Deriving Implementation-level Policies
for Usage Control Enforcement

Prachi Kumari
Certifiable Trustworthy IT Systems
Karlsruhe Institute of Technology
Germany

ABSTRACT

Usage control is concerned with how data is used after access
to it has been granted. As such, it is particularly relevant
to end users who own the data. System implementations
of access and usage control enforcement mechanisms, how-
ever, do not always adequately reflect end user requirements.
This is due to several reasons, one of which is the problem
of mapping concepts in the end user’s domain to technical
events and artifacts. For instance, semantics of basic oper-
ators such as “copy” or “delete”, which are fundamental for
specifying privacy policies, tend to vary according to con-
text. For this reason they can be mapped to different sets
of system events. The behaviour users expect from the sys-
tem, therefore, may differ from the actual behaviour. In
this paper we present a translation of specification-level us-
age control policies into implementation-level policies which
takes into account the precise semantics of domain-specific
abstractions. A tool for automating the translation has also
been implemented.
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1. INTRODUCTION

Access and usage control systems provide means to spec-
ify and enforce policies about who can access data and how.
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At the level of end users, a policy is a set of rules speci-
fied using abstract vocabularies such as “this picture may
not be printed” or “this address may not be distributed.”
We refer to these rules as specification-level policies. The
set of actions, subjects and objects that are used in such
policies differs according to the domain context. Within
each domain, policies must be defined and enforced at dif-
ferent levels of abstraction, including the operating system
|1], windows manager |2|, virtual machine [3], etc. Every
specification-level policy hence needs to be mapped to a set
of implementation-level policies, usually one per layer of ab-
straction. This is because the data that is to be protected
comes in different representations: as file, as window con-
tent, object attributes, etc. Eventually, all these represen-
tations boil down to some representation in memory, but it
is often more convenient and simpler to perform protection
at higher levels of abstraction [4].

Usage control policies can in general be enforced in two
ways. Detective enforcement aims at detecting violations of
a policy. In case of a violation, usually a compensating, cor-
recting, or notifying action is taken. In contrast, preventive
enforcement aims at avoiding policy violations [5]. The sub-
ject of this paper is the derivation of implementation-level
policies from abstract specification-level policies for preven-
tive enforcement of usage control requirements. There are
two major challenges in enforcement: firstly, to keep track of
all representations of the same data at different layers of ab-
stractions. For instance, if a picture downloaded from a web-
based social network site (WBSN) is to be protected, then
the window content, the cache file, and the browser-internal
representation, as well as their copies, need to be protected.
The second challenge is to translate the policy specified for
abstract data with abstract actions into implementation-
specific policies at different layers of abstraction.

The problem of addressing different representations of the
same data in the system without explicitly listing them has
been tackled elsewhere [6]. For enforcement of usage control
policies, a set of layer-specific enforcement and data flow
tracking mechanisms is configured by a data-oriented policy
language. The respective data flow tracking model keeps
track of the connections between various representations of
data across different levels of abstraction. In this line of
research, the authors expect the policies to exist and have
not addressed the problem of deriving them. In this paper,
we tackle the derivation of implementation-level policies.

One major issue in the derivation of policies is that there
is not one single “correct” semantics for actions like “copy”
or “delete.” To address this problem, two questions need



to be answered: the first one concerns the domain-specific
semantics of actions, that is, how an action on a data affects
other associated data in the domain. For example, “does
deleting a profile in a social network mean deleting all posts
and links from other profiles also?” The second question is
about the technical semantics of actions. That is, how is an
action at the abstract level translated into technical events
that are eventually performed, e.g., “does copying a picture
mean taking screenshots also or only coping the correspond-
ing jpeg files? Does deleting a file mean throwing away the
key or deleting the FAT entry or randomly overwriting the
hard disk’s sectors several times?” Finding answers to both
sets of questions is fundamental to the derivation of policies.
This is because, in the absence of clear semantics of basic
operators (viz. copy and delete), it is impossible to define
policies for basic privacy requirements regarding dissemina-
tion, retention or deletion of data, that leave no room for
misinterpretation. In general, it is not possible to directly in-
tercept/check/detect/monitor if a copying or deletion event
has happened or is currently happening.

The other challenge in the derivation of policies is method-
ological. Although there exist many methodologies for record-
ing, analyzing and understanding user requirements, we do
not know of a well-defined framework that facilitates the
translation of these requirements into implementation-level
policies in a systematic way. Typically, this translation is a
manual exercise which can result in implementations that,
at different levels of abstraction, permit events that should
not be allowed to happen and/or forbid events that should
be allowed. Also, in the absence of a well-defined transla-
tion methodology, this tedious and lengthy process cannot
be automated. Similar problems arise whenever user re-
quirements are transformed into system requirements.

In this paper, we address these issues in the context of
usage control policies. We provide a framework for precisely
defining the semantics of the actions specified in domain-
specific policies that, at the same time, takes into account
the underlying technology. We also present methodological
guidance in order to automate the translation of policies.
The complete process requires human intervention in two
roles: the first one is an “end user” who is expected to be
well-versed in the domain-specific terminology but is obliv-
ious to the corresponding technical details, which are taken
care of by the more sophisticated “power user.” For this,
we present a meta-model of the data-processing system that
reflects the specification and translation of policy elements
from abstract to technical levels. We do this in three steps:
(1) define a domain model to describe obligations on future
data usage; (2) map high-level domain-specific abstractions
to low-level technical representations; (3) define enforcement
mechanisms for every technical representation.

End users define policies using high level domain-specific
terminology. The mapping from high level domain-specific
abstractions to low-level technical representations and the
definition of enforcement mechanisms |7)f8] is provided by the
second role, the power user. Policies are then automatically
translated to rules that are sufficiently technical to configure
enforcement mechanisms.

