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Abstract—Usage control is a generalization of access control
that also addresses how data is handled after it is released.
Usage control requirements are specified in policies. We present
tool support for the following analysis problems. Is a policy
consistent, i.e., satisfiable? Is an abstractly specified usage control
mechanism capable of enforcing a given policy? Can we configure
such a mechanism by analyzing respective policies? In the context
of propagation, where upon re-distribution of data duties may
only be increased and rights decreased, can we check if a policy
is only strengthened in this sense? — Our solution uses a model
checker as theorem prover and is based on a translation of
usage control policies into a Linear Time Logic (LTL) dialect.
We provide evidence that even complex policies can be analyzed
efficiently.

I. INTRODUCTION

Usage control generalizes access control by controlling not
only who may access which data, but also how the data may or
may not be used or distributed afterwards. We concentrate on
(but are not restricted to) usage control in a distributed setting,
where processes act in the roles of data providers and data
consumers. A data provider can give sensitive data to a data
consumer based on conditions both on the past (provisions,
including access control requirements, which we ignore in
this paper) and the future. The latter requirements come as
obligations that restrict the future usage of data (“use for
statistical purposes only” or “do not distribute”), or require
certain actions to be taken in the future (“delete after 30
days” or “notify me whenever the document is accessed”).
Obligations consist of both (restricted) rights on the future
usage of data and of duties to be performed by the consumer.

This field gives rise to many fascinating research and im-
plementation problems, including the following. Usage control
policies must be specified. What are the requirements, and
what are appropriate languages [10]? Secondly, when writing
policies, one would like to make sure that they are consistent.
How do we check if a (large) policy contains contradictions?
Thirdly, once consistent policies have been specified, an utterly
difficult problem is that of enforcing them. How can we
implement mechanisms that, under specific assumptions, can
guarantee that a policy is adhered to, or at least report the
violation of a policy? Given generic mechanisms, can we
configure them on the grounds of a policy? Fourthly, in
distributed settings, where data items can be re-distributed, a
problem is that of rights (and duties) propagation [19] in that
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a data provider likely wants to make sure that policies only
change in a specific way upon re-distribution of data. Can we
check that policies are at most strengthened?

a) Problem and Solution: We focus on analysis problems
for usage control policies, including the configuration of mech-
anisms and the determination of whether or not policies are
strengthened upon re-distribution. We show how to translate
usage control policies [10], abstract mechanism descriptions
[18], and propagation requirements [19] into a dialect of LTL
[16]. By using the model checker NuSMV (nusmv.irst.itc.it)
as a theorem prover, we can answer all of the above analysis
questions, and provide a solution to the problem of configuring
generic mechanisms. On the grounds of several experiments,
we show that even complex policies can be handled. We
pinpoint benefits and shortcomings of our approach.

b) Contributions: To the best of our knowledge, we are
the first to implement an automatic analysis tool for general
usage control policies, thus leveraging the more conceptual
work in this area to the more practical implementation level.

c) Overview: In §II, we give some background. We intro-
duce usage control and recapitulate earlier work on a formal
system model for usage control, an obligation specification
language (OSL), and its extension to ordered events and
parameters for re-distribution purposes. In §III, we present
several analysis problems, and show how to translate OSL,
mechanism descriptions, and delegation requirements into a
variant of LTL. We present experiments that we conducted
with the model checker NuSMV. We present related work in
§IV and conclude in §V.

We use the Z specification language [21] in this paper. This
choice is arbitrary, yet convenient. We introduce the necessary
constituents of this language as the need arises. Note that we
specify algebraic properties only and do not specify transition
systems, in contrast to how Z is often used. Furthermore, we
assume some familiarity with future and past LTL.

II. A FORMAL GRASP AT USAGE CONTROL

Figure 1 sketches the general setup for usage-controlled
systems. Here, boxes are technical components and arrows
represent the main data flows. Usage control requirements
are negotiated between data providers and consumers, and
enforced using consumer-side mechanisms. A data consumer
requests data. Using negotiators, the consumer and provider
negotiate the usage request. Upon successful negotiation, data
is transferred from the provider to the consumer and the usage
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Fig. 1. Usage-Controlled Systems: Overview

control requirements are activated. From this point onward,
the respective mechanisms on the consumer’s side will (or at
least should) enforce the requirements. This is, in general, not
fully possible for all requirements: taking photographs of a
monitor will always be an option. We assume the consumer
possesses a secure data store and that, prior to usage, all data
is routed through these mechanisms whenever it leaves the
store. Actual mechanisms usually implement the secure data
store by cryptographic means. Examples of such mechanisms
are given by current DRM solutions; other mechanisms simply
send out information that a provider-side monitor can use to
assess policy adherence [17]. Mechanisms transform desired
usages into actual usages, which includes blocking an attempt.

Mechanisms are general-purpose devices: they are config-
ured to protect specific resources. We model this by instan-
tiating variables (§II-D). Given an abstract description of a
parameterized mechanism, one additional question is which
values have to be assigned to which variables to protect a
given resource.

Distributed usage control means that data can be re-
distributed. In §II-C, we show how the originating provider
can make sure that policies are only strengthened in a well-
defined way, by reducing rights and increasing duties. We will
assume that whenever data is re-distributed, it is checked that
policies are at most strengthened.

A. Semantic Model

Our model [10] is based on classes of parameterized events.
The event classes include usage and other, with the latter
including signaling and activation events. Parameters repre-
sent attributes. For example, a usage event must indicate on
which data item it is performed, and a signaling event—one
that is sent from the consumer to the outside—must name
the recipient of the message. An event therefore consists
of the event name and parameters, represented as a partial
function ( 7→) from names to values. We will describe event
parameters as (name, value) pairs. An example is the event
(play , {(object , o)}), where play is the name of the event and
the parameter object has the value o.

