
Predictive Action Selector for Generating Meaningful Robot Behaviour
from Minimum Amount of Samples

Erhard Wieser and Gordon Cheng

Abstract— Our aim is to better understand the action selec-
tion process of intelligent systems by looking at their ability
of internal prediction. In robotic systems, one problem is
to generate meaningful robot behaviour with a very small
and simple set of trained motions. An additional problem is
to compensate for incomplete sensory data while generating
behaviour. We propose a new predictive action selector to
contribute to the solution of these problems. Our action selector
predicts task–relevant feature and motion sequences, and uses
the prediction results to select the robot action. We validate our
implemented model on a humanoid robot. The robot generates
meaningful behaviour composed out of very simple and few
trained motions, and at the same time it compensates for
incomplete sensory data such as temporary loss of task–relevant
visual features.

Keywords: action selection, internal prediction, emergent
behaviour

I. INTRODUCTION

A. Generation of Meaningful Robot Behaviour from Mini-
mum Amount of Samples

Inspired by the human ability of internal prediction, our
aim is to contribute to the understanding of the action
selection process. For this purpose, the ability of internal
prediction can play a key role [1], [2], [3]. At a higher
level of abstraction for example, humans can predict the
consequences of their actions. This ability enables them to
choose the correct action in a given situation. At a lower
level, prediction helps to compensate for incomplete sensory
data or for delays in the sensory–motor system [2].
We propose a new predictive action selector which can
generate meaningful behaviour from minimum amount of
training samples. Our proposed action selector (see fig. 1)
integrates the ability to predict the effect of the robot’s own
action and the ability to compensate for incomplete sensory
data. We present the design, realization, and evaluation of
our predictive action selector which is a key module of our
future cognitive architecture. Our proposed action selector
receives task–relevant visual features, goal states, and motor
states as input, and delivers new motor commands as output.
Our action selector consists of neural network–based multi–
purpose modules which are integrated and linked together in
a way that the overall system is not specific to a single task
or behaviour, an important fact in developmental robotics [4].
We fully implemented our proposed model and validated it
on a NAO humanoid robot. Our system controlled the head

Erhard Wieser and Gordon Cheng are with the Institute for Cog-
nitive Systems, Technische Universität München, München, Germany,
http://www.ics.ei.tum.de. E-mail: erhard.wieser@tum.de, gordon@tum.de.
Video to this paper: http://web.ics.ei.tum.de/∼erhard/videos/PAS.mp4

Fig. 1. Our proposed predictive action selector: The system forms a
memory by learning from sensory–motor samples through interaction, see
grey blocks (1), (2). The formed memory enables the system to predict
features. In the execution stage (blue blocks), the predicted effects of
robot motion are combined with the predicted feature state and evaluated
according to a goal and a selected task. Our system evaluates possible
actions along with their corresponding effects within an internal prediction
loop before sending the appropriate motor commands to the robot. At the
same time, prediction of task–relevant features allows to compensate for
temporary loss of features.

of the robot and we tested the emergence of basic behaviour
such as object tracking and object evasion.
Our contribution can be best described by the following
capabilities of our proposed system:

• Behaviour generation: Our system generates meaningful
robot behaviour with emergent robot motions which are
composed out of very simple and few trained sequences
(minimum number of samples). The behaviour is emer-
gent, it is not engineered explicitly into the system.
The system supports the emergence of different types
of behaviour.

• Task or behaviour switching: Our system can switch
immediately between different types of robot behaviour.

• Prediction of task–relevant features: Our system can
deal with temporal losses of the perceived task–relevant
features. Normally, traditional control systems will ei-
ther stop moving the robot, or perform a search of
sensory space (e.g. visual space), if the required sensory
input is not present any more. Nevertheless, our system
keeps on generating motor commands even in cases of
temporal loss of sensory features. This is realized by
using internal prediction of the sensory features.



