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Abstract— Automatically segmenting and recognizing human
activities from observations typically requires a very complex
and sophisticated perception algorithm. Such systems would be
unlikely implemented on-line into a physical system, such as a
robot, due to the pre-processing step(s) that those vision systems
usually demand. In this work, we present and demonstrate that
with an appropriate semantic representation of the activity, and
without such complex perception systems, it is sufficient to infer
human activities from videos. First, we will present a method to
extract the semantic rules based on three simple hand motions,
i.e. move, not move and tool use. Additionally, the information
of the object properties either ObjectActedOn or ObjectInHand
are used. Such properties encapsulate the information of the
current context. The above data is used to train a decision tree
to obtain the semantic rules employed by a reasoning engine.
This means, we extract lower-level information from videos and
we reason about the intended human behaviors (high-level).
The advantage of the abstract representation is that it allows
to obtain more generic models out of human behaviors, even
when the information is obtained from different scenarios. The
results show that our system correctly segments and recognizes
human behaviors with an accuracy of 85%. Another important
aspect of our system is its scalability and adaptability toward
new activities, which can be learned on-demand. Our system
has been fully implemented on a humanoid robot, the iCub to
experimentally validate the performance and the robustness of
our system during on-line execution of the robot.

I. INTRODUCTION

Humans have amazing capabilities to learn new skills by
extracting and fusing new information from the environment.
We can integrate and adapt the new information into our
previously learned model using our cognitive capabilities, for
example: perception, reasoning, prediction, learning, plan-
ning, etc. In other words, we are able to adapt toward
new situations because we re-used the learned models to
infer unknown activities instead of just reproducing the
observed motions. Thus, to the extend that we understand,
what we are doing. Namely, we extract the semantics of the
observed behavior. Then, the ideal scenario is to transfer such
capabilities to robots so that they can better learn from us.

Automatically segmenting and recognizing an activity
from videos is a challenging task, mainly because the ex-
ecution of a similar activity could be performed in many
different manners depending on the person or the place.
For example, if I prepare a pancake in my kitchen, then I
may follow a predefined pattern [1]. On the other hand, if I
prepare a pancake in my office’s kitchen under time pressure,

1 Faculty of Electrical Engineering, Institute for Cognitive Systems, Tech-
nical University of Munich, Germany karinne.ramirez@tum.de
and gordon@tum.de

2 Institute for Artificial Intelligence, University of Bremen, Germany
beetz@cs.uni-bremen.de

Fig. 1. This figure shows the organization of our system. Here we show
an example of the analysis of real data for the Put activity over time.

then I will follow another pattern even though I execute the
same task. These patterns are sometimes defined by different
parameters, e.g. different speeds of execution, the height of
the pancake mix to pour over the stove, how much force do I
need to eject in order to open a bottle, after how much time
do I need to flip the dough, etc. as investigated in [2].

In order to understand the observed activity, first we need
to filter out the information from the input sensors to identify
which factors make one activity different from the others.
For example, Fig. 1 shows that we may follow different
patterns to achieve similar activities. Then, what are the
factors that allows us to identify the same activity, even when
different patterns are observed? How can we generalize those
behaviours under different situations?

One typically analyzed signal is the velocity profile to
recognize human motions between move and not move [3].
However, when dealing with complex tasks such as: reach,
take, put, pour, etc., then that information would no longer
be sufficient because, as shown in Fig. 1, the velocity signal
of the same activity could have different length, amplitude,
shape, etc. over time. Another signal that could be analyzed
is the distance between the hand and the object(s), or the
orientation of the objects, etc. That means that by observing
we can retrieve a lot of information. Then, some questions
arise, whether will the correct human activity recognition
depends on having the right input information? Or does it
depend on having a better way of interpreting the incoming
data? In this work, we will demonstrate that the information
such as hand velocity and distance alone are not enough for
segmenting and recognizing human activities.