The definition of events in the Z language is shown below.
EventName, ParamName, and ParamValue define basic types
for event names, parameter names, and parameter values,
respectively. In Z, such definitions are made by listing the
types in square brackets. All such basic types are disjoint.
EBNF-style definitions are also possible.

[EventName,ParamName,ParamValue]

EventClass ::= usage | other; getclass : EventName→ EventClass
Params : ParamName 7→ ParamValue; Event == EventName× Params

Φ+ ::= true | false | Efst〈〈Event〉〉 | Eall〈〈Event〉〉 | Tfst〈〈Event〉〉 | Tall〈〈Event〉〉 |
not〈〈Φ+〉〉 | and〈〈Φ+ × Φ+〉〉 | or〈〈Φ+ × Φ+〉〉 | implies〈〈Φ+ × Φ+〉〉 | until〈〈Φ+ × Φ+〉〉 |
always〈〈Φ+〉〉 | after〈〈N× Φ+〉〉 | within〈〈N× Φ+〉〉 | during〈〈N× Φ+〉〉 |
repmax〈〈N× Φ+〉〉 | replim〈〈N× N× N× Φ+〉〉 | repuntil〈〈N× Φ+ × Φ+〉〉
permitonlyevname〈〈P EventName× Params〉〉 |
permitonlyparam〈〈P ParamValue× ParamName× EventName× Params〉〉

Events are ordered with respect to a refinement relation
refinesEv. Event e2 refines event e1 iff e2 has the same
event name as e1 and all parameters of e1 have the same
value in e2. e2 can also have additional parameters specified
which explains the ⊆ relation in the definition below. (In
such axiomatic definitions, the defined mathematical object is
named and typed above the line and its properties are given
below the line.) x.i identifies the i-th component of a tuple x.
↔ introduces a binary relation.

refinesEv : Event↔ Event
∀ e1, e2 : Event • e2 refinesEv e1 ⇔ e1.1 = e2.1 ∧ e1.2 ⊆ e2.2

The rationale is that when specifying usage control require-
ments, we do not want to specify all parameters. For instance,
if the event (play, {(object, o)}) is prohibited, then the event
(play, {(object, o), (device, d)}) should also be prohibited. nil
of type EventName is reserved and denotes no event.

d) Indexed Events and Traces: To define obligations,
we need a language for usage control (§II-B). Its seman-
tics is defined over traces: mappings from abstract points
in time—represented by the natural numbers—to possibly
empty sets of events. We cater for usage events that exe-
cute over a time interval, e.g., watching a movie. For ex-
ample, if a time step lasts 1 minute and a user plays a
movie for 3 minutes, there will be 3 consecutive events
indexed with start and ongoing, respectively: ((play , {(object ,
movie)}), start); ((play , {(object ,movie)}), ongoing); then
((play , {(object ,movie)}), ongoing). The data type IndEvent
defines such indexed events. We also need to express that
usage is attempted by a user (see above). This is important
for the discussion of mechanisms because not every attempted
usage is actually executed in the end. This concept is covered
by desired indexed events (DesiredIndEvent in the definition
below). In Z, records can be defined by stating the name of a
constructor and its arguments in angular brackets. If there is
more than one argument, the Cartesian product is used.

Index ::= start | ongoing; IndEvent == Event × Index
DesiredIndEvent ::= TRY〈〈IndEvent〉〉
Trace : N→ P(IndEvent ∪ DesiredIndEvent)

B. The Obligation Specification Language

Φ+ (+ for future) defines the building blocks for describing
obligations in OSL [10]. It is a temporal logic with explicit
operators for cardinality and permissions. We will later extend
OSL with ordered events and intervals which are necessary to
express re-distribution requirements.

We distinguish between the start of an action (syntacti-
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cally: Efst; semantically: an indexed event with index start)
and lasting actions (syntactically: Eall; semantically: indexed
events with any index). Tfst and Tall refer to the respective
desired or attempted actions. When specifying events in
obligations, by virtue of the refinement relation, there is an
implicit universal quantification over unmentioned parameters.
not, and, or, implies have the usual semantics. We will use the
infix operators ¬,∧,∨,⇒ as shorthand. Our until operator
is the weak-until operator from LTL. Using after(n), which
refers to the time after n time steps, we can express concepts
like during (something must constantly hold during a specified
time interval) and within (something must hold at least once
during a specified time interval).

Cardinality operators restrict the number of occurrences or
the duration of an action. The replim operator specifies lower
and upper bounds of time steps within a fixed time interval in
which a given formula holds. The repuntil operator does the
same, but independent of any time interval. Instead, it limits
the maximal number of times a formula holds until another
formula holds (e.g., the occurrence of some event). With the
help of repuntil, we can also define repmax, which defines the
maximal number of times a formula may hold in the indefinite
future. These cardinality operators are also used to express
limits on the accumulated usage time, e.g., by using Eall(e) as
an argument for limiting the accumulated time of usage e. For
instance, replim(20 , 0 , 5 ,Eall((play , {(obj ,movieA)})))
specifies that movieA may be played for at most five
time units during the next twenty time units. Similarly,
¬replim(20 , 0 , 2 ,Efst((play , {(obj ,movieB)})))⇒
after(25 ,Efst((notify , {(rcv , subA)}))) specifies that if
movieB is started more than twice during the next 20 time
units, then subject subA will be notified after 25 time units.

