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Abstract. Usage control is concerned with what happens to data af-
ter access has been granted. In the literature, usage control models have
been defined on the grounds of events that, somehow, are related to data.
In order to better cater to the dimension of data, we extend a usage con-
trol model by the explicit distinction between data and representation
of data. A data flow model is used to track the flow of data in-between
different representations. The usage control model is then extended so
that usage control policies can address not just one single representation
(e.g., delete file1.txt after thirty days) but rather all representations of
the data (e.g., if file1.txt is a copy of file2.txt, also delete file2.txt). We
present three proof-of-concept implementations of the model, at the op-
erating system level, at the browser level, and at the X11 level, and also
provide an ad-hoc implementation for multi-layer enforcement.

1 Introduction

If usage control requirements are to be enforced on data, one must take into ac-
count that this data exists in multiple representations. For instance, there can be
multiple copies of a file, or multiple clones of an object. Similarly, an image can
exist as network packet, Java object, window pixmap, data base record, or file.
The representations potentially reside at different system layers, including op-
erating system, runtime system, window manager, and DBMS. High-level usage
control requirements such as “don’t copy” have different meanings at different
layers (copy a file, take a screenshot, duplicate a database record, copy&paste in
a word processor). While in principle, it is possible to enforce these requirements
at the level of CPU instructions, it turns out to be hard to identify, in general,
precisely those instructions that pertain to copying a file, taking a screenshot,
etc. Therefore, we consider it convenient to simultaneously enforce usage control
requirements at all relevant system layers. This, however, requires following the
flow of data from one representation to another within and across system layers.

We present a framework and its implementation for combining usage control
enforcement with data flow tracking technology. One example of the resulting
system is a social network in which users may view pictures in their browsers
(first representation, first layer) but not copy cache files (second representa-
tion, second layer) or take screenshots (third representation, third layer) [1]. We
describe the model and its prototypical implementation; detailed security and
performance analyses are not in the scope. We organize our paper along six steps.
Step 1: Specification-level usage control policies based on events We start with
a policy language from the literature [2] that allows us to state requirements on
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future events (“at most three copies,” “whenever data is accessed, notify me,”
“don’t delete for five years,” “do delete after thirty days”). In this model, usage
control policies are interpreted as sets of allowed sequences of sets of events. We
call these policies specification-level policies.

Step 2: Data and containers; data state In order to cater to the dimension of
data, we distinguish between data and containers. Containers (files, pixmaps,
memory regions, network packets) reflect different representations of data. This
is captured by the data state σ ∈ Σ of a system which essentially maps containers
to sets of data items. Independent of any policies, the data state of a system
changes with every step of the system. We capture this by a transition function
% that maps a data state and a set of events to another data state. This data
flow model has been described and instantiated to various levels of the system
before [3–5]. In this paper, we embody the data flow model in a usage control
policy language and an integrated semantic model; together with the prototype
implementation, this constitutes the core contribution of this paper.

Step 3: Specification-level usage control policies based on data In the language of
step 1, we can only express container usages, i.e., usage events that pertain to one
specific representation. Since we deem it natural to express data usages which
pertain to all representations of the same data as well, we augment the language
by (1) data usages and (2) special operators for data rather than containers—
e.g., some data may not flow into a specific container such as a network socket.

Step 4: Implementation-level policies based on data Specification-level policies
are enforced by mechanisms that are configured by implementation-level poli-
cies. Implementation-level policies are event-condition-action (ECA) rules that
perform an action provided that a trigger event has happened and the respective
condition has evaluated to true. The action can be to inhibit or to modify the
trigger event (which requires the distinction between desired and actual events)
or to execute some other event (which does not require this distinction). Since
these mechanisms are actually implemented, it is convenient to express the con-
dition part of the ECA rules in a language that expresses requirements on the
past rather than on the future. This language then is the natural past dual of the
language of step 1 [6]. In this paper, we also augment this implementation-level
policy language by data usages and special state-based operators.

Step 5: Runtime monitors for events and data Using our specification-level (fu-
ture) and implementation-level (past) languages, we can leverage results from
runtime monitoring to synthesize efficient monitors both for specification-level
and (the condition part of) implementation-level policies. In the first case, we
can detect violations (detective enforcement) whereas in the second case, we
can also prevent violations from happening by blocking or modifying attempted
events, and by performing compensating, penalizing, or notifying actions. Effi-
cient runtime monitoring technology is readily available [7].

It is straightforward to implement the evolution of the data state. At each
moment in time, we intercept the current event and update the data state by
consulting the transition function %. This simple implementation yields a state
machine that computes the data state extraction function states.
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In terms of the combined model, if a data usage is specified in a policy (and
thus in the synthesized monitor), we consult the state machine that implements
the information state σ ∈ Σ from within the usage control monitor to retrieve
all the containers that contain the respective data item, and evaluate the policy
w.r.t. all these containers. Function states is independent of any given policy;
since our framework is intended to be deployed at different system layers, there
hence is one data state tracker per system layer, and one runtime monitor per
layer per policy. While pure usage control monitors [8] as well as data flow track-
ing systems [3–5] have been implemented before, we provide implementations of
combined data flow tracking and usage control enforcement mechanisms here.

Step 6: Multi-Layer enforcement As the above example of the social network
application shows, data representations may exist at several different layers of
abstraction (cache file, pixmap, web page content), and we must track the flow
of data and enforce usage control requirements not only at single layers of the
system, but also across different layers. In full generality, this problem is still
subject of investigation. However, tailored solutions are possible. For instance,
in this paper, we propose as an example an ad-hoc solution for a multi-layer
instantiation in a social network scenario: we show that it is possible to enforce
usage control requirements with data flow tracking for a picture when this is
represented as a browser object, as a cache file and as content of a window.

Research Problem In sum, we tackle the problem of how to do usage control
on data that exists in multiple representations at different system layers.

Solution We present, firstly, a formal model that extends one usage control
model by the notion of data representations and that hence allows us to track
data flows within and in-between different representations at different layers of
the system. Secondly, as a proof of concept, we show how to implement such
a system. We do not present a security analysis, and we do not claim that our
implementation cannot be circumvented [9]).

