were related to the ”YOU
INITIATE” condition. In order to avoid biases in the data
we decided to extract the same length of segments as for
the baseline segments. We assumed to find the patterns best
developed some time after the beep and decided to extract
3 second segments from the moment of 2 seconds after the
beep and thereby obtained 60 intention segments of length
750 samples per channel and participant.

2) Initiator versus responder gaze contact: In this com-
parison we contrasted the 3-second periods of gaze contact of
both conditions. Thereby we obtained 60 responder segments
from the "ROBOT INITIATE” condition and 60 initiator
segments from the “YOU INITIATE” condition, both of
length 750 samples.

D. Feature extraction

Feature extraction was carried out identically for both
above described comparisons. Each of the segments was first
filtered into 5 frequency bands (standard frequency bands in
EEG signal processing), by means of 2nd order zero-phase
Chebyshev IIR-bandpass filters, namely theta (4-7 Hz), low
alpha (7-10 Hz), high alpha (10-13 Hz), beta (14-30 Hz) and
gamma (30-47 Hz). In preliminary analyses and visualization
of the data we noticed distinct differences between low and
high alpha bands and therefore subdevided this band into
two subbands. For each filtered segment we then computed
the log-variance as a measure of spectral power which is
associated with band-specific cortical activation in EEG.
For each segment/trial we thereby obtained one value as a
means of cortical activation in a specific frequency band and
channel. The features were then concatenated into one vector
resulting in 160 features (32 channels x 5 frequency bands).
The trials were then labeled according to the above described
comparisons.

E. Data visualization and interpretation

For data visualization we computed the means over all
trials and participants and visualized the 160 features in
topoplots (see Figure 5). Despite the relative small number of
participants we could observe quite interesting and plausible
effects in the EEG patterns. For the comparison intention
vs. baseline the strongest effect was a decrease of anterior
and posterior alpha power which has been consistently
reported in the literature in association with alertness and



increased attention, e.g. in [15] (see Figure 5, top - a).
In beta- and gamma-band we could observe a hemisphere
lateralization with increased anterior gamma-power on the
left side and decreased central beta-power (see Figure 5,
top - b). Hemisphere lateralizations have been reported as
reflecting approach and widthdraw motivation caused by
differential activation of the medial prefrontal gyrus (MPF).
For example, in 2005 Talati et al. [16] found greater left MPF
activations for approach and greater right MPF for widthdraw
tendencies. For the comparison gaze-contact initiator vs.
gaze-contact responder the alpha-power effect was almost no
more present, both conditions resulted in relatively similar
alpha-activities. The left hemisphere activity in beta- and
gamma-band were even more strongly pronounced than in
the prior comparison (see Figure 5, bottom - c¢). We interpret
this effect as to be related to some kind of amplification of the
approach tendency mixed with activities related to processing
of intrinsic reward in the ventral striatum (located in the
limbic system below the pre-frontal cortex). Moreover, we
observed power-decreases over left and right motor cortex
(central) in high alpha band, which are typically associated
with motor preparation and execution (see Figure 5, bottom -
d). This supports the notion of pronounced approach motiva-
tion that already involves preparation of motor responses. We
consider these findings as strong indicators that the acquired
data is valid and contains the electrophysiological patterns
we aimed to capture.
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Fig. 5. Top: grand average over all participants intention minus baseline,
strongest effects: anterior and posterior low alpha-power decrease (a);
hemisphere lateralization for beta- and gamma-power (b). Bottom: grand
average over all participants initiator minus responder, strongest effects:
pronounced left hemisphere beta- and gamma-power increase (c); high
alpha-power decrease over motor cortex (d). White markers indicate highest
deviations between conditions.

F. Modeling

In order to create predictive models to discriminate the
patterns we used Support Vector Machines (SVM) classifiers
by employing the LIBSVM library by Chang et al. [17].
SVMs were developed for solving binary classification prob-
lems and model an optimal hyperplane for discriminating
both classes. SVMs are particularly powerful as they find the
best tradeoff between good generalization by simultaneously
maximizing the performance and minimizing the complexity
of the model. Moreover, SVMs can be used with kernel
functions that map the features into high-dimensional space
in which non-linearly separable data can be discriminated
by linear hyperplanes. We assumed our data to be non-
linearly separable and thus decided to employ a Radial Basis

Function (RBF) kernel, which has also been consistently
reported as the most suitable kernel for EEG-signal based
classification problems, e.g. in [18]. Furthermore, we per-
formed an exhaustive search to find optimal values for the
learning parameter C and the kernel parameter y. For SVM
training we used all 160 features and evaluated the models
in two ways:

o 5-times-5-fold participant-individual cross-validation
(CV): The data from one participant is partitioned into
5 folds, 4 folds are used for training the SVM model
and the remaining fold is used for testing. The folds
are then shuffled until each fold had once been used
for testing. The whole procedure is repeated for 5
times. The 5x5 results are averaged and reported as
classification accuracy (see equation 1). This procedure
was carried out for each participant individually.

o Leave-1-participant-out validation (L10): The data
from 4 participants were concatenated and used for
training the SVM model. The data from the remaining
participant was used for testing. The procedure was
repeated until the data from all individual participants
had once been used for testing. Identical to CV, the
results are reported as classification accuracy.