OSL supports both the must and the may modalities. The
former is the “standard” semantics of linear time logics, and
the latter is supported by two designated operators: these
operators allow one to specify that out of a given set of usage
events, only selected usage events are allowed. The operator
permitonlyevname defines the names of the usage events that
are exclusively allowed with a set of given parameters. For
example, the expression permitonlyevname({play, print},
{(object, oid)}) states that the only usages permitted on
the object oid are play and print. It does not say anything
about non-usage events or events with different parameters
(e.g., if a usage is applied to a different data object).
Similarly, permitonlyparam only allows certain values
for a given parameter of an event. It prohibits all other
values for this parameter. For example, the expression
permitonlyparam({s1, s2}, recipient, send, {(object, doc)})
specifies that out of all send events with doc as the “object”
parameter, only those with the “recipient” parameter being
s1 or s2 are allowed. In other words, doc may only be sent
to s1 or s2. The first argument of permitonlyparam is the set
of allowed parameter values, the second is the name of the
parameter whose values should be restricted, and the third
and fourth arguments define an underspecified event.

The semantics of Φ+ is formally defined by the binary

|=e : IndEvent↔ Φ+

∀ ie : IndEvent; ϕ : Φ+ • ie |=e ϕ⇔ ∃ e : Event •
ie.1 refinesEv e ∧ ((ϕ = Efst(e) ∧ ie.2 = start) ∨ ϕ = Eall(e))

|=f : (Trace× N)↔ Φ+

∀ s : Trace; t : N; ϕ : Φ+ • (s, t) |=f ϕ⇔
ϕ = true ∨ ϕ = Efst((nil,∅)) ∨ ϕ = Eall((nil,∅))

∨ ∃ e : Event \ {(nil,∅)}; ie : IndEvent •
(ϕ = Efst(e) ∨ ϕ = Eall(e)) ∧ ie ∈ s(t) ∧ ie |=e ϕ

∨ ∃ψ : Φ+ • ϕ = not(ψ) ∧ ¬ ((s, t) |=f ψ)

∨ ∃ψ, χ : Φ+ • ϕ = or(ψ, χ) ∧ ((s, t) |=f ψ ∨ (s, t) |=f χ)

∨ ∃ψ, χ : Φ+ • ϕ = until(ψ, χ)

∧ (∃ u : N | t < u •
(

(s, u) |=f χ ∧ (∀ v : N | t < v < u • (s, v) |=f ψ)
)

∨ (∀ v : N | t < v • (s, v) |=f ψ))

∨ ∃ i : N; ψ : Φ+ • ϕ = after(i, ψ) ∧ (s, t + i) |=f ψ

∨ ∃ i : N1; m, n : N; ψ : Φ+; e : Event •
ϕ = replim(i,m, n, ψ) ∧ (ψ = Efst(e) ∨ ψ = Eall(e)) ∧

m ≤ (

i∑
j=1

#{ie : IndEvent | ie ∈ s(t + j) ∧ ie |=e ψ} ≤ n

∨ ∃ n : N; ψ, χ : Φ+; e : Event • ϕ = repuntil(n, ψ, χ) ∧ (ψ = Efst(e) ∨ ψ = Eall(e))

∧
(

(∃ u : N1 • (s, t + u) |=f χ ∧ (∀ v : N1 | v < u • ¬((s, t + v) |=f χ))

∧ (

u∑
j=1

#{ie : IndEvent | ie ∈ s(t + j) ∧ ie |=e ψ}) ≤ n)

∨ (

∞∑
j=1

#{ie : IndEvent | ie ∈ s(t + j) ∧ ie |=e ψ}) ≤ n
)

∨ ∃ ex : P EventName; ps : Params • ϕ = permitonlyevname(ex, ps)
∧ ∀ en : EventName | getclass(en) = usage ∧ en /∈ ex •

(t, n) |=f always(not(Eall((en, ps))))
∨ ∃ ex : P ParamValue; pn : ParamName; en : EventName; ps : Params •

ϕ = permitonlyparam(ex, pn, en, ps) ∧ pn /∈ dom ps
∧ ∀ pv : ParamValue | pv /∈ ex •

(t, n) |=f always(not(Eall((en, ps ∪ {(pn, pv)}))))
∨ ϕ = false ∧ (s, t) |= not(true)

∨ ∃ψ, χ : Φ+ • ϕ = and(ψ, χ) ∧ (s, t) |=f not(or(not(ψ), not(χ)))

∨ ∃ψ, χ : Φ+ • ϕ = implies(ψ, χ) ∧ (s, t) |=f or(not(ψ), χ)

∨ ∃ψ : Φ+ • ϕ = always(ψ) ∧ (s, t) |=f until(ψ, false)

∨ ∃ i : N; ψ : Φ+ • ϕ = within(i, ψ) ∧ (s, t) |=f replim(i, 1, i, ψ)

∨ ∃ i : N; ψ : Φ+ • ϕ = during(i, ψ) ∧ (s, t) |=f replim(i, i, i, ψ)

∨ ∃ n : N; ψ : Φ+ • ϕ = repmax(n, ψ) ∧ (s, t) |=f repuntil(n, ψ, false)

relation |=f , reproduced verbatim from [10]. It makes use of
a shorthand, |=e, to relate single indexed events (rather than
traces) to formulae of the form Efst(·) or Eall(·).

C. Ordered Events and Parameters for Re-Distribution

Upon re-distribution of usage-controlled data items, a
provider may want to make sure that policies are at most
strengthened. In earlier work, we have provided a simple
role-based re-distribution model that allows an originating
data provider — the first in a distribution chain — to define
policies for different roles [19]. When data is re-distributed,
policies can only be strengthened in that rights are reduced and
duties increased. A role hierarchy governs who may strengthen
whose policies. This role hierarchy is hence not a hierarchy
of rights, in contrast to what is usually the case in role-based
access control.