Contribution Data flow tracking at specific system layers has been done in
a multitude of ways [3, 4, 10–19], also in the form of information flow analyses
where implicit flows are also taken into account [20, 21]. As far as we are aware,
this work ends where sensitive (or tainted) data is moved to illegal sinks, e.g.,
when a file is written or an http post request is sent. If such an illegal sink is
reached, something bad has happened, and an exception is thrown. In contrast,
our work adds the dimension of usage control that allows to specify and enforce
more fine-grained constraints on these sinks. Conversely, usage control models are
usually defined on the grounds of technical events, including specific technologies
such as complex event processing or runtime verification [22, 7], but do not cater
to the flow of data. We add the distinction between representation and data to
these models. We see our contribution in the marriage of the research areas of
usage control and dynamic data flow tracking.

Organization §2 recapitulates (1) a semantic model and a language for usage
control and (2) a semantic model for data flow. §3 presents our combined model.
§4 describes three different instantiations as well as an ad-hoc multi-layer en-
forcement implementation. §5 puts our work in context, and §6 concludes. An
extended version of this paper is available as a technical report [23].
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2 Background

In this section, we recapitulate the specification-level policy specification lan-
guage [2] and the data flow model [3–5] that we will combine in §3.
Step 1: Usage Control We consider a usage control system model [2] based
on classes of parameterized events where parameters represent attributes. Ev-
ery event in set Event ⊆ EventName × Params consists of the event’s name
and parameters, represented as a partial ( 7→) function from names to values:
Params ⊆ ParamName 7→ParamValue for basic types ParamName,ParamValue,
EventName. We denote event parameters by their graph, i.e., as (name, value)
pairs. We assume a reserved parameter name, obj, to indicate on which data
item the event is performed. An example is the event (show , {(obj , x )}), where
show is the name of the event and the parameter obj has value x . We reserve a
Boolean parameter isTry which indicates if the event is desired or actual (this is
necessary if events should be blocked or modified in order to enforce policies) [6].

In policies, events are usually under-specified. For instance, if a policy spec-
ifies that event (show , {(obj , x )}) is prohibited, then the actual event (show ,
{(obj , x ), (window ,w)}) should also be prohibited. For this reason, events are
partially ordered with respect to a refinement relation refinesEv . Event e2 re-
fines event e1 iff e2 has the same event name as e1 and all parameters of e1 have
the same value in e2. e2 can also have additional parameters specified, which
explains the subset relation in the definition. Let x .i identify the i -th com-
ponent of a tuple x . Formally, we then have refinesEv ⊆ Event × Event with
∀ e1, e2 ∈ Event • e2 refinesEv e1 ⇔ e1.1 = e2.1 ∧ e1.2 ⊆ e2.2. In the semantic
model, we will assume traces to be maximally refined (all parameters carry val-
ues; this seems natural in an actually running system): maxRefinedEv = {e ∈
Event : ∀ e ′ ∈ Event • e ′ refinesEv e ⇒ e ′ = e}. The semantics of the usage con-
trol policy language is defined over traces. Traces map abstract points in time
—the natural numbers— to possibly empty sets of maximally refined actual and
desired events: Trace : N→ P(maxRefinedEv).

Specification-level usage control policies are then described in language Φ+

(+ for future). It is a temporal logic with explicit operators for cardinality and
permissions where the cardinality operators turn out to be mere macros [24],
and where we omit the permission operator for brevity’s sake. We distinguish
between purely propositional (Ψ) and temporal and cardinality operators (Φ+).

Ψ ::= true | false | E(Event) | T (Event) | not(Ψ) | and(Ψ, Ψ) | or(Ψ, Ψ) | implies(Ψ, Ψ)

Φ+ ::= Ψ | not(Φ+) | and(Φ+, Φ+) | or(Φ+, Φ+) | implies(Φ+, Φ+) |
until(Φ+, Φ+) | after(N, Φ+) | within(N, Φ+) | during(N, Φ+) |
always(Φ+) | repmax (N, Ψ) | replim(N,N,N, Ψ) | repuntil(N, Ψ, Φ+)

We also distinguish between desired or attempted (T) and actual (E) events.
These syntactically reflect the (semantic-level) parameter isTry introduced above.
The semantics of events is captured by relation |=ε⊆ Event × Φ+ that relates
events (rather than traces) to formulae of the form E (·) or T (·) as follows:
∀ e, e ′ ∈ Event • e |=ε E (e ′)⇔ e refinesEv e ′ ∧ e.2 (isTry) = false and
∀ e, e ′ ∈ Event • e |=ε T (e ′)⇔ e refinesEv e ′ ∧ e.2 (isTry) = true.
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not , and , or , implies have the usual semantics. The until operator is the weak-
until operator from LTL. Using after(n), which refers to the time after n time
steps, we can express concepts like during (something must constantly hold dur-
ing a specified time interval) and within (something must hold at least once
during a specified time interval). Cardinality operators restrict the number of
occurrences or the duration of an action. The replim operator specifies lower
and upper bounds of times within a fixed time interval in which a given for-
mula holds. The repuntil operator does the same, but independent of any time
interval. Instead, it limits the maximal number of times a formula holds until
another formula holds (e.g., the occurrence of some event). With the help of
repuntil , we can also define repmax , which defines the maximal number of times
a formula may hold in the indefinite future. As an example of a cardinality op-
erator, replim(100 , 0 , 3 ,E ((login, {(user ,Alice), (obj ,∅)}))) specifies that user
Alice may login at most 3 times in the next 100 time units.
Step 2: Data Flow Tracking We base our work on data flow tracking on ap-
proaches from the literature [3–5]. In this model, data flow is defined by a tran-
sition relation on states that essentially map data representations, so-called con-
tainers, to data. Transitions are triggered by principals that perform actions. For-
mally, we describe systems as tuples (P ,Data,Event ,Container , Σ, σi , %) where
P is a set of principals, Data is a set of data elements, Event is the set of events
(or actions), Container is a set of data containers, Σ is the set of states of the
system with σi being the initial state (∅,∅,∅), and % is the state transition func-
tion. In the following, we assume that the principals executing actions (making
an event happen) are provided as a parameter of the action.

