
State-based Usage Control Enforcement with Data Flow Tracking
using System Call Interposition

Matúš Harvan
Information Security

ETH Zurich
Zurich, Switzerland

email: mharvan@inf.ethz.ch

Alexander Pretschner
Fraunhofer IESE and TU Kaiserslautern

Kaiserslautern, Germany
email: Alexander.Pretschner@iese.fraunhofer.de

Abstract

Usage control generalizes access control to what happens
to data in the future. We contribute to the enforcement
of usage control requirements at the level of system calls
by also taking into account data flow: Restrictions on the
dissemination of data, for instance, as stipulated by data
protection regulations, of course relate not to just one file
containing the data, but likely to all copies of that file as
well. In order to enforce the dissemination restrictions on all
copies of the sensitive data item, we introduce a data flow
model that tracks how the content of a file flows through
the system (files, network sockets, main memory). By using
this model, the existence of potential copies of the data is
reflected in the state of the data flow model. This allows
us to enforce the dissemination restrictions by relating to
the state rather than all sequences of events that possibly
yield copies. Generalizing this idea, we describe how usage
control policies can be expressed in a related state-based
manner. Finally, we present an implementation of the data
flow model and state-based policy enforcement as well as
first encouraging performance measurements.

1. Introduction

Usage control is an extension of access control [1], [2]. In
addition to specifying and enforcing who may access given
data, one also specifies and enforces restrictions on its usage,
such as what may, may not or has to be done with it.

In general, usage control requirements can be enforced at
different levels of granularity, including the levels of CPU,
operating system, runtime system, infrastructure applications
such as window managers or the X11 system, user applica-
tions and services, middleware such as enterprise service
buses, database systems, or at the process workflow level.
Enforcement can be performed both intrusively, i.e., by mod-
ifying and re-compiling the source code, and transparently,

This work was supported by a research collaboration with DOCOMO Euro-
Labs. The second author was also supported by the FhG internal programs
under grant no. Attract 692166 and by the EU project MASTER.

by adding technology to a running system. Both variants
give rise to monitors that observe actions and either react
in case of a policy violation, or prevent the policy violation
from happening. Different enforcement mechanisms not only
differ in which technology is deployed but also in terms of
the guarantees that can be given. For instance, if a usage
control mechanism can block deletion requests for a service,
this does not mean that a user cannot bypass this interface
of the system and directly delete the file.

Our work focuses on the level of system calls. System
calls are the interface between user space processes and
the operating system kernel. They allow processes to use
resources provided by the operating system, such as com-
munication with other processes, accessing files and using
the network and various devices. System call interposition
refers to monitoring system calls, possibly changing them
or their return values, and denying their execution.

Inititally, a policy with dissemination or deletion
requirements—or any other usage control requirements—
is attached to a data item that may be contained in a
file. Whenever copies of the data item are created, the
policy must be copied as well, attached to these fresh data
items, and also enforced for these copied items. Moreover,
deletion or dissemination can happen in many ways: a file
can be copied by using a dedicated “cp f1 f2” command,
its content can be read and written into another file by
executing “cat f1 > f2,” a process can read every single byte
of one file and write it to another file, etc. Expressing all
possible permutations and interleavings of events that lead to
data copies, and then expressing policies on all these event
sequences, seems like a rather ambitious goal. Our approach
hence is to rather reflect the existence of potential copies by
means of abstract states, and formulate usage control policies
in terms of the state rather than event sequences.

Problem statement. In this paper we address the ques-
tions of what usage control policies can be monitored with
system call interposition and how an enforcement framework
can be realized. To this end, we study two main problems.

1) A usage control policy typically restricts the usage of
data, independent of the representation of the data.

However, in a system we can only observe processes
and specific representations of the data. The moni-
toring of such a policy hence requires knowing into
which representations (files, main memory, etc.—in
the following referred to as containers) within the
system the data was propagated. In other words, which
copies do exist?

2) Usage control policies mention high level actions in-
cluding print, distribute, and delete. On the system call
level, only calls such as read, write and unlink
can be observed. These correspond to rather low level
actions. Therefore, a connection between the high level
actions and system calls has to be established.

Question 1 is addressed by means of a data flow model
associating processes and containers with data. Question 2
is addressed by providing the semantics of selected high-
level actions in terms of states in our data flow model.

Contributions. The contributions of our work are:
1) We provide a formal and operational data flow model

for system calls that allows us to overapproximate the
existence of copies of a data item.

2) We show how policies can be described in a state-
based manner by leveraging the data flow model.
In this way, we can express policies that cannot be
conveniently captured in an event-based way.

3) We show how high-level policies can be enforced in
terms of low-level system calls.

4) We provide proof-of-concept implementation and do
a preliminary performance analysis.