Strengthening policies boils down to logically strengthen
the respective policies. As OSL essentially is an LTL dialect,
strengthening along the temporal and propositional “dimen-
sions” comes for free. However, if a policy states that a movie
may be played at a video quality of 75%, then one would
assume that this really means “at most 75%.” The provider
probably would not object to playing it at 60%. Allowing
to play it at a quality of “at most 50%” would hence be
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strengthening. To accomodate for this, we include ordered
parameters. Parameter values are ordered w.r.t. a user-defined
partial order, ≤p, in fact a lattice with > and ⊥ elements. In
policies, parameters are then given by left and right boundaries
of the desired interval. For rights and duties, left and right
boundaries can be identical. Otherwise, for duties, we require
the upper bound to be > which means that “pay USD 10” is
given as “pay USD (10,>).” This can be strengthened to, for
instance, “pay USD (15,>).” Conversely, rights must have ⊥
as left boundary so that “permission to play with 75% video
quality” is given as “permission to play with (⊥,75%) video
quality.” This can be strengthened to “permission to play with
(⊥,50%) quality.”

Similarly, events can be ordered. We hence introduce lattices
for event names, ≤e, so that in a movie application, preview
may be smaller (fewer rights) than both vdoedit (video) and
sndedit (sound) which, in turn, are both smaller (fewer rights)
than (full) edit. An example is given in the following (left:
ordered events, right: ordered parameters).

>e >p

edit

99tttttttttt
100

OO

vdoedit

99ssssssssss
sndedit

eeKKKKKKKKKK
pay

ZZ5555555555555555

send

ccFFFFFFFFFFFFFFFFFFFFF
sell

ggNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
backup

iiSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
99

OO

play

eeJJJJJJJJJJ

99tttttttttt
· · ·

OO

preview

OO

0

OO

⊥e

eeJJJJJJJJJJ

HH�����������������������

BB����������������������������

<<yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

99rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
⊥p

OO

Similar to ordered parameters, events are then specified
by pairs. Both boundaries can be identical. Otherwise, when
specifying rights, the left boundary must be ⊥, and duties must
have > as right boundaries. Formally, we introduce ordered
events with the data type OrdEvent that consists of a pair of
event names — with one boundary being either > or ⊥ if
both components are not identical — and a set of ordered
parameters. From now on, we will assume that OSL uses
ordered events.

OrdEventName == EventName× EventName
OrdParam == ParamName 7→ (ParamValue× ParamValue)

OrdEvent == OrdEventName× OrdParam

The intuitive semantics of an ordered event is that the re-
spective (desired or actual) indexed event is in-between the two
boundaries, and the same holds true for all actual parameters.
The formal semantics of ordered events is defined by simply
adjusting |=e: an IndexedEvent consists of one event name and
a (full) set of parameter names and parameter values. For each
ordered (desired) event that is given in an OSL formula, we
check if the actual event name and the actual parameters are in-
between the specified boundaries. In the formal definition, this
amounts to checking membership in a set or in a disjunction
over all possible parameter names. Similarly, the permission
operators have to be slightly adjusted.

More specifically, the semantics of events is adjusted by

re-defining |=e as follows.

|=e : IndEvent↔ Φ+

∀ ie : IndEvent; ϕ : Φ+ • ie |=e ϕ⇔
∃ en, enl, enu : EventName; ps : P Params; ops : OrdParam •

ie = (en, ps)
∧ ((ϕ = Efst(((enl, enu), ops)) ∧ ie.2 = start) ∨ ϕ = Eall(((enl, enu), ops)))
∧ enl ≤e en ∧ en ≤e enu

∧ ∀ pn : ParamName; pv, pvl, pvu : ParamValue |
(pn, pv) ∈ ps ∧ (pn, (pvl, pvu)) ∈ ops • pvl ≤p pv ∧ pv ≤p pvu

As a consequence, a few operators have to be redefined
as well. We show the formal semantics of the permission
operators only:

|=f : (Trace× N)↔ Φ+

∀ s : Trace; t : N; ϕ : Φ+ • (s, t) |=f ϕ⇔
. . .

∨ ∃ ex : P OrdEventName; ps : OrdParam •
ϕ =permitonlyevname (ex, ps) ∧
∀ en, enu, enl : EventName; pn : ParamName; pvl, pvu : ParamValue |
getclass(en) = usage ∧ (enl, enu) ∈ ex ∧ enu ≤e en ∨ en ≤ enl •
(s, t) |=f always (not (Eall((en, ps))))

∨ ∃ ex : P(ParamValue× ParamValue); oen : OrdEventName;

ps : OrdParam; pn : ParamName •
ϕ =permitonlyparam (ex, pn, oen, ps) ∧ pn 6∈ dom ps ∧
∀ pv, pvl, pvu : ParamValue | (pvl, pvu) ∈ ex ∧ pvu ≤p pv ∨ pv ≤p pvl) •
(s, t) |=f always (not (Eall((oen, ps ∪ (pn, (pv, pv))))))

. . .

D. Mechanisms
Mechanisms are the means by which usage control require-

ments can be enforced, either by making sure policies are
adhered to, or by spelling out penalties if policy violations
are detected. In earlier work [18], we have shown that usage
control mechanisms can be classified as executors, signalers,
modifiers, inhibitors, and delayers. Executors make sure some-
thing happens – for instance, send out a notification to data
owners if their data is accessed. Signalers are a special case
that report policy violations. Modifiers transform attempted
usages into different actual usages. For instance, if a song
cannot be played at a quality of 100%, a modifier may
transform it to 75% in order to satisfy a policy. Inhibitors make
sure specific attempted usages are not transformed into actual
usages. For instance, if a policy stipulates that a song must not
be played more than twice, an inhibitor will make sure nothing
happens if the third request for playing the song is received.
Finally, delayers re-try to perform a specific usage after some
time, hoping that certain conditions may have changed in the
meantime.

