
Data Protection in a Cloud-enabled Smart Grid?

Alexander Fromm1, Florian Kelbert2, and Alexander Pretschner2

1 Karlsruhe Institute of Technology
fromm@kit.edu

2 Technische Universität München
kelbert@in.tum.de, pretschn@in.tum.de

Abstract. Today’s electricity grid is evolving into the smart grid which
ought to be reliable, flexible, efficient, and sustainable. To fulfill these
requirements, the smart grid draws on a plenty of core technologies. Ad-
vanced Metering Infrastructure (AMI). These technologies facilitate easy
and fast accumulation of different data, e.g. fine-grained meter readings.
Various security and privacy concerns w.r.t. the gathered data arise,
since research has shown that it is possible to deduce and extract user
behaviour from smart meter readings. Hence, these meter readings are
very sensitive and require appropriate protection.
Unlike other data protection approaches that are primarily based on data
obfuscation and data encryption, we introduce a usage control based data
protection mechanism for the smart grid. We show how the concept of
distributed data usage control can be integrated with smart grid services
and concretize this approach for an energy marketplace that runs on a
cloud platform for performance, scalability, and economic reasons.

1 Introduction

The smart grid is regarded as the next-generation electricity grid and is ex-
pected to address the deficits and problems of the current power grid [8]. It
encompasses an intelligent networking and management of power generators,
power consumers, and power storage in the energy transmission and distribu-
tion network. For doing so, the smart grid draws on various technologies [18],
including the Advanced Metering Infrastructure (AMI) [17] which is fundamen-
tal for real-time measurements and time-of-use meters. By means of smart meter
devices consumers’ energy consumption data can be observed and collected at
highly frequent time periods, e.g. each second. Such fine-grained meter readings
enable dynamic pricing and allow to forecast energy demand [23]. Moreover,
utility providers can facilitate load balancing, peak load reduction, and more
efficient network management.

However, with the advent of the smart grid and its pervasiveness in our daily
lives, new challenges and concerns arise—in particular about energy prosumers’

? Work supported by the “Peer Energy Cloud” project funded by the German Federal
Ministry of Economics and Technology as well as by the Google focused research
award “Usage control in the cloud.”

privacy [5, 6], a prosumer being an energy producer and consumer at the same
time. Research has shown that it is possible to deduce and infer private and
intimate details of prosumers’ daily lives from fine-grained meter readings [16]:
data mining technologies allow for the extraction of residents’ lifestyles including
breakfast, lunch, and dinner activities or wake, presence, absence, and sleep
cycles. According to [4], there will be the temptation to sell such information, e.g.
energy usage or appliance data, either in identifiable customer level, anonymized,
or in aggregated form to third parties, e.g.marketers seeking commercial gain.
Thus, protecting prosumers’ smart meter readings is a particular challenge in
the smart grid, especially once meter readings are released to third parties.

To tackle this problem, we introduce usage control concepts [19, 20] to the
smart grid domain. In contrast to other data protection mechanisms, like access
control that monitors and controls who can access and interact with sensitive
data, usage control is concerned with how data may or may not be used once
(initial) access to it has been granted. Data usage requirements, like “do not
distribute my meter readings” are specified in usage control policies3 and are
enforced by the usage control infrastructure.

In this paper we integrate usage control for technical reasons (we explain
them later) into the cloud PaaS4 model in order to provide a secure platform
for operating arbitrary smart grid services. The PaaS level also specifies the
system boundaries for our usage control mechanisms. We refer to a smart grid
energy marketplace as one specific smart grid service example. Such an energy
marketplace will be an essential component of the future smart grid, since its
very idea is to facilitate the trading of energy [2,3]. This is because governments
currently reduce their subventions for renewable energy (in Germany there exist
plans to abolish renewable energy funding [27]), which as a side effect releases
utility providers from the burden of having to buy prosumers’ excess energy.
Hence, prosumers must either consume the energy themselves or sell it to other
consumers, thus laying the grounds for an open energy marketplace.