Limitations. We have focused on system calls available
in the OpenBSD 4.4 system and not requiring superuser priv-
ileges. Furthermore, our analysis of system calls excludes
implicit flows and covert channels. These are mechanisms
not explicitly designed for communication that may be
used to surreptitiously communicate information between
processes. For example file locking or modulation of shared
resources use can be used for covert communication [3]. Our
approach is also limited to safety properties.

Structure. The remainder of this paper is organized
as follows. The data flow model that we use to track the
existence of potential copies is described in Section 2.
Section 3 shows how usage control policies can be expressed
in terms of states of the data flow model, and subsequently
enforced on the level of system calls. An evaluation on the
basis of a proof-of-concept implementation is presented in
Section 4. Related work is discussed in Section 5 before the
paper concludes in Section 6.

2. Data Flow Model

In this section we describe the data flow model. As
discussed in Section 3, this will allow us to conveniently
express several usage control policies in a state-based man-
ner. For brevity’s sake, the described model leaves out

some aspects of system calls. The model is limited to
explicit information flow. Implicit flows are not covered.
The simplifications and their consequences are summarized
in Section 4.

In a nutshell, the data flow model is a transition system
that captures the flow of data through a system. State
transitions are initiated by system calls. A state captures
(1) which data is in which container, (2) if there are alias
relations between containers—which, among other things,
can happen if processes share memory—and (3) under which
names containers can currently be accessed. More precisely
and formally, the model is a tuple (D, C, F, Σ, I, P, A, R).

D is the set of data whose usage is restricted by a usage
policy. C is the set of all possible data containers in the
system. Containers are possible locations for data. They
include files, pipes, message queues and the network. We
do not distinguish between various network connections but
treat the whole network as a single container cnet . Principals,
P ⊂ C, are the set of all possible processes in the system.
When compared to other containers, principals can invoke
actions which other containers, e.g., files, cannot. Processes
are containers because the process state, CPU registers and
the memory image of the process are possible locations for
data. F is the set of container identifiers. It consists of the
disjoint sets of file names (Ffn ⊆ F), descriptors and sockets
(Fdsc ⊆ F), and a special nil value for inactive and closed
descriptors not pointing to any containers.

Σ = (C → 2D)× (C → 2C)× (P× F → C) is the set of
all possible states. States consist of three mappings:

1) A storage function s capturing which data is stored in
which container.

2) An alias function l capturing the fact that some
containers may implicitly get updated whenever other
containers do. Intuitively, if c2 ∈ l(c1) for c1, c2 ∈ C,
then whenever something is written into c1, it is
immediately propagated into c2. Aliases are needed
to correctly model memory-mapped file access and
shared memory. To treat chains of aliases we will also
use the reflexive transitive closure of the alias function,
denoted l∗.

3) A naming function f mapping identifiers to containers.
Since some identifiers are process-specific, e.g., file
descriptors, the naming function maps pairs of process
and container identifiers to containers.

I ∈ Σ is the initial state of the system. The storage function
of the initial state is given by the usage policy. That is,
we assume that the usage policy specifies which restrictions
apply to which data, and where that data is initially stored.
The alias and naming functions are system specific. A,
actions, are system calls. We limit the model to system calls
available on an OpenBSD 4.4 system that do not require
superuser privileges and that do affect the data flow state.

Actions A, performed by processes, change the state of the
system. These changes are described by a (deterministic)

relation R ⊆ Σ × P × A × Σ. R is the smallest relation
satisfying equations 1 to 16 described below.

Since states are modeled as triples of functions, we need
some additional notation for specifying state changes. For
any mapping m : S → T and a variable x ranging over
X ⊆ S, define m[x← expr]x∈X = m′ with m′ : S→ T and

m′(y) =
{

expr if y ∈ X
m(y) otherwise

Multiple updates for disjoint sets can be combined by func-
tion composition ◦. We will use the semicolon as syntactic
sugar:

m[x1 ← exprx1 ; . . . ; xn ← exprxn]x1∈X1,...,xn∈Xn =
m[xn ← exprxn

]xn∈Xn ◦ . . . ◦ m[x1 ← exprx1
]x1∈X1 .

The semantics is that all replacements are done simultane-
ously and atomically. Later on, we will also use simultane-
ous function updates, i.e., not only simultaneous updates at
different points of the domain, but for different functions. We
will use the same notation however and implicitly assume
that if two function updates occur within one parenthesis,
then they are executed simultaneously.

We will denote the return value of a system call with
rv. Moreover, we assume that invoked system calls succeed,
and therefore we do not include in our model conditions on
the return value or error codes relevant to the succeeding or
failing of a system call.

We now describe the effects of the various system calls
as requirements on the relation R. In particular, we model
the handling of descriptors, reading from and writing into
containers, renaming and deleting containers, process man-
agement, inter-process communication and the creation and
removal of aliases.

