
Distributed Data Usage Control for Web Applications:
A Social Network Implementation

Prachi Kumari, Alexander Pretschner
∗

Karlsruhe Institute of Technology
76131 Karlsruhe, Germany

{kumari,pretschner}@kit.edu

Jonas Peschla, Jens-Michael Kuhn
TU Kaiserslautern

67653 Kaiserslautern, Germany
{j_peschl,j_kuhn}@cs.uni-kl.de

ABSTRACT
Usage control is concerned with how data is used after access
to it has been granted. Respective enforcement mechanisms
need to be implemented at different layers of abstraction
in order to monitor or control data at and across all these
layers. We present a usage control enforcement mechanism
at the application layer. It is implemented for a common
web browser and, as an example, is used to control data in a
social network application. With the help of the mechanism,
a data owner can, on the grounds of assigned trust values,
prevent data from being printed, saved, copied&pasted, etc.,
after this data has been downloaded by other users.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Security

Keywords
Web based social networking, privacy policies enforcement,
sticky policies, data usage control, Mozilla Firefox extension

1. INTRODUCTION
Usage control extends the concept of data protection be-

yond access control [1, 2]. That is, it influences the actions
that can and have to be performed over data after access has
been granted. In addition to access control requirements,
usage control policies stipulate (i) what the recipient is al-
lowed to do (rights) and (ii) what they must do (duties)
with the data. Among other things, usage control require-
ments and the associated policies are relevant for privacy,
the protection of intellectual property and/or secrets, digital
rights management, and compliance with regulations such as

∗This work was supported by the German National Science
Foundation (DFG) under grant no. PR 1266/1-1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODASPY’11, February 21–23, 2011, San Antonio, Texas, USA.
Copyright 2011 ACM 978-1-4503-0465-8/11/02 ...$10.00.

HIPAA or SOX. The enforcement of usage control policies is
particularly challenging in distributed environments where
the data provider has no or only limited control over the IT
infrastructure of the receiver.

Usage control policies can in general be enforced in two
ways. Detective enforcement [3] aims at detecting violations
of a policy. In case of a violation, usually a compensating,
correcting, or notifying action is taken. In contrast, preven-
tive enforcement aims at avoiding policy violations.

The subject of this paper is the preventive enforcement
of usage control policies. These policies can and should
be enforced at different layers of abstraction in the system.
Among others, this has, for various policy languages [4–11],
been done at the operating system level [12], at the X11
level [13], for Java [14, 15], the .NET CIL [16] and ma-
chine languages [17, 18]; at the level of an enterprise ser-
vice bus [19]; for dedicated applications such as the Inter-
net Explorer [20] or in the context of digital rights man-
agement [21–23]. The reason for this variety of enforce-
ment mechanisms is that the data that has to be protected
comes in different representations: as network packets, as
attributes in an object, as window content, etc. In princi-
ple, all these representations eventually boil down to some
representation in memory, but it turns out to be more con-
venient and simpler to perform protection at higher levels of
abstraction. For instance, disabling the print command is
easily done at the word processor level; taking screenshots is
easily inhibited at the X11 level; prohibiting dissemination
via a network is most conveniently performed at the oper-
ating system level; etc. The question of how data flows can
be detected in-between different layers of abstraction is not
the subject of this paper; see Section 5.

Instead, in this paper we present a usage control enforce-
ment mechanism at the application layer, more specifically
a web browser application. The context is privacy in web
based social networks (WBSN) with use cases that have
been taken from data protection requirements derived else-
where [24]. One example use case that our system can han-
dle is as follows: in a WBSN, Alice has a best friend Bob
and an acquaintance Carol as her contacts. Alice wants Bob
to be able to visit her profile and copy pictures from her
album. Meanwhile, Carol should only be allowed to view
Alice’s profile and pictures but should not be able to copy
her pictures. In today’s WBSNs, it is not possible for Alice
to enforce any such privacy controls where she can prohibit
future usage of rendered data. We hence consider attacks on
a user’s privacy that emerge from other users rather than
from the provider of the WBSN.

Most of today’s popular WBSNs offer access control mech-
anisms only. In these approaches, the user, in the role of a
data provider, has no means to control the usage of the data
once the social network’s web server has delivered the re-
spective web page. In particular, this means that all data
that can be accessed by anyone can also be used in any way.
We provide a mechanism to prevent this.

Few social networks provide some basic approaches to en-
force usage control requirements. For instance, StudiVZ, a
popular German social network for students, offers picture
galleries where the context menu can be deactivated with
JavaScript. This blocks the possibility to save a picture
via a click on the right mouse button, or copy the selected
content to the clipboard in this way. In general, it is also
possible to use a feature of CSS that assigns different styles
for each output media. If the user wants to print parts of
a page with sensitive content, with this feature it is pos-
sible to hide the sensitive content or even the whole page.
However, these techniques exhibit room for improvement.
Among other things, suppressing the right click on pictures
by JavaScript is only possible if JavaScript is enabled at
all, and Javascript can be easily deactivated without much
effort. Furthermore, this blocking prevents the user from ac-
cessing additional functionality in the context menu, which
might not be intended to be deactivated.

Existing WBSNs also suffer from standard security prob-
lems, including social engineering, cross site scripting, hack-
ing user accounts and breaking into the database or the sys-
tem. Although these attack methodologies can be used by
a sophisticated user to circumvent our mechanism, looking
into these problems is outside the scope of this paper.

Problem. In sum, the problem that we tackle is the en-
forcement of usage control requirements in a web-based so-
cial network. We control events1 such as print, copy&paste,
save, etc. on rendered data like text and images. We hence
consider privacy problems that are a consequence of other
users rather than a WBSN provider misusing personal data.

Solution. Our solution is a system with three modules:
the client (an extension for the browser of the user who ac-
cesses data from other users in a social network and which
contains the policy enforcement point), the server (an aug-
mentation of the social network system that generates and
ships the policies that will be enforced by the client), and
a policy decision point (a component that can be deployed
anywhere and that evaluates user requests w.r.t. applicable
policies). By means of a security analysis, we show that the
policies are indeed enforced under specific assumptions.

Contribution. Our contribution is twofold: firstly, we
are not aware of enforcement mechanisms for usage control
policies at the application layer, achieved in the context of
WBSN applications for a web browser. We present one here.
Secondly, by means of the prototype, we provide insights
into the limitations of solutions which are specific to one
particular layer in the system. By the evaluation of the
mechanism we also lay out the assumptions and conditions
which need to hold true to provide guarantees in terms of
security and effectiveness of the system.

Organization. Section 2 presents related work. Sec-
tion 3, the core of this paper, introduces the proposed frame-

1In the remainder of this paper, we will call all user inter-
actions events whereas the term action denotes the corre-
sponding measure taken by the policy enforcement point,
e.g., execution, inhibition, modification.

work and the major terms used and describes the imple-
mented mechanism both at the client and the server side.
Section 4 evaluates the enforcement mechanism. The paper
concludes by looking into possible refinements and planned
future works in Section 5. Appendix A describes the archi-
tecture of the client-side enforcement mechanism.

2. RELATED WORK
Privacy and data protection problems in web based social

networks have been outlined by a number of researchers [25–
29]. One major issue is that WBSNs encourage users to
share personal data without providing sufficient means to
prevent the misuse of such data. Privacy settings in WBSNs
generally offer only access control. They provide no means
to control the usage of rendered data. This leaves users with
the choice to publish data and lose complete control over the
future use/abuse of it, or to refrain from publishing any data.
The possibility of publishing data while maintaining usage
control through policies has not been explored yet.