One example use is from the social network domain: Al-
ice wants her friends to be able to view the pictures she
posts in her profile. In contrast, they should not be able
to make local copies of those pictures on their machines.
Alice can specify the policy “never copy picture” using one

of the policy templates described later in this paper, with-
out knowledge of any technical policy specification language.
By means of the domain model and the mappings provided
by the power user, this policy is mapped to more techni-
cal policies at various levels of abstraction. The power user
also decides on the mode of enforcement (inhibition, modi-
fication, execution). Finally, sets of implementation-specific
executable rules are generated, one per layer of abstraction.
The enforcement of the policy itself is tackled elsewhere [9)
and is outside the scope of this paper.

One crucial assumption in this paper is the static system
structure. In deriving implementation-level policies from
specification-level usage control policies, we have deliber-
ately not considered the adaptive nature of systems. Though
unrealistic, this assumption is reasonable in order to simplify
the problem and achieve initial results.

Problem. In sum, we tackle two problems in this paper.
The first concerns the lack of semantics of events in usage
control policies. The second concerns the problem of trans-
forming abstract policies to their technical counterparts in
an automated manner. In the larger context, through this
work we try to fill the gap between user and system require-
ments for domain-specific applications.

Solution. We present a framework and a tool for defining
the semantics of events that takes into account the differ-
ent representations of data and its potential flow through a
technical system. Our solution comprises both the technical
and the methodological aspects of deriving technical policies
from more abstract policies.

Contribution. We are not aware of methodologies for
translating specification-level usage or access control poli-
cies into implementation-level policies that configure usage
or access control mechanisms at different abstraction levels.
Organization. §2| puts our work in context. presents
the domain meta-model and, as an example, a WBSN in-
stantiation of it. §4] describes the translation of policies.
describes the tool we implemented for automating pol-
icy translations. §f] backs our proposed framework through
several examples. §7] concludes by discussing limitations,
further refinements and future work. Appendix [A] describes
the translation of future-time specification-level obligational
formulas to the past-time conditions of implementation-level
policies.

2. RELATED WORK

The subject of this paper is the derivation of implementati-
on-level policies from specification-level policies using a do-
main meta-model that is instantiated to define the technical
semantics of domain-specific abstractions in high-level us-
age control policies. The general problem addressed is the
translation of user requirements into system requirements.

Often, user requirements are not adequately translated
into system requirements which results in systems with func-
tionalities that are not desired while missing out on the de-
sired ones |10]. The gap between these two types of re-
quirements has been a major problem in the domain of re-
quirement engineering [11H13| and although a lot of work
has been done on understanding, eliciting, analyzing user
requirements |14] and translating them into system require-
ments for different application domains [15}|16], it remains
one of the prominent topics in software engineering research
[10L[17].



In the context of security, modeling vulnerabilities, fail-
ures and countermeasures [18-21], security requirements and
their potential conflicts with other functional and non-functi-
onal requirements, application of standards [22}23], access
control policies and requirements |24}25] and policy descrip-
tion languages [7}26H28] have been mainly addressed.

In terms of derivation/refinement of policies from the busi-
ness to the technology level, the focus has been on the deriva-
tion of role-based access control policies. In this line of
work, Yee and Korba have presented two approaches for
semi-automatic derivation, one relies on third-party surveys
of user perceptions of data privacy and the other on retrieval
from a community of peers [29]; Young and Anton [30] have
proposed a commitment (obligations) analysis methodology
to derive software requirements from privacy policies; Su et
al. have proposed a policy refinement methodology based
on resource hierarchies [31]; Bandara et al. have presented
a methodology based on system goals [32]; Guerrero et al.
have proposed an ontology-based approach [33]; and Udupi
et al. have presented an automated, domain independent
approach based on data classification [34]. Lodderstedt et
al. specify RBAC policies in UML and translate them to
code or deployment files [35] and do not consider the se-
mantics of atomic actions or resources. Aziz et al. [36] have
proposed a resource hierarchy meta-model for translating
domain-specific elements in XACML policies at the level
of virtual organizations to generate corresponding XACML
resource-level policies. This is similar to our work in terms of
the approach. However, the policies are refined from the ab-
stract level (users, resources and applications) to the logical
level (user ids, resource addresses and computational com-
mands like read/write); further technical representations of
policy elements in concrete systems are not considered. Be-
sides, the policy refinement literature concerns access con-
trol privacy policies only. To the best of our knowledge, the
translation of usage control policies has not been investi-
gated.

Usage control, which extends the concept of data protec-
tion beyond access control [37,/38|, puts constraints upon
further usage of data after access is granted. Usage control
enforcement, for various policy languages [7}[26H28l[39], has
been done at different layers of abstraction [1H4] in the sys-
tem. However, in all these enforcement cases, policies are
supposed to exist and their derivation from end user require-
ments to enforcement mechanisms has not been addressed.

Though all the work cited above makes some kind of
distinction between high-level abstract and low-level con-
crete data and actions, they have not defined precise frame-
works that can guide the derivation from top to bottom. In
this context, many architecture frameworks have been pro-
posed that differentiate among business, data, application,
and technical infrastructure layers in enterprise settings; the
prominent ones being the Zachman framework [40] and the
Open Group Architecture Framework (TOGAF) |41]. Of
these, the Zachman framework focuses on the classification
of various architectural artifacts. The three initial perspec-
tives of “what”, “how” and “where” for information systems
architecture |[42] are part of our domain meta-model at the
second and third layers.

3. THE FRAMEWORK

Specification-level policies describe what must and must
not happen throughout the execution of a system. Imple-
mentation-level policies refine them by stating how they will
actually be enforced. This paper addresses the problem of
automatically deriving the latter from the former.

Specification-level policies consist of domain-specific ab-
stractions (that is, data and actions) and constraints. Ex-
amples include never-copy-picture, delete-document-after-
30-days, etc. We need, firstly, to define the meaning of data
and actions. Secondly, because specification-level policies
tend to be formulated in terms of the future usage of data,
we need to transform the constraints into enforceable condi-
tions that are defined on the past (as explained elsewhere [7];
otherwise, the system would need to be able to look into the
future. For a special subset of properties, it is in fact possi-
ble to detect the policy’s violation at the earliest moment in
time [43]. However, since we are concerned with preventive
enforcement, we do not rely on these approaches). To ad-
dress the first challenge, we present a meta-model where the
meaning of high-level abstractions of data and actions is pro-
vided by mapping them to their possible technical represen-
tations. The second challenge, the translation of constraints,
is essentially the problem of deriving past-time rules to con-
figure enforcement mechanisms. Our mechanisms consist of
a description of when they are applicable (triggering event
and a condition); and the respective actions to be taken
in that case. Mechanisms are hence of the event-condition-
action format. Different mechanisms may correspond to one
obligation at different levels of abstraction.