For a marketplace provider, or more generally speaking for arbitrary smart
grid service providers, it is uncertain whether their services will be accepted
and used by prosumers. Hence, there is a considerable risk to lose significant
portions of initial capital investments. To mitigate this risk, it is beneficial to
run these services on a cloud computing infrastructure and exploit the opportu-
nity to adapt computation and storage resources on demand (scalability) when
the prosumers’ service usage increases or decreases. This way, service providers
can minimize their investments and pay for consumed resources only. Moreover,
service providers can leverage the broadband network access and the implicit
data back up and replication mechanisms. Such functionalities are very useful
because an AMI system with 2 million consumers and a data rate of 1KB per
minute and per smart meter produces 3TB of data per day [25].

3 Usage control policies could also comprise cloud privacy requirements required by
governmental regulations.

4 Platform as a Service (PaaS) [15] is a cloud computing service model which provides
a software platform for development and deployment of cloud applications (services).

Example attack scenario. Assume that Alice has registered her smart meter
device with a smart grid marketplace, which runs as a smart grid service on a
cloud PaaS, in order to buy and sell energy. Therefore, she serves the marketplace
with her smart meter readings. After a while she starts to receive unwanted,
personalized advertisement mails. Based on this scenario, at least two attacker
models are conceivable: a malicious marketplace employee, e.g. an administrator,
and a malicious marketplace provider. In the former case a malicious marketplace
administrator would copy (e.g. by sending smart meter readings to a remote
server) and sell smart meter readings to the advertising industry. In the latter
case, the marketplace service is malicious from the outset and collects the meter
values not only for trading purposes but also for the generation of user behaviour
profiles which are then sold to the advertising industry.
Problem. In this paper we tackle the problem of protecting sensitive smart
meter readings in the smart grid and focus on security and privacy aspects once
meter readings are released to untrusted smart grid services. More generally, we
tackle the problem how to protect sensitive data once those are transmitted to
untrusted (cloud) smart grid services.
Solution. We introduce a data protection mechanism, namely usage control,
for smart grid services and integrate our usage control concept in a cloud PaaS
infrastructure. Our solution allows to release prosumers’ smart meter readings
without loss of control over their further usage.
Contribution. We are not aware of any concepts or systems in the smart grid
domain that protect meter readings on the basis of specified policies even after
they have been released. We contribute our data protection solution for cloud-
enabled smart grid services.
Organization. We organize our work as follows: §2 illustrates the setting with
the scenario where our usage control mechanisms are deployed. §3 describes
the main architecture and design of our cloud-enabled solution. §4 analyzes our
solution w.r.t. weaknesses and limitations. §5 describes related work on data
protection in the smart grid and section §6 summarizes our results and gives a
perspective on future work.

2 Setting

The smart grid addresses one major challenge that is accompanied with dis-
tributed and renewable energy generation: time of energy generation can hardly
be influenced and will most of the time not meet energy demand. Since cen-
tralized capacities for saving energy (e.g. pumped-storage hydroelectricity) are
limited, one idea is to align energy demand with energy generation. To this end,
web-based energy marketplaces are being developed [2, 3], aiming at a price-
driven balance of energy supply and demand. Such marketplaces bring together
producers and consumers of energy, allow for negotiation of flexible energy con-
tracts, with the goal to decentralize the problem of energy over- and underpro-
duction. In order to automatize trading and real-time pricing, prosumers must
provide their preferences and smart meter readings to the marketplace. For in-

stance, in Fig. 1 such meter readings originate from a smart meter that collects
the consumed and produced values via a Home Area Network (HAN) from the
local energy consuming (stove, fridge), producing (solar panel), and storing (elec-
tric car) appliances. The collected meter readings are transmitted periodically
(e.g. each second) to the marketplace where these data are continuously analyzed
and aggregated to supply and demand packages. Based on these packages, mar-
ketplace participants have buy and sell options in accordance with their energy
demand, i.e. they can specify when, how much, and at what price they want to
buy or sell energy. Furthermore, the marketplace functionality can be extended
by external services (cf. service S2 in Fig. 1), e.g. agents for automatic energy
trading on users’ behalf.