In this paper, we propose a framework that combines the
information from different signals via semantic reasoning
to enable robots to segment and recognize human activities
by understanding what it sees from videos (see Fig. 1).
The contributions of this paper are: a) on-line segmentition
of human motions from videos, b) automatic recognition
of human activities using semantic representations, c) our
system is adaptable and intuitive to new situations due to
the re-usability of the learnt rules, d) the system is scalable
because it can learn and identify new activities on-demand,
e) our system preserves its accuracy and robustness within
the “on-line” control loop of a robot. This paper is organized
as follows: Section II describes the related work.Afterward,
Section III introduces the methodology and results for the
object recognition. Then, Section IV presents the core of
our framework which is the semantic rules methodology and
its results. Finally, Section V shows the robustness of our
framework when implemented into the iCub.

II. RELATED WORK

Recognizing human activities is currently an active re-
search area in Computer Vision, where the local image rep-
resentation is considered as a promising direction compared
to the global representations because it can generalize to
different scenarios by taking into account spatio-temporal
correlation between patches [4]. However, the action analysis
is focused on the movement or/and change of posture, such
as walking, running, swinging, etc. [5]. Nevertheless, those
approaches are used only to recognize the activities but not
to segment them, i.e. the segmentation is done manually.

Another direction for action recognition has been proposed
through the recognition of the object(s), human motions and
the effects on the objects. Regarding the object recognition
approach, the work presented by [6], shows a model that
can generalize from object instances to their classes by using
abstract reasoning. However, activies such as doing laundry
and getting dressed are misclassified because they have the
same class of object. Then, [7] introduced the concept of
Object-Action Complexes (OACs), to transform objects by
actions, i.e. how object A (cup-full) changes to object B
(cup-empty) through the execution of Action C (drinking).
Recently has been used to segment and recognize an action
from a library of OACs to enable a robot to reproduce the
demonstrated activity [8] using a robust perception system
which is executed off-line.Analogous to OACs and based
on the affordance principle, [9] presented theSemantic Event
Chain, which determines the interactions between the hand
and the objects, expressed in a rule-character form, which
also depends on a precise vision system.

Regarding the problem of recognition and understanding
of human activities a few related works can be found such
as the noticeable work presented by [10], which maps the
continuous real world events into symbolic concepts by using
an active attention control system. Another work, presented
by Fern et. al. [11], introduced a logic sub-language learning
specific-to-general event definitions by using manual corre-
spondence information. Similarly, the one presented in [12],

introduced a system that can understand actions based on
their consequences, e.g. split or merge. Nevertheless, the
core of this technique lies in a robust active tracking and
segmentation method to detect the object changes, i.e. the
consequences of the action. Later, they include a library
of plans composed of primitive action descriptions [13].
However, this system is not implemented in a robot and
it will fail if the plan is not known a priori. Another
work based on plan recognition presented by [14] state that
human behavior follows stereotypical patterns that could
be expressed as preconditions and effects. However, these
constraints must be specified in advance. Then, [15] shows a
(partially) symbolic representation of manipulation strategies
to generate robot plans based on pre- and post- conditions.
Nevertheless, these frameworks are not able to either reason
about the intentions of the users or extract the meaning of
the actions.

In the robotics community, there has been a tendency to
use the trajectory level, i.e. the Cartesian and Joint spaces,
to segment and imitate human motions. For example, [3],
proposed an approach to encode observed trajectories based
on Hidden Markov Models (HMMs) mimesis model in
order to segment and generate motions through imitation.
[16] presented a Hierarchical action model constructed from
observed human tracking data based on the linear-chain
Conditional Random Fields (CRF) which uses pose-related
features. Another technique used to classify human motions
is based on the shape of the trajectory, e.g. using similar-
ity measurements like Dynamic Time Warping [17]. These
later techniques realized on the generation of trajectories
depending on the location of the objects, then if a different
environment is analyzed then the trajectories will be altered
completely, thus, new models have to be acquired.