Descriptors. Containers are usually not accessed di-
rectly but rather via descriptors. For example, reading from
a file requires opening a descriptor to the file, reading via the
descriptor and closing the descriptor afterwards. Descriptors
are specific to a single process, rather than known system-
wide. In our model, descriptors are elements of the set F
and are mapped to containers by function f . Descriptors can
be opened, duplicated and closed. Opening a file descriptor
is accomplished with an open system call as formalized in
eq. (1).

∀ s ∈ [C→ 2D],∀ l ∈ [C→ 2C],∀ f ∈ [P× F → C],
∀ p ∈ P,∀ n ∈ Ffn,∀ rv ∈ Fdsc :(

(s, l, f), p, open(n, rv),
(s, l, f [(p, rv)← f (p, n)])

)
∈ R.

(1)

The intuition here is that a successful open(n,rv) system
call takes place: process p opens a file with name n, and
the operating system returns a descriptor rv. Consequently,
the (naming component of the) state is modified by adding
a pointer from (p, rv) to the container that is named by
f (p, n): the process-specific descriptor rv now points to that
container f (p, n).

Creating a pipe cp with the corresponding descriptors is
accomplished with a pipe system call (eq. (2)).

∀ s ∈ [C→ 2D],∀ l ∈ [C→ 2C],∀ f ∈ [P× F → C],
∀ p ∈ P,∀ cp ∈ C,∀ e1, e2 ∈ Fdsc :(

(s, l, f), p, pipe(e1 , e2 , cp),
(s, l, f [(p, e1)← cp; (p, e2)← cp])

)
∈ R.

(2)

Similar to file access, network communication takes place
via a network socket - a descriptor representing the network
connection. As explained earlier, we do not distinguish
between different communication partners and treat the
whole network as the single container cnet . The descriptor
is created with the socket or accept system calls (eq. (3)).
For brevity we only show socket; accept is analogous.

∀ s ∈ [C→ 2D],∀ l ∈ [C→ 2C],∀ f ∈ [P× F → C],
∀ p ∈ P,∀ rv ∈ Fdsc :(

(s, l, f), p, socket(rv),
(s, l, f [(p, rv)← cnet])

)
∈ R.

(3)

Descriptors can be duplicated within a process with the
dup, dup2 and fcntl with the F_DUPFD flag (eq. (4)). We do
not model the sending of descriptors among processes via
unix sockets, and we omit the definition of dup2 and fcntl.

∀ s ∈ [C→ 2D],∀ l ∈ [C→ 2C],∀ f ∈ [P× F → C],
∀ p ∈ P,∀ e1, e2 ∈ Fdsc,∀ rv ∈ Fdsc :(

(s, l, f), p, dup(e1 , rv), (s, l, f [(p, rv)← f (p, e1)])
)
∈ R

(4)
A descriptor can explicitly be closed with the close system

call (eq. (5)). A closed descriptor can no longer be used for
accessing the container.

∀ s ∈ [C→ 2D],∀ l ∈ [C→ 2C],∀ f ∈ [P× F → C],
∀ p ∈ P,∀ e ∈ Fdsc :(

(s, l, f), p, close(e), (s, l, f [(p, e)← nil])
)
∈ R.

(5)

Reading and Writing. Once a descriptor has been
opened, data can be read via the descriptor from the cor-
responding container into a process by invoking one of the
following system calls: read, readv, pread, preadv, recv,
recvfrom, recvmsg. For brevity, we show the respective
definition of relation R only for read (eq. (6)) as it is
analogous for the other system calls.

∀ s ∈ [C→ 2D],∀ l ∈ [C→ 2C],∀ f ∈ [P× F → C],
∀ p ∈ P,∀ e ∈ Fdsc :(
(s, l, f), p, read(e), (s[t← s(t) ∪ s(f (p, e))]t∈l∗(p), l, f)

)
∈ R.
(6)

f (p, e) yields the container for the descriptor e. Since our
model allows for aliases, reading data from the container into
process p immediately propagates the data to other contain-
ers aliased by p (recall that processes are containers). These
are computed via l∗(p). This is the reason for parametrizing
the update of the storage function.

Similarly, writing from a process into a container via an
open descriptor can be achieved with one of the following

system calls: write, writev, pwrite, pwritev, send, sendto,
sendmsg supplying the descriptor identifier as a parameter
to the system call. For brevity eq. (7) shows only write. The
relation is analogous for the other system calls.

∀ s ∈ [C→ 2D],∀ l ∈ [C→ 2C],∀ f ∈ [P× F → C],
∀ p ∈ P,∀ e ∈ Fdsc :(

(s, l, f), p,write(e),
(s[t← s(t) ∪ s(p)]t∈l∗(f (p,e)), l, f)

)
∈ R.

(7)

As with reading, the update of s is parametrized over the
transitive closure of aliases to the destination container.