Research for privacy in social networks addresses two broad
issues: (i) data protection from WBSN providers and (ii)
data protection from other WBSN users. Solutions for the
former tend to focus on decentralization of data storage in
WBSN, while the latter focus on access control models for
secure data sharing among users. Yeung et al. [30] have pre-
sented a decentralized WBSN architecture based on a friend-
of-a-friend (FOAF) ontology [31]. Every user can upload
his FOAF specification and profile data to his own trusted
server. The friends/contacts of a user can access his data
through his URI. Some other notable contributions in decen-
tralization of data storage include Safebook, PeerSoN and
MyNet. Safebook [32, 33] is a peer-to-peer WBSN which
leverages trust relationships among users for data sharing.
PeerSoN [34] is another such WBSN which uses peer-to-
peer infrastructure coupled with encryption to enable users
keep control of their data and use the social network offline.
MyNet [35, 36] is an application that provides peer-to-peer
social networking on mobile phones and other pervasive com-
puting devices. In this paper, we consider WBSN providers
as trusted parties and therefore do not look into this aspect
of privacy protection.

The other category of solutions, directed towards secur-
ing user data against malicious WBSN users, propose access
models for secure data sharing. These models are limited to
providing differential access control and leave open the us-
age control aspect of data protection. We are aware of two
models which use a similar approach as ours, but for access
control. Gollu et al. [37, 38] have proposed Lockr, a model
for access control in social networks based on social attesta-
tions and access control lists. Data access is granted based
on social attestation which is a piece of metadata encapsulat-
ing a relationship between two users. However, Lockr does
not provide any mechanism to prevent misuse of data once
access has been granted. Another WBSN model has been
proposed by Carminati et al. [39]. It is a decentralized rule
based access control model which enforces access control at
the client side. The access control rules are based on a trust
model where users can rate their contacts as good friends,
best friends, etc. This is similar to our approach for generat-
ing usage control policies but the cited model does not take
into account the sensitivity of the data items (Section 3.3.1).
The major difference, however, is that our system focuses on
actually enforcing usage control requirements.

Other than these, the EU-funded research project Prime-
Life has two applications for privacy in social networks [40–
43]. Scramble! is a Firefox extension that stores encrypted
data at the WBSN provider using the OpenPGP infrastruc-
ture. Clique is a WBSN that provides fine-grained access
control based on audience segregation. According to this
model, one user can have many faces (a profile with particu-
lar combination of information) according to different groups
of his contacts. The groups represent social circles like fam-
ily, colleagues etc. This work is not concerned with enforcing
usage control requirements after data has been shipped.

Probably closest to our work in terms of usage control en-
forcement in web clients is that by Egele et al. [20]. They
present a dynamic analysis method to identify if sensitive
information flows out of the Internet Explorer. While their
goal is entirely different from ours, this methodology can be
used to identify user actions like copy&paste, save page etc.
However, their dynamic analysis method identifies actions
as illegitimate based on whether sensitive data flow was ini-
tiated by the browser or by its helper objects. It cannot
identify an action as illegitimate if it was initiated by the
browser, as in case of a usual copy&paste action.

To the best of our knowledge, there is no publicly avail-
able work that enforces usage control in WBSNs. However,
quite some research has been conducted that focuses on us-
age control in other application domains and other levels of
abstraction in the system [12–23], as explained in Section 1.
All this work is specific to certain applications or levels of
abstraction. They cannot directly be applied to the case of
WBSNs as it requires enforcement of usage control policies
in the server and the client applications.

At the server side, we have implemented a policy gener-
ation mechanism based on the trust model introduced by
Kruk et al [44]. In their work, they have calculated trust to
assess the relationship between two identities [45]. For this
they introduce a Friendship Level Metric to assign a trust
value between 0 and 1 to relationships. These trust values
are multiplied on the paths between the resource owner and
requester and the highest one is chosen. Depending on the
Social Network Access Control List containing a maximum
allowed relationship distance and the minimum trust, it is
decided whether or not access is granted.

We use a similar approach, but we estimate exact trust
values as we not only decide if data is accessible, but also
to which degree it is usable, if access is granted to the re-
quester. We want to stress that our implementation of the
usage control mechanism is independent of the trust model
used. It can be replaced by any other trust model as long as
it can be used to generate usage control policies as we do.

At the client side, we have implemented a policy enforce-
ment point in form of a Mozilla Firefox extension. There are
many publicly available Firefox add-ons which provide some
kind of privacy and security features, e.g., blocking adver-
tisements and scripts, or hiding the user’s IP address [46].
To the best of our knowledge, none of these add-ons can en-
force data usage control requirements in the Firefox browser.
In the context of privacy, a notable Firefox extension is the
Tabulator which uses semantic web techniques to display the
structure of web pages [47]. It can be used in the context of
WBSNs to show a user how he is linked to other users and
all the data displayed on his profile. This information can
be used to increase awareness about data proliferation on
the web. The extension does not enforce privacy policies.

Thus, to our knowledge, both in the context of WBSN and
the web browser, we are the first to present an enforcement
mechanism for usage control requirements.

3. USAGE CONTROL FRAMEWORK

3.1 User and System Requirements
Remember Alice’s problem from Section 1. Alice wants to

differentiate among people directly connected to her; and on
this basis, she wants to control usage of her data. One solu-
tion to this problem is a policy-based usage control enforce-
ment mechanism. The WBSN should enable Alice to spec-
ify usage control policies both for different contacts and for
different kinds of data. At the same time, a policy enforce-
ment mechanism for these policies is needed at the client side
(web browser). There are hence two relevant sets of require-
ments, one set of requirements specific to policy generation
mechanisms in WBSNs, and a second set for policy enforce-
ment mechanisms in web browsers. (In principle, data can of
course be accessed directly via the network, without passing
through a browser. Many of today’s social networks pro-
hibit direct access via CAPTCHAs which solves the prob-
lem; the same is achieved, among other things, by authenti-
cation mechanisms of the kind discussed in Section 3.4.)

The user requirements that we implemented in our sys-
tem have been derived elsewhere [24]. Typically, the user
has requirements such as only best friends can save my pro-
file, only good friends can download sensitive pictures from
my album etc. Through such requirements, the owner con-
trols three aspects of data usage: (i) Subject: “Who” (e.g.,
good friend, best friend) (ii) Object: “What” (e.g., pictures,
profile) (iii) Events: “Usage” (e.g., save, download). The
user requirements that we consider are given in Table 1.

Table 1: User requirements
Label User requirements description
UR-1 User must be able to differentiate among contacts

at the same degree of connection.
UR-2 User must be able to assign different sensitivities

to different personal data.
UR-3 User must be able to define the set of allowed and

inhibited actions.
UR-4 User preferences in requirements UR-1, UR-2 and

UR-3 must be enforced together at the client side.
UR-5 Enforcement should not be client-specific.

We refine these requirements into a set of statements that,
in the current implementation, refer to copy&paste, print,
save, and view events, when user data is accessed by another
user. Our policies are capable of expressing more complex
requirements, including temporal and cardinal requirements
[9], but for the sake of simplicity, we restrict ourselves to
simple inhibition policies in this paper. The policy decision
point (PDP), however, can interpret and monitor the entire
expressiveness of the language.

To enforce these requirements, we derived a set of system
requirements for the user requirements. These requirements
detail the processes of policy generation and enforcement at
the server’s and the client’s sides (Table 2).

While requirement SR-18 is relevant in practice, we are
interested in a prototypical implementation and decided to
implement our system solely for the Mozilla Firefox browser.
This choice is motivated by three main reasons: firstly, it is
possible to modify the functionality of the browser without

Table 2: System requirements for policy generation
and enforcement

Label User requirement description
SR-1 Contacts can be assigned to one of the following

predefined categories: best friends, good friends,
friends, acquaintances, never met.

SR-2 Categories in SR-1 are mapped to trust values 1.0,
0.8, 0.6, 0.4 and 0.2 respectively.

SR-3 New categories for contacts can be created by the
user.

SR-4 A trust value ranging between 0.0 to 1.0 must be
assigned to the new category at the time of cre-
ation.

SR-5 Personal data can be assigned one of the sensitivity
levels: private, high sensitive, medium sensitive,
low sensitive, not sensitive.

SR-6 Sensitivity levels in SR-5 are mapped to values 1.0,
0.8, 0.6, 0.4 and 0.2 respectively.

SR-7 Permission classes are maximum permission, high
permission, medium permission, low permission,
minimum permission.