B. Related Work

Infants learn about their environment by interacting with
objects [5]. Inspired by this insight, Noda et al. [5] propose
a model which enables an agent to estimate appearance and
motion models based on visuomotor experience. Sensory–
motor experience can lead to robot behaviour which is
rather emergent than specifically engineered. The bene-
fits of sensory–motor experience and the benefits of self–
organization of internal representations are described in [6]
and [7].
The iCub cognitive architecture tries to generate infant
behaviour based on insights of cognitive science and devel-
opmental psychology [8], [9]. The action selection process
of the state–of–art iCub cognitive architecture is based
on homeostatic self–regulation governed by the affective
state [2]. On the implementation level, the action selection
of the iCub cognitive architecture is a function of the levels
of curiosity and experimentation, both levels provided by
the affective state [9]. The affective state module is similar
to a goal module. It provides the motives which influence
the action selection. The motives are curiosity, experimen-
tation, and social engagement, and they are implemented
as temporal series of event–related spikes [9]. The iCub
architecture also has an anticipatory circuit for perception–
action simulation, using motor–sensor and sensor–motor
hetero–associative memories [8]. However, experimental re-
sults showing the anticipation or prediction ability of the
architecture are missing in [8], [2], [9].
In the domain of object interaction, the tracking and avoid-
ance of an object of interest form the most basic behaviour,
e.g. visual servoing is one of the earliest human skill [9].
Gaussier et al. [10] realize an object tracking skill on a
mobile robot. Their concept bases on the imitation of motion
sequences. They propose a Perception-Action (PerAc) archi-
tecture [10] which learns sensory–motor associations with
a delayed reward. However, they have to apply an active
filtering mechanism to compensate for drawbacks in feature
detection, since their model is sensitive to noise in sensory
data [10]. They tested their model on a mobile robot, it
is not clear how it performs on a humanoid robot. For a
humanoid robot, Berthouze and Kuniyoshi [11] propose a
system supporting gaze fixation and saccadic motion. These
skills develop from a context–free control to a context–
dependent control [11]. Berthouze and Kuniyoshi use two
CCD cameras, position and velocity control, and a self–
organizing map (SOM) for the association of the observed
motion and the corresponding motor command. The SOM
realizes the emergent categorization, i.e. it can respond to
new sensory–motor patterns based on previous experiences.
However, it is not clear how well a SOM–based concept
scales up with increasing task or skill complexity. Shibata et
al. [12] propose a model of smooth pursuit in primates based
on learning the target dynamics. They use a recurrent neural
network (RNN) in order to emulate the medial superior
temporal area of the brain. They realize a forward model of
target motion by using online learning. Their model predicts

the eye velocity and uses the retinal slip as error signal for
learning. However, it is not clear whether their model can
alter the robot’s behaviour towards related skills, e.g. target
evasion, instead of target tracking.
Our review on related work shows that the systems presented
in [10], [11], [12] can perform well, but they seem to be
specifically engineered towards a single task (e.g. object
tracking only). Compared to the described related work, our
approach provides a systematic way to bootstrap different
types of meaningful robot behaviour by re–using a minimum
amount of taught samples.

C. Our Approach

In contrast to traditional robotics, we do not require to
determine an analytical relation between parameters of robot
limb motion and observed motion of features, e.g. a Jacobian
matrix. Instead, our approach relies strongly on sequence pre-
diction involved in both perception and action generation. A
sequence is defined as a spatio–temporal pattern of sensory–
motor data. Our proposed action selection system consists
of two main modules or building blocks (see fig. 1 and
fig. 2): A self–motion predictor and a feature predictor. The
self–motion predictor predicts the effect of a selected robot
motion (self–motion or ego–motion) on a perceived task–
relevant feature of interest. The feature predictor predicts
the future state of a task–relevant feature. The results of
these two main modules are evaluated according to a goal
pattern. An internal prediction loop determines the best
possible robot motion before the corresponding motor com-
mand is computed. The memory of the self–motion predictor
contains only a small amount of simple motor sequences
obtained through either kinesthetic teaching or autonomous
exploration of degrees of freedom (DOFs). More complex
motor sequences emerge during robot–world interaction by
continuously selecting/switching between these simple motor
sequences depending on the environmental situation and the
goal state. Our approach also includes a mechanism to alter
the robot behaviour to switch immediately between different
tasks (e.g. tracking an object of interest, or evading it).
We do not claim that our proposed model is biologically–
plausible. In fact, our proposed model is plausible from a
cognitive science point of view, since our model encom-
passes learning, prediction, and action, which are important
characteristics of a cognitive system [1], [2].