Formal specifications of mechanisms essentially consist of
a condition – under which the mechanism is supposed to do
something, and an effect – execution, modification, etc. One
part of the condition may be a triggering event (try to play a
song a third time), but this is not necessarily the case (e.g.,
to satisfy the policy that a data item must be deleted after
thirty days). The condition is a formula that relates to the past
and is hence specified in a past version of OSL called Φ−. In
contrast, the effect is a rather simple (future) OSL formula. For
brevity’s sake, we do not define Φ− here but refer to related
work [18].
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Mechanisms can be parameterized. For instance, a modifier
is likely to be deployed not just for one particular song
but rather for an entire class of songs. This is achieved by
introducing variables into OSL and Φ−.

As an example, we show how modifiers are defined [18].
Parameterized conditions are given as ϕp; the variables are
instantiated by means of a substitution σ, with function subst
actually performing the substitution. The effect of a modifier
is provided by the set modifyByp ; it replaces the triggering
event, uap , by an actual usage. m is the mode (beginning
or ongoing) of uap . With maxRefs computing all maximum
instantiations of an event w.r.t. relation refinesEv, the overall
specification of a modifier is provided by ψ. Given that
a maximum instantiation of uap is desired, and given that
actually executing ua would make the condition ϕp true, a
modifier makes sure that uap is not executed, but instead all
elements of the set modifyBy are attempted (not executed,
because there may be other applicable mechanisms). The
following shows a Z schema that, in the upper half, defines
the different elements of the defined data type Modifier and,
in the lower half, formulates constraints on these elements.

Modifier
modifyByp : P VarEvent; modifyBy : P Event
ϕp : Φ−v ; ϕ : Φ−; ψ : Φ±; uap : VarEvent; ua : Event; m : Mode
σ : Var 7→ (ParamValue ∪ EventName)

modifyBy = maps(λ x : VarEvent • subst(x, σ),modifyByp)

ϕ = substf (ϕp, σ) ∧ ua = subst(uap, σ) ∧ ua 6= (nil,∅) ∧ ua 6∈ modifyBy
ψ =

∧
e∈maxRefs(ua)

(
Tm(e) ∧± (Em(e)⇒± ϕ)

)
⇒± ¬Em(ua) ∧

∧
e∈modifyBy

Tall(e)

NoPayNoGood is a modifier: if a song, given by variable
V(1), is not paid for, then it is played only with reduced
quality. The configuration of this mechanism is modeled by
substituting variable V(1) with an actual object. This schema
makes use of the schema Modifier by instantiating specific
values in Modifier.

NoPayNoGood

Modifier[always−(¬−Efst((pay, {(obj,V(1))})))/ϕp,

(play, {(obj,V(1), (qual, full))})/uap, all/m,
{(play, {(obj,V(1)), (qual, red)})}/modifyByp]

III. TRANSLATION INTO LTL

A. OSL

e) Application: The first application that we consider
is that of consistency. A policy is consistent if it has a
model, i.e., if there is at least one execution of a system that
satisfies it. For instance, using the concrete OSL syntax, the
following two requirements are consistent when combined
by conjunction: PermitEvNames{listen,download} For

{(music=songX)} and Always{If{download(music=
songX)} Then {After[7] {delete(music =songX)}}}.
In contrast, the following two requirements are
inconsistent when conjoined into one policy:
PermitEvNames{listen} For {(subject=TestUser)}
and After[1]{download(subject=TestUser,music=

songX)}. We can check this with the model checker NuSMV
as described below.

f) Translation: For each event e, we introduce a bit
field ename of length four, where ename is the name of
the event, i.e. e.1. ename[0] corresponds to the indexed
event (TRY (e), start), ename[1] to (TRY (e), ongoing),
ename[2] to (e, start) and ename[3] to (e, ongoing).
In this paper, we do not consider simultaneous events with
the same name which is why we could restrict ourselves
to three bits (beginning/ongoing, attempted usage, actual us-
age), but we ignore this optimization here. Ignoring mul-
tiple simultaneous events of the same name allows us to
handle parameters as follows. For each parameter pname of
event e, we simply introduce a variable e_pname. A spec-
ification Tfst((download , {(object , songX )})) then translates
to download[0] & download_object=songX, and an
ongoing event specification Eall((play , {(object , songY )}))
translates to (play[2]|play[3]) & play_object=
songY. Intervals for event names and parameters are naturally
unfolded into disjunctions. For an example, see www.inf.ethz.
ch/personal/pretscha/ares09/exp.pdf. There is no need to trans-
late the refinesEv relation: a model checker will automatically
instantiate unspecified parameters to all possible values.