SR-8 The user defines which of the four usage events viz.
copy item, save page, print page and view page
source are allowed/inhibited for each of the per-
mission classes.a

SR-9 The controlled events in SR-8 apply only to text,
images and the complete page excluding the con-
tent rendered by plug-ins.

SR-10 The policy is generated combining the requirements
SR-(1-9).

SR-11 The WBSN sends the policy to the web browser on
the client side.

SR-12 Before delivering content protected by usage con-
trol, the WBSN has to be sure, that there is a
browser at the client side, which can enforce usage
control and understands the information regarding
usage control given by the server.

SR-13 The browser is able to provide authentication guar-
antees.

SR-14 The browser is able to enforce the received policy.
SR-15 The browser should differentiate between protected

and unprotected pagesb opened at the same time.c

SR-16 Policies delivered by WBSN have to be enforced by
the browser until revocation.

SR-17 WBSN (and in turn the user) may revoke policies.

SR-18 Policies must not be browser/client specific.d

a At present, all other events than these four are out of the
scope of our application.

b A protected page contains sensitive data protected by a usage
control policy.

c This requirement distinguishes our solution from the
Javascript fixes mentioned in the introduction section.

d This leaves scope for a more generic solution irrespective of
the policy execution point.

modifying its core (add-ons, plug-ins); secondly, it is open
source, has good SDK and developer network support and
therefore is comparatively better suited for experiments than
other browsers; thirdly, it is the second most used browser
[48, 49], so offering a solution for it is likely to have more
impact than other browsers.

3.2 High Level Interactions
We are now ready to describe the system which imple-

ments the system requirements given in Table 2. To trans-
late these requirements to policies, we introduce a policy
generation component in the social networking application.
As policy generation requires modifying the source code of
the social networking application, we could not use one of
the existing popular applications like Facebook for our pur-
pose. The instantiation of our social networking application
is called SCUTA, an abbreviation for ’Social network with
Control of Usage and Trust Assessment.’ It is a modifica-

tion of the PHPizabi social networking platform [50]. The
general idea is to use trust ratings for variable usage control.
In our example, Alice can rate Bob and Carol for trust. The
respective trust values are used to generate usage control
policies for Bob and Carol. We would like to re-emphasize
that although SCUTA works on trust assessments, it is in-
dependent of any particular concrete trust model. We are
perfectly aware that trust is a challenging concept and that
every single trust model is usually subject to a heated de-
bate (which we do not want to enter in this paper). As a
consequence, we simply assume an intuitive notion of trust
to be given.

Figure 1 shows an overview sequence diagram of the usage
control enforcement process. The policy enforcement point
(PEP) resides at the client side in form of a Mozilla Firefox
extension. We call it BRUCE, an acronym for ‘Browser-side
Usage Control Enforcement.’ The server, SCUTA, generates
policies and delivers both requested data and an associated
policy to the client. The policy is then sent by BRUCE to
the PDP and stored there. We chose to send the policy via
BRUCE instead of sending it directly to PDP because we
wanted to reuse the connection between BRUCE and the
PDP (which is anyway required for enforcing the policy). In
case of a usage event, BRUCE queries the PDP. The PDP
allows or denies the attempt based on the policy.

Note that the PDP can be deployed at any of the three
locations: the client, the server or a remote point. In our
demonstrator, the PDP is run remotely. Moving the PDP
out of the application-specific parts of usage control solution
has the benefit that multiple PEPs which are application
specific parts, can use the same PDP technology. This re-
sults in a greater knowledge base about occurring events for
the PDP and avoids additional complexity for approaches
to usage control at different levels of abstraction (see Sec-
tion 5). Also, in the local network of a company, resource
consumption could be reduced if the client machines of all
employees were attached to one single PDP running on a
central server. In our example, when Bob or Carol access
Alice’s data, irrespective of the client they use, they query
the same PDP.

Firefox

SCUTA
BRUCE

PDP

Request SCUTA page

Insert policy

Deliver web page + policy

Intercept

event
Query event

permission

Return stipulated

action

Carry out

action

User
Visit SCUTA page

Trigger event (e.g. print page)

Figure 1: High level sequence diagram of the system

3.3 Policies

3.3.1 Permissions
In our policy generation model, we use three major terms:

trust, the level of confidence one user has in the other user

for not misusing his data; sensitivity, the intuitive degree
of a data item being worth protection; and permission, the
set of permitted user actions for a data item. We define
permissions as a function of trust and sensitivity.

Trust. SCUTA provides functionality for a user to clus-
ter his direct contacts into five predefined categories: best
friend, good friend, friend, acquaintance and never met.
There is a sixth class, not connected, that is automatically
assigned by the system and that reflects the fact that the
respective user is not in the friends’ list of the other user.
These six labels of contacts are mapped to trust levels on an
equidistant scale of 0 to 1. 0 corresponds to not connected,
.6 corresponds to friends, 1 to best friends, etc. Users can
also create new categories for the contacts (e.g., colleagues)
and assign trust values to them.

Sensitivity. Sensitivity is not global for all personal con-
tent of one user, but can differ for each data item. For ex-
ample, in general an email address is more sensitive than the
first or last names. SCUTA allows its users to rate their con-
tent according to five predefined sensitivity levels: minimum
sensitive, low sensitive, medium sensitive, high sensitive and
private. In addition, there is a sixth sensitivity level that im-
plicitly labels all those data items that have not been rated
for sensitivity by the user; their sensitivity is considered to
be the lowest. Similar to trust assessments, these categories
are mapped to equidistant sensitivity levels such that 0 cor-
responds to not labeled, .8 corresponds to highly sensitive,
and 1 corresponds to private content.

Permissions. Trust and sensitivity are then combined
to compute permissions p(t, s) = t · (1 − s) where t is the
trust rating of the recipient, and s is the data item’s sensitiv-
ity value. SCUTA maps them to five predefined classes of
permissions: minimum, low, medium, high and maximum
that correspond to intervals of the same size (e.g., mini-
mum permission iff 0 ≤ p(s, t) ≤ .2 and high permission
if .6 < p(s, t) ≤ .8). Before these permission classes are
computed, SCUTA verifies the existence of a PEP at the
client side (Section 3.4). If the PEP does not exist, SCUTA
nonetheless computes the permission class for each data ele-
ment and delivers only the content for which all usage events
are allowed. If there is no such permission class, no content
is delivered. This is SCUTA’s default behavior in absence
of a PEP; it cannot be changed by the user.

Users can define what events are allowed for a particular
category of permissions, as exemplified in Table 3.

Table 3: Mapping events to permission classes
Permission class View

item
Copy
item

Save
page

Print
page

View
page
source

Minimum permission
Low permission x
Medium permission x x
High permission x x x x
Maximum permission x x x x x

The semantics of our policies is permit-override. This
means that by default, everything is permitted. Explicitly
stated prohibitions override this default.

3.3.2 Server-Side Policy Generation
Whenever a SCUTA-protected page is downloaded by a

BRUCE-enabled Firefox browser (more precisely, in one tab
of the browser), a new policy is created and sent to the PDP.

Each policy consists of a set of rules, one for each usage event
and each permission class unless the default permissions ap-
ply. Usage is hence controlled identically for every data item
within the same class, be this an image, a piece of text, etc.
However, depending on the permission class, there can be
different rules for different usage events. This design decision
is motivated by efficiency and simplicity considerations—we
could as well have chosen to have one rule per data item,
resulting in possibly much larger policies.

If a web page is requested, SCUTA computes the permis-
sion class for every sensitive data item on the page. We then
proceed in two steps.

Firstly, each sensitive data item is embedded into an HTML
element which captures the computed permission class as
shown in Listing 1. This augmented HTML code is shipped
to the client.