Renaming Containers. Files can be renamed (eq. (8)).
Let the file with name n1 be renamed to n2. Then f (p, n1) =
c1, f (p, n2) = c2 for ∀ p ∈ P before the renaming. After
the renaming f (p, n2) = c1 and the contents of c2 can
no longer be accessed. However, a new file f (p, n1) = c3

could be created with open. Since we do not add or remove
containers to the set C, we reuse c2 for c3. To ensure
there is no connection between c2 before and after the
rename, we discard the contents of c2, i.e., set s(c2) = ∅.
Although the data may still be in blocks on the disc, directly
accessing them would require privileged system calls which
are excluded from our model.

∀ s ∈ [C→ 2D],∀ l ∈ [C→ 2C],∀ f ∈ [P× F → C],
∀ p ∈ P,∀ n1, n2 ∈ Ffn :(
(s, l, f), p, rename(n1 ,n2), (s[f (p, n2)← ∅], l,
f [(q, n2)← f (q, n1); (q, n1)← f (q, n2)]q∈P)

)
∈ R.

(8)

Note that the renaming makes the container accessible to
all processes under the new name and hence the naming
function f has to be updated for all processes. Having
f (q, n1) point to f (q, n2) prevents a dangling pointer; the
respective container is emptied, as mentioned above. The
fact alone that the file was renamed can convey information.
However, we consider this a covert channel and hence do
not treat it in our model.

Deleting Containers. Some containers, files, can ex-
plicitly be deleted using the unlink system call (eq. (9)).
Upon deletion, the contents of the container are lost and
all alias relations involving the container are removed. The
data stored in aliased containers is not affected. Note that
we do not add or remove containers from the system. As
with renaming, the data of the deleted file may remain on
the disc, but accessing it requires privileged system calls.
These are not treated in our model.

∀ s ∈ [C→ 2D],∀ l ∈ [C→ 2C],∀ f ∈ [P× F → C],
∀ p ∈ P,∀ n ∈ Ffn :(

(s, l, f), p, unlink(n), (s[f (p, n)← ∅], l[f (p, n)← ∅;
t← l(t) \ {f (p, n)}]t∈C, f)

)
∈ R.

(9)
Process Management. Processes can duplicate them-

selves, replace their memory image with a file to execute,
and cease to exit.

Duplication takes place by using the fork system call
(eq. (10)). The duplicate, or child process, will be in the
same state as the parent, i.e., contain the same data, have the
same alias relations and the same descriptors as the parent.
Since memory-mapping and shared memory attaching are
the only mechanisms capable of creating aliases we can
simply copy all alias relations involving the parent process.

∀ s ∈ [C→ 2D],∀ l ∈ [C→ 2C],∀ f ∈ [P× F → C],
∀ p, rv ∈ P :(

(s, l, f), p, fork(rv), (s[rv← s(p)], l[rv← l(p);
t← l(t) ∪ {rv}]t∈{t′|p∈l(t′)}, f [(rv, e)← f (p, e)]e∈Fdsc)

)
∈ R.

(10)
Using the execve system call (eq. (11)) a process can
replace its memory image with the contents of a file. As
a simplification we assume that alias relations involving the
process are removed, but descriptors are not modified.

∀ s ∈ [C→ 2D],∀ l ∈ [C→ 2C],∀ f ∈ [P× F → C],
∀ p ∈ P,∀ n ∈ Ffn :(

(s, l, f), p, execve(n), (s[p← s(f (p, n))], l, f)
)
∈ R.

(11)
After executing the exit system call (eq. (12)) a process

ceases to exist. The memory image of the process is dis-
carded, alias relations are removed and open descriptors are
closed.
∀ s ∈ [C→ 2D],∀ l ∈ [C→ 2C],∀ f ∈ [P× F → C],
∀ p ∈ P :(
(s, l, f), p, exit , (s[p← ∅], l[p← ∅; t← l(t) \ {p}]t∈C,

f [(p, e)← nil]e∈Fdsc)
)
∈ R.

(12)
Inter-Process Communication. Processes can commu-

nicate with each other directly or indirectly via containers.
The direct way is by sending signals with the kill system
call, using the ptrace debugging interface. The indirect
way involves reading (eq. (6)) and writing (eq. (7)) into
containers or setting up aliases. Aliases are discussed in
the next section. Note that for brevity some IPC-specific
containers like message queues or semaphores are omitted
from our model.

The semantics of kill is that the process invoking the kill
system call communicates data to another process (eq. (13)).
Hence the formula is similar to the formula that models
writing (eq. (6)).

∀ s ∈ [C→ 2D],∀ l ∈ [C→ 2C],∀ f ∈ [P× F → C],
∀ p, q ∈ P :(
(s, l, f), p, kill(q), (s[t← s(t) ∪ s(p)]t∈l∗(q), l, f)

)
∈ R.

(13)
For brevity we omit details of the ptrace interface. With a
read flag it behaves analogically to eq. (13) while with a
write flag p and q would be swapped in eq. (13).