States are defined by three mappings (for simplicity’s sake, we concentrated
on just one mapping in the introduction): a storage function of type Container →
P(Data), to know which set of data is stored in which container; an alias function
of type Container → P(Container) that captures the fact that some containers
may implicitly get updated whenever other containers do; and a naming function
that provides names for containers and that is of type F → Container . F is a
set of identifiers. We need identifiers to correctly model renaming activities. We
thus define Σ = (Container → P(Data))×(Container → P(Container))×(F →
Container). We define transitions between two states by % : Σ×P(Event)→ Σ.
For simplicity’s sake, in this paper, we assume independent actions only. This
means that if (σ,E ) ∈ %, then the target state of this transition is independent of
the ordering in which the actions in E are executed in an actual implementation.
In real systems, however, is usually possible to sort events within the same
timestep (e.g. by timestamp), hence this assumption is, in general, not restrictive.

3 A Combined Model
In the usage control model of § 2, data is addressed by referring to its spe-
cific representations as event parameters. For instance, after(30, always(not(E (
(play , {(obj,song1.mp3)}))))) stipulates that a file (a specific representation and
a specific container) called song1.mp3 must not be played after thirty days. We
address the situation where a copy of that file, song2.mp3, should not be played
either. To this end, we extend the semantic model by data usages that allow us
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to specify protection requirements for all representations rather than just one.
Using the data flow tracking model, we compute, at each moment in time t , the
current data state of the system: we simply take the usage control model’s sys-
tem trace until t , extract the respective events in each step, iteratively compute
the successor data states for each data state and eventually get the data state
at time t . In an implementation, we will not store the system history but rather
use state machines to record the data state at each moment in time (step 5).

Data, Containers, and Events We need to distinguish between data items and
containers for data items. At the specification level, this leads to the distinction
between two classes of events according to the “type” of the obj parameter:
events of class dataUsage define actions on data objects. The intuition is that
these pertain to every representation. In contrast, events of class containerUsage
refer to one single container. In a real system, only events of class containerUsage
can happen. This is because each monitored event in a trace is related to a
specific representation of the data (a file, a memory region, etc). dataUsage
events are used only in the definition of policies, where it is possible to define
a rule abstracting from the specific representation of a data item. We define a
function getclass that extracts if an event is a data or a container usage.

EventClass = {dataUsage, containerUsage} getclass : Event → EventClass

Data ∪ Container ⊆ ParamValue

Container ∩Data = ∅
{(obj , d) | d ∈ Data} ⊆ Params

{(obj , c) | c ∈ Container} ⊆ Params

∀ e : Event • getclass(e) = dataUsage ⇔ ∃ x : ParamValue • ((obj , x ) ∈ e.2) ∧ x ∈ Data

∧ getclass(e) = containerUsage ⇔ ∃ x : ParamValue • ((obj , x ) ∈ e.2) ∧ x ∈ Container

Step 3: Adding Data State In our semantic model, policies are defined on
traces. We want to describe certain situations to be avoided or enforced. In prac-
tice there usually is an almost infinite number of different sequences of events
that lead to the same situation, e.g., the creation of a copy or the deletion of
a file. Instead of listing all these sequences, it appears more convenient in sit-
uations of this kind to define a policy based on the description of the (data
flow state of the) system at that specific moment. To define such formulas we
introduce a new set of state-based operators, Φi ::= isNotIn(Data,PContainer) |
isCombinedWith(Data,Data) | isOnlyIn(Data,PContainer) and define

Φ+
i ::= Φ+ | Φi . Intuitively, isNotIn(d ,C ) is true if data d is not present in any of

the containers in set C. This is useful to express constraints such as “song s must
not be distributed over the network”, which becomes always(isNotIn(s, {cnet}))
for a network container (any socket) cnet . The rule isCombinedWith(d1, d2)
states whether data items d1 and d2 are combined in one container. This is
useful to express Chinese Wall policies. isOnlyIn(d ,C ) is syntactic sugar for
isNotIn(d ,Container \ C ) and expresses that data d can only be in containers
of set C, e.g., isOnlyIn(d ,∅) for “data d has been deleted.”

We have seen above that we implicitly quantify over unmentioned parameters
when specifying events in policies by using relation refinesEv . We now extend
this definition to dataUsages. An event of class dataUsage is refined by an event
of class containerUsage if the latter is related to a specific representation of the
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data the former refers to. As in the original definition, in both cases the more
refined event may have more parameters than the more abstract event. An event
e2 refines an event e1 if (1) e1 and e2 both have the same class (containerUsage
or dataUsage) and we have e2 refinesEv e1; or (2) if e1 is a dataUsage and
e2 a containerUsage event. In this latter case, e1 and e2 must have the same
event name, and there must exist a data item d stored in a container c such
that (obj , d) ∈ e1.2; (obj , c) ∈ e2.2; all parameters (except for obj ) of e1 have
the same value in e2; and e2 can possibly have additional parameters. Formally,
these requirements are specified by relation refinesEvi ⊆ (Event × Σ )× Event ,
which checks whether one event e2 refines another event e1 also w.r.t. data and
containers (Σ is needed to access the current information state):

∀ e1, e2 ∈ Event ; σ ∈ Σ • (e2, σ) refinesEvi e1 ⇔
(getclass(e1) = getclass(e2) ∧ e2 refinesEv e1)

∨ ((getclass(e1) = dataUsage ∧ getclass(e2) = containerUsage ∧ e1.1 = e2.1

∧ ∃ d ∈ Data, c ∈ Container • d ∈ σ.1(c)

∧ e1.2(obj ) = d ∧ e2.2(obj ) = c ∧ (e1.2\{(obj , d)} ⊆ e2.2\{(obj , c)})))

With the help of refinesEvi , we now define the satisfaction relation for event
expressions in the context of data and container usages. We simply add one
argument to |=ε and obtain |=ε,i⊆ (Event ×Σ)× Φ+

i as follows:

∀ e, e ′ ∈ Event , σ ∈ Σ • (e, σ) |=ε,i E(e ′)⇔ (e, σ) refinesEvi e ′ ∧ e.2 (isTry) = false

∧ (e, σ) |=ε,i T (e ′)⇔ (e, σ) refinesEvi e ′ ∧ e.2 (isTry) = true

As a last ingredient, we need function states : (Trace × N)→ Σ to compute
the information state at a given moment in time via states(t , 0 ) = σi and n >
0 ⇒ states(t ,n) = %(states(t ,n − 1 ), t(n − 1 )). On these grounds, we finally
define the semantics of the specific data usage operators in Φi with semantics
|=i⊆ (Trace × N)× Φi :