The architecture of our framework is inspired by [18]
and contains three main modules: 1) extract the relevant
aspects of the task; 2) process the perceived information
to infer the goal of the demonstrator; and 3) transfer the
goal to the robot to achieve the desired goal (see Fig. 1).
In this paper, we demonstrate that our system performs very
accurately (around 85%) even when new activities are tested;
thus demonstrating that the inferred representations are not
depended on the performed task. Furthermore, the robot is
able to recognize new activities and learn the correct rule(s)
on-line, which means that we do not need to provide it with
all possible activities, which would not be possible.

III. EXTRACTION OF VISUAL FEATURES

First, we segment the continuous video streams into mean-
ingful classes, which is a challenging task as expressed in [4].
Then, we propose to split the complexity of the recognition
in two parts. The first one will gather (perceive) informa-
tion from the objects using a simple color-based technique.
Whereas the second part will handle the difficult problem
of interpreting the perceived information into meaningful
classes using our inference module (see Section IV).

The highest level of abstraction to be segmented from
videos is the hand motions, into mainly three categories:



• move: The hand is moving, i.e. ẋ > ε
• not move: The hand stop its motion, i.e. ẋ→ 0
• tool use: Complex motion, the hand has a tool and it

is acted on a second object, i.e. oh(t) = knife and
oa(t) = bread

Notice, that those kind of motions can be recognized in
different scenarios, but they can not define an activity by
themselves. Therefore, we need to add the object informa-
tion, i.e. the motions together with the object properties have
more meaning than separate entities. The properties that can
be recognized from the videos are:
• ObjectActedOn (oa): The hand is moving towards an

object, i.e. d(xh, xo) =
√∑n

i=1(xhi − xoi)
2 → 0

• ObjectInHand (oh): The object is in the hand, i.e. oh is
currently manipulated, i.e. d(xh, xo) ≈ 0.

The output of this module determines the current state
of the system (s), which is defined as the triplet s =
{m, oa, oh}. The definition and some examples of the mo-
tions and object properties are further explained in [19].

A. Color-based recognition methodology

To recognize the hand motions and object properties, we
implemented a well-known and simple color-based algo-
rithm. We use the OpenCV library to obtain the color features
(fv) in order to get the hand position (xh). Then, we smooth
the signal with a low-pass filter:

ys(i) =
1

2N + 1
(y(i+N) + y(i+N − 1)+ ...+ y(i−N)) (1)

where ys(i) is the smoothed value for the ith data point, N
is the number of neighboring data points on either side of
ys(i), and 2N + 1 is the size of the moving window, which
must be an odd number.

Then, we used a velocity threshold (see Fig. 3) to seg-
ment between move or not move and to recognize the tool
use motion we need to identify the object properties, i.e.
ObjectActedOn or ObjectInHand, explained in Algorithm 1

It is important to notice that the recognized object (o) can
only satisfy one of the above object properties, i.e. oa(t) = o
or oh(t) = o but not both at the same time t. Nevertheless,
it is possible to have more than one object on the scene, for
instance o1 = pancake and o2 = spatula where the object
properties could be oa(t) = o1 and oh(t) = o2, then the
hand motion is segmented as tool use.

B. Results of Color-based Recognition

We tested this methodology in two data sets: pancake
and sandwich making. The first one contains recordings of
one human making a pancake several times. The second
data set contains a more complex activity, which is making
a sandwich performed by several subjects under two time
conditions, i.e. normal and fast.

In this work we use from the sandwich scenario the task
of “cutting the bread” and from the pancake scenario the
task of “pouring the pancake mix”, as shown in the attached
video. This means that each of these tasks were segmented

Algorithm 1 Object properties recognition algorithm.
Require: smooth x[i], smooth y[i]: position of the hand and objects detected.

threshold distMax : maximum distance between the hand and object.
threshold distMin : minimum distance between the hand and object.