Smart Home
….

Cloud-PaaS

Marketplace S2

Smart Home

Smart
Meter

Smart Meter
Data

stove fridgeelectric car solar panel

Fig. 1. Setting at a glance.

Considering such a marketplace concept and the fact that a utility provider
has potentially millions of smart meters5, it is no surprise that such a marketplace
puts high requirements on the underlying infrastructure—in particular in terms
of broadband network access, performance, scalability, and flexibility. In order
to meet these requirements, it is reasonable to deploy the marketplace on a
cloud platform (cf. Peer Energy Cloud project [2]), which provides the needed
capacities for arbitrary services on demand.

On the one hand the use of cloud computing brings along several benefits
like on-demand self-service, resource pooling, elasticity, and measured services
(i.e. use of a cloud service on pay-per-use or charge-per-use basis) [9,15]. On the
other hand cloud computing raises security and privacy issues w.r.t. protecting
the smart meter data from unauthorized usage: once sensitive data leave the
user-controlled smart meter device, controlling its further usage is not possible.
For instance, this happens when the smart meter transmits meter readings to the
marketplace (cf. Fig. 1). At this point the marketplace provider has full access
to the received meter data and is able to e.g. create user behaviour profiles [16].
To tackle this problem, we present a solution based on data usage control
that we deploy at the cloud PaaS service model. In the next section, we describe
in detail our usage control infrastructure, its components, and its integration
into the PaaS service layer.

5 The Los Angeles Department of Water and Power has 2.1 million consumer accounts
that correspond to approximately 2.1 million smart meters [25].

3 Usage Control for the Smart Grid

In a computing system, data usually exists in different representations at dif-
ferent abstraction layers [22]: smart meter readings can be represented as a file
(file system), as a database record (database), or as a Java object (Java Virtual
Machine). In order to enforce usage control policies and to track the flow of
data across different abstraction layers, it is necessary to integrate usage control
components and mechanisms at each of these layers. For doing so, our usage
control architecture6 (cf. Fig. 2) consists of a Policy Enforcement Point (PEP),
a Policy Decision Point (PDP), a Policy Information Point (PIP), and a Policy
Management Point (PMP)7.

In the following section, we give a conceptual view on our usage control
architecture and describe an integration of their components at one abstraction
layer, namely at the Java layer.

PEP PMPPDP
iii: Policy(Data)

ii: Try[ev(RX)]

PIP

iv: Representations
for Data?

v: R1,R2,
 R3...

vii: Signal[ev(RX)]

vi: {A,M,I,D}[ev(RX)]

Legend
A = Allow
M = Modify

RX = Representation of Data
ev(X) = Parameterized event with X

I = Inhibit
D = Delay

i: ev(RX)

Fig. 2. Usage control architecture and components.

3.1 Architecture

The PEP is the monitoring and enforcement entity and is closely tied to one
abstraction layer. Therefore, the PEP is able to observe, intercept, and forward
usage control relevant events to the PDP (cf. ii + vi, Fig. 2) which then takes
decisions (allow, delay, forbid, or modify an event [21]) on the basis of usage
control policies provided by the PMP (cf. iii, Fig. 2) as well as the data flow
state provided by the PIP (cf. iv + v, Fig. 2). The PEP enforces the decision and
signals the intercepted events for data tracking purposes to the PIP (cf. vii, Fig.
2). As the PIP tracks the data flow across different abstraction layers, it knows
at a specific moment in time which data is in which representation at which
abstraction layer [22]. If a relevant data flow event occurs on any abstraction
layer, the PIP receives this information from the corresponding PEP (cf. vii, Fig.

6 In contrast to other approaches like Digital Rights Management, usage control is not
tailored for one specific purpose, but is open for any field of application, including
privacy protection [19].

7 Demos are available online at https://www22.cs.tum.edu/index.php?id=64

2) and updates the data flow state of the system. The PMP stores, translates,
instantiates, and delivers policies on demand.