II. SYSTEM DESCRIPTION

A. System Overview, Input and Output Data

The functional diagram (fig. 2) shows our action selection
system which works with the following input data: The
vector pin contains the normalized joint positions of the
robotic limb to control. The normalization of joint positions
to values between 0 and 1 is necessary because these are
directly processed by the neural network of the self–motion
predictor. The vector vg is a two–dimensional vector in the
robot’s field of view (normalized image plane of the robot
camera) and represents the goal state of the visual feature
of interest, i.e. here the goal state is the desired position



Fig. 2. Functional diagram of our predictive action selector. System inputs
are the current proprioceptive state (sensed joint positions pin), the observed
visual feature of interest (vf ), and the goal position of the visual feature
of interest (vg). System output is the new proprioceptive state sent to the
robot joints (pout). The blue arrows represent the data flow of the first
computation step. In the first computation step, the system finds the optimal
context representing the optimal basic action. In the second computation step
(green arrows), the system uses the optimal context in order to calculate the
new joint positions pout.

of a blob center in the image plane. In this paper, the goal
vg is kept constant. The vector vf is a two–dimensional
vector in the robot’s field of view. It represents the current
task–relevant visual feature of interest in the image frame.
Applied to a robot’s interaction with a coloured object, e.g. a
green cup, the vector vf represents the position of the object
in normalized image coordinates. We implemented visual
feature cells for the extraction of vf encoding the position
of the largest colour blob. Note that vf can represent another
task–relevant feature as well, and vf can also be delivered by
an abstraction layer [13], for example an attention selection
module proposed in [14]. Note that both vg and vf can be
three–dimensional as well, if additional depth information is
provided as third position coordinate. The vector pout con-
tains the new normalized joint positions to be de–normalized
and sent to the robot limb at each computation cycle of the
system.

B. Modules

1) Context–dependent Self–Motion Predictor: Basic ac-
tions are defined as simple short motion sequences of the
robot’s body parts, encoded by a sequence of joint position
vectors p. For example, basic actions of the head are left,
right, up, down motion of the head, as well as no motion at
all (termed as idle motion). Complex actions emerge by the
combination of these basic actions over time, by continuously
switching between them depending on the situation. For each
computation cycle of our overall system (computation of
pout from the given input data), the self–motion predictor
first predicts the changes of the visual feature of interest
(∆vs in fig. 2) for all possible basic actions (i.e. only the
changes caused by self–motion). In fig. 2, the internal pre-

diction circuitry, which is created by a closed loop between
the evaluation step and the self–motion predictor module,
determines the best basic action. A basic action is internally
represented by the context index c. The self–motion predictor
uses the selected context (representing the selected basic
action) to predict the new final visual–proprioceptive state
as a result of the selected robot motion (see the green arrow
starting from the self–motion predictor module in fig. 2).
This state is then used by other components to compute
pout. The learning and generation of these sensory–motor
sequences is realized by the continuous time recurrent neural
network (CTRNN) proposed in [6]. We implemented the net-
work structure proposed in [6]. In our implementation, each
individual neuron uses the sigmoid function as activation
function. Each sample si of a sequence S has the following
format, eq. (1):

sTi =
[
vT
f pT

in

]
i

(1)

We do not use any pre– or postprocessor attached to the
CTRNN, since the dimension of the sample vector si is low
and the trained sequences are short and do not overlap. In our
system, each robot DOF is normalized to values between 0
and 1, and mapped directly to one of the input/output neurons
of the CTRNN. The CTRNN learns sequences by using the
standard backpropagation through time (BPTT) [15], [16]. In
addition to the weights, the initial potentials of the context
neurons also self–organize during the learning phase by using
the BPTT method. At the end of the training, each of the
stored sequences is represented by the initial potential of the
context neurons, denoted by the vector c(init).