We address all these issues step-by-step in the next sec-
tions. We start by addressing the problem of defining the
semantics of data and actions in specification-level policies.

3.1 Data and Containers

In order to enforce usage control policies specified for data,
we must be able to differentiate between data and actions,
and their technical representations. At the end user’s level,
data is an abstract concept with an intuitive set of actions
relevant to it. The end user can therefore specify usage
control policies only in those abstract terms. At the sys-
tem level, data comes in different concrete representations
called the containers (files, pixmaps, memory regions, net-
work packets etc.). The mappings between data and con-
tainers tell which set of data is potentially stored in which
container at runtime [6]. Extending this concept of distinc-
tion between data and its representation, we present a meta-
model of the domain that includes the distinction among
user-intelligible high-level actions on data like “delete pro-
file” and “copy picture” (layer 1), corresponding technical
events on containers (which we call transformers) (layer 2),
and the specific implementations of these transformers and
containers (layer 3). Mappings between various components
at different layers in the meta-model provide the semantics
of high level actions on data in terms of a set of correspond-
ing technical events at various levels of abstraction.

3.2 The Domain Meta-Model

Our domain meta-model is shown in Figure It consists
of three layers: the platform-independent layer that is to be
defined and used by the end user; the platform-specific layer
that is to be defined and used by the power user; and the
implementation-specific layer, also to be defined and used by



the power user, that reflects the technicalities of the system
on which the policies are to be deployed.
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Figure 1: Domain meta-model

The platform-independent (PIM) layer corresponds to the
abstract data and the set of intuitive actions. Associations
and generalization-specialization relationships among data
define the abstract data model of the application domain
and capture the scenario when in a domain, certain data
are seen as aggregation of or associated with (set of) other
data or as generalization/specializations of other data. For
example, a profile is associated with all blogposts that a spe-
cific user posts in a blog-domain, an album is an aggregation
of all pictures posted by a specific user in a WBSN-domain
etc. The specification of such relationships can also help
define semantics of actions on one data in terms of a set
of actions on other data. For example, deleting the profile
means also deleting all associated posts, or denying copies
of the album means that no picture in the album can be
copied irrespective of the difference in the technical repre-
sentations of the two. Generalization-specialization relation-
ships among data at the PIM layer also define the semantics
of an action on one data in terms of actions on another data
at the platform-specific layer. For example, if a blog account
is a specialization of a general account, then the technical
semantics of actions like copy and delete for a blog account
is the same as for the general account.

The platform-specific (PSM) layer corresponds to all pos-
sible representations of data, known as containers, and the
set of transformers that read and write data between these
containers at different layers of abstraction in the system.
Transformers can be seen as functions that use sets of (atomic
and/or complex) events in corresponding systems to trans-
form the containers when certain actions are performed on
data; e.g. screenshot in the windowing system, copy & paste
in the web browser, copy file in the file system, etc. Con-
tainers, transformers and systems can be associated with
and/or generalize sets of other containers, transformers and
systems. For instance, a database can be seen as a special-
ization of a file; copy file transformers are associated with a
set of transformers for opening, reading, writing and closing
a file, and a WBSN system is spread across multiple layers
of abstractions over many servers and client machines.

As there is more than one way of implementing different

systems, multiple implementations of containers and trans-
formers exist. This is shown in the third layer of our meta-
model, the implementation-specific layer (ISM). Mappings
between data and containers, and, actions and transform-
ers specify the semantics of actions on data in terms of sets
of transformers applied to sets of containers; e.g. seman-
tics of “copy picture” in the context of a WBSN are given
by screenshot in the windowing system, copy & paste in the
web browser, copyfile in the operating system. Mapping con-
tainers and transformers to their implementations specifies
the semantics of action on data in terms of low-level techni-
cal implementations; e.g. the semantics of “copy picture” is
given by “getImage on a drawable object” in the X11 win-
dowing system, “cmd_ copy on an html image object” in the
Mozilla Firefox web browser, and “sequence of open, read,
write and close system calls on file” in a Unix operating sys-
tem. For illustration, we instantiate our meta-model for the
case of a WBSN in the next subsection.

3.3 A Social Network Example

For space reasons, only parts of the complete domain
model are shown in Figure 2] The classes of the meta
model (data, container) that are instantiated by a class of
the WBSN domain model are indicated as stereotypes (« »)
on top of the class name (WBSN data, WBSN container).

The PIM layer domain model contains copy, delete etc.
actions for the classes of payload and traffic data. Profile in-
formation, pictures, posts, comments and other data posted
by end users is payload data; all data generated by browsing
activities of end users, e.g. links clicked, profiles visited etc.
are traffic data. A detailed data model of WBSN is given
in [44].

WBSN Containers are specialized into web browser con-
tainer, windowing system container, operating system con-
tainers etc. which are further specialized as DOM element,
window, file and other containers. Copy&paste, screenshot,
CopyFile and other transformers transfer data between these
containers. The system is a generalization of logical systems
(i.e. layers of abstraction like web browser, windowing sys-
tem, operating system etc.), physical hosts/locations (e.g.
caches, backups and other servers, client machines etc.) and
applications that span over both logical and physical sys-
tems (e.g. social network, mail systems, ERP systems etc.).
These systems and their implementations evolve over time.
However, in this paper we treat them as static. We reiterate
that we have done this deliberately - in order to simplify the
problem. The dynamic nature of distributed systems is part
of our ongoing work.

At the ISM layer, specific implementations include a Fire-
fox web browser, the X11 windowing system, an OpenBSD
operating system with corresponding containers and trans-
formers. For the Facebook implementation of social net-
work, various logical systems shown at the ISM layer are
deployed at hundreds of physical locations.