<div >
<table >
<tr>
<td> E-mail </td>
<td>

alice@example.net </td>
</tr>
<tr>
<td><img src ="../ images/Alice.jpeg"

class=" mediumPermission "/></td>
</tr>

</table >
</div >

Listing 1: HTML code with protection

Secondly, SCUTA generates a policy that associates a per-
mission class with the set of allowed and prohibited actions
for each of the permission classes. This is done w.r.t. the
user’s preferences, as stated in his WBSN profile. For in-
stance, on the grounds of this information, it can be estab-
lished that a print event is disallowed for all elements in
the low permission class. We differentiate between data for
which access is denied and data for which access is granted
but usage is controlled. The idea is that for all data, for
which access is denied (view item restricted in permission
class), no usage control policies need to be generated, as
access is a prerequisite for usage.

The policy is assigned an ID, the scope ID, that will be
used by BRUCE to associate a specific browser tab (display-
ing the content governed by the policy) with the computed
policy (there can be multiple tabs with different policies).
The scope of a policy hence refers to one browsing session
in one browser tab.

Finally, the HTML code that assigns permissions to data
items as well as the policy that assigns permissions to al-
lowed and prohibited usage events is shipped to the client.

3.3.3 Events
BRUCE controls events that correspond to usages of sensi-

tive data items. In the policies, these are abstractly specified
as, for instance, “copy” or “print.” As an example, see List-
ing 2. These abstract events abstract from a specific browser
technology: while copy&paste event is implemented differ-
ently in different browsers (and possibly in different imple-
mentations of the same browser), the main functionality is
intuitively the same.

Viewed from the Firefox perspective, one abstract event
can correspond to multiple internal events. Internal events
(“cmd copy,”“context-copyimage-contents,”“cmd print,”) are

raised whenever user commands are executed. Usually, dif-
ferent user commands can trigger the same internal event.
For instance, a copy to clipboard operation (one internal
event) can be invoked from the edit menu, from a context
menu, and by pressing the Ctrl-C keyboard shortcut (three
different user commands).

While we specify policies at the level of abstract events
(see above), our enforcement technology works at the level
of internal events. This is explained in Section 3.5.

3.3.4 Concrete syntax: ECA Rules
Technically, policies come as sets of event-condition-action

(ECA) rules [51, 52] with one rule per permission class per
usage event, unless the default permission applies. The ECA
rule describes what action has to be performed if a specific
event is triggered and the condition has been evaluated to
true. Trigger events are provided as abstract events in the
above sense. Remember that they correspond to internal
events (and respective user commands) executed on data,
such as print, save as, etc., and that they are also used to
define permission classes. As mentioned above, in the condi-
tion part, our policies can be specified for complex temporal
logic conditions, but in this paper, we stick to conditions
that always evaluate to true. Moreover, at present, the pol-
icy can contain only ‘allow’ or ‘inhibit’ in the action part.
Other actions, including modification, execution, and de-
lay [51], is the subject of current work.

An example ECA rule is given in Listing 2. It shows an
ECA rule for a copy event, as defined by <id> element of
the triggerEvent section. As mentioned above, the scope
will be used by BRUCE to associate this policy with one
specific browser tab. The PDP returns the action inhibit if
the condition holds true; in this example, if the permission
class of the content is either medium or low.

<controlMechanism >
<id>copySelected (4 bed490f465e5)</id>

<description > prevents copying a content , if
the content is marked by a specific class

</description >
<triggerEvent

xmlns="http ://www.master -fp7.eu/event">
<id>copy </id>
<parameter name="scope"

value ="4 bed490f465e5 "/>
</triggerEvent >
<condition

xmlns="http ://www.master -fp7.eu/pastOSL">
<or>

<XPathEval >
/triggerEvent/parameter[@name=’class ’]/

@value=’mediumPermission ’
</XPathEval >
<XPathEval >

/triggerEvent/parameter[@name=’class ’]/
@value=’lowPermission ’

</XPathEval >
</or>

</condition >
<actions >

<inhibit/>
</actions >

</controlMechanism >

Listing 2: Exemplary ECA rule

3.4 Policy Deployment
Before the generated policy can be deployed, SCUTA has

to verify the existence of BRUCE on the client side. If
BRUCE is not installed, the client should not render any

usage-protected data at all. The general idea is that server-
side applications that support usage control would drive
client users to obtain and install the extension because if
no usage control enforcement mechanism is in place, access
to usage-protected data would simply be denied. Once the
existence of BRUCE has been established, SCUTA needs to
send control information to BRUCE, including usage control
policies and the scope IDs assigned to delivered pages. We
implemented this with the help of custom HTTP headers.
By doing so, it is also possible to use HTTPS communica-
tion without much effort to prevent some attack scenarios
(Section 4).

Table 4: Header Field Commands
Header Field Value Semantics
x-auth phrase an arbitrary

string
The extension send the x-
auth phrase value to the URL
specified in x-auth url.

x-auth url a valid URL
x-policy url a URL point-

ing to a policy
The extension fetches the pol-
icy and inserts it into its re-
sponsible PDP.

x-set scope a unique iden-
tifier

The receiving tab is associated
with the value. Usage com-
mands will be checked for al-
lowance with the scope as one
parameter.

x-release scope a unique iden-
tifier

The scope associations for all
tabs to the given value are re-
moved and usage commands
are blocked until a new URL
is loaded.

x-revoke policy one or more
identifiers sep-
arated by pipe
symbols

The extensions informs the
PDP about the mechanisms
which shall be removed.

To the end of providing some basic authentication without
relying on Public Key Infrastructures, we introduced two
HTTP headers, x-auth phrase and x-auth url (see Table 4
for a list of header field commands, or HFCs). SCUTA starts
by sending an authentication phrase (a nonce) to the client.
By using HTTP headers, the server sends an authentication
URL which is used by the client to send back the authen-
tication phrase. A normal browser without a BRUCE PEP
installed would simply not answer with an authentication
response. Therefore, after a certain timespan, SCUTA can
safely assume that the client is not equipped with BRUCE.

This very simple type of authentication is not intended to
be secure against malicious attacks but only introduced as a
placeholder for a more sophisticated solution. Such a solu-
tion could be based on the usage of public key cryptography.
The above nonce can then be encrypted by SCUTA using the
extension’s public key. This will make sure that the nonce
can only be decrypted by the extension using the private
key. The extension then would compute the response to the
received nonce and return it encrypted with the SCUTA’s
public key. Because this authentication mechanism would
require the extension to have its own private key, we would
of course need to secure it from being leaked or tampered
with. For a more detailed security analysis, see Section 4.1.1.

Once the authentication has succeeded, SCUTA sends the
header field command x-policy url. BRUCE then fetches the
respective policy and the scope ID (header field x-set scope),
and deploys the policy on the PDP via an XML-RPC mes-
sage.

Allow event
[UC not active]

Prepare event

permission query

[UC active]

Determine scope

of event target tab

Map event to

abstract command

Identify target data

Intercept

triggered event

Query PDP for

event permission

[event allowed]

Abort event
[event inhibited]

Determine target data

permission class

Figure 2: Client-side enforcement–the BRUCE per-
spective

If policies are to be revoked because a session ends, then
SCUTA communicates this to BRUCE via the remaining
two header fields, x-release scope and x-revoke policy. BRU-
CE then instructs the PDP accordingly.

3.5 Client-Side Policy Enforcement
Figure 2 provides a high level description of the usage

control enforcement functionality of BRUCE.
Remember that user commands (e.g., Ctrl-C) trigger in-

ternal events (e.g., “cmd copy”). In a nutshell, whenever
such an internal event is raised, BRUCE retrieves the corre-
sponding abstract event. This is because policies are spec-
ified in terms of abstract events. BRUCE then queries the
PDP w.r.t. the abstract event that corresponds to the inter-
nal event. Depending on the decision of the PDP, it does or
does not execute the code that corresponds to the internal
event.

From BRUCE’s viewpoint, each usage has three aspects:
a scope, a target data item, and the abstract event that the
usage is mapped to. Since our policies are based on permis-
sion classes (one rule per usage event per permission class
unless default permissions apply) rather than on data items,
BRUCE does not need to send a reference to the target data
item to the PDP. Instead, queries sent to the PDP contain
the abstract usage event and the scope as parameters.

The scope of an event corresponds to the scope ID of the
policy that was generated for the protected page on which
the event was triggered—that is, one specific session in a
browser tab. The scope must be sent because there may
be multiple tabs with different applicable policies. With
this information from a query, the PDP knows which of the
active policies applies.