∀ t ∈ Trace; n ∈ N; ϕ ∈ Φi ; σ ∈ Σ • (t ,n) |=i ϕ⇔ σ = states(t ,n) ∧
∃ d ∈ Data,C ∈ PContainer • ϕ = isNotIn(d ,C ) ∧ ∀ c′ ∈ Container • d ∈ σ.1(c′)⇒ (c′ /∈ C )

∨ ∃ d1, d2 ∈ Data • ϕ = isCombinedWith(d1, d2) ∧ ∃ c′ ∈ Container • d1 ∈ σ.1(c′) ∧ d2 ∈ σ.1(c′)

This leads to the definition of the semantics augmented by data flow, |=+
i ⊆

(Trace × N) × Φ+
i depicted in Figure 1. The definitions for the cardinality op-

erators are complex because of the refinement relation: it is possible that two
simultaneously happening events e1, e2 that both refine the same event e both
make E (e) ∈ Ψ true. For a trace t , it is thus not sufficient to simply count those
moments in time, n, that satisfy (t ,n) |=+

i E (e) [2, 6].

Step 4: Mechanisms enforce specification-level policies Specification-level
policies expressed in Φ+

i describe which runs of a system are allowed and which
ones are not. There are usually several ways of enforcing such policies, by mod-
ification, inhibition, or execution [19]. Since there is not the one right choice, a
user must explicitly stipulate this by selecting an operational mechanism. These
operational mechanisms embody implementation-level policies and are conve-
niently expressed as event-condition-action (ECA) rules [6]; whether or not sat-
isfaction of an implementation-level usage control policy entails enforcement of
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∀ t ∈ Trace,n ∈ N, ϕ ∈ Φ+
i • (t ,n) |=+

i ϕ⇔
∃ e, e ′ ∈ Event • (ϕ = E(e) ∨ ϕ = T (e)) ∧ e ′ ∈ t(n) ∧ (e ′, states(t ,n)) |=ε,i ϕ

∨ ϕ ∈ Φi ∧ (t ,n) |=i ϕ

∨ ∃ψ ∈ Φ+
i • ϕ = not(ψ) ∧ ¬ ((t ,n) |=+

i ψ)

∨ ∃ψ, χ ∈ Φ+
i • ϕ = or(ψ, χ) ∧ ((t ,n) |=+

i ψ ∨ (t ,n) |=+
i χ)

∨ ∃ψ, χ ∈ Φ+
i • ϕ = until(ψ, χ)

∧ (∃ u ∈ N • (((t ,n + u) |=+
i χ ∧ (∀ v ∈ N • v < u ⇒ (t ,n + v) |=+

i ψ))

∨ ∀ v ∈ N • (t ,n + v) |=+
i ψ))

∨ ∃ i ∈ N; ψ ∈ Φ+
i • ϕ = after(i , ψ) ∧ (t ,n + i) |=+

i ψ

∨ ∃ l , x , y ∈ N; ψ ∈ Ψ • ϕ = replim(l , x , y , ψ)

∧ x ≤
∑l

j=1

∣∣{S ⊆ Event | S ⊆ t(n + j ) ∧ ∃ t ′ ∈ Trace ∀m ∈ N •
t ′(n + j ) = S ∧ (m < n + j ⇒ t ′(m) = t(m)) ∧ (t ′,n + j ) |=+

i ψ

∧6 ∃S ′ ⊆ Event • S ′ ⊂ S ∧ ∃ t ′ ∈ Trace ∀m ∈ N •
t ′(n + j ) = S ′ ∧ (m < n + j ⇒ t ′(m) = t(m)) ∧ (t ′,n + j ) |=+

i ψ}
∣∣ ≤ y

∨ ∃ l , u ∈ N; ψ ∈ Ψ ; χ ∈ Φ+ • ϕ = repuntil(l , ψ, χ)

∧
(
(t ,n + u) |=+

i χ ∧ ∀ v ∈ N • v < u ⇒ ¬((t ,n + v) |=+
i χ)

∧
∑u

j=1

∣∣{S ⊆ Event | S ⊆ t(n + j ) ∧ ∃ t ′ ∈ Trace ∀m ∈ N •
t ′(n + j ) = S ∧ (m < n + j ⇒ t ′(m) = t(m)) ∧ (t ′,n + j ) |=+

i ψ

∧6 ∃S ′ ⊆ Event • S ′ ⊂ S ∧ ∃ t ′ ∈ Trace ∀m ∈ N •
t ′(n + j ) = S ′ ∧ (m < n + j ⇒ t ′(m) = t(m)) ∧ (t ′,n + j ) |=+

i ψ}
∣∣ ≤ l

)
∨
∑∞

j=1

∣∣{S ⊆ Event | S ⊆ t(n + j ) ∧ ∃ t ′ ∈ Trace ∀m ∈ N •
t ′(n + j ) = S ∧ (m < n + j ⇒ t ′(m) = t(m)) ∧ (t ′,n + j ) |=+

i ψ

∧6 ∃S ′ ⊆ Event • S ′ ⊂ S ∧ ∃ t ′ ∈ Trace ∀m ∈ N •
t ′(n + j ) = S ′ ∧ (m < n + j ⇒ t ′(m) = t(m)) ∧ (t ′,n + j ) |=+

i ψ}
∣∣ ≤ l

∨ ∃ψ, χ ∈ Φ+
i • ϕ = and(ψ, χ) ∧ (t ,n) |=+

i not(or(not(ψ),not(χ)))

∨ ∃ψ, χ ∈ Φ+
i • ϕ = implies(ψ, χ) ∧ (t ,n) |=+

i or(not(ψ), χ)

∨ ∃ψ ∈ Φ+
i • ϕ = always(ψ) ∧ (t ,n) |=+

i until(ψ, false)

∨ ∃ i ∈ N; ψ ∈ Φ+
i • ϕ = within(i , ψ) ∧ (t ,n) |=+

i

∨i
x=1 after(i , ϕ)

∨ ∃ i ∈ N; ψ ∈ Φ+
i • ϕ = during(i , ψ) ∧ (t ,n) |=+

i

∧i
x=1 after(x , ϕ)

∨ ∃ l ∈ N; ψ ∈ Ψ • ϕ = repmax (l , ψ) ∧ (t ,n) |=+
i repuntil(l , ψ, false)

Fig. 1. Semantics of Φ+
i

a specification-level policy can be checked automatically [24]. In our case, the se-
mantics is as follows: if a triggering event is detected, the condition is evaluated;
if it evaluates to true, the action (modify, inhibit, execute) is performed. Since
mechanisms are operational in nature, we decided to formulate the conditions
in a past variant of our language, Φ− with semantics |=− [6, 24]. The fact that
mechanisms can inhibit or modify motivates the conceptual distinction between
desired and actual events (E (·) and T (·); we could well have restricted the us-
age of Ψ in specification-level policies to actual events (E (e)) which, however,
slightly complicates the combined definitions).