The definition of the domain models and the mappings
provides the semantics of data (in terms of its structure and
the containers that contain the data) and actions (in terms
of technical events) in specification-level policies. The next
step is the translation of constraints. We begin with an
overview of the complete process of specifying and deriving
the policies, followed by the details.
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Figure 2: WBSN Domain Model, an instance of Fig.

3.4 Opverview of Policy Specification and
Translation

Figure [3] shows the sequences of steps for the systematic
specification and translation of specification-level policies to
implementation-level policies. The first flow chart describes
the tasks performed by the power user for the definition of
the domain model and the policy templates and the transla-
tion of policies specified using these templates. The second
flow chart describes the end user tasks for specification of
policies (and also their translation, in case he opts not to
use the templates). In the complete process, end user tasks
start only after all the tasks are completed by the power user.
The initial steps are about defining the three domain mod-

platform and implementation -specific models of the applica-
tion are defined. In the fourth step, high level components
from the PIM level are mapped to PSM level technical rep-
resentations ( As the implementation-specific model is
a refinement of the platform-specific model, the definition of
ISM components includes the mapping to PSM-level coun-
terparts and is not a separate step in the process. In the
fifth step, when the power user creates specification-level
policy templates (7 he is also required to define the further
translation of the resulting policies. In sum, when the PIM
policy (or template) is saved, multiple XML representations
of the PIM policy are generated, each corresponding to one
specific layer of abstraction in the ISM model and contain-
ing implementation-specific representations of the abstract
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els because this provides the vocabulary for specifying PIM
policies and their translations to the ISM layer: string rep-
resentations of data, actions and their technical implemen-
tations are used in specification and implementation-level
policies. The platform-independent domain model is defined
in the first step. In the second and the third steps, the

their translation is already defined by the power user, the
policies are automatically translated when the end user saves
them. The end user can also specify PIM policies without
templates, using standard OSL operators. In that case, he
must decide upon the enforcement mechanisms and define
the corresponding ECA rules.

In a nutshell, the meta-model from Figure[l]is instantiated
to three-layered domain models and the mappings between
the layers for the application context (as in Figure . In
the subsequent steps, the specification-level policy, the en-
forcement strategies and the event-condition-action rules for
enforcement are defined; they can be generated for template
classes of policies. In the next section we go into the details
of policy specification and translation.



4. POLICY SPECIFICATION AND
TRANSLATION

Specification-level policies stipulate what must or must
not happen to data in the future. Hence they contain obli-
gations in future time temporal logic. In our framework,
we specify obligations in OSL, a policy specification lan-
guage that combines the classical propositional operators
with future time temporal and cardinality operators such
as until, always, after, within, during, repmazx etc. Intu-
itively, until(a, b) is true if a is true until b eventually be-
comes true or b never becomes true; the always operator is
intuitive, after(n,a) is true if a becomes true after n time
steps; within and during are intuitive. The cardinality op-
erator repmaz(n, a) specifies that a must be true at most n
times in the future. For space reasons, we do not describe all
OSL operators here. For the complete syntax and semantics,
see [6L[7].

Usually, a high-level action in a policy is expressed in
terms of a sequence of corresponding low level events. In
certain cases, this might not be the best approach. Let us
for instance consider the policy of denying picture copies at
the operating system level; this means that a sequence of
system calls that result in a copy of the picture are denied.
But infinitely many sequences of system calls can achieve
the same result and coming up with a list of them has a
high chance that we miss out a few of them. Alternatively,
if all such sequences might start with a particular system call
(e.g. in any case, a file must be opened to be copied), block-
ing this particular system call (the first in the sequence)
might seem a solution. The problem with this approach is
that this particular system call starts many other sequences,
some being required features of the system. Blocking any
other “main” system call of the sequence requires the se-
quence to be precisely identified and enumerated. Thus it
turns out that expressing the semantics of high level action
in terms of a sequence of low level events might not be the
best approach in some cases. Especially when actions of the
form copy and delete are concerned, the user wants to make
sure that specific situations must or must not occur in the
system, that is, the system must or must not be in specific
states. For this, state-based policies have been introduced
in [6]. State-based policies refine actions in policies in terms
of states that the system must or must not enter. As the
mappings between data and containers define the states of
a system, this means that the data must be restricted to or
must never enter specific containers. For this, operators like
isNotin, isCombined With and isOnlyIn are used. Thus spec-
ification level policies can be enforced both as event-based
policies and state-based policies. In Section [6 we show ex-
ample policies for both cases.

Figure [4 shows how the meta-model fits into the big pic-
ture of usage control policies and how components from one
relate to the other. An OSL policy consists of a set of obli-
gational formulas. An obligational formula consists of a
logical expression which is a set of state-based and event-
based operators. Complex policies contain nested formulas;
hence, formulas can also be operands in a policy. The other
operands include action with data as its parameter, both of
which are string representations of the classes in the PIM do-
main model. End user policies are specified using templates
which contain these string representations, hence they ap-
ply to classes and not specific instances of data. Note that
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graphical templates are defined in order to hide OSL from
the end user; end users may, but are not expected to express
policies in OSL. So the templates are designed to consist of
data, action and constraints as representations of OSL oper-
ators. Constraints can also be expressed in terms of actions
that trigger the policy; hence actions are shown to be ref-
erenced in constraints (in concrete syntax these are XPath
constructs containing reference to trigger event).