The target of an event is either the entire protected page,
a single DOM element or a set of DOM elements on the
page (the Document Object Model, DOM, provides a struc-
tural representation of HTML documents which represents
HTML elements as objects that can be accessed from ar-
bitrary programming languages). This depends on which
event the user triggered and whether or not multiple items
are, for instance, selected on the page that is to be protected.

The extension sends a query to the PDP for each usage
event. If the response is inhibition, then the intercepted
event is aborted. The architecture and inner workings of
BRUCE are described in Appendix A.

3.6 Example Revisited
Now we demonstrate how SCUTA and BRUCE help Al-

ice grant different usage rights to Bob and Carol. We know
that Alice has rated Bob as best friend and Carol as ac-
quaintance. This assigns Bob and Carol the trust ratings of
1 and .4, respectively. Alice has a low sensitive picture with
a sensitivity of .4. When Bob and Carol access this picture
in Alice’s profile, the picture is delivered to Bob’s client with
medium permission class (p = 1∗(1− .4) = .6). A respective
code snippet is shown in Listing 1. Carol’s client gets the
picture with low permission class (p = .4 ∗ (1 − .4) = .24).
The definition of actions in permission classes is as shown in
Table 3. According to these settings in Alice’s profile, Bob
is allowed to copy the picture while Carol is only allowed
to view it and cannot copy. The generated policy consists
of a set of rules like the one in Listing 2. So when Carol
tries to copy this picture, BRUCE queries the PDP for the
allow/inhibit status of the event ‘copy.’ The PDP replies
with ‘inhibit’ and the extension blocks the abstract com-
mand ‘copy.’ Thus Alice’s picture is protected for copy by
Carol.

4. EVALUATION
The goal of our system evaluation is twofold. On the one

hand, we want to analyze and demonstrate the ability of
our system to withstand deliberate attacks from malicious
users. To this end, we explored possible ways in which the
security of our system can be compromised by means of
attack trees. On the other hand, we want to understand
the limitations of our system. These were found out as a
result of the security analysis. This helped us finalize the
assumptions under which the system can provide guarantees
about the enforcement of usage control (Section 4.2), the
limitations of the system (Section 4.3) and future work in
this direction.

4.1 Security analysis
Our evaluation is strictly limited to the application layer

and does not cover vulnerabilities arising from the other lay-
ers. For example, the system can be circumvented by access-
ing usage controlled data directly in the cache folder via an
external file browser, by inspecting the main memory with a
memory spy, or by taking screenshots from the screen. We
will get back to these issues in Section 5. Moreover, we do
not consider attacks from WBSN providers since these are
considered trustworthy in our context.

The attack tree for performing prohibited events on data
is shown in Figure 3. The subtrees with the goals “get access
to database” and “hijack user account” show attack scenar-
ios for SCUTA.2 We do not go into the details of them as
they are classical security problems in themselves. However,
we mention one standard attack in which resources such as
pictures can be directly accessed by typing their URLs in
the address bar. Luckily, there is a standard solution to
this problem. The server generates a (random) token and

2Login shows the attack scenario where a malicious user can
login as SCUTA administrator

Perform

inhibited

actions on data

Get access to

database

Hijack user

account

Circumvent

usage control

system

Login
Direct

access

SQL

injection

Social

engineering
Guess

password

Dictionary

attack

Brute force

attack

Social

engineering

Guess

password

Transfer

session to

another

browser

Circumvent

BRUCE

Option not further investigated

Figure 3: Attack tree for the system

a timestamp and includes them in the URL of the sensitive
data item. The token is not bound to any user but is specific
to a time interval which is used to invalidate the URL after
a given timeout. In other words, before shipping the data
item, the web server checks if a permitted time interval has
not been exceeded; or it simply deletes the data item after
the first download. In Listing 1, we show the unmodified
URL of the image for simplicity’s sake.

In the remainder of this section, we explore the subtree
“circumvent BRUCE” in detail. For analyzing the circum-
vention of BRUCE, we treated SCUTA and the PDP mod-
ule as black boxes and performed the security analysis under
the assumption that they are secure with respect to the us-
age control system’s specified functionality. Further security
analysis covers three aspects of BRUCE: (i) Firefox’s exten-
sion system; (ii) communication between SCUTA and the
usage control extension; and (iii) communication between
the PDP module and the usage control extension. The sub-
tree is detailed in Figure 4.

Circumvent

BRUCE

Modify

communication

with SCUTA

Modify

communication

with the PDP

x-policy_url

x-set_scope

x-revoke_policy

Modify

content DOM

Override

extension

Remove

extension

Modify XML-

RPC comm.

Option not further investigated

Fake

authentication

Modify

content DOM

Fake

authentication

Modify

extension

Circumvent from

inside Firefox

Remove

extension’s

listeners

Restore

UI-XUL

Redirect

queries

Modify

responses

Figure 4: Attack tree for BRUCE

System vulnerabilities can be exploited in all the three
submodules. As the server delivers sensitive content as soon
as the client seems to be authentic, an attacker only needs
to fake the authentication of the extension and leave the rest
to the server itself. The extension only processes messages

and commands it receives. Whether they were manipulated
before they arrived is not detectable. Also, the interception
and dropping of messages is not detectable. At the PDP, as
it only gets called by the extension and does not initiate any
communication with other systems by itself, it is quite easy
to overcome it. There is no chance that the PDP module
gets to know about modification or omission of policies and
permission queries. Also, if the PDP resides at a remote
node additional points of attack in the system arise because
the attacker could try to break in the traffic routed between
the PDP and the client.

4.1.1 Modifying client-server communication
Both the message contents and its headers can be modified

between SCUTA and BRUCE. As the provided solution uses
information about HTML tags stored in the document, the
system could be compromised by their modification. Policies
refer to certain attributes of HTML elements to define usage
restrictions. If the values of these attributes were changed,
the extension would query for permission of commands with
parameter values that differ from the original ones used in
the policies. Thus the PDP module would allow those com-
mands although they should have been inhibited.

This kind of attack could also be performed from the in-
side of Firefox by a malicious extension that modifies a web
page after rendering, leading to the same result.

Instead of modifying HTML content, an attacker can also
change the message headers. The header fields that can
be used for this are ’x-policy url’, ’x-revoke policy’ and ’x-
set scope’.

Remember that ’x-policy url’ indicates the URL for the
policy that has to be applied to the message’s content. The
extension will obtain and then insert it into the PDP module
in order to make sure that it will be enforced. But as the
URL’s authenticity and integrity is not checkable, one could
either replace the URL by another which points to a policy
that grants all usage, or even easier: just delete this header.

Upon inspection of the HTTP messages that the browser
receives, one is able to find out which policies were sent to
it. Whenever a message with the header field ’x-policy url’
set arrives, the attacker can retrieve the specified policy. By
investigating it, he could determine the IDs of the activated
policies. This knowledge allows to insert ’x-revoke policy’
header fields with exactly these IDs into messages before
they reach the browser. Due to these header fields, the
extension would instruct the PDP module to discard the
respective policies and from then on usage control for the
messages mentioned in the beginning would be broken.

If a message contains a set scope instruction, this means
the server tells the extension to put the contents under usage
control. So the simplest way to get around the system would
be to remove this header field before the messages arrive at
the browser. Although this would be sufficient, changing the
value of this header to something that is not a known scope
in the PDP module instead would have the same effect. The
tab receiving the message would be taken under usage con-
trol and triggered commands checked for permission. But,
as the PDP module would not know of the modified scope
value, it would allow the commands.

Manipulation of messages and headers is a serious threat
to the system. As the three involved subsystems do not ex-
change additional information to validate their intended ac-
tions and the integrity of emitted messages, one could easily

compromise the system using a man-in-the-middle attack.
The rather simple solution in this case is to use HTTPS
instead of HTTP for the communication.