3.2 Integration

We integrate the usage control components (cf. §3.1) at one specific abstraction
layer that is used for smart grid services running on a cloud PaaS platform.
First, we outline the reasons for choosing the cloud PaaS service model.

The cloud computing paradigm provides different levels of abstraction for
service deployment: Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS) [15]. Depending on the deployed service
model, the integration of usage control comes with various pros and cons. For
instance, the integration at the IaaS level would make circumventing our usage
control infrastructure more difficult than at the SaaS level. However, the IaaS
level provides less context information about overlying services, hence making it
more difficult to know the semantics of system events. In turn, integrating usage
control at the SaaS level comes with the problem that each SaaS service must
implement usage control mechanisms itself. In practice, it is unfeasible to ensure
that each service implements these mechanisms correctly, since large amounts of
such services could be provided by different service providers. To mitigate these
obstacles, our solution provides usage control mechanisms at the PaaS level (cf.
Fig. 1), assuming that the PaaS provider is trustworthy8 and does not attack the
usage control infrastructure. This way, events originating from software services
running on the PaaS level can be intercepted and evaluated without interference
with the underlying infrastructure.

For proof-of-concept, we provide a usage control augmented Java runtime
environment on the PaaS level for operating arbitrary java-based smart grid
services9, e.g. an energy marketplace as described in §2. We implement the PEP
as a Java programming language agent (using java.lang.instrument package) into
the Java Virtual Machine (JVM). By using the Byte Code Engineering Library,
the PEP fetches, (re)transforms, and instruments the Java bytecode in order to
extract and transfer context information from the running smart grid service to
the PDP and PIP (cf. §3.1). More precisely, the PEP instruments every load,
store, put, get, and invoke bytecode instruction with method invocations that
reveal the occurrence of local variable assignments, access to class attributes,
and method invocations within a java-based smart grid service. Moreover, the
PEP allows, modifies, or inhibits the execution of Java (system-)class methods
depending on the PDP’s policy evaluation result. This way, our PEP is able to
enforce usage control policies within smart grid services and to reveal context
information for (explicit) data flow tracking purposes to the PIP. In the following,
we describe how our PEP component instruments Java bytecode.

8 How trustworthiness can technically be achieved is discussed in [13].
9 A plenty of frameworks and tools exist that facilitate the application development

in Java. Therefore, we assume that Java is the first choice for the development of
smart grid services, especially for a smart grid energy marketplace [2].

To illustrate our approach, we consider the Java example code in Listing 1.1
that is deployed within the energy marketplace (cf. §1) for transmitting smart
meter data; we assume that the implementations of readMr() and sendData()
use Java system-classes in order to read data from the local file system and to
send data via the network, respectively.

1 int meter_reading , b;
2 meter_reading = readMr ();
3 b = meter_reading;
4 sendData(b);

Listing 1.1. Java source: send meter
readings.

0: invokestatic #16..
..// Method readMr :()I

3: istore_1
4: iload_1
5: istore_2
6: iload_2
7: invokestatic #20..

..// Method sendData :(I)V

Listing 1.2. Bytecode of Listing 1.1.

An attacker may misuse the code in Listing 1.1 to transfer not permitted
copies of meter readings to remote systems that are under his control (cf. attack
scenario in §1). In order to thwart such attacks, the PEP must enforce the (high-
level) usage control policy “do not distribute my meter readings” (P1) in Listing
1.1; “distribute” means the transmission of meter readings via the network. For
this reason, P1 is translated into a technical, machine-readable representation
(P2) by using policy derivation mechanisms as described in [14]10. Listing 1.3
depicts an excerpt of P2 for the Java abstraction layer. The policy specifies that
each method invocation of sendData() (line 5) must be inhibited (line 10) if
the method parameter sendData.b (line 6) contains meter readings from the file
system directory /meter readings (line 7).