Implementation-level policies—for the time being without data flow tracking
semantics—hence come in the following forms. We assume a trigger event e
and a condition ϕ ∈ Φ−. Modifiers are formulas (T (e) ∧ (E (e) ⇒ ϕ)) ⇒
T (e ′) ∧ ¬E (e) where e ′ is like e but with some parameters modified. The
idea is that if e is attempted (T (e)) and the actual execution of e makes the
trigger true (E (e) ⇒ ϕ), then e ′ should happen in lieu of e (T (e ′) ∧ ¬E (e);
the reason for having T (e ′) rather than E (e ′) is that there might be multiple



Representation-independent Data Usage Control 9

∀ t ∈ Trace,n ∈ N, ϕ ∈ Φ−i • (t ,n) |=−i ϕ⇔
∃ e, e ′ ∈ Event • (ϕ = E(e) ∨ ϕ = T (e)) ∧ e ′ ∈ t(n) ∧ (e ′, states(t ,n)) |=ε,i ϕ

∨ ϕ ∈ Φi ∧ (t ,n) |=i ϕ

∨ ∃ψ, χ ∈ Φ−i • ϕ = since−(χ, ψ)

∧ (∃ u ∈ N • u ≤ n ∧ (t ,n − u) |=−i χ ∧ (∀ v ∈ N • u < v ≤ n ⇒ (t ,n − v) |=−i ψ)

∨ ∀ v ∈ N • v ≤ u ⇒ (t ,n − v) |=−i ψ)

∨ ∃ i ∈ N; ψ ∈ Φ−i • ϕ = before−(i , ψ) ∧ i ≤ n ∧ (t ,n − i) |=−i ψ

∨ ∃ l , x , y ∈ N; ψ ∈ Ψ • ϕ = replim−(l , x , y , ψ)

∧ x ≤
∑min(l,n)

j=0

∣∣{S ⊆ Event | S ⊆ t(n − j ) ∧ ∃ t ′ ∈ Trace ∀m ∈ N •
t ′(n − j ) = S ∧ (n ≥ m > n − j ⇒ t ′(m) = t(m)) ∧ (t ′,n − j ) |=−i ψ

∧6 ∃S ′ ⊆ Event • S ′ ⊂ S ∧ ∃ t ′ ∈ Trace ∀m ∈ N •
t ′(n − j ) = S ′ ∧ (n ≥ m > n − j ⇒ t ′(m) = t(m)) ∧ (t ′,n − j ) |=−i ψ}

∣∣ ≤ y

∨ ∃ l , u ∈ N; ψ ∈ Ψ ; χ ∈ Φ− • ϕ = repsince−(l , χ, ψ)

∧
(
u ≤ n ∧ (t ,n − u) |=−i χ ∧ ∀ v ∈ N • u < v ≤ n ⇒ ¬((t ,n − v) |=−i χ)

∧
∑u

j=0

∣∣{S ⊆ Event | S ⊆ t(n − j ) ∧ ∃ t ′ ∈ Trace ∀m ∈ N •
t ′(n − j ) = S ∧ (n ≥ m > n − j ⇒ t ′(m) = t(m)) ∧ (t ′,n − j ) |=−i ψ

∧6 ∃S ′ ⊆ Event • S ′ ⊂ S ∧ ∃ t ′ ∈ Trace ∀m ∈ N •
t ′(n − j ) = S ′ ∧ (n ≥ m > n − j ⇒ t ′(m) = t(m)) ∧ (t ′,n − j ) |=−i ψ}

∣∣ ≤ l
)

∨
∑n

j=0

∣∣{S ⊆ Event | S ⊆ t(n − j ) ∧ ∃ t ′ ∈ Trace ∀m ∈ N •
t ′(n − j ) = S ∧ (n ≥ m > n − j ⇒ t ′(m) = t(m)) ∧ (t ′,n − j ) |=−i ψ

∧6 ∃S ′ ⊆ Event • S ′ ⊂ S ∧ ∃ t ′ ∈ Trace ∀m ∈ N •
t ′(n + j ) = S ′ ∧ (n ≥ m > n − j ⇒ t ′(m) = t(m)) ∧ (t ′,n − j ) |=−i ψ}

∣∣ ≤ l

∨ ∃ψ ∈ Φ−i • ϕ = always−(ψ) ∧ (t ,n) |=−i since−(false, ψ)

∨ ∃ i ∈ N; ψ ∈ Φ−i • ϕ = within−(i , ψ) ∧ i < n ∧ (t ,n) |=−i
∨i

x=1 before−(i , ϕ)

∨ ∃ i ∈ N; ψ ∈ Φ−i • ϕ = during−(i , ψ) ∧ i < n ∧ (t ,n) |=−i
∧i

x=1 before−(x , ϕ)

∨ ∃ l ∈ N; ψ ∈ Ψ • ϕ = repmax−(l , ψ) ∧ (t ,n) |=−i repsince−(l , false, ψ)

Fig. 2. Semantics of Φ−i

concurrently executing mechanisms). Inhibitors are formulas (T (e) ∧ (E (e) ⇒
ϕ)) ⇒ ¬E (e) that simply prohibit the desired event T (e) by requiring ¬E (e)
in case E (e) would make ϕ true. Finally, executors are expressed as (T (e) ∧
(E (e) ⇒ ϕ)) ⇒ T (e ′) ∧ E (e) for some event e ′ to be executed; again, since
there may be multiple mechanisms in place, e ′ can only be attempted at this
stage. The formal semantics of a set of combined mechanisms as well as conflict
detection has been described elsewhere [6, 24].