# correctly predicted data
# total testing data

accuracy = x 100% (1)

The results reported in Table I show that with the proposed
approach a maximum participant-individual classification
accuracy of 84.8% (p04) to predict the intention to initiate
eye contact was obtained. On average we obtained a CV-
accuracy across all subjects of 80.4%. For the L10 validation
we obtained a maximum accuracy of 67.5% and an average
accuracy of 64.2% across all subjects.

TABLE I
CLASSIFICATION ACCURACIES FOR intention vs. baseline

Cv L10

participant | accuracy C V4 accuracy C b4
p02 83.8% 100 | 0.001 65.0% 0.1 0.005
p03 66.2% 2 0.1 66.7% 3 0.01
p04 84.8% 3 0.01 58.3% 0.001 2
p05 83.0% 20 | 0.001 64.2% 10 0.001
p06 84.0% 10 | 0.005 67.5% 0.001 | 0.005
AVG 80.4% 64.2%

Table II shows the results for predicting whether par-
ticipants were initiating or following gaze-contact with the
robot. We obtained a maximum CV-accuracy of 84.3% (p05)
and on average 77.0% across all participants. L10-validation
yielded a maximum accuracy of 71.7% and on average
61.0%. We did not observe any tendency regarding optimal
values for the parameters C and 7.

V. DISCUSSION

Our data analysis revealed biologically plausible brain
activity patterns that we have shown can be modeled of-
fline with high within-participant (participant-dependent) and



TABLE I
CLASSIFICATION ACCURACIES FOR initiator vs. responder

Cv L10
participant | accuracy C V4 accuracy C b4
p02 76.3% 100 | 0.001 60.8% 1 0.5
p03 69.2% 3 0.1 55.8% 0.001 | 0.005
p04 80.7% 10 | 0.005 71.7% 20 0.005
p05 84.3% 10 0.01 58.3% 20 0.001
p06 74.5% 2 0.05 58.3% 2 0.05
AVG 77.0% 61.0%

promising across-participant (participant-independent) accu-
racies. In order to prepare and evaluate our models for
utilization in online passive BCI-based HRI we suggest to
consider the following steps which we aim to explore in
follow-up research: So far, the modeling is based on data of
a relative small number of participants. With 10 or more
participants we would be able to identify the respective
brain patterns more clearly. This would eventually lead to
a reasonable selection of the most prominent regions and
frequency bands prior to the modeling: We expect that feature
selection / employment of sparse-classifiers will significantly
enhance the generalization abilities of user-independent mod-
els, hence improve our L10O-validation results. Still, user-
independent models might not work robustly with day-to-day
variations and should therefore be equipped with adaptive
capabilities. For online-evaluation an additional and different
experimental design is required for which - in contrast to
this study - we suggest to leave the participants unaware
(unbiased) of the fact that a passive BCI is tested.

In line with the basic idea of passive BCI, it is crucial
to point out that our approach is not meant to substitute
any other modality of robot-perception (visual, auditory,
tactile), but rather meant to augment the set of modali-
ties by providing the robot additional access to implicit
information about the human’s intention and willingness to
engage into interaction with the robot. We are confident
that the introduction of the proposed predictive models in
closed-loop with humanoids would significantly enhance the
fluency, naturalness, and particularly the social aspects of
interaction, specifically at the moments of onset and further
development of the course of interaction. This will help to
design better robot behaviors, in particular with respect to
timing of the gaze controller to seek and keep engagement.
Moreover, we believe that combining/fusing our proposed
implicit measures from EEG signals with ordinary visual,
auditory and tactile measures would eventually result in en-
hanced robot capabilities to reason about, and derive higher-
level meaning of human intentions, actions, and behaviors.
This would ultimately help predicting probable future actions
which in turn enhances fluency and efficiency in human-robot
interaction on a greater scale.

VI. CONCLUSIONS
This paper aimed at enhancing robot’s abilities to sense
when (timing) and how (social role) to engage in interac-
tion with a human by means of EEG. We conducted an

experiment to evoke and capture electrophysiological data
(EEG signals) associated with (1) the intention to initiate
eye-contact and (2) the distinction between initiator and
responder role in established eye-contact with the humanoid
iCub. Predictive models based on our offline data analysis
and modeling approach achieved high within-participant
classificiation accuracies of avg. 80.4% for (1) and avg.
77.0% for (2). Results for participant-independent models
are above chance-level and promising. Our approach reaches
across-participant accuracies of avg. 64.2% for (1) and 61.0%
for (2).
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