4.1.2 Modifying communication with the PDP
The usage control framework could also be circumvented

by modification or redirection of messages exchanged be-
tween the extension and the PDP module. Due to the lack
of integrity and authenticity checks in the system, such at-
tacks would not be noticed. The XML-RPC interface pro-
vided by the PDP module offers methods for policy inser-
tion, command permission checks and revocation of policies.
An attacker can modify the request or response to circum-
vent the mechanism easily. For policy insertion calls, there
are several kinds of changes that could be applied, but the
easiest would be to replace the given policy with an empty
one as this would lead to permission for all queried events.
An attacker can also record the identifiers of the specified
control mechanisms in the policy, instead of modifying them.
These identifiers then can be put into a fake policy revoca-
tion call. The attacker can also redirect communication to
another target server that supports the same interface as
the PDP, but which handles incoming calls according to the
attacker’s wish.

A man-in-the-middle attack can easily compromise the us-
age control system just like it can by modifying the client-
server communication. However, while the client and server
have the possibility to use HTTPS in place of HTTP to ex-
change their messages, our current PDP module does not
support HTTPS for communication (which is not a concep-
tual problem but a matter of maturity of our implemen-
tation). Hence, the unencrypted messages can be modified
with no big effort. Therefore encryption and integrity checks
should be considered in future work. For example, to dis-
cover if policies have been modified, the PDP module could
compute a hash over received policies and send it to the
originating web application. This way policy integrity could
be checked, assuming authenticity of such messages could be
assured. Tampered policy revocations could be prevented if
the PDP module asked the respective web applications for
authenticity of incoming revocation instructions.

4.1.3 Circumvention from within Firefox
Another vulnerability arises from interfering with BRUCE’s

behavior from within the Firefox browser. This can be done
by modifying BRUCE’s source code (which is written in
Javascript) or deploying a nullifying extension. Some of the
exploits are listed below:

• Reset usage command handling by changing back the
overridden commands to their original definition;

• Revoke policies directly after they have been sent to
the PDP module;

• Modify the scope mapping mechanism, e.g. discard all
mappings;

• Alter usage command handling such that no queries
are sent to the PDP module;

• Add internal events (and corresponding user commands,
see Section 3.3.3) that exactly copy the behavior of
usage-controlled internal events—since the name of the
internal event is different, usage control requirements
will not be enforced for these new events; or

• Fake the extension authentication.

Besides this, providing object orientation via prototyping-
based programming is a special feature of Javascript that
makes it easy to modify existing objects. This includes
the possibility to replace methods by any arbitrary func-
tion definition. This complicates shielding the extension’s
code against malicious injections. Also, attempts to protect
the extension against modifications of its source code would
be futile as they could just be removed.

The aforementioned change can also be done by extract-
ing the extension from its XPI archive3, then modifying the
corresponding source file and repacking it. After the next
start of Firefox, usage control would not work anymore. To
counter this, BRUCE’s integrity should be checked right be-
fore it gets loaded. Another possibility to achieve this attack
goal is by installing a malicious extension which can override
the methods dynamically. In this case an integrity check at
the start may prove useless. Detecting such changes dur-
ing runtime appears to involve a considerable effort. The
threat induced by a possible malicious extension is the bot-
tleneck of the current system. Perhaps it is feasible to check
other installed extensions if they modify BRUCE before the
browser starts—a subject of future work.

4.2 Assumptions
Based on the evaluation of the system in the previous

paragraphs, we draw the set of assumptions under which the
system provides usage control according to the stipulated
requirements and cannot be circumvented or forced to work
in unexpected ways.

Our system guarantees client-side browser-level enforce-
ment of usage control policies specified by the user and gen-
erated at the server side (user requirements given in Table 1)
under the condition that the following requirements are met:

1. The communication between SCUTA and the Firefox
extension is carried out over a secure channel.

2. The PDP module is extended by the capability to com-
municate over a secure channel.

3. The client must be able to guarantee that the Firefox
extension is not modified before and after installation.

4. The client must be able to guarantee that no malicious
extension is installed and if installed can be detected
while running the extension.

5. A tamper-proof mechanism to authenticate the Firefox
extension with SCUTA exists.

6. As every data that is delivered to the client is also
stored in cache folders or displayed on a screen at the
client side, usage control enforcement mechanisms ex-
ist to solve the problem at other levels of abstraction
(see Section 5).

To meet the requirements 3 and 4, one could think of
a client system which provides usage control on the levels
below the application level. Then, the installation package
of the Firefox extension could be shipped with a policy at-
tached which implies satisfaction of these requirements.

Under the condition that the aforementioned requirements
hold true, we consider our system to be secure at the client
side and at the communication links level with respect to
the attacker model presented in the security analysis. How-
ever, at the server side, attacks like social engineering, cross

3XPI is short for Cross-Platform Installer Module.
It belongs to Mozilla’s XPInstall technology, see
https://developer.mozilla.org/en/XPI.

site scripting, hacking user accounts and breaking into the
database or the system are classical problems and we cannot
provide any guarantees against them in this paper. Looking
into such more general security issues is not in the scope of
this paper (Section 1).

4.3 Limitations
The developed system enforces usage control for data that

is delivered by websites via web pages to the client. It imple-
ments the requirements given in Table 2. However, there is
one limitation of our implementation in terms of functional
completeness: The solution has been implemented only for
native data. By native data we mean the content that Fire-
fox can render by itself and this does not include contents
handled by plug-ins [53], for example, Flash or PDF.

The limitations of the system, found during the evalua-
tion, can be summarized as follows.

1. The system provides usage control guarantees only for
the case of native data.

2. The system provides guarantees only if the assump-
tions in Section 4.2 are met.

3. The system provides usage control guarantees only for
the single user page scenario (see below).

4. The system provides usage control guarantees only at
the browser’s level of abstraction. Data stored in cache
folders is not protected; screenshots can also be taken.

In a single user page scenario, the page being rendered
contains data only about one user, e.g., Alice’s homepage.
This can be contrasted to multiple users page scenario where
the rendered page contains data about multiple users e.g.
page displaying search results for “Alice” as there can be
many users with the name Alice and their basic information
like name, city, country are displayed on the webpage in
a list. In the evaluation, we also found that implementing
this does not seem to be a conceptual problem and is left as
future work.

5. CONCLUSIONS AND FUTURE WORK
We have presented and evaluated a framework for enforc-

ing usage control requirements at the application level for
the particular case of web browsers. As an example, we
have implemented our framework in the context of privacy
protection in web based social networks. We use the case of
WBSNs only for the demonstration of our proposed mech-
anism. The usefulness of our mechanism is of course not
limited to WBSNs but extends to all the web applications
that are accessed using a web browser. Referring to the use
case in the introduction, when Alice specifies Bob and Carol
as different kinds of contacts, they are assigned a trust level
and based on the sensitivity of the data being accessed, Bob
and Carol receive data with different policies. So while Bob
can copy and print Alice’s personal data and pictures, Carol
can only view selected parts of the profile and cannot copy
or print anything.

In the proposed framework, SCUTA acts as a policy gen-
eration point which can generate and render usage con-
trol policies in the form of ECA rules. The generated pol-
icy is communicated to the client through HTTP header
fields. BRUCE provides usage control for Firefox’s native
data types to SCUTA. Policies that are bound to delivered
content are fetched and then enforced by the framework. As

it only serves as policy enforcement point, it utilizes an ex-
ternal policy decision point via a fixed XML-RPC interface.

As the evaluation points out, our system guarantees client
side data usage control enforcement at the browser level if
certain assumptions hold true. This guarantee is with re-
spect to the attacker model presented in the security analy-
sis part of the evaluation. However, additional work has to
be done in order to make sure that these assumptions are
always met, e.g., for all clients and all content types. In this
respect, our solution is not mature yet. To complete the set
of manageable kinds of data, e.g., by Flash animations, addi-
tional effort has to be put into the examination of embedded
data types, which are rendered in Firefox through plug-ins.
The heterogeneity among them presents a challenge for a
general solution which is independent of particular content
types.