Aliases. Aliases can be created in two ways, by
memory-mapping containers and by attaching a shared mem-
ory region to the memory image of a process. We will first
discuss memory-mapping.

Containers can be mapped to memory unidirectionally
(read) or bidirectionally (read/write). In the unidirectional
case (eq. (14)), a process p mapping the container c to
its memory can read from c but not write into c. This
corresponds to an alias relation (c,p) ∈ l. The uni-directional
case also constitutes a reading from the file, so s has to be
updated as in eq. (6).

In the bidirectional case (eq. (15)) the process can both
read and write. Hence, aliases for both directions have to be
added. This also constitutes reading and writing, so s has to
be updated as in eq. (6) and eq. (7).

∀ s ∈ [C→ 2D],∀ l ∈ [C→ 2C],∀ f ∈ [P× F → C],
∀ p ∈ P,∀ e ∈ Fdsc :(

(s, l, f), p,mmap(e,PROT_READ), (
s[t← s(t) ∪ s(f (p, e))]t∈l∗(p),
l[f (p, e)← l(f (p, e)) ∪ {p}], f)

)
∈ R.

(14)

∀ s ∈ [C→ 2D],∀ l ∈ [C→ 2C],∀ f ∈ [P× F → C],
∀ p ∈ P,∀ e ∈ Fdsc :(

(s, l, f), p,mmap(e), (
s[t← s(t) ∪ s(f (p, e)); t′ ← s(t′) ∪ s(p)]t∈l∗(p),t′∈l∗(f (p,e)),
l[p← l(p) ∪ {f (p, e)}; f (p, e)← l(f (p, e)) ∪ {p}],
f)

)
∈ R.

(15)
The memory mapping-based alias is removed with the

munmap system call (eq. (16)).

∀ s ∈ [C→ 2D],∀ l ∈ [C→ 2C],∀ f ∈ [P× F → C],
∀ p ∈ P,∀ c ∈ C :(

(s, l, f), p,munmap(c),
(s, l[p← l(p) \ {c}; c← l(c) \ {p}], f)

)
∈ R.

(16)
Shared memory is similar to memory-mapping containers,

but the containers are dedicated memory regions. For brevity
we omit a detailed discussion.

Our model does not explicitly include the possibility of
multiple instances of the same alias, i.e., memory mapping
the same file several times. This could be handled by
attaching identifiers to aliases (process ID and memory
address of the mapping), but is omitted in the model.

3. State-based Policies

The data flow model allows us to describe policies in a
state-based way. This allows us 1) to conveniently express
some policies that are hard to express by explicitly listing
sequences of events, and 2) to map high-level policies
to low-level policies at the level of system calls. In the
following, we will use the terms event-based and state-based
policies. Both abstractions are equally expressive as histories
of events can be encoded in the system state. However, when
it comes to keeping track of copies, and having policies

that implicitly also apply to all these copies we will argue
that the latter are more convenient for describing usage
control policies. As a motivating example for state-based
policies consider an event-based policy that is supposed to
restrict the dissemination of data: the medical record of a
particular patient may not be disseminated over the network.
One can rather easily describe the sequence of system calls
for disseminating a particular container’s content (the file
storing the medical record) over the network. Capturing the
fact that the data may have been propagated in various
ways into other containers and disseminated from these,
however, quickly becomes inconvenient if not infeasible.
This is because it is no challenge to construct arbitrarily long
sequences of system calls by simply adding intermediate
files via which data is copied before finally sending it from
the last file in the chain.

In contrast, the dissemination policy can conveniently be
described in a state-based way: any state in which the data
item (potentially) is in the cnet container is not allowed.
The expression of usage control requirements at the level
of states rather than events does not seem to be mainstream
as indicated by the relevant literature (note that our notion
is different from state-based policies as found, for instance,
in ODRL—here the policy maintains a state). Many usage
control-relevant policies, however, can be described in a
state-based way using our data flow model. These policies
seem to be out of reach of an approach that is based on
explicitly listing sequences of events. For example,

1) Data d must not be distributed over the network. – The
state of the system shall always satisfy d /∈ s(cnet).

2) Data d may not be copied. – This is hard to express in
event-based policies because there are many sequences
of events that potentially lead to copies of a data item.
Let cd be the only container where d is initially stored.
Then the state of the system shall always satisfy ∀ c′ ∈
C \ P : d ∈ s(c′)⇒ cd = c′.

3) Data d must be deleted at time t. – This is hard to
express in event-based policies because the deletion
requirement extends to all copies of d rather than
just the initial copy of d. Expressed in a state-based
way, the state of the system at time t must satisfy
∀ c ∈ C : d /∈ s(c). Note that this does not specify how
data is removed from containers, only that they must
not be present at time t. Also note that if one simply
deletes all containers that potentially contain the item,
the overapproximation inherent in our model is likely
to lead to many unnecessary deletions. Finally, note
that a dual retention requirement cannot easily be
expressed for the same reason of overapproximation:
the fact that a data item d is stored in a container via
the s-mapping does not necessarily mean that d is in
the container or can be reconstructed from its content.