1: hand pos = [smooth x[1], smooth y[1]] {The hand is always the first
object detected}

2: for i = 2 to N step 1 do
3: object pos = [smooth x[i], smooth y[i]]
4: distance[i− 1] = getDistance(hand pos, object pos) {obtain the

distance between the hand and the identified objects}
5: smooth dist[i − 1] = smoothDistance(distance[i − 1]) {Apply

a low pass filter to smooth the data}
6: end for
7: for j = 1 to N − 1 step 1 do
8: {Find the properties of the objects on the scene}
9: if (smooth dist[j]) < threshold distMax) then

10: oa = j
11: if (smooth dist[j]) < threshold distMin then
12: oh = j
13: if (smooth dist[j + 1] < threshold distMax) then
14: oa = j + 1
15: motion = TOOL USE {Tool use motion is defined if it has

both properties oa and oh}
16: else
17: oa = NONE
18: end if
19: else
20: oh = NONE
21: end if
22: else
23: oa = NONE and oh = NONE
24: end if
25: end for
26: return motion, oa, oh

into three motions: move, not move or tool use, as well as
the object properties into ObjectActedOn and ObjectInHand.

Quantitatively, the results indicate that the human motions
are correctly classified for the pancake making with 91%
accuracy and for the sandwich making around 86.24% with
respect to the ground-truth1. Regarding the recognition of
the object properties, the accuracy for the pancake making
is around 96.22% and for the sandwich scenario is 89.24%.
The above segmentation is performed for on-line videos.

IV. SEMANTIC REASONING

Semantics is defined as the study of the meaning. There-
fore, in this paper, the semantics of human behavior refers
to find a meaningful relationship between human motions
and object properties in order to understand the activity
performed by the human. In other words, the semantics of
human behavior is used to interpret visual input to under-
stand human activities. This has the advantage to transfer the
extracted meaning into new scenarios.

This module represents the core and most important part
of our work. Because this module will interpret the visual
data obtained from the perception module and process that
information to infer the human intentions. This means that it
receives as input information the hand motion segmentation
(m) and the object properties (oa or oh). In other words, it
will be responsible of identifying and extracting the meaning
of human motions by generating semantic rules that define
and explain these human motions, i.e. it will infer the high-
level human activities, such as: reach, take, pour, cut, etc.

1The ground-truth data is obtained by manually segmenting the videos
into hand motions, object properties and human activities.



A. Semantic rules methodology

A decision tree classifier is used to learn the mapping
between the low-level motions and the high-level activities
through its object properties. In order to learn the decision
tree we require a set of training samples S. Each sample
describes a specific state of the system s ∈ S. The set S is
represented by its attributes A and its target training concept
value c(s) for s. In other words, the training example S
is an ordered pair of the form 〈s, c(s)〉 called state-value
pairs. In this work the training samples S are described by
the following attributes:

1) Hand motion (Move, Not move, Tool use)
2) ObjectActedOn (Something, None)
3) ObjectInHand (Something, None)

and the target concept value:
• Class c : ActivityRecognition : S → {Reach, Take,

Release, Put Something Somewhere, Idle, Granular2.}
Some examples of the state-value pair (〈s, c(s)〉) are:

〈{ Move , Something , None }, Reach 〉
〈{Not Move, None, Something}, Take 〉

In order to learn the target function c from a set of training
samples S, we use the C4.5 algorithm [20] to compute the
decision tree. with the information gain measure:

Gain(S,A) = Entropy(S)−
∑

v∈V alues(A)

|Sv |
S

Entropy(Sv) (2)

where V alues(A) is the set of all possible values of the
attribute A, and Sv = s ∈ S|A(s) = v.

B. Semantic reasoning results

The Weka data mining software is used to generate the
decision tree and the sandwich-making scenario was chosen
as the training data set, because it has a high complexity
due to the several sub-activities that it contains. During the
training stage, we split the learning procedure in two steps.
The first step will generate a tree that can determine the
human basic activities in a general manner. The second one
will extend the tree to recognize the granular activities based
on the current context.