The guarantees provided by our mechanism depend on
active security mechanisms implemented in other parts of
the system. The security analysis investigated several possi-
ble types of circumvention. Intuitively, integrating encryp-
tion and certification into the system could improve security.
Also, exchanging the header field commands by an interface
that provides the same capabilities while being less prone to
manipulations could contribute to better security. Another
line of future work is to extend the implementation of usage
control for pages that have data about multiple users.

The aforementioned challenges only mark the beginning
of what future work has to cover in order to achieve relevant
usage control systems. In this context, issues concerning
usage control at different layers of abstraction also need to
be addressed. For example, when a browser caches a picture
which is protected by usage control at the browser level, in
a file on the hard disk, usage control should be in place for
the operating system level. Similarly, there must be a way
to inhibit screenshots.

From the time when the picture “leaves the browser,” the
receiving layer should be capable of continuing usage control
enforcement. For this we need a data-centric approach for
usage control that transcends the traditional approach based
on events: the flow of data through the different levels of ab-
straction has to be detected, and enforcement of data usage
must take place at all these levels. We are currently working
on such a framework. There already is usage control enforce-
ment with data flow tracking for the operating system [12]
and the X11 levels [13], and now we are working towards con-
necting them with the browser. We have already extended
BRUCE to (1) identify protected pictures with files cached
on the hard disk and to (2) pass on the information about
the protected cached data along with the associated policies
to the enforcement mechanism at the operating system level
where the cache file can be usage-controlled. In a similar
vein, we are working on a connection with the enforcement
mechanism at the X11 level to inhibit screenshots.

Finally, we see another research challenge in the context
of heterogeneous cyber-physical systems. In this direction
we are working on connecting a smart metering system to
SCUTA where the social network fetches energy usage data
from the smart meter according to policies specified by the
smart energy user. In this case, we are interested in looking
into the issues of policy conflicts and evolution of obligations
across system boundaries. Another point of interest is the
delegation of rights and duties in such a system where usage
control is not centralized but distributed.

6. REFERENCES
[1] A. Pretschner, M. Hilty, and D. Basin. Distributed

usage control. Commun. ACM, 49(9):39–44, 2006.

[2] J. Park and R. Sandhu. The UCON ABC usage
control model. ACM Trans. Inf. Syst. Secur.,
7(1):128–174, 2004.

[3] D. Povey. Optimistic security: a new access control
paradigm. In Proceedings of the 1999 workshop on
New security paradigms, NSPW ’99, pages 40–45.
ACM, 2000.

[4] R. Iannella (ed.). Open Digital Rights Language v1.1,
2008. http://odrl.net/1.1/ODRL-11.pdf.

[5] Multimedia framework (MPEG-21) – Part 5: Rights
Expression Language, 2004. ISO/IEC standard
21000-5:2004.

[6] P. Ashley, S. Hada, G. Karjoth, C. Powers, and
M. Schunter. Enterprise Privacy Authorization
Language (EPAL 1.2). IBM Technical Report, 2003.
http://www.zurich.ibm.com/security/

enterprise-privacy/epal/Specification/.

[7] Open Mobile Alliance. DRM Rights Expression
Language V2.1, 2008.
http://www.openmobilealliance.org/Technical/

release_program/drm_v2_1.aspx.

[8] X. Zhang, J. Park, F. Parisi-Presicce, and R. Sandhu.
A logical specification for usage control. In SACMAT
’04: Proceedings of the ninth ACM symposium on
Access control models and technologies, pages 1–10.
ACM, 2004.

[9] M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and
T. Walter. A policy language for distributed usage
control. In Proc. ESORICS, pages 531–546, 2008.

[10] N. Damianou, N. Dulay, E. Lupu, and M. Sloman.
The Ponder Policy Specification Language. In Proc.
Workshop on Policies for Distributed Systems and
Networks, pages 18–39, 1995.

[11] W3C. The Platform for Privacy Preferences 1.1
(P3P1.1) Specification, 2005.
http://www.w3.org/TR/2005/WD-P3P11-20050104/.

[12] M. Harvan and A. Pretschner. State-based Usage
Control Enforcement with Data Flow Tracking using
System Call Interposition. In Proc. 3rd Intl. Conf. on
Network and System Security, pages 373–380, 2009.

[13] A. Pretschner, M. Buechler, M. Harvan, C. Schaefer,
and T. Walter. Usage control enforcement with data
flow tracking for x11. In Proc. 5th Intl. Workshop on
Security and Trust Management, pages 124–137, 2009.

[14] M. Dam, B. Jacobs, A. Lundblad, and F. Piessens.
Security monitor inlining for multithreaded java. In
Proc. ECOOP, pages pp. 546–569, 2009.

[15] I. Ion, B. Dragovic, and B. Crispo. Extending the Java
Virtual Machine to Enforce Fine-Grained Security
Policies in Mobile Devices. In Proc. Annual Computer
Security Applications Conference, pages 233–242.
IEEE Computer Society, 2007.

[16] L. Desmet, W. Joosen, F. Massacci, K. Naliuka,
P. Philippaerts, F. Piessens, and D. Vanoverberghe.
The S3MS.NET Run Time Monitor: Tool
Demonstration. ENTCS, 253(5):153–159, 2009.

[17] U. Erlingsson and F. Schneider. SASI enforcement of
security policies: A retrospective. In Proc. New
Security Paradigms Workshop, pages 87–95, 1999.

[18] B. Yee, D. Sehr, G. Dardyk, J. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar.
Native Client: A Sandbox for Portable, Untrusted x86
Native Code. In Proc IEEE Symposium on Security
and Privacy, pages 79–93, 2009.

[19] G. Gheorghe, S. Neuhaus, and B. Crispo. xESB: An
Enterprise Service Bus for Access and Usage Control
Policy Enforcement. In Proc. Annual IFIP WG 11.11
International Conference on Trust Management, 2010.

[20] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song.
Dynamic spyware analysis. In Proceedings of USENIX
Annual Technical Conference, June 2007.

[21] Adobe livecycle rights management es.
http://www.adobe.com/products/livecycle/

rightsmanagement/indepth.html, August 2010.

[22] Microsoft. Windows Rights Management Services.
http://www.microsoft.com/windowsserver2008/en/

us/ad-rms-overview.aspx, 2010.

[23] A. Pretschner, M. Hilty, F. Schutz, C. Schaefer, and
T. Walter. Usage control enforcement: Present and
future. Security & Privacy, IEEE, 6(4):44–53, 2008.

[24] P. Kumari. Requirements analysis for privacy in social
networks. 8th International Workshop for Technical,
Economic and Legal Aspects of Business Models for
Virtual Goods, Namur, 2010.

[25] A. Acquisti and R. Gross. Imagined Communities:
Awareness, Information Sharing, and Privacy on the
Facebook. In Privacy Enhancing Technologies
Workshop (PET), Robinson College, Cambridge,
United Kingdom, June 2006.

[26] C. Dwyer and S. Hiltz. Trust and privacy concern
within social networking sites: A comparison of
Facebook and MySpace. In Proceedings of the
Thirteenth Americas Conference on Information
Systems, Keystone, Colorado, USA, August 2007.

[27] J. Grimmelmann. Facebook and the Social Dynamics
of Privacy. Legal Studies, New York Law School,
7:33–34, 2008/2009.

[28] L. Edwards and I. Brown. Data Control and Social
Networking: Irreconcilable Ideas? In A. Matwyshyn,
editor, Harboring data: Information security, law, and
the corporation. Stanford University Press, 2009.

[29] K. Williams, A. Boyd, S. Densten, R. Chin,
D. Diamond, and C. Morgenthaler. Social Networking
Privacy Behaviors and Risks. Seidenberg School of
CSIS, Pace University, USA, 2009.

[30] C. Yeung, I. Liccardi, K. Lu, O. Seneviratne, and
T. Berners-Lee. Decentralization: The future of online
social networking. In W3C Workshop on the Future of
Social Networking Position Papers, 2009.

[31] The friend of a friend (foaf) project.
http://www.foaf-project.org/docs, September
2010.