2) Visual Feature Predictor: Our system normally uses
the observed position delivered by the visual feature cells.
However, the visual feature of interest is not present all the
time. For example, a typical interaction scenario would be a
moving object of interest which is occluded temporally by
an other object. This leads to a temporal loss of the observed
vf . In such a case, the visual feature predictor delivers
a prediction of vf based on the last observed samples
of positions. Thus, each computation cycle of the overall
system uses either the observed vf , or the predicted vf .
The system first relies on the observed vf . If the observed
vf gets lost, the system will use the predicted vf until
the feature will be observable again. The algorithm of the
visual feature predictor module uses a CTRNN [6] to predict
next samples of vf . The vector vf is directly represented
by two input/output neurons, pre– or postprocessing is not
required. The network is trained with sequences encoding the
observed trajectory of vf . During runtime, the visual feature
predictor recognizes an observed trajectory of vf , predicts
that trajectory, and delivers the predicted values as output.

3) Pattern Selector: This module delivers a sub–pattern
of the given input pattern, representing either the visual
pattern, or the proprioceptive pattern. The formal description
of the pattern selector is patternSelector(s,m) with the
input pattern sT =

[
vT pT

]
and the modality selector m.

If m = v, the pattern selector returns the visual pattern v. If
m = p, it returns the proprioceptive pattern p.



C. Stages of Processing

In the training stage, the memory of the self–motion
predictor and the memory of the visual feature predictor
are formed from a small amount of samples (data flow
represented by the purple arrows in fig. 1). In the execution
stage, the system relies on these memories to generate the
robot behaviour (data flow represented by the black, blue,
and green arrows in fig. 1).

1) Training of the Self–Motion Predictor: We trained the
context–dependent self–motion predictor with a minimum
amount of sequences encoding the previously described basic
actions. The minimum amount of sequences depends on the
DOFs of the robot limb our system should control. For each
DOF, two sequences exist, one per direction of DOF. We
tested our system on the head of the NAO robot which has
two DOFs (yaw and pitch), therefore we trained four se-
quences and one additional sequence when the head does not
move (idle sequence). During the training of the self–motion
predictor, only that part or limb of the robot is allowed to
move which our system controls, in this case the head. We
put an object of interest (green cup) in front of the robot’s
head. During training, the object of interest is in a fixed
position (not moving), because the self–motion predictor
needs a spatio–temporal representation of the effects of self–
motion only. Here, this effect is represented by gradual shifts
of the object position in the robot’s field of view during
head motion. Note that two possible methods exist for the
training of the self–motion predictor. One training method
is to acquire the training data by moving the robot limb
manually (similar to kinesthetic teaching). The other training
method is to let the robot move its limb by itself, performing
an exploration of DOFs. We first recorded the so–called idle
sequence where no robot motion exists. Then we recorded
the remaining four sequences by moving the robot head
manually. For each of these remaining sequences, only one
DOF of the head moves at a time, while the object is in fixed
position. At the beginning of the motion, the object position
is in the middle of the robot’s field of view. While the head is
moving, the object position in the robot’s field of view shifts
gradually to either right, left, up, or down, depending on the
selected head DOF and its direction of motion. The training
of the five basic sequences is depicted in fig. 3. Each of
these sequences for the self–motion predictor should contain
at least four samples (determined empirically).
The CTRNN of the self–motion predictor had four in-
put/output neurons (two neurons encoding vf and two
neurons encoding p) and ten context neurons. Although a
small number of neurons already suffices to learn these short
sequences, the CTRNN [6] is necessary when our model will
be scaled up in near future. Thus, the CTRNN [6] can be
regarded as a component for a more scalable architecture.