The specific kind of preventive enforcement (inhibition,
modification, execution) needs to be prescribed by the power
user as one specification-level policy can be enforced in many
ways. For instance, let us consider the requirement “pic-
ture must not be copied without notification” in a WBSN
domain. At the abstract level, preventive enforcement by
inhibition of this requirement means that all actions of the
type copy are blocked; preventive enforcement by modifica-
tion means that the picture is allowed to be copied but the
resulting image at the destination is for instance, replaced
by another picture (for instance, showing an error); and pre-
ventive enforcement by ezrecution means that the picture is
allowed to be copied but the owner is notified about the ac-
tion. Abstractly, these enforcement mechanisms are param-
eterized event-condition-action (ECA) rules where the rule is
triggered provided that the Event takes place and the Con-
dition evaluates to true. The Action specifies how precisely
inhibition, delay, modification, or execution take place [§].
For instance, let us consider again the above requirement.
To show the ECA rules corresponding to different enforce-
ment strategies, we use these propositions with picture as
p: attemptCopy(p) denotes that an attempt to copy picture
has been made, copy(p) denotes that a picture is copied,
notifyAdmin(p) states that a notification about the picture
should be sent to the administrator, adminNotified(p) means
that the administrator has already been notified about the

picture.
Enforcement by execution means that whenever the pic-
ture is copied, a notification is sent to the administrator.

Event: copy (p)
Condition: true
Action: EXECUTE notifyAdmin (p)

Enforcement by modification means that whenever there
is an attempt to copy the picture and a notification has
not been sent, the picture is replaced by another predefined
picture “error.jpg”(using function replace ByError(p)).




Event: attemptCopy (p)
Condition: not(adminNotified(p))
Action: MODIFY replaceByError (p)

Enforcement by inhibition means that whenever there is
an attempt to copy the picture and a notification has not
been sent, the attempt is blocked.

Event: attemptCopy (p)
Condition: not(adminNotified (p))
Action: INHIBIT

Implementation-level policies are encoded in XML with
an Event declaration part, a Condition part, and an Action
part (ECA pattern). The event declaration part is the trig-
ger of the implementation-level policy, and represents the
request for the execution of an action. The trigger event
can be underspecified, that is, all the parameters need not
be declared here. It is possible to reference the trigger event
of implementation-level policies in the conditions and action
parts using XPath expressions. When a trigger event match-
ing the event declaration part of an implementation-level
policy is received, and the condition part evaluates to true,
the action part of the mechanism is evaluated. Our language
allows the specification of implementation-level policies that
inhibit/prevent the intended action and might also execute
arbitrary actions before the requested action is executed.
In case the action allow is specified, it is possible to spec-
ify modifications in the parameters values or to delay the
execution of the action.

Deciding about the enforcement strategy and the transla-
tion of future time obligations to their past forms are the two
basic requirements for deriving implementation-level policies
from specification-level policies. We present the translation
of future time obligations to past time conditions in Ap-
pendix [A] In the next section we give an overview of the
automation of the translation and the implemented tools.

5. AUTOMATION OF POLICY
SPECIFICATION AND TRANSLATION

In Section [3-4] we have introduced the methodology for a
systematic derivation of implementation-level policies from
specification-level policies. The first four tasks of the power
user define the semantics of domain specific abstractions in
technical terms. The last three tasks describe the translation
of an OSL policy into ECA rules. Based on this, policies are
translated from the PIM to ISM layer in the meta-model
when the end user specifies them using templates. If the
end user specifies policies without predefined templates, the
translation is semi-automatic. The complete process can-
not be fully automated in this case because of the following
reasons:

1. Definition of enforcement mechanisms needs human in-
tervention for at least every class of specification-level
policy, as one specification-level policy can be enforced
in many different ways.

2. Complex obligations may need to be decomposed into
subconditions each of which is then mapped to the
condition part of a separate ECA rule. Decomposition
may be required to get rid of nested temporal formulas,
whose translation cannot be automatically achieved.
A trivial (and fully automatic) solution of this problem

is to turn each subformula of the specification-level
policy into one ECA rule.

We have implemented two editors, to be used by two roles
of users (the end user and the power user), for specifica-
tion and translation of policies according to the meta-model
described in Section In this section, we describe these
tools through examples from the domain of WBSN appli-
cations. However, the tools are generic and can be used for
any domain-specific application (in the next section we also
show some examples for Android-based smart phone appli-
cations) as all domain data is stored separately in databases
and XML files and the domain can be changed by modifying
the contents of them.

At the PIM level, end users are not supposed to be adept
in any technical policy specification language. Yet, they
should be able to specify usage control policies. We address
this problem by means of our end user tool which enables the
user to specify PIM policies by editing templates in a drag
and drop interface. Templates consist of constraints that
abstract the syntax of the different OSL operators. Addi-
tionally, they contain placeholders for string representations
of data and actions. Thus in a template, a policy is made up
of data, action and constraint blocks. Constraints are rep-
resented by rounded rectangles, actions by rectangles and
data by double ellipses. The solid arrow is from the opera-
tor to the operand and the dotted arrow is from action to its
object parameter value. The specific actions and data are
specified by the end user by dragging and dropping these
values from the palette. Additional parameter values for ac-
tions (sender, receiver, location, purpose, currency etc.) are
specified by choosing the option from the right-click context
menu. To begin with, we have specified five templates for
describing usage control policies, as most of the policies rel-
evant for end users of WBSN applications can be specified
through them. Creating new templates is not difficult and
can be done later also.

The five templates can specify policies of the form “never
do X;” “no X until Y;” “X always implies Y;” “do X
within N duration;” “X can be repeated maximum
N times.” Figureshows an example template for a policy
of the form “never do X” on the left and an example policy
specified using that template on its right.

Never

Action

Copy

Album picture

Figure 5: Pictures in albums must not be copied

It appears more convenient for an end user to state “al-
bum picture must not be copied” using the template than
to formally express it in OSL as the obligational formula:

always(not( B (Copy, {(object, albumpicture)}))).

Thus, templates enable less sophisticated end users to
specify usage control policies without the knowledge of any
policy specification language. We strengthen this argument



by help of further examples of templates and corresponding
policies.

