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ABSTRACT

We propose a fast method for salient region detection which

aims at providing a computationally efficient method for on-

line image processing. It is scalable and can be adjusted

on the run to adapt to different computational requirements,

which makes it a perfect candidate for time crucial applica-

tions. In our approach, we apply a template sampling over the

image and compare these templates with each other by calcu-

lating a dissimilarity score. Templates with a low overall re-

sponse are therefore likely to be part of a salient region in the

image. This conceptually easy method is simple to implement

and still outperforms state-of-the-art salient region detection

systems (Our model’s AUC(ROC) Score 0.794 - AIM 0.772).

Index Terms— Salient region detection, Visual Atten-

tion, Computational Attention

1. INTRODUCTION

Salient region detection is a broadly investigated research

area, because it is concerns a wide field of scientific disci-

plines. Life sciences like psychology [1] or neuroscience

[2] are interested in analyzing and predicting why salient

regions are attractive to the human brain and how the neural

processing is involved in this decision [3]. Numerous com-

putational models have been proposed trying to model visual

attention and predicting which areas will be favoured over

others. Those saliency estimators can loosely be separated

into biologically based, computational, or a combination of

both which builds the majority of models [4]. Over the last

decades visual attention has vastly been applied in the field

of computer vision, because it can help in various prob-

lems like visual tracking[5], image segmentation[6] or object

recognition[7].

2. RELATED WORK

Many of the approaches to visual saliency are computational

expensive and complex (see comparison in [8]), making those

models less suitable in real-world scenarios. More recent
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Fig. 1: Model Overview.

systems, however, are more focused on compuational perfor-

mance, like [9] or Cheng et al.’s work in [8]. Latter com-

pare different models by their computation times for building

a saliency map and propose a fast model of their own based

on regional contrast. The most related model in regard to our

template sampling approach is Erdem and Erdem’s work in

[10]. They compare covariances of non-overlapping neigh-

boured image regions to compute the saliency map.

3. SAMPLED TEMPLATE COLLATION

Our model calculates the saliency map by sampling templates

randomly over the image. Each template is then compared

to the other templates by calculating a dissimilarity score.

Higher scores mean lower similarity, lower responses higher

similarity. Templates with a higher overall dissimilarity score

therefore originate from areas in the image which stick out



from the rest. We consider these areas salient and use the

templates’ dissimilarity score to generate our saliency maps.

See figure 1 for an overview of the model.

3.1. Sampling

First we sample templates from random positions on the im-

age. For the evaluation we used templates of three differ-

ent sizes (8,16,24). The different sizes account for the dif-

ferent dimensions a salient region might have. Using only

one single template size however, doesn’t affect the AUC(area

under curve) of the receiver operator characteristics (ROC)

score. We experienced only about 0.02% difference in the

AUC score when using only one size. The number of sampled

templates can be adjusted according to computational or ac-

curacy requirements. Less templates can be calculated faster

and are useful for generating single fixation points, more tem-

plates give a finer resolution and a more accurate and com-

plete saliency map.

3.2. Collation Calculation

After the sampling process, each template T is compared with

each other template of the same size. This leads to a complex-

ity of O( 1
2
n(n+1)), as long as the used dissimilarity score is

a commutative function, so that f(T1, T2) = f(T2, T1). The
complexity can be reduced by introducing a distance thresh-

old (see 3.2.2). Different characteristics can be used to calcu-

late the difference between the templates. For our evaluation

we used color space, distance and entropy. The model can

easily be extended to take different and more complex mea-

sures into account, like for example the correlation coefficient

or a higher weight for templates which might contain faces

using simple template matching.

3.2.1. Color Space

Although, different color spaces were tested, CIE Lab pro-

vided us with the most consistent results. We use a L2 norm

to calculate the difference of lightness L and color-opponent

dimensions a and b between two templates T1 and T2.
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3.2.2. Distance Weight

We include a distance weight to the dissimilarity score to

account for local salient areas. Templates which are closer

together have a higher weight than templates which are e.g.

on the opposite side of the image. We compute the distance

weight w by

w = 1−
d(T1, T2)

max(d)
(4)

with d(T1, T2) being the pixel distance between template T1

and T2 and max(d) being the maximum possible distance,

which is the diagonal of the image. We set the distance weight

to zero, if d(T1, T2) is above a certain threshold (in our case

half the maximum distance), this greatly improves compu-

tational performance while having no impact on the overall

AUC(ROC) score. The complexity can now be approximated

by assuming that we calculate the k nearest neighbours of

each template which has complexityO(n log n) and the num-

ber of dissimilarity score calculations becomes n ∗ k. The

complexities combined are

O(n log n) +O(n ∗ k) = O(n log n) +O(n)

= O(max(n log n, n)).
(5)

The inequation n log n > n is true for all n > 2. As the
number of sampled templates will always be larger than 2 for
a working system, we can say that the overall complexity is

O(n log n).

3.2.3. Entropy

There exist numerous visual attention models which are built

on information theoretic foundation to find the most salient

areas [11, 12, 13]. We integrate the self-information of a tem-

plate in our model by using:

H(X) = −
M
∑

m=1

pm log pm (6)

with pm being the relative frequency of brightness value

m within the template. Using entropy we gain slightly better

results (see table 2), as areas which would be salient because

of their lightness and color uniqueness - e.g. a small area of

a blue sky in the top of an image are not salient to a human

subject.