2) Training of the Visual Feature Predictor: We trained
the CTRNN of the visual feature predictor with 46 sequences
of vf (a rough estimate determined empirically), each se-
quence contained about 30 to 60 samples. These training
sequences consisted of various horizontal, vertical, and idle

(a) Top view:
Idle (no motion)

(b) Top view:
Move left

(c) Top view:
Move right

(d) Side view: Move
down

(e) Side view: Move up

Fig. 3. The five basic motion sequences used for training the self–motion
predictor. During training phase, the object of interest (cup, light green) is
always in fixed position. The head of the NAO robot is depicted, facing the
object of interest. For each sequence, the sampling of the sensory–motor
data starts in the home position (fig. 3(a)) and stops in the end position
(fig. 3(a)–3(e)). The first sequence is the so–called idle sequence where the
robot head is in home position (HP) and not moving (fig. 3(a)). The second
sequence is the turn left motion: From the HP, the robot slowly moves its
head to left until it reaches the end position shown in fig. 3(b). The third
sequence is the turn right motion: From the HP, the robot slowly moves its
head to right (end position in fig. 3(c)). The fourth sequence is the move
down motion: From the HP, the robot slowly moves its head down (end
position in fig. 3(d)). The fifth sequence is the move up motion: From the
HP, the robot slowly moves its head up (end position in fig. 3(e)). The
taught sequences 3(a), 3(b), 3(c), 3(d), 3(e) are internally represented by
the self–organized initial context states c

(init)
0 , c(init)

1 , c(init)
2 , c(init)

3 ,
c
(init)
4 , respectively.

motions of the object of interest (here, a cup) in the field
of view of the robot. The object of interest was always
visible for the robot during the training, and the head was
in resting state. The CTRNN of the visual feature predictor
had two input/output neurons and ten context neurons. Note
that training of the visual feature predictor with less samples
(e.g. less than ten sequences with each a couple of samples)
makes it less capable to predict visual features well enough,
but this will not affect the robot behaviour if the features are
observable.

3) Execution: In each computation cycle of the execution
stage, our action selection system works with two main steps,
also visualized by the two different colours for the data
flow in fig. 2. In the first step, the action selection system
determines the optimal context index copt. The optimal
context index is an internal representation of a simple basic
action leading to a desired perceptual state. The system
determines the optimal context index by evaluating a value
function V (c) for each possible context index c. The goal is
to find the optimal context copt leading to the smallest value
of V , see eq. (2).

min V (c) = min ‖vg + as ·∆vs(c,M1) + af · vf‖ (2)

The visual feature of interest vf is either the observed,
or the predicted one. If as = −1 and af = −1 (be-



haviour alteration parameters), the value function can also
be interpreted as an error function describing the predicted
deviation of the current visual state (feature of interest vf )
from the visual goal state (vg). The pattern ∆vs(c,M1)
describes the predicted change of state of the feature of
interest vf due to the selected self–motion. The self–motion
is characterized by the selected action c and the prediction
length M1. The prediction length M1 determines how far
ahead in time the self–motion predictor should predict a
sequence. Besides the behaviour alteration parameters as and
af , the predicted deviation mainly depends on the selected
action c and on the length M1 of the prediction of self–
motion. In fig. 2, the box Evaluate symbolizes the calculation
of the value function V (c) for each recalled sequence c.
Once the action selection system computes all V (c) values,
it selects the smallest value Vmin = V (copt) and determines
the corresponding optimal context copt. In the second step,
the system calculates a new joint position vector pout by
using the optimal context index determined in the first step.
It calculates the proprioceptive difference ∆p (depending
on the prediction length M2) between the new predicted
proprioceptive sample p and the reference position pref (the
patterns vref and pref were initially obtained from the first
sample s0 of the trained idle sequence). This difference is
added to the latest proprioceptive sample pin. The new joint
positions are sent immediately to the robot limb which our
system controls. Algorithm 1 describes the computation cycle
of our system during the execution stage.