1 <preventiveMechanism name="DoNotDistributeMeterReadings">
2 <id>no_distribution </id>
3 <trigger action="MethodInvoked" isTry="true">
4 <paramMatch name="MethodName" value="sendData"/>
5 <paramMatch name="ParamName" value="sendData.b"/>
6 <paramMatch name="ParamValue" value="/meter_readings"/>
7 </trigger >
8 <condition > <true/> </condition >
9 <action > <inhibit/> </action >

10 </preventiveMechanism >

Listing 1.3. Example policy: Do not distribute my meter readings.

To enforce policy P2, the PEP instruments every iload, istore and invokestatic
bytecode instruction of Listing 1.2 with PEP -method invocations (cf. Listing 1.4)
that reveal local variable assignments and method invocations within this code
snippet. For instance, the instrumentation in lines {0,2,3} in Listing 1.4 invokes
the method PEP.beforeMethodInvoked() (line 3) with two parameters that are
pushed on the stack in lines {0,2} (these parameters being the string “readMr”
and the integer “0”). These instructions reveal the information that the method
readMr() is going to be executed. Method readMr() will then read a meter read-
ing from the file system and push the result on the Java stack. Moreover, within

10 To achieve all-pervasive usage control it is necessary to translate and enforce high-
level usage requirements at all abstraction layers.

PEP.beforeMethodInvoked() the PEP requests a decision from the PDP (line
3) whether the execution of readMr() is allowed or PEP.beforeMethodInvoked()
and returns true or false accordingly. Depending on this return value, the ifeq-
instruction11 (line 6) branches the program flow to line 15 (top stack value equals
false) or executes the next instruction in line 9 (top stack value equals true).
This way, readMr() is either bypassed or executed. In case of bypassing, the
instruction in line 16 pushes the method’s default return value onto the stack;
the default return value depends on the method’s return data type. In addition,
the instrumentation in lines {18,20} signals that the instruction in line 23 stores
the return value of readMr() in variable meter reading (cf. line 2 in Listing 1.1).

0: ldc #101 // String /readMr/p:1
2: iconst_0
3: invokestatic #47 // Method PEP.beforeMethodInvoked :(Ljava/lang/String;I)Z
6: ifeq 15
9: invokestatic #16 // Method readMr :()I
12: goto 17
15: nop
16: iconst_0
17: nop
18: ldc #103 // String /main/meter_reading /1
20: invokestatic #40 // Method PEP.storeVar :(Ljava/lang/String ;)V
23: istore_1
24: ldc #103 // String /main/meter_reading /1
26: invokestatic #37 // Method PEP.loadVar :(Ljava/lang/String ;)V
29: iload_1
30: ldc #105 // String /main/b/2
32: invokestatic #40 // Method PEP.storeVar :(Ljava/lang/String ;)V
35: istore_2
36: ldc #105 // String /main/b/2
38: invokestatic #37 // Method PEP.loadVar :(Ljava/lang/String ;)V
41: iload_2
42: ldc #107 // String /sendData/b:2
44: iconst_0
45: invokestatic #47 // Method PEP.beforeMethodInvoke :(Ljava/lang/String;I)Z
48: ifeq 57
51: invokestatic #20 // Method sendData :(I)V
54: goto 59
57: nop
...

Listing 1.4. Instrumented bytecode of Listing 1.2

Instructions in lines {24,26} and {30,32} in Listing 1.4 reveal the informa-
tion that data (here meter readings) are read from variable meter reading (line
29) and are written into variable b (line 35); that corresponds to the variable
assignment in line 3 in Listing 1.1. Finally, the instructions in {42,44,45,48} eval-
uate if the execution of method sendData() in line 51 is allowed or not; these
instructions are analogous to the instrumentation in lines {0,2,3,6}. However, in
this case the PDP’s decision will evaluate to inhibit, as policy P2 forbids distri-
bution of meter readings using method sendData(). More precisely, the method
PEP.beforeMethodInvoked (line 45) receives an inhibit from the PDP and will
therefore return false. The subsequent ifeq-instruction in line 48 succeeds and
the program flow continues at line 57. This way, it is possible to enforce policy

11 The ifeq bytecode pops the top stack frame value and compares it with zero. If the
values are equal, the program flow continues at the specified offset; otherwise the
bytecode instructions following ifeq are executed.