For the first step, we use the information of the ground-
truth data of a subject during the normal condition while
making a sandwich. We split the data as follows: 60% was
used for training and 40% for testing. Then, we obtain
the tree Tsandwich shown in the top part of Fig. 2 where
the following human basic activities can be inferred: idle,
take, release, reach, put something somewhere and granular.
This learning process will capture the general information
between the objects, motions and activities. It is important
to notice that the first attribute that has to be correctly
segmented is the hand motion, e.g. if the hand is not moving
we could predict that the activity is either take or idle, which
will be defined by the object property ObjectInHand. This

2Granular activities define classes such as flip, pour, cut, etc. These
activities are difficult to generalize because they depend on the context.

Fig. 2. This figure shows on the top part (magenta box) the tree obtained
from the sandwich making scenario (Tsandwich). On the bottom (purple
box) is shown the extension of the tree to infer granular activities.

means that from the obtained tree we can determine six
hypotheses (Hsandwich) which represent the semantic rules
that describes the basic human activities. For example:

if Hand(Move)&ObjectInHand(None)& (3)
ObjectActedOn(Something)→ Activity(Reach)

if Hand(Tool use)→ Activity(GranularActivity) (4)

From the sandwich making data set, activities such as: cut,
sprinkle, spread, etc. are expected. However, those activities
are not considered as basic human activities, rather as
granular activities. Such complex activities are replaced in
the input data set (s or n) with the label of GranularActivity
and they are inferred with the rule shown in eq. (4). Then, to
correctly infer those complex activities more attributes have
to be considered, e.g. we can take into account the type of
object being manipulated, for example for cut and spread,
they both use the knife as a tool but they represent different
activities, defined by the object they are acted on (oa),
either the bread or the mayonnaise, respectively. Therefore,
a second stage is needed in order to extend our tree T and
be able to infer those granular activities.

For the second step, we use as input the activities clustered
as GranularActivity from the previous step and we learn a
new tree, which represents the extension of our previous tree.
The final tree can be observed in Fig. 2, where the top part
(magenta box) represents the general and most abstract level
of rules to determine different basic activities and the bottom
part (purple box) presents the extension of the tree, given
the current information of the objects. This means that, in
order to identify which granular activity is being executed,
we need to know which objects are being identified. Notice,
that the taxonomy of the tree is obtained which will allow
us to add new rules when a new activity is detected.

Then, the next step is to test the accuracy of the obtained
tree Tsandwich. In order to do that, we use the remain-
ing 40% of the sandwich data set to test the accuracy
of the obtained rules. In other words, given the input at-
tributes nsandwich test = {Move, Something, None} we
will determine c(nsandwich test). Then, the state-value pairs
from the test data set nsandwich test will be of the form
〈nsandwich test(t), ?〉, where t represents the time (frames).



Afterward, the target value is determined for each state
of the system c(nsandwich test(t)). Finally, the obtained
results show that c(nsandwich test(t)) was correctly classified
92.57% of the instances using as input information manually
labeled data, i.e., during the off-line recognition. A similar
tree is obtained if the training set is the pancake-making [21].

1) Action recognition using Color-base: The next step
is to use as input the data obtained from the automatic
segmentation of human motions and object properties, in
order to test the on-line recognition (see Section III-B). First,
we applied the learned rules to a known scenario using the
same task as the trained one, i.e. sandwich making. In order
to test the semantic rules we use a different subject than
the one used for the training and two conditions were tested:
normal and fast. The results show that the accuracy of recog-
nition is about 81.74% (Normal condition= 79.18% and Fast
condition=83.43%). The errors in the activity recognition
are because of the misclassified objects from the perception
module, specially for the sandwich scenario, when the object
knife disappears between the hand and the bread (see Fig. 3).
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Fig. 3. Depicts the output signals of the hand and object tracker of the
sandwich scenario when the subjects is in a speed condition. The vertical
lines indicate the automatic segmentation and recognition of the human
activities for the right hand.