Algorithm 1 The Computation Cycle of our Predictive
Action Selector (fig. 2).
Input: Current joint positions pin, either the observed or
the predicted visual feature of interest vf , visual goal state
vg

Output: New joint positions pout

Parameters: Behaviour alterations as and af , prediction
length M1, prediction length M2

Get the number Nc of context indexes from the self–
motion predictor;
Initialize empty array V with size Nc;
for (c = 0; c < Nc; c + +) do
s ← selfMotionPredictor(c); // Using prediction
length M1 //
vs ← patternSelector(s, v);
∆v← vs − vref ;
V (c)← ‖vg + as ·∆vs + af · vf‖;

end for
Find the smallest value V (copt) and its corresponding
index copt;
s ← selfMotionPredictor(copt); // Using prediction
length M2 //
p← patternSelector(s, p);
∆p← p− pref ;
pout ← pin + ∆p;
return pout;

The behaviour alteration parameters allow an integrative
system design [17], because they ensure that each subsystem
delivering feature vectors can be integrated into the action
selection process by setting the strength and direction of a
particular input. This is important when our system will be
scaled up in near future, in order to realize arm control along
with head control.

III. EXPERIMENTS

A. Setup

Robot experiments served as an assessment of our pre-
dictor modules. In the training stage, the memory of the
self–motion predictor and the memory of the visual feature
predictor were formed (see sections II-C.1 and II-C.2). In
all experiments, the joint positions were sampled with a
rate of 7 Hz. The goal pattern vg was constant and set
to vg =

[
0.5 0.5

]T
(corresponding to the middle of the

robot’s field of view). The extracted object position (visual
feature of interest) is represented by vf =

[
x y

]T
in the

normalized image plane of the camera. The measured visual
error is given by ev = ‖vg − v

(obs)
f ‖, where v

(obs)
f denotes

the observed object position in the normalized image plane
of the camera. The prediction parameters were M1 = 4
(controlling ∆vs) and M2 = 3 (controlling ∆p), their values
were determined empirically.

B. Results

During the execution stage, we observed the emergence
of two different sorts of meaningful robot behaviour: object
tracking and object evasion. The switching between these
different types of behaviour is accomplished by changing
the sign of the alteration parameter as.

1) Tracking an Object of Interest: When the behaviour
alteration parameters are set to as = −1 and af = −1, a
tracking behaviour of the visual feature of interest emerges.
We tested this behaviour by moving an object in front of the
robot. The object was moved fast from one location to the
other. The robot tracked the object and performed a saccade
to it. Tracking results are shown in fig. 4.

2) Composing Complex Robot Motion from Simple Mo-
tions: The generated robot motion of the previous tracking
scenario (fig. 4) is regarded more closely to show how
complex robot motion sequences emerge by switching con-
tinuously between the taught simple sequences. In each
computation cycle, our system computes a new joint position.
The contexts c(init)0 , c(init)1 , c(init)2 , c(init)3 , c(init)4 were self–
organized after learning the simple action sequences and
represent these taught actions idle, left, right, down, up,
respectively, along with their corresponding effect on the
perceived visual feature vf (section II-C.1). These results
are shown in fig. 5.

3) Prediction of Visual Features: The timesteps from 50
to 150 of the previous interaction (fig. 4) are regarded more
closely and the effect of the prediction parameter P on the
prediction of the visual feature is analysed, see fig. 6.



(a) Visual error

(b) Visual feature: x–position

(c) Visual feature: y–position

(d) Proprioception pout

Fig. 4. Tracking an object of interest. Each large peak in the visual error
(fig. 4(a)) indicates a big and fast movement of the object in the robot’s
field of view. The robot reacts with a saccade in order to compensate for
the visual error. The generated robot motion (fig. 4(d)) is composed out of
simple and few motion primitives (represented by context indexes, fig. 5(b)).
After a saccade, the remaining visual error is smaller than 4 - 5 %.

4) Dealing with Temporal Losses of Visual Features: In
the previous interaction scenario, the visual feature was al-
ways observable. However, there are situations with temporal
loss of the visual feature of interest due to occlusion or
fast motions. In those situations, traditional tracking systems
either stop moving entirely, or perform a search of the entire
visual field of view and it takes time for them until they have
re–found the object. In contrast to those traditional systems,
our system works with the predicted object position v

(pred)
f

in cases of object loss. Relying on the predicted feature helps
the robot to move more smoothly, since it does not need to

(a) Proprioception pout

(b) Selected action per timestep, represented by the selected optimal
context index i per timestep: The context indexes are numbered from
0 to 4, representing idle motion, left, right, down, and up motion,
respectively.