P2 and to track the (explicit) data flow in Listing 1.1 from method readMr(), via
the variable assignment in line 3, and finally to method invocation sendData().

In contrast to the PEP, the remaining components of our usage control in-
frastructure (PDP, PMP, and PIP) are independent of the abstraction layer and
can be plugged to PEPs operating at arbitrary layers. For instance, to provide a
usage controlled Python runtime environment, a python-specific PEP and data
flow tracking mechanism must be implemented.

4 Security analysis

First of all, well-known cloud computing security issues apply to our cloud-
based solution. These issues have been studied extensively before [26]. Hence,
the following refers to the attack scenario in §1 and exposes some weaknesses
and limitations of our usage control infrastructure and implementation.

Policy modification: An attacker could compromise the PMP and illicitly
modify policies in order to reveal smart grid data, e.g. a modification from “do
not distribute my meter readings” to “permit distribution of my meter readings”.
This way, desired information are released although the usage control infrastruc-
ture works correctly. To thwart such an attack, policies must be protected using
digital signatures.

Integrity of usage control infrastructure: Our assumption of a trustworthy
PaaS provider is not always reasonable. Hence, PaaS providers might compro-
mise the integrity of the usage control infrastructure. For instance, a PaaS system
administrator can exchange system or usage control components with compro-
mised versions in order to circumvent usage control mechanisms. A possible
countermeasure is the usage of Trusted Computing (TC) technology in order to
generate cryptographic hash keys that ensure system integrity. Moreover, TC in
combination with remote attestation facilitates the detection of changes on (re-
mote) systems. This way, it is possible to send sensitive data only if the (remote)
system can attest that it runs a valid usage control installation [13].

Data protection boundaries: A limitation of our data protection mechanism
is that it is only capable of enforcing policies within the PaaS level. Once smart
meter data leaves the controlled system boundaries, the infrastructure must
ensure that either the receiving site (be it another system or another system
layer) is also capable of enforcing usage control policies or that sensitive data are
not released at all. In order to allow distributed policy enforcement, a distributed
usage control infrastructure as described in [11,12] must be incorporated.

Implementation concern: A non neglectable concern is the Java Native In-
terface (JNI). An attacker might circumvent our usage control infrastructure by
providing his own classes that perform JNI calls in order to realize similar or the
same functionality as the Java system-classes. For instance, if a usage control pol-
icy inhibits the invocation of the system-class method DatagramSocket.send(),
an attacker might provide an own class, e.g. MyDatagramSocket, that performs
JNI calls in order to enable UDP communication. A possible countermeasure is
to make use of cross-layer data flow tracking mechanisms [22] in order to track

the data flow via Java JNI calls to underlying abstraction layers, e.g. the operat-
ing system layer. Usage requirements can then be enforced on these underlying
layers.

5 Related Work

Smart grid vulnerabilities as well as security and privacy issues have been ex-
posed extensively both from legal [6, 8] and technical [4, 5] perspectives. Yet,
concerns regarding the abuse of smart grid metering data persist, since meter
readings can provide inferences of users’ behavior.

[7] suggests to send low-frequency metering data (collected over a longer
period, e.g. over several weeks) to the utility company directly, whereas high-
frequency metering data must be anonymized beforehand by an escrow service.

[10] assumes that future smart homes will contain both energy generation
and storage devices (e.g. batteries). On this basis the authors propose an algo-
rithm for maintaining a constant meter load by discharging or recharging the
battery, hence hiding information about users’ behaviour.

The authors of [16] present an approach of extracting usage patterns from
smart meter data. Also, they propose a privacy-enhanced smart meter architec-
ture and describe a zero-knowledge protocol for billing issues.

[24] presents a cloud computing model for managing smart grid real-time
data streams. The authors propose to protect privacy by data aggregation.