4) Data d1 and d2 must not be combined. – This is hard

to express in event-based policies because again many
different sequences of events lead to “combinations.”
We may say, however, that the state of the system shall
never satisfy ∃ c ∈ C : {d1, d2} ⊆ s(c).

Special purpose actions like playing a song using the
audio device or printing can also be expressed using a
state-based policy. Similarly to the dissemination over the
network with cnet , we can use additional containers. As
an example, for the CUPS printing system the sockets of
the cups server could be defined as cprint. For the audio
device, /dev/audio* and /dev/sound* device nodes
could be defined as caudio, and the ioctl system calls with
the corresponding flags added similarly to write in eq. (7)
and eq. (14). Playing a song would then correspond to the
song data appearing in s(caudio).

Although policies tend to be stated in terms of high-
level actions, such as disseminate, copy or delete, a monitor
typically observes only low-level actions like system calls.
By expressing the high-level actions in terms of states in our
data flow model we map the high-level policies to low-level
actions without explicitly naming these low-level actions.
We simply leverage the work described above that was done
to set up the R relation for system calls.

In order to conveniently describe policies, we define the
following policy atoms:
• deny c(d, C′) – Data d ∈ D may not enter containers

in C′ ⊆ C. Formally, every state must satisfy ∀ c ∈ C′ :
d /∈ s(c).

• limit c(d, C′) – Data d ∈ D may only enter containers
in C′ ⊆ C. Formally, every state must satisfy ∀ c ∈
C \ C′ : d /∈ s(c).

• limit c file(d, C′) – limit c ignoring non-file contain-
ers. Formally, the state must satisfy ∀ c ∈ C : d ∈
s(c)⇒ (c ∈ C′ ∨ c is not a file).

• deny comb(d1, d2) – Data d1, d2 ∈ D may not be
combined. Formally, every state must satisfy @c ∈ C :
{d1, d2} ⊆ s(c).

These atoms allow us to describe the following high-level
policy examples,

1) Data d must not be distributed over the network. –
deny c(d, {cnet})

2) Data d may not be copied. – limit c file(d, {cd})
where cd is the container where d is initially stored.

3) Data d must be deleted. – limit c(d, ∅) at some
specific moment in time.

4) Data d1 and d2 must not be combined. –
deny comb(d1, d2)

We have seen that state-based policies are useful whenever
a policy is stated for one data item but is actually meant for
all copies of the data item as well. Unfortunately, in addition
to the overapproximation issues discussed in the context
of deletion and retention requirements, not all policies can
directly be expressed in a pure data flow state-based way,

which suggests of course a combination of state-based and
event-based policies that we do not discuss in this paper:
• Counting – Counting the number of times an event

occurs, such as in the policy “data d may be used
at most 3 times [4].” A possible remedy would be to
describe sequences of events in addition to states.

• Duration – Measuring the duration of events or states,
such as “data d may be used for a total time of at most
2 hours [4].” However, the usage can be captured as the
time while the system state satisfies ∃ p ∈ P : d ∈ s(p).

• Actions inside of processes - Only interactions of a
process with the rest of the operating system can be
observed. Peeking into the process to observe internal
actions such as anonymization of data is not possible.

Note that the monitored information flow-related policies
are restricted to explicit information flow, hence are proper-
ties of a trace and EM-enforceable[5].

4. Evaluation and Discussion

To evaluate our approach and measure the imposed over-
head, we have implemented a proof-of-concept framework
that keeps track of the state as described in Section 2
and enforces the policy atoms described in Section 3. We
now discuss the implementation, its performance and the
restrictions of our approach.

The basic idea of the implementation is to observe invoked
system calls before they are executed; calculate the state
resulting from the system call’s execution; check if that state
does not violate the policy; and if it does, then deny the
system call’s execution. To calculate the state of the data
flow model, the invoked system calls have to be observed.
The standard system call interaction consists of 1) a user-
space process invoking a system call, 2) the kernel executing
the invoked system call, and 3) delivering a return value
back to the invoking process. The systrace framework [6]
allows us to step in the interaction between 1) and 2) – the
invoked system call can be inspected before it is executed by
the kernel, its parameters can be modified or its execution
can be denied; and also between 2) and 3) – the return
value delivered to the invoking process can be observed and
modified. Upon inspection of the system call, we compute
the state change it would entail. If this state change comes
with a policy violation, system call execution is denied,
and the value EPERM is returned to the invoking process.
Otherwise, execution of the system call is permitted. System
calls for creating descriptors and forking processes are also
inspected between 2) and 3). This is because their return
value is needed to correctly calculate the new state. Note
that this does not interfere with enforcing the policy atoms
described in Section 3. Also note that only a subset of system
calls is monitored, executing unmonitored system calls does
not incur any overhead.