The translation of the temporal and propositional operators
is straightforward. We omit a definition of the respective
parts of function τOSL here for brevity’s sake. Permissions
also unfold into huge disjunctions. The cardinality operators
need some special attention though. Let us assume that LTL+

defines the future LTL part of the NuSMV input language.
The translation of repmax can be expanded via repuntil. For
repuntil, we need the release operator V from LTL (with ϕVψ
having the intuitive meaning that either ψ holds forever, or ψ
holds until some moment in time where both ϕ and ψ hold). To
simplify the definition, we use the macro Xϕ for after(1, ϕ),
even though X is not part of OSL. We also use X to denote
the next step operator in the NuSMV language; i.e., Xϕ is true
at time t if ϕ is true at time t + 1. repuntil(0, ϕ, ψ) is true if,
starting from the next time step, ϕ is false until and including
a moment in time where ψ becomes true and ϕ remains false,
or if ϕ is false forever. For n > 0, we distinguish three cases.
repuntil(n, ϕ, ψ) is true at a time t if

1) ψ is true at t + 1 — there is at most one true instance
of ϕ until ψ becomes true; or if

2) both ϕ and repuntil(n − 1, ϕ, ψ) are true at t + 1 —
ϕ becomes immediately true, and we can perform a
recursive evaluation; or if

3) ϕ is false at t+1 and remains false until (and including)
a time point t′ with the following properties. If ψ is
true at t′, then we are done. Otherwise, if ϕ is true at
t′ + 1, then we check if ψ is also true at t′ + 1. If that
is the case, we are done. If not, then we recurse with
repuntil(n− 1, ϕ, ψ).

The translation of the replim operator is a result of another
rather straightforward recursive characterization. The base case
is a direct translation of the formal semantics. For n > 0,
replim(i,m, n, ϕ) is true if ϕ ∧ replim(i − 1,m − 1, n − 1, ϕ)
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τOSL : Φ+ → LTL+

∀ϕ,ψ, ε : Φ+; i,m, n : N •
. . . ∧

∧ (ε = repmax(n, ϕ)⇒ τOSL(ε) = τOSL(repuntil(n, ϕ, false)))

∧ (ε = repuntil(0, ϕ, ψ)⇒ τOSL(ε) = X(τOSL(ψ) V τOSL(¬ϕ)))

∧ ((n > 0 ∧ ε = repuntil(n, ϕ, ψ))⇒ τOSL(ε) =

τOSL(after(1, ψ ∨ (ϕ ∧ repuntil(n− 1, ϕ, ψ)))

| X(τOSL((ψ ∨ (after(1, ϕ) ∧ (after(1, ψ) ∨ repuntil(n− 1, ϕ, ψ))))) V τOSL(¬ϕ)))

∧ ((ε = replim(i,m, n, ϕ) ∧ (i = 0 ∨ m > n ∨ (i > 0 ∧ i < m)))⇒ τOSL(ε) = 0)

∧ ((ε = replim(i, 0, 0, ϕ) ∧ i > 1)⇒ τOSL(ε) = τOSL(during(i,¬ϕ)))

∧ ((ε = replim(1, 0, n, ϕ))⇒ τOSL(ε) = 1)

∧ ((ε = replim(1, 1, n, ϕ) ∧ n ≥ 1)⇒ τOSL(ε) = XτOSL(ϕ))

∧ ((ε = replim(i,m, n, ϕ) ∧ (i > 1 ∧ i ≥ m ∧ n ≥ m ∧ m > 0))⇒ τOSL(ε) =

X((τOSL(ϕ ∧ replim(i− 1,m− 1, n− 1, ϕ))) | (!τOSL(ϕ ∧ replim(i− 1,m, n, ϕ)))))

∧ ((ε = replim(i, 0, n, ϕ) ∧ (i > 1 ∧ n > 0))⇒ τOSL(ε) =

X((τOSL(ϕ ∧ replim(i− 1, 0, n− 1, ϕ))) | (τOSL(¬ϕ ∧ replim(i− 1, 0, n, ϕ)))))

or ¬ϕ ∧ replim(i − 1,m, n, ϕ) is true in the next step. This
definition needs to take into account several special cases.

For space reasons, we provide only the part of τOSL that
defines the future cardinality operators:

Before we can check consistency of a Φ+ formula, we
need to define two sanity constraints. Firstly, there only is
an actual event if there is a corresponding desired event:
C1 = always(

∧
e∈Event Efst(e) ⇒ Tfst(e) ∧ Eall(e) ⇒ Tall(e)).

Secondly, every ongoing usage is eventually preceded by
a beginning usage. We have seen that a logic of the past
was used for the definition of mechanisms; we will also
use it now (the NuSMV input language includes past LTL,
and we omit the translation of Φ− to past LTL because
it is very similar to the future case). Yϕ is true at time
t > 0 iff ϕ is true at t − 1. The second sanity constraint
then reads as C2 = always(

∧
e∈Event(Eall(e) ∧ ¬Efst(e) ∧

¬Y(Eall(e) ∧ ¬Efst(e)) ⇒ YEfst(e))) which translates
into G((ename[3]&!Y ename[3])->Y ename[2]) where
we omit the symmetrical case for desired events.

Our model M simply consists of all the arrays and pa-
rameters that we used to model events. Initially, we set all
array values to zero, thus modeling that no event takes place.
Assuming that τOSL also handles past formulas, checking
consistency of a conjunction of policies Ψ then amounts to
model checking M |= τOSL((C1 ∧ C2) ⇒ ¬Ψ). If the model
checker returns false, then Ψ is consistent.

g) Example: We provide a simple translation
example, again using the concrete OSL syntax. The
policy PermitEvParams {songA} For {obj} In

{listen (subject=TestUser)} specifies that TestUser

may only listen to songA. Under the assumption
that the system is aware of four songs A,X,Y, and
Z, it translates into the following NuSMV formula:
G(((listen[2]|listen[3]) & listen_subject=

TestUser) -> (!( listen_obj=songX | listen_obj

=songY | listen_obj=songZ))) where we omit the
translation of the sanity constraints for brevity’s sake. An
example of the translated sanity constraints can be found at
www.inf.ethz.ch/personal/pretscha/ares09/exp.pdf.