[1] presents a privacy-preserving model based on aggregation and encryp-
tion mechanisms. The proposed model adds noise and encrypts smart meter
readings before they are released, thus providing differential privacy with low
error. However, such errors are not acceptable for billing purposes.

In contrast to these works, our approach is not primarily based on data
obfuscation and data encryption. Instead, we aim at controlling the usage of data
within defined system boundaries by enforcing user defined data usage policies.
Our infrastructure ensures that malicious software running within these system
boundaries complies with these policies.

6 Conclusion and future work

With the advent of the smart grid a plenty of energy prosumers’ privacy concerns
arise because research has shown that it is possible to deduce private details of
residents’s lifestyle from (fine-grained) meter readings [16], especially when those
are released to (cloud-based) thrid-party smart grid services. To mitigate this
concern, we have introduced a new data protection mechanism for cloud-enabled
smart grid services by deploying usage control concepts and mechanisms for
the cloud PaaS model. We have described the usage control components, their
functionalities, and their integration with smart grid services. Additionally, our
approach is motivated by taking an energy marketplace as a smart grid service
example. Our usage control mechanisms allow users to control the usage of their

sensitive data, particularly smart meter readings, once they have been given to
smart grid services. As proof of concept we show how these mechanisms can be
provided at the cloud PaaS level using a Java runtime environment.

Our integration of usage control is based on the assumption of a trustworthy
PaaS provider. As this assumption is not always reasonable because a mali-
cious PaaS provider might circumvent our usage control mechanism, it is neces-
sary to introduce usage control for all data abstraction layers within the PaaS
provider. At the moment, usage control implementations exists for different data
abstraction layers, e.g. for the operating system (Windows, OpenBSD, Android,
ChromeOS) or the browser (Firefox) layer.

In terms of future work, it is not entirely clear how policy derivation mecha-
nisms must deal with the heterogeneity and dynamics of software systems when
translating high-level usage requirements into low-level technical requirements
(cf. [14]). Furthermore, it is not clear how to solve the problem of overapproxima-
tion. For instance, once smart meter data are involved into a price-calculation,
the result of this calculation will be usage controlled as well, because it is not
obvious if and how much information of smart meter data are included in the out-
put. In a worst case this approach leads to an unusable system after some time.
We are currently working on appropriate declassification mechanisms. Finally,
further open questions are: how guarantees can be measured, how the usage
control infrastructure can be secured, and how the existence of usage control
mechanisms can be ensured.

References

1. Ács, G., Castelluccia, C.: I Have a DREAM! (DiffeRentially privatE smArt Meter-
ing). In: Information Hiding, vol. 6958. Springer Berlin / Heidelberg (2011)

2. BMWi, T.C.: PeerEnergyCloud, http://www.peerenergycloud.de/
3. BMWi, E-Energy: eTelligence Project, http://www.etelligence.de
4. Cavoukian, A., Polonetsky, J., Wolf, C.: SmartPrivacy for the Smart Grid: embed-

ding privacy into the design of electricity conservation. Identity in the Information
Society 3, 275–294 (2010)

5. Clements, S., Kirkham, H.: Cyber-security considerations for the smart grid. In:
Power and Energy Society General Meeting, 2010 IEEE. pp. 1–5 (Jul 2010)

6. Eckert, C., Krauß, C.: Sicherheit im Smart Grid - Herausforderungen und Hand-
lungsempfehlungen. Datenschutz und Datensicherheit - DuD 35, 535–541 (2011)

7. Efthymiou, C., Kalogridis, G.: Smart Grid Privacy via Anonymization of Smart
Metering Data. In: 1st IEEE Intl. Conf. on Smart Grid Communications (Oct 2010)

8. Farhangi, H.: The path of the smart grid. Power and Energy Magazine, IEEE 8(1),
18–28 (Jan 2010)

9. Gong, C., Liu, J., Zhang, Q., Chen, H., Gong, Z.: The Characteristics of Cloud
Computing. In: 39th Intl. Conf. on Parallel Processing Workshops (Sep 2010)