Fig. 5. Action selection for composing complex robot motion: The motion
sequence of the robot head (fig. 4(d)) seems complex. It was never taught
to the robot before. Our system generates that sequences by continuously
selecting and switching between the taught simple sequences (basic actions),
represented by the context indexes 0 to 4. For example, consider the
timesteps 128 to 169. One can observe the selected action copt = 3 (down)
between timesteps 128 and 136. It leads to an increase of the pitch angle
(in case of the NAO robot, the head tilts downwards when the angle of
the head pitch DOF is increased). A slight correction of the yaw angle at
timesteps 137 and 138 is achieved by selecting the action copt = 2 (right).
The constant yaw and pitch angle from timestep 139 to 162 result from
selecting the action copt = 0 (idle), i.e. ∆p = 0. The decrease in the pitch
angle from timestep 163 to 169 results from selecting the action copt = 4
(up). See section II-C.1 for further description of the trained basic actions.

Fig. 6. Analysis of the feature prediction (the x–position is taken as
example, same principle applies to the y–position, or any other predicted
feature): The timesteps 50 to 150 of the previous interaction (fig. 4) are
regarded more closely. In addition to the observed vf (blue), a set of
predicted vf is plotted. The prediction is dependent on the parameter P
of the visual feature predictor. The bigger the value for P , the more far
ahead in time the prediction is. Thus, for small values of P (e.g. 1, 2, or 3),
the predicted sequence is close to the observed one. For large values of P
(e.g. 15), the predicted sequence shows deviations from the observed one,
especially for rapid changes of the observed feature position.

re–search the visual field. Figure 7 shows an example of the
temporal loss of features.

5) Switching between Different Types of Behaviour: When
the alteration parameters are set to as = +1 and af = −1,
evasive movements emerge, i.e. when the object is in the



Fig. 7. Temporal loss of object: The object of interest (green cup) was
moved behind an other object (a piece of paper) in front of the robot.
Consider the x–position of the observed visual feature of interest v

(obs)
f

(same principle applies to the y–position). The loss of the observed visual
feature due to occlusion is represented by v

(obs)
f = [−1 − 1]T . In

such situations, the system relies on the predicted feature v
(pred)
f (magenta

graph). While the object of interest is occluded, the system anticipates its
position (v(pred)

f ) and generates the motor commands to follow it. Once
the object of interest gets visible (observable) again, the system relies on
v
(obs)
f .

robot’s field of view, the robot turns its head away from
it. The robot can switch from the tracking movements to
evasive movements and vice versa by simply touching its
head sensor, changing the sign of as. Thus, the selection of
tracking or evasive behaviour is done by changing only the
sign (direction) of the alteration parameter, but not its scalar
absolute value. A typical scenario is shown in fig. 8.

(a) Behaviour alteration parameter as

(b) Visual error

Fig. 8. Switching from tracking behaviour to evasive behaviour and vice
versa. At the beginning of the interaction, there is a certain amount of visual
error and as = −1. The robot compensates for this error by saccading
to the object. At timestep 34, parameter as = 1, changing the robot’s
behaviour from tracking to evasive movements. This is indicated by the
increasing visual error. At timestep 47, parameter as = −1, changing back
the robot’s behaviour from evasion mode to tracking mode. It again tries
to compensate for the large visual error by moving accordingly. Thus, the
visual error decreases.

IV. CONCLUSION
We proposed a predictive action selector which generates

meaningful robot behaviour from a minimum amount of
training data. Its operating principle is based on internal
prediction and evaluation of learned sequences. We tested
our system on a NAO humanoid robot. We showed how
complex robot motion sequences can be composed out of

very simple and few taught motion sequences. We showed
that different behaviour (tracking and evading an object) can
be accomplished by the same system, without the need for
behaviour–specific re–training. We showed how a search of
the visual space can be avoided in case of temporary feature
loss by using internal prediction of the visual features. In
near future, our proposed system will also control the robot
arms in addition to the head, in order to realize behaviour
involving hand–eye coordination.