Figure [6] shows the graphical representation of the policy
mentioned earlier in Section [4 “picture must not be copied
without notification” which is of the form “no X until Y”
and can be formally expressed in OSL as the obligation

until(not(Ers (Copy, {(object, Albumpicture)})),
Efg(Send, { (object, Notification)}))

Unti
{Do not({Action(Data)))}
{Action2(Data)}

Until
{Do not({Copy(Album picture)})}
{Send(Notification))

‘ Actiont ‘ ‘ Action2 ‘ ‘ Copy ‘ ‘ Send ‘

frimpenre

Figure 6: No copy without notification

Figure [7] shows the graphical representation of the obliga-
tion
always(implies(Eyy (Delete, { (object, Profile)}),
Ejfs(Delete, { (object, { Album, Blogpost, Song, Video})})))

which is of the form “X always implies Y” and in gen-
eral defines the meaning of action on one data in terms of
same or other action(s) on (other) data; the specific example
states that deleting a profile also means deleting all albums,
blogposts, songs and videos posted in the profile.

Actiont e 4 Delete |-
Always implies
{Delete(Profile)}

{Delete(Album Blogpost,Song,Video)}

Delete

Always implies
{Action1 (Data1)}

{Action2(Data2)}

Action2

Figure 7: Deleting profile means deleting all other
data

The simplification of specifying OSL policies is obvious in
the above examples. If the end user is knowledgable about
OSL, he can also write these policies using our editor. In
that case, further definition of the enforcement mechanisms
is also taken care of by the end user.

The power user tool is used to define the abstract (PIM)
and concrete (PSM & ISM) domain models and the respec-
tive mappings. It provides two sets of functionalities: one
for the definition of different domain models and the other
for mapping the elements across models. Domain-specific
models for PIM, PSM and ISM layers can be defined, mod-
ified and deleted using this tool and their components are
mapped to each other by links; for instance, by connecting

“picture” from the PIM layer to “file, DOM element, win-
dow content” from the PSM layer. The abstract model pro-
vides domain-specific vocabulary for specifying PIM policies
and the mappings achieve the automatic translation of ab-
stract policy components to their concrete counterparts in
the specified policies. Syntactical transformation from OSL
to ECA rules is specified by the power user using predefined
templates .

In the next section we present some examples of implemen-
tation-level policies derived from specification-level policies.
These policies have been defined and shown to be enforced
in [4,/6,|9] and other related work where they are assumed
to exist and have not been derived from user requirements.
We show their derivation here as a proof of concept of our
work.

6. DERIVATION OF POLICIES BY
EXAMPLES

We start with the example policy from the use case in Sec-
tion [T} “picture must not be copied” whose graphical speci-
fication is shown in Figure [5| Figure [2] shows the semantics
of data and action of this policy, where the concrete model
of the WBSN domain includes three layers of abstraction
in client machines: the web browser, the windowing system
and the operating system. Implementation-level policies for
the three levels of abstraction are shown below.

<!-- For Firefox Web Browser -->
<controlMechanism>
<id>Browser_CopyPaste</id>
<triggerEvent>

<id>copy</id>

<parameter name="obj" value="img_profile" type="dataUsage"/>

<parameter name="isTry" value="true"/>
</triggerEvent>
<condition> <true /> </condition>
<actions> <inhibit/> </actions>
</controlMechanism>

<l-- For X11 Windowing System —-->
<controlMechanism>
<id>X11_Screenshot</id>
<triggerEvent>
<id>GetImage</id>
<parameter name="obj" value="0x1a00005" type="dataUsage"/>
<parameter name="isTry" value="true"/>
</triggerEvent>
<condition> <true /> </condition>
<actions>
<allow>
<modify>
<parameter name="planeMask" value="0x0" />
</modify>
</allow>
</actions>
</controlMechanism>

<!-- For Windows Operating System -->
<controlMechanism>
<id>0S_Restrict_File_Usage</id>
<triggerEvent>
<id>open</id>
<parameter name="obj" value="cacheFile" type="dataUsage"/>
<parameter name="isTry" value="true"/>
</triggerEvent>
<condition>
<XPathEval>
/triggerEvent/parameter [@name=’PNAME’]/@value!=’c:\\Firefox\\firefox.exe

</XPathEval>

</condition>

<actions> <inhibit/> </actions>
</controlMechanism>

The policy is enforced at the web browser and the oper-
ating system levels by inhibition (we make an exception to
our simple inhibition rule at the OS level by allowing the
web browser (specifically, Mozilla Firefox) to open the pic-
ture so that the end user can (only) view the picture in a
web browser) and at the windowing system level by mod-
ification. Here, the choice of the enforcement strategy is




implementation-driven. For the X11 windowing system, in-
hibiting screenshots altogether (sending an empty response)
results in an error message from the server. So it is bet-
ter to enforce the policy as modifying the trigger event in-
stead of inhibiting it: we modify the request for screenshot
on a drawable by changing the planeMask value from Oxffff
(meaning every plane is included) to 0x0 (no plane included)
resulting in a black rectangle at the destination.

We have already discussed the problem and the solution
of expressing high-level actions like copy and delete in terms
of sequences of low level events (Section . So in the next
example, we show a high-level policy translated into a state-
based low level policy. In the use case from the WBSN;, the
end user wants that his friends should be able to play his
songs, make local copies, but they should not be able to
distribute it further. The abstract policy is, “song must
not be distributed.” At the specification level, this require-
ment is expressed using the policy template of Figure [ with
action as distribute and data as song. Figure[§shows an in-
stantiation of the domain meta-model for the corresponding
concrete representations at the OS-level.

P.LM.
‘ Song }—{ Distribute ‘

‘ ‘ PSM.

SendToSocket }—{ Operating system ‘

1.S.M.

Write H OpenBSD ‘

Figure 8: Semantics of “distribute song”

At the OS level, distributing data over the network is
interpreted by the power user as writing data in a specific
container to the socket descriptor. “song.mp3” and “Net”
are names for containers at runtime. In particular, “Net”
is a reserved name for the container “Cnet” that stands for
“the network”. The requirement can be formally expressed
in OSL as

isNotIn(song.mp3, Net)

We choose to enforce the policy by inhibition. Hence the
mechanism is triggered whenever a write system call sends
the song (the data) stored in “song.mp3” over the network,
i.e. to a socket descriptor.