The structure of Φ− reflects that of Φ+. Observe that the semantics of Φi ,
|=i , “does not look into the future” and makes use of the states function that
already is defined solely in terms of the past. As a consequence, we use

Φ− ::= Ψ | not−(Φ−) | and−(Φ−, Φ−) | or−(Φ−, Φ−) | implies−(Φ−, Φ−) | since−(Φ−, Φ−) |
before−(N, Φ−) | within−(N, Φ−) | during−(N, Φ−) |
always−(Φ−) | repmax−(N, Ψ) | replim−(N,N,N, Ψ) | repsince−(N, Ψ, Φ−);

let Φ−i ::= Φi | Φ−, verbatim reuse the definition of |=i , and get the combined
semantics of Φ−i , |=−i , in Figure 2, where we omit the definition of the proposi-
tional operators. Because of space limitations, we do not provide the semantics
of entire mechanisms (that is: entire ECA rules, not just conditions) here; this
straightforwardly generalizes the case without data flow tracking [6].
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Fig. 3. Interplay of PEP, PDP, PIP

Step 5: Architecture Our generic architecture is the same for each concrete
system layer at which the infrastructure is instantiated. We distinguish three
main components: a Policy Enforcement Point (PEP), able to observe, intercept
and possibly modify and generate events in the system; a Policy Decision Point
(PDP), representing the core of the usage control monitoring logic; and a Policy
Information Point (PIP), which provides the data state σ ∈ Σ to the PDP.

The role of the PEP is to implement the mechanisms of step 4. PEPs in-
tercept desired and actual events, signal them to the PDP and, according to
the response, allow, inhibit or modify them. Using the events signaled by the
PEP, the PDP evaluates the policies, more specifically, the condition of the ECA
rules. While we implemented one specific algorithm [25] for the PDP, any run-
time verification algorithm can be used [7]. Due to its generic nature, the same
implementation can be reused at different system layers: only the binding of
events in the system to events specified in the policies has to be performed.
In order to take a decision, the PDP may need additional information (e.g., in
case of state-based formulae or data usages) concerning the distribution of data
among the different representations. For this reason the PDP queries the PIP.
The PIP represents a (layer-specific) implementation of the data-flow tracking
model presented in step 3. In order to properly model the evolution of the data-
flow state, the PEP notifies the PIP about every actual event that happens in
the system, and the PIP then updates its data state σ ∈ Σ according to %.

The interplay of PEP, PDP, and PIP is shown in Figure 3. Whenever the PDP
checks an actual (container) event e against a data usage event u in a policy,
the PIP is consulted to check if the data item referred to by u is contained in
the container referred to by e.

Step 6: Multi-layer data flow detection and usage control enforcement

In the example of the social network application in Section 1 we have three
monitors: one at the level of the operating system, one at the level of the web
browser, and one at the level of the X11 system. Now, some events, together with
the data that they operate on, at one layer imply related events at a different
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layer. For instance, saving a page in the web browser (event save) implies a
write() system call at the operating system layer. As a consequence, data flows
from one layer to another one.

We introduce a set of layers, L, that includes layers such as X11, the operating
system, a browser, etc. For each event, we assume that there is precisely one
layer at which this event happens (if there is more than one layer, then this is
captured by the following function π). This motivates the definition of a function
λ : Event → L that partitions the set of events. Note that neither our definition
of the transition relation % nor the definition of the data state σ nor the definition
of languages Φ+

i and Φ−i require events, containers, and data to reside at one level
of abstraction. As a consequence, we may assume that our system is specified
globally, i.e. encompassing all levels of abstraction. We can then use function
λ to separate the different layers: Event` = {e ∈ Event : λ(e) = `} contains the
events relevant at layer `, and, using graph notation, %` = {(σ,E , σ′) : E ⊆
Event` ∧ %(σ,E ) = σ′} projects the data flow transition relation to layer `
(remember that in step 2 of Section 2, we required independence of events in the
definition of % for simplicity’s sake). With %` and Event`, we can implement the
data flow monitor for layer ` as described in step 5. The usage control monitor
part is synthesized from a policy; the only layer-specific part is Event`. In the
implementation, the set of %` and Event` hence defines the set of independent
enforcement mechanisms for all layers ` ∈ L.

We now consider the flow of data in-between different layers. To this end,
we introduce a relation π : Event → 2Event . With this relation, it is possible to
specify, at the model level, that whenever an event happens at one layer `1, a
set of simultaneous events at another layer `2 necessarily take place. Formally,
we can capture this intuition by a constraint on the set of traces of a system:
∀ s ∈ Trace ∀ t ∈ N∀ e ∈ Event : e ∈ s(t) ⇒ π(e) ⊆ s(t). In other words, via
π we require in the semantic model that, for instance, there must be a write()
system call whenever there is a save action in the web browser, thus capturing
the data flow from browser to operating system.

In this way, cross-layer data flow tracking and data-driven usage control
enforcement can be specified in a conceptually very simple way. However, in
terms of the implementation, this is far more challenging. While every layer-
specific infrastructure instantiates the general model, our current cross-layer
enforcement solution is an ad-hoc implementation that relates an event at one
layer to an event at another layer in a hard-coded way (Section 4).

4 Instantiations

Operating System: OpenBSD At the operating system level, system calls
are the events that can change the state of the system. The complete description
of the data-flow tracking model can be found in [3]. Here, we show how to extend
this implementation with a usage control monitor, thus providing an instance
of the combined model of this paper. Events are system calls, and they are
invoked by processes on data containers. Containers include files, pipes, message
queues and the network. A process itself is also considered as a data container
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because the process state, CPU registers and the memory image of the process
are possible locations for data. Data containers are identified by a set of names,
which includes file names, descriptors and sockets. Each state consists of the
three mappings presented in Section 3: storage, alias and naming. As an example,
aliases are created if memory is mapped to a file system (mmap() system call).
The transition relation % is described in [3].

The combined usage control and data flow tracking system is implemented
using Systrace, a policy enforcement tool for monitoring, intercepting and modi-
fying system calls in OpenBSD. In contrast to our earlier work [3], the combined
implementation of this paper can enforce advanced usage control policies that
address all the instances of the same data at the same time.