REFERENCES

[1] D. Vernon, G. Metta, and G. Sandini, “A survey of artificial cognitive
systems: Implications for the autonomous development of mental capa-
bilities in computational agents,” IEEE Transactions on Evolutionary
Computation, vol. 11, no. 2, pp. 151–180, 2007.

[2] D. Vernon, “Enaction as a conceptual framework for developmental
cognitive robotics,” Paladyn Journal of Behavioral Robotics, vol. 1,
no. 2, pp. 89–98, 2010.

[3] D. George and J. Hawkins, “Towards a mathematical theory of cortical
micro-circuits,” PLoS Computational Biology, vol. 5, no. 10, pp.
e1 000 532, 1–26, 2009.

[4] J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur,
and E. Thelen, “Autonomous mental development by robots and
animals,” Science, vol. 291, no. 5504, pp. 599–600, 2001.

[5] K. Noda, K. Kawamoto, T. Hasuo, and K. Sabe, “A generative
model for developmental understanding of visuomotor experience,” in
IEEE International Conference on Development and Learning (ICDL),
vol. 2, 2011, pp. 1–7.

[6] Y. Yamashita and J. Tani, “Emergence of functional hierarchy in a
multiple timescale neural network model: a humanoid robot experi-
ment,” PLoS Computational Biology, vol. 4, no. 11, pp. e1 000 220,
1–18, 2008.

[7] K. Noda, H. Arie, Y. Suga, and T. Ogata, “Multimodal integration
learning of robot behavior using deep neural networks,” Robotics and
Autonomous Systems, vol. 62, no. 6, pp. 721–736, 2014.

[8] D. Vernon, G. Metta, and G. Sandini, “The icub cognitive architecture:
Interactive development in a humanoid robot,” in IEEE International
Conference on Development and Learning (ICDL), 2007, pp. 122–127.

[9] D. Vernon, C. v. Hofsten, and L. Fadiga, A roadmap for cognitive de-
velopment in humanoid robots, R. Dillmann, Y. Nakamura, S. Schaal,
and D. Vernon, Eds. Springer-Verlag Berlin Heidelberg, 2010, vol. 11.

[10] P. Gaussier, S. Moga, M. Quoy, and J.-P. Banquet, “From perception-
action loops to imitation processes: A bottom-up approach of learning
by imitation,” Applied Artificial Intelligence, vol. 12, no. 7-8, pp. 701–
727, 1998.

[11] L. Berthouze and Y. Kuniyoshi, “Emergence and categorization of co-
ordinated visual behavior through embodied interaction,” Autonomous
Robots, vol. 5, no. 3-4, pp. 369–379, 1998.

[12] T. Shibata, H. Tabata, S. Schaal, and M. Kawato, “A model of smooth
pursuit in primates based on learning the target dynamics,” Neural
Networks, vol. 18, no. 3, pp. 213–224, 2005.

[13] D. Blank, D. Kumar, L. Meeden, and J. B. Marshall, “Bringing up
robot: Fundamental mechanisms for creating a self-motivated, self-
organizing architecture,” Cybernetics and Systems: An International
Journal, vol. 36, no. 2, pp. 125–150, 2005.

[14] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual
attention for rapid scene analysis,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 20, no. 11, pp. 1254–1259,
1998.

[15] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Parallel distributed
processing: Explorations in the Microstructure of Cognition. Vol. 1:
Foundations, D. E. Rumelhart and J. L. McClelland, Eds. MIT Press,
Cambridge, 1986.

[16] ——, Cognitive Modeling, ch. Learning representations by back-
propagating errors, T. A. Polk and C. M. Seifert, Eds. MIT Press,
Cambridge, 2002.

[17] G. Cheng, A. Nagakubo, and Y. Kuniyoshi, “Continuous humanoid
interaction: An integrated perspective – gaining adaptivity, redundancy,
flexibility – in one,” Robotics and Autonomous Systems, vol. 37, no. 2,
pp. 161–183, 2001.