[32] A. Cutillo, R. Molva, and T. Strufe. Privacy
preserving social networking through decentralization.
In WONS’09: Proceedings of the Sixth international
conference on Wireless On-Demand Network Systems
and Services, pages 133–140. IEEE Press, 2009.

[33] Safebook publications.
http://www.safebook.us/publications.html,
September 2010.

http://odrl.net/1.1/ODRL-11.pdf
http://www.zurich.ibm.com/security/enterprise-privacy/epal/Specification/
http://www.zurich.ibm.com/security/enterprise-privacy/epal/Specification/
http://www.openmobilealliance.org/Technical/release_program/drm_v2_1.aspx
http://www.openmobilealliance.org/Technical/release_program/drm_v2_1.aspx
http://www.w3.org/TR/2005/WD-P3P11-20050104/
http://www.adobe.com/products/livecycle/rightsmanagement/indepth.html
http://www.adobe.com/products/livecycle/rightsmanagement/indepth.html
http://www.microsoft.com/windowsserver2008/en/us/ad-rms-overview.aspx
http://www.microsoft.com/windowsserver2008/en/us/ad-rms-overview.aspx
http://www.foaf-project.org/docs
http://www.safebook.us/publications.html

[34] Peerson: Privacy-preserving p2p social networks.
http://www.peerson.net, September 2010.

[35] D. Kalofonos, Z. Antoniou, F. Reynolds,
M. Van-Kleek, J. Strauss, and P. Wisner. MyNet: a
Platform for Secure P2P Personal and Social
Networking Services. In 6th IEEE International
Conference on Pervasive Computing and
Communications (PERCOM’08), Hong-Kong, China,
March 2008.

[36] Z. Antoniou and D. Kalofonos. User-Centered Design
of a Secure P2P Personal and Social Networking
Platform. In 3rd IASTED International Conference on
Human-Computer Interaction (IASTED-HCI’08),
Innsbruck, Austria, March 2008.

[37] K. Gollu, S. Saroiu, and A. Wolman. A Social
Networking-Based Access Control Scheme for Personal
Content. In 21st ACM Symposium on Operating
Systems Principles (SOSP ’07), Stevenson,
Washington, October 2007.

[38] A. Tootoonchian, K. Gollu, S. Saroiu, Y. Ganjali, and
A. Wolman. Lockr: Social Access Control for Web 2.0.
In First ACM SIGCOMM Workshop on Online Social
Networks (WOSN), Seattle, WA, August 2008.

[39] B. Carminati, E. Ferrari, and A. Perego. Enforcing
access control in web-based social networks. ACM
Trans. Inf. Syst. Secur., 13(1):1–38, 2009.

[40] Website of the Scramble! project. http://www.
primelife.eu/results/opensource/39-scramble,
September 2010.

[41] Website of the clique project.
http://clique.primelife.eu/, September 2010.

[42] F. Beato, M. Kohlweiss, and K. Wouters. Enforcing
access control in social networks. In Proc. HotPets,
2009.

[43] B. Berg and R. Leenes. Audience segregation in social
network sites. In Proceedings for
SocialCom2010/PASSAT2010.IEEE, pages 1111–1117,
2010.

[44] S. Kruk, S. Grzonkowski, A. Gzella, T. Woroniecki,
and H. Choi. D-foaf: Distributed identity management
with access rights delegation. In Proc. Asian Semantic
Web Conference 2006, 2006.

[45] FOAFRealm. Foafrealm project site.
http://www.foafrealm.org/, Jul 2010.

[46] Mozilla’s add-on repository AMO.
https://addons.mozilla.org/, July 2010.

[47] The tabulator extension.
http://dig.csail.mit.edu/2007/tab, September
2010.

[48] J. Peschla. Data usage control for a web application:
The client. Bachelor’s thesis, University of
Kaiserslautern, July 2010.

[49] Browser market share. http://marketshare.
hitslink.com/browser-market-share.aspx?qprid=

0&qptimeframe=M&qpsp=138&qpnp=1, September 2010.

[50] Phpizabi homepage. http://www.phpizabi.net/,
September 2010.

[51] A. Pretschner, M. Hilty, D. Basin, C. Schaefer, and
T. Walter. Mechanisms for Usage Control. In Proc.
ACM Symposium on Information, Computer &
Communication Security, pages 240–245, 2008.

[52] MASTER consortium. MASTER Deliverable 5.1.1:
Security Enforcement Language.
http://www.master-fp7.eu/, April 2010.

[53] Mozilla’s plugin documentation.
https://developer.mozilla.org/en/Plugins, May
2010.

APPENDIX
A. COMPONENTS OF BRUCE

In this section we give a brief overview of the major com-
ponents of the policy enforcement point. They appear in
the order in which they are called throughout usage control
setup and enforcement.

1

ECA Monitor

PDP Module

Usage

Commands

TabsProgress

Event

Usage Trigger

Browser

BRUCE

CommandsProxy

TabsProgress

Listener

HeaderField

Commands

Executioner

ScopeMapper

1. incoming

HTTP message

2. identified

HFCs

3
.2

 re
c
e

iv
in

g
 ta

b

a
n

d
 s

e
t s

c
o

p
e

7. event permission query

9. [if allowed]

triggered event

5. scope of

event target tab

3
.1

 s
p

e
c
ifie

d
 p

o
lic

y

Legend

System

Component

4. trigger event

DataIdentifier

6. data affected

by event

Data Flow

8. stipulated action

Figure 5: Architecture of BRUCE

TabsProgressListener is the component that is attached as
event listener to the browser window so that it gets notified
about all web-request and -response related events. This
way it examines the HTTP headers of each incoming web-
response for HFCs. Identified HFCs are forwarded to Head-
erFieldCommandsExecutioner which carries them out. Be-
sides, TabsProgressListener ensures that the browser cache
cannot be accessed via Firefox itself.

HeaderFieldCommandsExecutioner carries out HFCs re-
ceived from TabsProgressListener. Therefore it either com-
municates with the WBSN (authentication), the PDP (pol-
icy activation and revocation) or instructs ScopeMapper to
update its mapping (scope assignment or release).

ScopeMapper is the component that maintains the associ-
ations between tabs and scopes.

CommandsProxy is the component that intercepts trig-
gered usage events and decides about their progress. To
determine whether an intercepted event has to be aborted,
CommandsProxy queries ScopeMapper for the scope of the
active tab and retrieves the event target from DataIdentifier.
When a scope is set, then for each target element it queries
the PDP with the parameter values for scope and abstract
command. If for all queries the response is approval, the
intercepted event is resumed, otherwise it is aborted. If no
scope is set for the active tab it is either blocked and the
event is aborted or the displayed page is not under usage
control and the event is resumed.

DataIdentifier is an encapsulation of DOM element de-
termination facilities. Given a usage related event and the
target page it calculates the set of affected elements which
is the target of the event as explained in Section 3.5.

http://www.peerson.net
http://www.primelife.eu/results/opensource/39-scramble
http://www.primelife.eu/results/opensource/39-scramble
http://clique.primelife.eu/
http://www.foafrealm.org/
https://addons.mozilla.org/
http://dig.csail.mit.edu/2007/tab
http://marketshare.hitslink.com/browser-market-share.aspx?qprid=0&qptimeframe=M&qpsp=138&qpnp=1
http://marketshare.hitslink.com/browser-market-share.aspx?qprid=0&qptimeframe=M&qpsp=138&qpnp=1
http://marketshare.hitslink.com/browser-market-share.aspx?qprid=0&qptimeframe=M&qpsp=138&qpnp=1
http://www.phpizabi.net/
http://www.master-fp7.eu/
https://developer.mozilla.org/en/Plugins

	Introduction
	Related work
	Usage Control Framework
	User and System Requirements
	High Level Interactions
	Policies
	Permissions
	Server-Side Policy Generation
	Events
	Concrete syntax: ECA Rules

	Policy Deployment
	Client-Side Policy Enforcement
	Example Revisited

	Evaluation
	Security analysis
	Modifying client-server communication
	Modifying communication with the PDP
	Circumvention from within Firefox

	Assumptions
	Limitations

	Conclusions and future work
	References
	Components of BRUCE