One example policy is from the DRM world: the content (dataUsage, lines
11 and 16) of a file, song.mp3, can be used, i.e. opened, (lines 10 and 15) at
most 4 further times and within 30 seconds (1 timestep = 1 second) after the
first use (lines 7-19); further attempts of opening the file will result in opening
a predefined error message (lines 21-23). We provide it to demonstrate the use
of complex conditions. Further examples are available [23].

1 <controlMechanism>
2 <id>OS DRM example</ id>
3 <t r i gge rEvent> <id>open</ id>
4 <param name=”obj ” value=”song .mp3” type=”dataUsage”/>
5 <param name=” isTry ” value=” true ”/>
6 </ t r i gge rEvent>
7 <cond i t i on>
8 <or>
9 <not><be fo r e t ime In t e rva l=”30”><always><not>

10 <event> <id>open</ id>
11 <param name=”obj ” value=”song .mp3” type=”dataUsage”/>
12 </ event>
13 </not></always></ be f o r e></not>
14 <not><repmax l im i t=”5”>
15 <event> <id>open</ id>
16 <param name=”obj ” value=”song .mp3” type=”dataUsage”/>
17 </ event>
18 </repmax></not></ or>
19 </ cond i t i on>
20 <ac t i on s> <a l low> <modify>
21 <param name=”obj ” value=”/ etc /UCmon/ exp i red .msg” />
22 </modify> </ a l low> </ ac t i on s>
23 </ controlMechanism>

The effect of our implementation can be seen by executing the following
sequence of commands:

> vlc song.mp3 && cp song.mp3 song2.mp3 && mv song2.mp3 song3.mp3 &&

cat song3.mp3 > song4.mp3 &&

... (after more than 30 seconds) ... && vlc song4.mp3 --> ERROR!

When trying to play (command vlc) the file song4.mp3 (a copy of the original
song.mp3 ) more than 30 seconds after the first play, an error message is played
instead of the song. The same error is generated when trying to open whatever
instance of the song after the fifth time.
Windowing System: X11 X11 is a distributed system and a protocol for GUI
environments on Unix-like systems. In X11, events that change the state of the
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system are network packets exchanged between clients and servers. The model
for data-flow tracking and primitive usage control is described elsewhere [4].
Events are requests, replies, events and errors, invoked on specific X11 resources
by principals that, because of the distributed setting, are identified by IP address
and port. Resources form the containers that potentially carry sensitive infor-
mation, like windows, pixmaps (memory areas that are valid destinations for
drawing functions), atoms (unique names for accessing resources or for commu-
nication between different clients), attributes and properties (variables attached
to windows), etc. States consists of the three mappings presented in Section 3:
storage, alias and naming. Among others, aliases are created whenever windows
overlap translucently. The transition relation % is described in [4].

The combined usage control and data flow tracking system is implemented
using Xmon, an X11 debugging tool for monitoring, intercepting and modifying
network packets from/to an X server. As opposed to [4], thanks to the usage
control runtime monitor, it is able to enforce advanced usage control policies,
with temporal and cardinality operators, addressing all instances of the same
data at the same time. One example policy is the following.

1 <controlMechanism>
2 <id>X11 Screenshot</ id>
3 <t r i gge rEvent> <id>GetImage</ id>
4 <param name=”obj ” value=”0x1a00005” type=”dataUsage”/>
5 <param name=” isTry ” value ” true ”/>
6 </ t r i gge rEvent>
7 <cond i t i on> <t rue /> </ cond i t i on>
8 <ac t i on s> <a l low>
9 <modify> <param name=”planeMask” value=”0x0” /> </modify>

10 </ a l low> </ ac t i on s>
11 </ controlMechanism>

In this example, the enforcement mechanism prevents the X client from
taking a screenshot (X11 action GetImage, line 3) of the content of window
0x1a00005 (line 4; in the multi-layer example, this data is filled in by the web
browser PEP). If a client requests a screenshot of that window, the action is
permitted (line 8), but the parameter planeMask is modified to the value 0x0
(line 9). planeMask represents which set of drawable objects should be included
in the screenshot: a planeMask of 0xffff means that every plane is contained in
the screenshot, whereas invoking GetImage with planeMask equal to 0x0 returns
a black image because no plane is included. Further examples are available [23].
Web Browser: Firefox A third instance of our model at the browser level
extends an existing usage control extension for the Firefox web browser [26].
In this scenario, we want to protect sensitive web page content from malicious
usage by the user of the browser. Here, we show how to instantiate the data-flow
tracking model to objects of the browser domain, in order to extend the existing
implementation to another instance of the combined model presented so far.

Events include the user actions “copy”, “paste”, “print”, “save as”, etc., and
are performed by a user on web page content. Content is stored in two types
of containers: read-only (the non-editable part of a web-page) and read-write
(text fields where it is possible to type); in addition, there is the clipboard.
The only principal in this scenario is the user of the browser. The browser-level
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instantiation does not require the alias function, because no alias relations are
created among containers. Similarly, the naming function is constant. Therefore,
a state of the system is given only by the state of the storage function Σ =
(Container → 2Data). Due to space constraints, we do not present the definition
of the transition relation % here. The resulting system can enforce advanced
policies that address all the representations of the same data. Our example is
from the social network scenario: a user is allowed to print a profile picture (lines
3-6) only once (lines 8 and 14). More examples are available [23].

1 <controlMechanism>
2 <id>Browser Pr int</ id>
3 <t r i gge rEvent> <id>pr in t</ id>
4 <param name=”obj ” value=” imgp r o f i l e ” type=”dataUsage”/>
5 <param name=” isTry ” value ” true ”/>
6 </ t r i gge rEvent>
7 <cond i t i on>
8 <not> <repmax l im i t=”1”>
9 <event> <id>pr in t</ id>

10 <parameter name=”obj ” value=” imgp r o f i l e ” type=”dataUsage”/>
11 </ event>
12 </repmax> </not>
13 </ cond i t i on>
14 <ac t i on s> < i n h i b i t /> </ ac t i on s>
15 </ controlMechanism>

Multi-Layer Enforcement We also implemented multi-layer usage control by
combining the three implementations presented above [1]. To do so, we deployed
the three monitors, each consisting of PEP, PDP, and PIP, on the same physical
system and made them communicate with each other. A general protocol for
such a communication among arbitrary parties is the subject of current work, so
we hard-coded a solution tailored for this specific scenario: we made the Firefox
monitor able to instruct the OS and X11 monitors about new policies and data
flows from the browser layer to the operating system and the windowing system.