We finally calculate the overall dissimilarity score s by

calculating:

s = l(a+ b) ∗ w ∗H(T1)H(T2) (7)

4. EVALUATION

The model was evaluated using two open accessible saliency

benchmark databases and we measured the computational

performance for online processing.



Table 1: Results of Judd’s et al. saliency benchmark dataset.

Model ROC Similarity

GBVS[15] 0.801 0.472

Our Model /w CB 0.794 0.477

Multi-Resolution AIM[16] 0.772 0.471

Center Based 0.783 0.451

Our Model /wo CB 0.687 0.357

Torralba[17] 0.684 0.343

Itti & Koch[18] 0.562 0.284

Chance 0.503 0.327

4.1. Saliency Benchmarks

We tested our approach on Judd’s et al. [14] saliency bench-

mark database1. The database contains 300 natural images

with eye tracking data from 39 observers. Including a cen-

ter bias our model performs significantly better than without

a center bias (see table 1). The best results were achieved

calculating the saliency map with 0.6 ∗ centermap + 0.4 ∗
our model. The center map is a symmetric Gaussian streched

to fit the apect ratio of the image. The factors were optimized

using a different training set - see [14] for more details on

center map and the optimization. Without a center bias our

model still outperforms standard models like Itti & Koch (see

table 1). See figure 2 for a comparison of images and saliency

maps for several models.

We also tested our model with the ImgSal database2 [19],

which contains 235 color images, divided into six different

categories ordered by their salient region size. We achieve an

overall AUC(ROC) score of about 82% using a center bias,

see table 2.

Our model outperforms state-of-the-art models likeMulti-

Resolution AIM [16] or long standing Itti et. al’s [18]. There

are models which outperform our system, like Judd et al. [14],

which train a model using human fixation data, which inco-

porates the human’s strong attention focus towards faces, per-

sons or animals. We are not explicitely aiming at an adap-

tion of the human fixation, but rather for generating a fixation

point or region for salient areas. Our model however can be

easily extended to bias templates with e.g. faces over tem-

plates with no faces using simple template matching.

4.2. Map Stability

We evaluated the effects of the sampling process on the sta-

bility of the saliency map and the salient point position. The

more templates are sampled, the less the deviation between

the maps and the higher the stability of a generated saliency

map. We measure the deviation by calculating the L1-norm of

two generated saliency maps of the same input image. The de-

viation of the most salient point is measured by the euclidean

1http://people.csail.mit.edu/tjudd/SaliencyBenchmark/
2http://www.cim.mcgill.ca/ lijian/database.htm

Table 2: Results of ImgSal saliency benchmark dataset with

and without template entropy (TE); without center bias (CB)

and without smoothing (Sm.).

AUC Score (ROC)

Category /w TE /wo TE /wo CB /wo Sm.

Large 0.819 0.818 0.793 0.707

Intermediate 0.813 0.799 0.780 0.670

Small 0.817 0.790 0.772 0.669

Cluttered 0.808 0.808 0.780 0.677

Repeating Distr. 0.848 0.844 0.816 0.715

Large & Small 0.826 0.809 0.798 0.706

Overall 0.818 0.805 0.785 0.690

distance between the two points in the image. Both values

are normalized, so that 100% deviation means the maximal

possible deviation. From about 100 sampled templates, the

deviation in the saliency map and the most salient points are

constant with about 0.2 ∗ 10−3% and 4% deviation, respec-

tively.

4.3. Computational Performance

Our model’s main aspect is the sampling process which has

the major benefit, that it can be adjusted online. To estimate

the computational speed of our performance we adaptively

change the number of sampled templates to match a standard

camera image frequency of about 30 fps at 640x480 pixels.

If the processing is slower than 30 fps, less templates are

sampled; if faster, more are sampled. This can of course be

adjusted to personal requirements. We tested this setting on

an intel i7 with 3.4 GHz and were able to sample about 130

templates using one core and about 440 templates using four

cores for every camera frame captured at 30 Hz. For a video

of the running system please have a look at our webpage3. It

shows that salient areas are already detected using only the

130 templates.

We perform about as good as GBVS in regard to the ROC

Score, but have a much lower complexity of O(n log n) com-

pared to O(n4K) (see [15] for details).

5. CONCLUSIONS

We presented a computationally efficient real-time capable

method for salient region detection using sampled template

collation. It is well suited for online processing, which is use-

ful for generating a salient fixation point for preprocessing

image data, but can also be applied to create whole saliency

maps. We already showed good results in the saliency bench-

marks but we believe that these results can still be improved

by extending the templates dissimilarity measures.

3http://tinyurl.com/icip2014ICS



(a) Original Image (b) Human Fixation Map (c) Our Model (d) Modulated (e) GBVS[15] (f) Itti[18]

Fig. 2: Sample images and saliency maps for several models. The saliency maps shown of our model were created with-

out center bias and were postprocessed using Gaussian Blur. The other images are taken from the MIT saliency benchmark

database[14]
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