<controlMechanism>
<id>0S_Disclosure_example</id>
<triggerEvent>
<id>write</id>
<parameter name="isTry" value="true"/>
</triggerEvent>
<condition>
<not>
<isNotIn data="song.mp3">
<containers>
<container>Net</container>
</containers>
</isNotIn>
</not>
</condition>
<actions> <inhibit/> </actions>
</controlMechanism>

Our third example is from the domain of smart phone
applications for Android phones: pictures taken at certain
locations must be blurred when viewed outside the premises.
This requires that the concrete representations of pictures
taken from the camera must be identified when saved in the

system, these representations must be tainted when the pic-
ture is taken at the specified location and, when the location
of viewing the pictures is not the same, the representations
must be temporarily blurred before being displayed. There-
fore location is a key parameter of action in this case. At
the PIM layer, tainting is captured by “flagging” a picture.
Figure [0 shows the specification of two policies in the end
user tool.

Save
location = x

View

Camera picture Jocation 1= x

- Flagged picture

Always implies
{Save(Camera picture)}

Always implies

{View(Flagged picture)}
{Blur(Flagged picture)}

{Flag(Camera picture)}

Camera picture

Figure 9: Blur picture when viewed outside the orig-
inal location

Flagged picture

Both the policies are specified using the template shown
in Figure [7} The first policy (on left) stipulates that when
a camera picture taken at location x is saved, it should be
flagged:

always(implies(Eyg (Save, {(object, Camerapicture), (location, x)}),

Ef(Flag, {(object, Camerapicture)})))

The second policy stipulates that when there is an at-
tempt to view the flagged picture ’outside’ a specific location
('negateLocation’ parameter value set to true), the picture
must be blurred:

always(implies( Ttsy ( View, {(location, ), (negateLocation, true),
(object, Flaggedpicture)}), Es (Blur, {(object, Flaggedpicture)})))

with T} denoting an ’intended’ action. Figures [10| and
show the semantics of data and action in the two policies
using domain models. At the implementation layer, pictures
taken from the camera are identified by a special taint mark
(0x00080 in our case) and are tainted with another taint
mark (0x10000) when they are saved as files at the OS level.

P.l.M.

‘ Camera picture }—{ Flag ‘

[
File with extended in
attribute
jout
File with added
taint mark
YAFFS2 File with
taint mark 0x00080

YAFFS2 File with
taint mark 0x10000

P.S.M.

Taint }—{ Operating system ‘

L.S.M.

setxattr }—{ Android OS ‘

Figure 10: Semantics of “flag camera picture”

Viewing a flagged picture means reading the file with taint
marking 0x10000 at the OS level.

We enforce both policies by modification. At runtime,
when a picture taken by camera (identified with the taint
mark 0x00080=128) at the location x (location=49.445626,
7.760339; checked in the trigger event part)is written to the



P.LM.
‘ Flagged picture }—{ View ‘
\ \
\ \ P.S.M.
‘ Tainted File n :‘ ReadFile Operating system
out
1.S.M.
YAFFS2 File with )
taint mark 0x10000 Read }—{ Android ‘

Figure 11: Semantics of "view flagged picture"

file system, the trigger is modified with parameter value
0x10000 (=65536). When there is an attempt to read the
file with taint marking 65536 and the location is not equal
to x (checked by the last parameter of location in trigger
event part; when this flag is set to true, the evaluation is
negated), the event is blocked.

<!-- Adds taint 0z10000 for pictures taken at given location -->
<controlMechanism>
<id>TaintPictures</id>
<triggerEvent>

<id>0SFileSystem.write</id>

<parameter name="taint" value="128" />

<parameter name="location" value="49.445626;7.760339;50;true;false"/>
</triggerEvent>
<condition> <true /> </condition>
<actions>

<allow>

<modify>

<parameter name="data" value="taint$65536" />

</modify>

</allow>
</actions>
</controlMechanism>

<!-- When not at the given location, files with taint marking 0210000 =
65536 are blurred upon access-->
<controlMechanism id="BlurPictures">
<triggerEvent id="0SFileSystem.read" />
<parameter name="taint" value="65536" />
<parameter name="location" value="49.445626;7.760339;50; true;true" />
</trigger>
<condition> <true /> </condition>
<actions>
<allow>
<modify>
<parameter name="data" value="blur$s5" />
</modify>
</allow>
</actions>
</controlMechanism>

7. CONCLUSIONS AND FUTURE WORK

The problem we address in this paper is the systematic
derivation of usage control policies from specification-level
to implementation-level taking into account the technical se-
mantics of high level actions like copy and delete for all the
different representations of data. Specification-level policies
are specified using abstract terminology and hence must be
translated into more technical policies that can be enforced
at different layers of abstraction in the system. In this di-
rection, our contribution is twofold: on one hand we present
a framework that allows us to define the semantics of ac-
tions in terms of elements of application-specific domain
models and translates the policies from their specification
level syntax to event-condition-action (ECA) format; and
on the other hand, we provide methodological guidance for
the specification and translation of policies so that the com-
plete process, which is cumbersome when manually done,
can be automated.

For the precise semantics of actions in usage control poli-
cies, we present a domain meta-model that has three layers

which correspond to abstract data and actions (PIM layer)
and their various representations (PSM layer) and imple-
mentations of these representations in the real world (ISM
layer) (§3). The idea is to map abstract entities from the
specification-level policies to their technical counterparts to
define the semantics of actions on data in terms of transform-
ers that write/read to/from the containers in which data is
stored. After this, enforcement strategies are decided upon
and the specification-level policy, which is expressed in OSL
in our framework, is transformed into sets of ECA rules (§4)).
As a result of translation, a set of implementation level poli-
cies is generated for one specification level policy: usually,
one implementation-level policy per layer of abstraction. By
means of several examples, we have shown the applicability
of our methodology (

To automate the process, we have two roles: an end user
and a more sophisticated power user. We have implemented
two editors to be used by them. In one editor, the power
user defines the three domain models and maps the compo-
nents from these models to each other (§5). The end user
then uses the string representations of the classes of the ab-
stract domain model to specify policies in the second editor.
The end user specifies policies in an interactive drag and
drop user interface using templates, which abstract standard
OSL operators and thus make it possible for an end user to
describe requirements without knowing any technical policy
specification language.