The monitored policy can be any conjunction of the atoms
from Section 3. Such a policy also has to describe the initial
distribution of data among the containers, s. This distribution
is used as the initial state. Enforcement of the policy is
limited to denying system calls. Injecting additional system
calls, as needed for the enforcement of some policies, such
as forcing the deletion of all data copies, is not the subject
of this paper.

We evaluated the implementation with unmodified stan-
dard unix tools like cp, mv and rm, and the following
policy including typical usage control requirements: dis-
allowing the network dissemination of data 1 (/tmp/a) –
deny c(1, {cnet}), the copying of data 2 out of /tmp/b –
limit c file(2, {file:/tmp/b}), and the combination of data 1
(/tmp/a) with data 3 (/tmp/c) – deny comb(1, 3); initial state
s(file:/tmp/a) = {1}, s(file:/tmp/b) = {2}, s(file:/tmp/c) =
{3}. In a sample scenario we propagated data 1 with cp
/tmp/a /tmp/m, mv /tmp/m /tmp/n, cat /tmp/n > /tmp/o and
reading /tmp/o into the vi editor and writing it into /tmp/p.
This resulted in /tmp/p containing data 1 – s(file:/tmp/p) =
{1}. Examples of detected policy violations were uploading
/tmp/p to an ftp server using the ftp client lftp, cp /tmp/b
/tmp/x and cat /tmp/c >> /tmp/a. The execution of the
offending system calls was denied and the returned EPERM
value was correctly interpreted as insufficient permissions.

We measured the overhead of data flow tracking and
policy monitoring by comparing the runtimes of untraced
programs, of programs subject to data flow tracking with
disabled policy monitoring, and of programs subject to
data flow tracking and monitoring of the above described
policy. To ensure comparable runs with identical system call
sequences, we chose programs that did not violate the policy.
We have considered the runtime of 1) compiling C++ source
code (namely, the implemented framework) as an example of
a CPU-intensive task, and as i/o intensive tasks 2) copying
a 10KB file using cp, 3) copying a 10KB file using dd,
4) copying a 10MB file using cp, 5) copying a 10MB file
using dd. dd used a block size of 1KB. The runtime was
measured on a system with a Pentium M 1.6GHz CPU using
the real output of the time program. The traced programs
were run multiple times, 6 for 1), 6000 for 2) and 3), and
30 for 4) and 5). Instead of the average we have considered
the aggregate time over the multiple runs. The aggregate
runtimes are depicted in Figure 1. For compiling C++ code
tracing incurred an overhead of 8% while policy monitoring
raised it up to 33%. Copying files incurred less overhead
with cp than with dd as well as with large files instead
of small files. For 10KB files, the overhead without policy
monitoring was 61% for cp and 478% for dd with policy
monitoring. For copying 10MB files, the overhead with
cp was rather low at 5% without and 17% with policy
monitoring. With dd, it was 12% without and 272% with
policy monitoring.

The better performance of cp and on large files is likely

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

build cp_10KB dd_10KB cp_10MB dd_10MB

R
u
n
t
i
m
e

(
r
e
a
l
)

[
s
]

�
�
�
�

��

��

untraced
pure data flow tracking
data flow tracking w/ policy monitoring

Figure 1. Comparison of runtimes between untraced
executions and traced with and without policy monitor-
ing for 6 times compiling the implemented framework,
6000 times copying a 10KB file and 30 times a 10MB
file with cp and dd with a block size of 1KB.

due to the fact that cp copies small files using read and write
system calls while larger files are copied using the mmap
mechanism resulting in fewer system call invocations. The
larger overhead for policy monitoring is due to the naive
proof-of-concept implementation: for each update a copy
of the state is stored in case the execution of the system
call would be denied. This could be improved by a rollback
capability of the state. Although the overhead depends on the
programs used, it seems generally acceptable and monitored
programs remain usable.

In the following we comment on the limitations of the
data flow model. In sum, these are (1) omitted details of the
underlying operating system; (2) excluded implicit flows and
covert channels; and (3) overapproximation.

(1) The model is limited to the unprivileged system calls
in an OpenBSD 4.4 system and some details of system calls
have been omitted. Shared memory regions, message queues
and semaphores are not included. The data contained in a
file is limited to the file content. However, data could also be
encoded in the file meta information, such as the file name,
permissions or last modified time. The meta information
and related system calls are not treated. This issue can
be addressed by modelling additional details at the cost of
increased complexity of the model. However, the presented
selection of details is sufficient to cope with system calls
used by standard unix programs like cp, mv, rm and vi.