B. Re-Distribution Requirements

h) Application: Upon re-distribution of data, data
providers may only strengthen the policies specified by the

originating data provider. Strengthening means reducing rights
and increasing duties. In a distributed usage control setting,
checking whether a policy was at most strengthened must be
done whenever data is distributed.

i) Translation: Distributed usage control policies consist
of one subpolicy for each role plus one default policy that
applies if no policy is specified for a role. Strengthening
policies with ordered events amounts to logically strength-
ening the respective formulas [19]. Checking if a policy was
strengthened then amounts to checking implication. Assuming
that we know which subpolicies π1, . . . , πn for a data item d
can be strengthened by the current data provider, we check
if the policies defined for redistribution of d, π′1, . . . , π

′
n, are

stronger than the original ones. Using the model M and the
constraints C1 and C2 defined above, we use the model checker
to decide M |= τOSL((C1 ∧ C2) ⇒

∧n
i=1(π′i ⇒ πi)). If the

model checker returns true, all subpolicies have at most been
strengthened.

j) Example: We consider the following two policies that
we state without the necessary declarations (www.inf.ethz.ch/
personal/pretscha/ares09/exp.pdf).

// stronger:
Obl[Peter]{Always{If{download(obj=(BOT,TOP))}

Then {Within[1]{play(obj=(trailer,trailer),dev=RCVR)}}}}
Obl[Marta]{RepUntil[2]{display(obj=movie),pay(recipient=

Bob,currency=CHF,amount=(10,TOP))}}
// weaker:
Obl[Peter]{Always{If{download(obj=(BOT,TOP))}

Then {Within[3]{play(obj=(trailer,trailer),dev=RCVR)}}}}
Obl[Marta]{RepUntil[3]{display(obj=movie),

pay(recipient=Bob,currency=CHF,amount=(5,TOP))}}

For Peter, the first policy is stronger because he has less time
to play the trailer—this is traditional temporal strengthening.
Marta’s second policy is weaker because (1) she can watch
the move three times rather than two times before paying and
(2) she needs to pay less.

C. Mechanisms

k) Application 1: We assume scenarios where a data
provider wants to transmit data to a consumer provided that
the consumer is capable of enforcing an applicable policy. If
the consumer sent a description of its enforcement capabilities
(along the lines of the classes of mechanisms described in
§II-D), then the provider could check if these mechanisms
were capable of enforcing the policy. This of course requires
the received capability description to be trustworthy.

l) Example: We consider the obligation
Until{Not{play(object=cd)},pay(amount=30)}
that specifies that cd must not be played until an amount of
30 was paid. We would like to know if the following inhibitor
– once more, in concrete syntax – is able to enforce it.

<mechanismDeclaration>
<inhibitor name="NoPayNoPlay">
<triggerEvent eventName="play">
<value attributeName="object" val="cd"/>

</triggerEvent>
<condition>Historically{Not{pay(amount=30)}}</condition>
</inhibitor>

</mechanismDeclaration>
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m) Application 2: As mentioned in §II-D, mechanisms
usually are configurable. Given a configurable mechanism in
the same scenario as described in application 1, the provider
may want to compute values for the variables in the mech-
anism description so that the mechanism enforces the policy
with these variable instantiations. The provider would then
send the data object together with a configuration object for
the consumer’s mechanisms.

n) Example: We consider the same obligation as above
but a parameterized mechanism now. A configuration of the
mechanism that enforces the obligation is amountA=30
together with an enumeration of all possible subjects, i.e.,
instantiations of variable subjectA. Using concrete syntax,
a respective mechanism description looks as follows (the full
description is provided at www.inf.ethz.ch/personal/pretscha/
ares09/exp.pdf).
<variableDeclaration>
<parameterVariable name="subjectA" attributeName="subject"/>
<parameterVariable name="amountA" attributeName="amount"/>

</variableDeclaration>
<mechanismDeclaration>
<inhibitor name="PayToDownload">
<triggerEvent lower="download" upper="download">
<variables lowerVar="subjectA" upperVar="subjectA"/>
<value attributeName="object" lower="songX" upper="songY"/>
</triggerEvent>
<condition>Historically{Not{pay(amount=amountA,

subject=subjectA)}} </condition>
</inhibitor>

</mechanismDeclaration>

o) Translation: As shown in §II-D, mechanisms essen-
tially consist of a condition that relates to the past (and that is
translated into past LTL), possibly a triggering attempted us-
age, and an effect (that is translated to future LTL). If Mech is
the set of all mechanisms in a system, or the set of mechanisms
that are available at the consumer’s side, respectively, let us
assume that m.ψ specifies the mechanism’s functionality for
each m ∈ Mech , as described in §II-D. Checking if a policy
ϕ is enforced by Mech then boils down to model checking
M |= τOSL

(
(
∧

m∈Mech always(m.ψ) ∧ C1 ∧ C2) ⇒ ϕ
)
.

As to the second application, provided that the cardinality
of the respective types is not too large, we can simply
enumerate all possible variable instantiations, including values
for ordered parameters, and then perform a check as described
for application 1. An example of the generated NuSMV code is
provided at www.inf.ethz.ch/personal/pretscha/ares09/exp.pdf.

D. Experiments

LTL model checking is PSPACE complete. We now study
if this theoretical result carries over to practical applications,
and if we can realistically expect to use a model checker
for the stated purposes. To this end, we conducted a series
of experiments. We do not state all the policies and mech-
anism descriptions here (available online at www.inf.ethz.ch/
personal/pretscha/fast08/exp.pdf).