Then, we tested the semantic rules into a new scenario,
in which the activity pour has not yet been learned. Never-
theless, the system is able to identify that a new activity has
been detected and asks the user to name the unknown activity
as shown in the attached video. Then, the new activity has
been learned and the system can correctly infer it. The results
indicate that the accuracy of recognition is around 88.27%.

The important contribution of these results is the definition
of rules that make the inference of human activities in
different scenarios possible, with an overall accuracy of 85%,
considering known and unknown activities. The above is
possible even with a very simple hand and object recognition
to segment the motions and object properties automatically.

V. EXPERIMENTAL INTEGRATION AND VALIDATION

Finally, we validate our on-line segmentation and recog-
nition in a robotic system, in this case the iCub. The iCub is

a 53 degrees of freedom humanoid robot [22] and its strong
humanoid design provides an appropriate testing platform.

One important factor to consider is the transition from off-
line learning to on-line learning. The perception and semantic
modules can easily be implemented for off-line systems as we
have shown in [19]. However, for on-line systems we have to
consider the possibility of learning new activities on-demand
as we proposed in the previous sections. Additionally, the
perception and semantic systems need to be as fast and
accurate as possible. In other words, the communication
between the perception and inference modules have to be
instantaneous because these modules has to be implemented
inside the control loop of the robot (see Fig. 4).

Fig. 4. Integration of the system into the control block of the iCub. This
process includes information from external views obtained from videos (a)
and environment information obtain from the iCub’s cameras (b).

The red highlighted square of Fig. 4 depicts the inclusion
of the perception and semantic modules into the robot. The
flow of the control loop of the robot is as follows: a) First,
the video streams the desired activity and the low-level
motions and object properties are automatically segmented.
b) Immediately the semantic system will retrieve the inferred
activity. c) Finally, the inferred activity will trigger the plan
and the motion primitives that the robot needs to execute
in order to achieve a similar goal as the one observed.
Noticeable, all the modules receive inputs and produce the
desired outcome on-line. In other words, first the robot
watches the video, then it understand the activity and finally
it produce the corresponding motion, as shown in Fig. 5.

Regarding the skill execution by the robot, the system
works as follows: from the inferred activity, there is a module
that will select which execution plan will be performed.
Then, the plan will indicate the motion primitives that the
robot needs to execute in order to achieve a similar goal as
the human. For example, if the inferred activity is reaching,
then a position-based visual servoing module is executed.
This module will extract 2D visual (image) features from a
stereo vision system with AR markers. We use the ArUco
library which is based on OpenCV to detect markers. 3D
position and rotation with respect to the camera frame (iCub
right eye) are obtained from the image features using the
camera intrinsic parameters. Once, the marker is detected,
the next primitive is to move the right arm of the robot
toward the desired Cartesian position. This is achieved using
the inverse kinematics. Beside pick and place activities such



Fig. 5. First the robot observes the motions of the human from a video,
then it infers or learns the human activity and finally the iCub execute a
similar activity.

as reach, take, put something somewhere and release, our
system can handle more specific activities such as pouring,
which are shown in the attached video.

The modular architecture of our framework allows to
replace any module to acquire more complex behaviors,
e.g. the vision module can be replaced for a more advance
detection system or the control approach can be substitute
by a more robust and adaptive control law, e.g [23].

VI. CONCLUSIONS

Correctly identifying human activities is a challenging task
in the robotics community, and its solution is very important
because it is the first step toward a more natural human-
robot interaction. In this paper we present a methodology to
extract the meaning of human activities by combining the
information of the hand motion and two object properties.
Our proposed framework has a classification accuracy for
on-line segmentation and recognition of human activities of
85% even when a very simple perception system is used for
real, challenging and complex task.

Additionally, our framework is possible to be integrated
and executed on-line within the control-loop of a robotic
system. Further advantages of our system are its scalability,
adaptability and intuitiveness which allow a more natural
communication with artificial system such as robots.
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