(2) Implicit information flow and covert channels, such
as modulation of use of shared resources in order to leak
information, have explicitly been excluded from the model.
For example, we do not consider the possibility that the
mere action of renaming a file could convey information.
Treating this issue would result in a significantly more
restrictive model where data would be propagated more
aggressively or the possible actions of processes would be
strongly limited (even with explicit information flow only,

we need to implement declassification techniques). We do
not plan to cope with covert channels, but would like to
extend our work to implicit information flow in the future.
In particular, MAC-policies available in SElinux would be
suitable for this purpose.

In terms of issue (3), our model makes an overapproxi-
mation showing the potentially worst data flow. Once some
data has been written into a file, any subsequent read could
potentially read that data. Once a process has that data, every
subsequent writing from the process could include that data.
This may lead to so-called “label creep” where quickly most
data containers are marked as potentially containing almost
all data available in the system. We have also observed this
phenomenon: lftp logged names of transferred files and the
history of executed commands into separate files. Both of
these log files were marked as potentially containing all
the data of the file transmitted by the ftp client. In reality,
they only contained the name of the file. Should a policy
be monitored, the label creep would lead to false-positive
policy violations. The overapproximation problem could be
ameliorated by peeking into the processes at a finer level of
granularity, such as with an information flow framework at
the level of assembler instructions [7].

5. Related Work

We are not aware of other work discussing how usage
control policies can be expressed in terms of information
flow. Compared to existing information flow models [8], [9]
our model additionally caters to aliases. The prototypical
operating system Asbestos [10] tracks information flow and
enforces policies in the OS kernel. Flume [11] requires
applications to use IPC instead of system calls. While our
approach works with unmodified binaries, programs have
to be modified to run in Asbestos or Flume. [12], [13], [14]
use win32 API interposition to monitor data flow and defend
against malware, but do not consider more complex usage
control policies. The systrace [6] framework neither supports
high level policies nor tracks data flow.

6. Conclusion

In this paper, we have studied the suitability of system
call interposition for usage control enforcement. To this end,
we have set up a data flow model based on system calls,
leveraged it to describe policies in a state-based way, and
evaluated it in a proof-of-concept implementation. The state-
based policy description allows us to conveniently express
policies that are hard to capture in an event-based way and
to enforce high-level policies at the low-level system calls.
The observed overhead on traced processes incurred by our
proof-of-concept implementation suggests that our approach
is a viable option.

As further work we see combining state-based and event-
based policies, extending our work to implicit flows and
decreasing the overapproximation of our data flow model by
peeking into programs at the level of assembler instructions.

Acknowledgment

The authors would like to thank Thomas Walter and
Christian Schaefer from DOCOMO Euro-Labs and Felix
Klaedtke from ETH Zurich for comments on an earlier draft
of this paper.

References

[1] J. Park and R. Sandhu, “The ucon abc usage control model,”
ACM Transactions on Information and Systems Security, pp.
128–174, 2004.

[2] M. Hilty, D. Basin, and A. Pretschner, “On obligations,” in
Proc. ESORICS, 2005, pp. 98–117.

[3] B. W. Lampson, “A note on the confinement problem,”
Commun. ACM, vol. 16, no. 10, pp. 613–615, 1973.

[4] M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and T. Walter,
“A policy language for distributed usage control,” in Proc.
ESORICS, 2007, pp. 531–546.

[5] F. B. Schneider, “Enforceable security policies,” ACM Trans.
Inf. Syst. Secur., vol. 3, no. 1, pp. 30–50, 2000.

[6] N. Provos, “Improving host security with system call poli-
cies,” in Proc. SSYM, 2003, pp. 257–272.

[7] S. McCamant and M. D. Ernst, “Quantitative information flow
as network flow capacity,” in Proc. PLDI, 2008, pp. 193–205.

[8] A. C. Myers and B. Liskov, “A decentralized model for
information flow control,” in Proc. SOSP, 1997, pp. 129–142.

[9] D. E. Denning, “A lattice model of secure information flow,”
CACM, vol. 19, no. 5, pp. 236–243, 1976.

[10] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,
D. Ziegler, E. Kohler, D. Mazières, F. Kaashoek, and R. Mor-
ris, “Labels and event processes in the asbestos operating
system,” in Proc. SOSP, 2005, pp. 17–30.

[11] M. N. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris, “Information flow control for
standard os abstractions,” in SOSP, 2007, pp. 321–334.

[12] F. Hsu, H. Chen, T. Ristenpart, J. Li, and Z. Su, “Back to
the future: A framework for automatic malware removal and
system repair,” pp. 257–268, 2006.

[13] X. Wang, Z. Li, N. Li, and J. Y. Choi, “Precip: Towards
practical and retrofittable confidential information protection,”
in NDSS, 2008.

[14] X. Jiang, A. Walters, D. Xu, E. Spafford, F. Buchholz, and
Y.-M. Wang, “Provenance-aware tracing of worm break-in
and contaminations: A process coloring approach,” in ICDCS,
2006, p. 38.