Several dimensions influence the performance of our tool.
Since we use a model checker, the number of events, parame-
ters, and parameter values can be expected to have an influence
on the performance. The structure and complexity of policies
and mechanism descriptions will also matter (the model is

trivial, as explained in §III-A). When computing configura-
tions for mechanisms, the number of variables and potential
mechanisms also likely have an impact on performance.

The number of events and parameter values clearly matters.
However, for policies that do not include replim or repuntil
operators with too large parameters (where 12 is an upper
bound that is handled in less than 20 minutes on a typical
laptop; the reason is the release operator), several parameter
values with 100 values each can be handled within seconds.
The structure of policies tends to be rather simple, which
is why this parameter — again with the exception of the
replim and repuntil operators — does not turn out to be too
problematic in practice. In terms of checking the consistency
of policies, among other things, we analyzed 2 policies with
19 OSL formulas each. One policy is consistent (6 seconds);
the other policy is inconsistent which is detected in 4 seconds.

In terms of checking policy subsumption for the delegation
of rights and duties, we used the same two policies with 19
OSL formulas each. Subsumption for all of them could be
shown in 24 seconds, with certain formulas taking more time
than others. One formula contains the repuntil operator (pa-
rameter value 2); checking subsumption here takes 5 seconds.

Checking policy enforcement is similar to checking policy
subsumption. Depending on whether or not cardinality oper-
ators are used, the result is provided within fractions of a
second, or, for larger values (< 10), up to 15 minutes.

Finally, in terms of mechanism configuration, the perfor-
mance depends on the number of variables, m, and the
cardinalities of their types, ni.

∏m
i=1 3ni combinations must

be checked (recall that for ordered events and parameters,
either both boundaries are identical, or one bound is > or the
other ⊥). This determines the number of model checking runs.
When it is multiplied with the time needed for checking policy
enforcement (possibly divided by two because on average, we
can expect a solution to be found after one half of the runs),
this gives the overall time that is needed. In our experiments,
with up to 4 variables, results are obtained after as few as 10
seconds, but also after two hours.

We are aware that we need more policies and more mecha-
nism descriptions before generalizing our results. However,
our experiments very clearly suggest that model checking
usage control policies is efficiently and practically feasible
which, given the huge data types we used, surprised us.

IV. RELATED WORK

While the focus of this paper is on machine support for
analyzing usage control policies and their interplay with
mechanisms, usage control itself has been discussed by several
authors [15], [5], [4], [9]. UCON [15] adds the notion of
ongoing usage to access control. UCON assumes that the
data never leaves the data provider’s realm. This facilitates
control as there is no explicit and consequential distinction
between providers and consumers; one consequence is that
UCON policies are device-dependent. This is in contrast to
our distributed approach where data is given away. Work
in the privacy area mainly focuses on the specification of
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privacy policies [2], [22] but not on their enforcement. Formal
semantics have been provided for fragments of XrML [8] and
ODRL [20], [11]. Possibly closest to our system model is that
of Zhang et al. [24] who define an obligation language for
UCON [15] where ongoing access models can be specified.
Bandara’s PhD thesis [3] is close to our work in many respects.
In contrast to our approach, however, obligations in his work
are implemented by mechanisms only (i.e., as event-condition-
action triples), which means that no declarative “specification”
policy that we use to relate policies to mechanisms exists.

Much work exists in the area of digital rights management,
including rights expression languages [23], [1], interoperability
frameworks [6], and architectures [13], [14] for concrete DRM
mechanisms. Gunter et al. [7] present a semantics for DRM
licenses based on sequences of events but do not explicitly
discuss mechanisms. All the cited work has not been applied
to any decision or synthesis problems, and it does not cater
for the configuration of mechanisms and the notion of event
refinement. One notable example is the work of Irwin et
al. [12] who consider and analyze duties in the context
of accountability. Rights, mechanisms, consistency, and re-
distribution requirements are not considered. Finally, it is
worth mentioning that many formal analyses of access control
policies have been proposed. Since that work does not cater
to the future usage of data, which is the subject of this paper,
we do not provide the numerous related articles.

V. CONCLUSIONS

We have been concerned with the problem of automatically
checking consistency of usage control policies, enforceability
of policies by abstractly specified mechanisms, and sub-
sumption of policies in the context of re-distribution. By
enumerating possible solutions, we also want to configure
mechanisms with the help of these analyses. We have shown
how to formally analyze usage control policies with a model
checker by translating OSL policies and abstract mechanism
descriptions into a variant of LTL. As it turns out, rather
complex policies can be handled very efficiently, i.e., in a
matter of seconds. It is, however, easy to conceive policies
or mechanisms that cannot be analyzed, a result of complex
formulas that take into account cardinality operators or enor-
mous data type domains. In other words, it is likely (and was
expected) that our approach does not scale well; however, we
were surprised at the comparably high complexity of policies
that we could analyze within seconds. As far as we know, we
are the first to provide tool support for this kind of problems.

Having analysis as the subject of this paper does not mean
that other problems in the domain are less relevant. We did
not discuss the negotiation of usage control policies (where we
would argue that except for establishing trust relationships, it
eventually boils down to bilateral take-it-or-leave-it scenarios).
We also did not look into the remote enforcement of usage
control policies, which, given the heterogeneity of the involved
systems, of course is a far more challenging technical problem.
We are currently working on such technology.

In the domain of distributed usage control, many hard
problems remain, including policy management, the mentioned
“physical” and tamper-proof enforcement of policies and the
inherently difficult problem of relating events that are used
in policies (“delete data”) to the machine level (which file
to delete? wipe or just delete a FAT entry? delete all copies
as well?). In terms of analysis problems, the typically rather
simple structure of formulas could be exploited, and constraint
solvers could improve the performance when intervals are
treated.
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