We consider a social network [26] where a user watches a picture on someone
else’s profile page. Since the picture is considered sensitive, its usage is restricted.
In particular, no local usage is allowed after download, except for printing, and
whenever the picture is printed, a notification must be sent to the owner. The
respective specification policy is “This picture cannot be copied to the clipboard
(not even as a screenshot) nor saved to disk and its cached version can be used
only by Firefox. No printing of the picture without notification of the owner.” We
do not show the implementation-level policies here. Together with a description
of the interplay of the components, they are provided elsewhere [23].

In our implementation, at each layer we distinguish between the business
logic and the monitoring component which instantiates the model presented in
this paper (PEP, PDP and PIP in step 5 of Section 3). If the user requests the
page with picture Pic, the browser downloads the profile page together with a
policy that contains a sub-policy related to the figure. Upon reception by the
web browser, Pic takes new representations: it is rendered as a set of pixels inside
the browser window, it is cached as a file, and it is internally represented by the
browser in some memory region referenced by a node in the DOM tree. Each
representation must be protected at its layer in the system.
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To do so—and this is the ad hoc part of the implementation—the browser
monitor instantiates the generic policy it got from the remote server to each layer
by adding runtime information including the name of the cache file and the ID
of the window. Because this data is created at runtime, it cannot be statically
determined by the server a priori. After instantiating and deploying the policies
to the OS and X11 layers, the browser monitor allows rendering the picture and
creating the cache file. From this point onward, all three instantiations of the
policy are enforced at different levels of abstraction.

5 Related Work
The subject of this paper is the combination of data flow detection with usage
control, a policy language, and a prototype enforcement infrastructure.

Enforcement of usage control requirements has been done for the OS layer
[27, 28, 3], for the X11 layer [4], for Java [10, 11, 29], the .NET CIL [12] and
machine languages [13, 14, 30]; at the level of an enterprise service bus [15]; for
dedicated applications such as the Internet Explorer [16] and in the context of
digital rights management [17–19]. These solutions focus on either data flow
tracking or event-driven usage control. Our model, in contrast, tackles both at
the same time and since it is layer-independent, it can be instantiated to each
of these layers. At the level of binary files, the Garm tool [30] combines data
tracking with an enforcement mechanism for basic usage control. This model
focuses on access control, trust and policy management aspects, while our goal
is a generic model and a policy language to express and enforce advanced usage
control requirements for arbitrary system layers. Data flow confinement is also
intensely studied at the operating system level [27, 28]; here, our work differs in
that we aim at enforcing complex usage control policies.

A multitude of policy languages [2, 31–37] has been proposed. As far as we
know, none of them addresses the data dimension like ours does; they allow
for definitions of usage restrictions for specific rather than all representations of
data, and their semantic models do not consider data flows.

In terms of data flow tracking, our approach restricts the standard notion of
information flow which also caters to implicit flows and aims at non-interference
assessments [38, 39, 20, 21]: our system detects only flows from container to con-
tainer. This explains why we prefer to speak of data flow rather than information
flow. Moreover, even if we plan to leverage results of static analyses, like [40], we
want to detect these flows at runtime. Implementations of such data-flow track-
ing system have been realized for OS [3], X11 [4], OpenOffice [5] and Java byte
code and can be used as PIP component to instantiate our model. This cited
work, however, only addresses data flow detection without full usage control.

In terms of general-purpose usage control models, there are similarities with
the models underlying XACML [41], Ponder2 [42] and UCON [43]. The first two,
however, do not provide formalized support for cardinality or temporal opera-
tors (free text fields exist, but the respective requirements are hard to enforce).
UCON supports complex conditions [44], and has been used in applications at
different system layers, such as the Java Virtual Machine [45] and the Enterprise
Service Bus [46]. Data flow is not considered, however.
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Complex event processing [22] and runtime monitoring [7] are suitable for
monitoring conditions of usage control policies. As such, they address one aspect
of the problem, namely the monitoring part, and do not cater to data flow.

6 Conclusions

The contribution of this paper is a combination of usage control with data flow
detection technology. Rather than specifying and enforcing usage control policies
on specific representations of a data item (usually encoded in usage-controlled
events), our work makes it possible to specify and enforce usage control policies
for all representations of a data item (files, windows contents, memory contents,
etc.). We provide a model, a language, an architecture and a generic implemen-
tation for data-centric usage control enforcement that we instantiate to several
system layers. Our implementation consists of combined usage control and data
flow monitors for an operating system, a windowing system, and a web browser,
together with a multi-layer enforcement infrastructure for them. As an example,
this system makes it possible that a user can download a picture on a web page
and watch it in the browser but not copy&paste or print the content without
notification (enforced at the browser layer); nor take a screenshot (enforced at
the X11 layer); nor access the cache files (enforced at the OS layer) [1].

Because of space restrictions, we have not provided security nor performance
analyses. While we do not claim that our system cannot be circumvented, we
believe that a reasonable level of security can be attained [26, 9]. Performance-
wise, we currently are faced with an overhead of one to two orders of magnitude
[3, 4]. This, however, heavily depends on the kind of events that happen in our
system; moreover, our system is not optimized at all. Security and performance
analyses and improvements are the subject of current work. This paper also does
not solve the problem of policy deployment, livecycle management, delegation
and media breaks (e.g., taking a photograph of the screen).

Our current data flow model is very simple. While it is appropriate for use
cases of the kind we presented here, the involved overapproximations quickly
lead to a label creep in practice. For instance, at the OS-level, if a process reads
a file that contains one tainted bit, then every subsequent output of the process
is tainted. We are currently investigating how to adopt McCamant and Ernst’s
quantitative information flow model [47] as well as dynamic declassification tech-
niques to overcome this problem. The system layers we catered to in this paper
do not exhibit indirect information flow caused by control flow; this is, however,
the case for runtime systems. We plan to combine static and dynamic analyses
at this level to get more precise data flow models for these layers.

In terms of further future work, we need a generic implementation for cross-
layer enforcement, a formal model that caters to dependent events at one mo-
ment in time, and a way of protecting the enforcement infrastructure that not
necessarily inherits the disadvantages of trusted computing technology [9].
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