10. Kalogridis, G., Efthymiou, C., Denic, S., Lewis, T., Cepeda, R.: Privacy for Smart
Meters: Towards Undetectable Appliance Load Signatures. In: First IEEE Inter-
national Conference on Smart Grid Communications. pp. 232–237 (Oct 2010)

11. Kelbert, F., Pretschner, A.: Towards a Policy Enforcement Infrastructure for Dis-
tributed Usage Control. In: Proc. 17th ACM Symp. on Access Control Models and
Technologies (Jun 2012)

12. Kelbert, F., Pretschner, A.: Data Usage Control Enforcement in Distributed Sys-
tems. In: Proc. 3rd ACM Conference on Data and Application Security and Privacy.
CODASPY ’13, ACM (Feb 2013), to appear.

13. Kumari, P., Kelbert, F., Pretschner, A.: Data Protection in Heterogeneous Dis-
tributed Systems: A Smart Meter Example. In: Proc. Workshop on Dependable
Software for Critical Infrastructures. GI Lecture Notes in Informatics (Oct 2011)

14. Kumari, P., Pretschner, A.: Deriving implementation-level policies for usage control
enforcement. In: Proc. 2nd ACM Conf. on Data and Application Security and
Privacy (2012)

15. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. Tech. rep., Na-
tional Institute of Standards and Technology (Sep 2011)

16. Molina-Markham, A., Shenoy, P., Fu, K., Cecchet, E., Irwin, D.: Private memoirs
of a smart meter. In: Proc. 2nd ACM Workshop on Embedded Sensing Systems
for Energy-Efficiency in Building. pp. 61–66 (2010)

17. National Energy Technology Laboratory for the U.S. Department of Energy: Ad-
vanced Metering Infrastructure. Tech. rep., U.S. Department of Energy (Feb 2008)

18. Ockwell, G.: The DOE’s ”7 Traits of a Smart Grid”. Fortnightly’s Spark (Oct 2009)
19. Park, J., Sandhu, R.: The UCONABC usage control model. ACM Trans. Inf. Syst.

Secur. 7(1), 128–174 (Feb 2004), http://doi.acm.org/10.1145/984334.984339
20. Pretschner, A.: An Overview of Distributed Usage Control. In: Proc. 2nd Conf.

Knowledge Engineering: Principles and Techniques. Romania (Jul 2009)
21. Pretschner, A., Hilty, M., Basin, D., Schaefer, C., Walter, T.: Mechanisms for

Usage Control. In: Proc. 2008 ACM Symposium on Information, Computer and
Communications Security. pp. 240–244 (Mar 2008)

22. Pretschner, A., Lovat, E., Büchler, M.: Representation-Independent Data Usage
Control. In: Data Privacy Management and Autonomous Spontaneus Security,
vol. 7122, pp. 122–140. Springer Berlin Heidelberg (2012)

23. Quinn, E.L.: Smart Metering & Privacy: Existing Law and Competting Policies.
Tech. rep., Colorado Public Utilities Commission (2009)

24. Rusitschka, S., Eger, K., Gerdes, C.: Smart Grid Data Cloud: A Model for Uti-
lizing Cloud Computing in the Smart Grid Domain. In: First IEEE International
Conference on Smart Grid Communications. pp. 483–488 (Oct 2010)

25. Simmhan, Y., Aman, S., Cao, B., Giakkoupis, M., Kumbhare, A., Zhou, Q., Paul,
D., Fern, C., Sharma, A., Prasanna, V.: An Informatics Approach to Demand
Response Optimization in Smart Grids. Tech. rep. (2011)

26. Subashini, S., Kavitha, V.: A survey on security issues in service delivery models
of cloud computing. Journal of Network and Computer Applications 34(1) (2011)

27. Wetzel, Daniel: Ende der Subventionen (Sep 2011),
http://www.welt.de/print/die welt/wirtschaft/article13603359/Ende-der-
Subventionen.html