This is however a first step towards the complete solution
of deriving implementation-level policies from specification-
level policies that configure usage control mechanisms at
different levels of abstraction. There is a deliberately in-
troduced limitation of our work - we have not considered
the dynamic structure of systems while translating policies.
We have assumed that the system architecture is static and
has been specified in the very beginning. This means that
the sets of all possible containers and the transformers and
their implementations are known beforehand. In the first
step of our work this assumption is reasonable as it helps
us in reducing the complexity of the problem. However,
in the real world, systems change over time. Services and
applications are added/ removed and physical hosts change
location. In that case, many of the mappings between the
components of different models might become invalid and
new mappings need to be specified. To address this issue,
we need a policy management system where manager com-
ponents take care of registering and de-registering details to
handle the dynamic case. This is work in progress and so
we do not discuss details of it here.

Another limitation on the solution is posed by the evo-
lution of specification-level policies in a distributed setup
where receivers of data transform themselves into senders
of data over time, and so the policies that they attach with
data might evolve with this change [45]. In our present so-
lution, we have not considered this aspect of the problem.

Finally, a fundamental concern is about the usability of
policy-specification tools in general: though we have intro-
duced templates to abstract both technical semantics and
syntax of usage control policies, these requirements tend to
be complex and end users might not be capable of under-
standing and specifying them at all. An approach in that
case would be to let data protection officers or any other
trusted authority specify these policies for particular do-
mains.
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APPENDIX
A. FUTURE TO PAST TRANSLATION

As mentioned in the start of Section[3] in order to be eval-
uated in the condition part of an ECA rule, every obligation
expressed in future time OSL formula must be translated to
its past form. Specification-level usage control obligations
are described in language ®* (4 for future). It is a tempo-
ral logic with explicit operators for cardinality and permis-
sions. We distinguish between purely propositional (¥) and
temporal and cardinality operators (®*) [6]. The intuitive
semantics of these opeartors are given in Section [

U = true | false | E(Event) | T(Event) | not(¥) | and(¥, V) |
or(U, W) | implies(¥, V)

O = U [ nol(@") | and(@F,87) | or(@F, 3T |
implies(®t, ®T) | until(®+, d1) | after(N, 1) |

within(N, ®1) | during(N, ®1) | always(®1) | repmaz(N, ¥) |
replim(N, N, N, ¥) | repuntil(N, ¥, +)

Mechanisms, or ECA rules, are specified in a past temporal
logic &~ .

& = U | not~(¥) | and~ (8-, 8°) | or— (B, 3") |
implies™ (P~ , P ) | since™ (P, D7) | before” (N, d7) |
within™ (N, ®7) | during”™ (N, ®7) | always™ (®7) |
repmaz™ (N, U) | replim™ (N,N,N, ¥) | repsince™ (N, ¥, &)

Informal semantics of these operators are as follows:
since” (a, b) is true if a has been true ever since b happened;
before™ (n, a) is true if a was true n time steps ago; within™,

during” and always~ are intuitive. The cardinal operator

repmaz” (n, a) specifies that a has been true at most n times
in the past; replim™ (I, m, n, a) specifies a lower (1) and an
upper limit (m) upon repetitions of a in the last n timesteps;
and repsince™ (n, a, b) specifies that a has been true at most

n times since b became true. For formal semantics of both
future and past operators, see [6].

For translating specification-level obligations into condi-
tions of implementation-level policies, we assume that there
is a special proposition START that denotes the moment
in time when the future-time formula has to hold, that is,
when the policy is deployed. This can be an activation event,
the universally valid proposition true, or any other proposi-
tional formula described in OSL[ The translation function
7 from specification-level obligational formulas to the condi-
tions of implementation-level policies is inductively defined
as follows:

1. Propositions ¢ € ¥ remain unchanged: 7(¢) is trans-
formed into ¢.

2. T(¢A) is transformed into 7(¢) AT(10); T(—¢) is trans-
formed into —7(¢); all other propositional operators
can be expressed by virtue of conjunction and nega-
tion.

3. 7(always(¢)) for ¢ € ¥ is transformed into the condi-
tion before™ (1,7(p)since” START) A —7(¢); the rule is
applicable if ¢ has been true at every time-step since
START except in the current time step.

4. 7(puntilp) for ¢, € ¥ is transformed into the condi-
tion before™ (1, 7(dp A —p)since™ START) A7(—=¢p A —));
the rule is applicable if, ¢ has been true (and 1 false)
at every time step since START but in the current time
step, both ¢ and 1 are false.

5. 7(within(n, ¢)) for ¢ € V¥ is transformed into the condi-
tion before™ (n, START) A during™ (n,T(—¢)); the rule
is applicable if START was true n time steps ago and
in the past n time steps, ¢ has been false at every time
step.

6. 7(during™ (n, ¢)) for ¢ € W is transformed into the con-
dition before™ (n, START)A—during™ (n, 7(¢)); the rule
is applicable if START was true n time steps ago and
in the past n time steps, ¢ has been false at least once.

7. 7(after(n, @)) for ¢ € V¥ is transformed into the condi-
tion before™ (n, START) A —7(¢); the rule is applicable

if START was true n time steps ago and in the current
time step, ¢ is false.

8. 7(repuntil(n,v, p)) for ¢ € ¥ is transformed into the
condition (—7(¢)since” START) A —repsince™ (n—1,1,
START) A v; the rule is applicable if ¢ has not been
true since START (via —7(¢)since” START); if fur-
thermore, there have been at least n occurrences of the
propositional formula v (via —repsince™ (n — 1,1,
START)); and if there is another occurrence of the
propositional formula % in the current step (where usu-
ally one distinguished proposition will correspond to
the triggering event; this translates into a respective
desired event in the transformation of ¢). Note that
the semantics of since™ includes the current time step.

9. 7(repmaz(n,)) is transformed via the equivalence with
the respective repuntil operator:
repmax(n, ) = repuntil(n, ¥, false)

!The rule is assumed to be applicable at the first violation
of the obligational formula; further violations are not con-
sidered.
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