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Abstract. Usage control is concerned with how data is used after access
to it has been granted. In existing usage control enforcement frameworks,
policies are assumed to exist and the derivation of implementation-level
policies from specification-level policies has not been looked into. This
work fills this gap. One challenge in the derivation of policies is the
absence of clear semantics of high-level domain-specific constructs like
data and action. In this paper we present a model-based refinement of
these constructs. Using this refinement, we translate usage control poli-
cies from the specification to the implementation level. We also provide
methodological guidance to partially automate this translation.

1 Introduction

Usage control systems provide means to specify and enforce policies about the
future usage of data. Usage control requirements have been enforced for various
policy languages [1–8], at [9–18] and across [19] different layers of abstraction in
various types of systems [20,21]. The focus there has been on the implementation
of policy monitors. How policies are specified, translated or instantiated, has not
been addressed. The challenge is that system implementations of usage control
policies might not always adequately reflect end user requirements. This is due
to several reasons, one of which is the problem of mapping concepts in the end
user’s domain to technical events and artifacts. For instance, the semantics of
basic operators such as “copy” or “delete”, which are fundamental for specifying
usage control policies, tend to vary according to domain context and can be
mapped to different sets of system events. This might wrongly allow events
that should have been inhibited and block those that should have been allowed.
Thus, in the absence of clear semantics of actions in an application context, it
is impossible to define and enforce usage control requirements in a way that is
unambiguous. This is the problem that we address in this paper.

We present a model-based policy derivation that combines usage control en-
forcement with data and action refinement. Policies are supposed to be spec-
ified by end users and translated using technical details provided by a more
sophisticated user whom we call the power user. The translation process is
semi-automated because it requires intervention from power users at specific
points. One use case is from a web-based social network (WBSN) where an end
user Alice would like to exercise control over copies of her data by other users.
She would specify “do not copy my photos” in a user-friendly way. This policy
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would then be translated, deployed and enforced at all client-side machines that
access Alice’s data. We show the step-by-step translation of this policy in the
rest of this paper. It is organized along five steps:
Step 1: Specification of policies We start with an overview of a policy lan-
guage [19] that is used to express constraints on the future usage of data (“don’t
copy photos,” “delete document after 30 days,” “play video at most 5 times,”
etc.) These requirements are called specification-level policies.
Step 2: Refinement of actions We express specification-level policies in terms of
high-level actions like “delete” or “copy.” For enforcement, we must refine these
actions into their technical counterparts. Intuitively, the semantics of actions
vary according to the domain context. Therefore any solution that caters to the
semantics of actions must address the problem at the domain level. We recap a
domain-specific meta-model from the literature [22] that distinguishes between
abstract and concrete events and refine the former to the latter (no formal se-
mantics have been given to the refinements in the foundational work).
Step 3: Semantics of action refinement We combine the usage control model and
the domain meta-model to specify the formal semantics of action refinement.
Step 4: From specification-level policies to ECA rules Implementation-level
policies are rules of event-condition-action (ECA) form that execute an action
when a trigger event takes place and the respective condition evaluates to true.
As real systems cannot look into the future, the condition part of the ECA rules
must be expressed in past tense. We provide a methodological guidance for au-
tomated transformation of specification-level policies to ECA rules.
Step 5: Example translation We present the translation of our example policy
“don’t copy photos” for enforcement in multiple systems.
We have deliberately not considered the dynamic nature of systems in this paper;
systems structures are assumed to be static. Though unrealistic, this assumption
is reasonable to narrow the scope for initial results.
This work provides semantics to abstract constructs in end-user policies by mod-
eling the basis for such semantics. It is not possible to check the correctness of
the semantics that adhere to our meta-model if they indeed correspond to the
idea in the end user’s mind. Hence we do not discuss any theorems to check if
the semantics given by the power user are indeed correct.
Problem. In sum, we tackle two problems in this paper. The first one is the fun-
damental problem of the lack of semantics of high-level actions in usage control
policies. The second one concerns the problem of transforming specification-level
policies to implementation-level policies in an automated manner.
Solution. We present a model-based translation schema for high-level actions,
taking into account the different representations of data and the potential data
flow through a concrete system.
Contribution. We are not aware of any work that provides a semi-automated
translation of specification-level usage control policies into implementation-level
policies in a generic, domain- and system-independent way.
Organization. In §2 we recap a usage control model and a domain meta-model
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from the literature which we combine in §3 for action refinement. §4 backs our
work with a detailed example. §5 puts our work in context and §6 concludes.

2 Background

Step 1: Specification of usage control policies. End user policies are ex-
pressed in OSL (originally described in [6]), a policy specification language that
combines classical propositional operators with future-time temporal and cardi-
nality operators. To specify and enforce policies on abstract data, the original
usage control model was extended to distinguish between data (photo, song
etc.) and its technical representations called containers (files, windows, records
etc.) [19]. Enforcement of policies on data is done through data flow tracking.
Possible data flows are defined by a transition relation on system states; actual
data flows are monitored on the grounds of this relation. Formally, we consider
systems (P,Data,Event,Container , Σ, σi , %) where P is a set of principals, Data
is a set of data elements, Event is the set of events, Container is a set of data
containers, Σ is the set of states of the system with σi being the initial state,
and % is the state transition function. System states are defined by a tuple of
three mappings between data, containers and container identifiers: a storage
function of type Container → P(Data) that reflects which container stores what
data; an alias function of type Container → P(Container) that captures the
fact that some containers may implicitly get updated whenever other containers
do; and a naming function that provides names for containers and that is of
type F → Container , where F is a set of identifiers. The system’s state space is
defined as Σ = (Container → P(Data))× (Container → P(Container))× (F →
Container) with the initial state σi = (∅,∅,∅). Trace = N→ (Σ × P(Event))
captures both events and the information state at a moment in time. Transi-
tions between two states are given by % : Σ × P(Event) → Σ. At any given
point of time, the state of the system is computed using a recursive func-
tion states : (Trace × N)→ Σ which in turn is defined as states(t, 0 ) = σi and
n > 0⇒ states(t,n) = %(states(t,n − 1 ), t(n − 1 )).

Policies are expressed in terms of parameterized events on data and con-
tainer. Each event belongs to the set Event ⊆ EventName × (ParamName →
ParamValue). Data and containers are parameter values, belonging to disjoint
sets Data and Container. Events are classified as dataUsage when they apply to
a data object (reserved parameter obj) and containerUsage if they apply to a
container object. The specification language is Φ+ (+ for future), distinguishing
between purely propositional (Ψ) and temporal and cardinality operators:

Ψ ::= true | false | E(Event) | T(Event) | not(Ψ) | and(Ψ, Ψ) | or(Ψ, Ψ) | implies(Ψ, Ψ)
Φ+ ::= Ψ | not(Φ+) | and(Φ+, Φ+) | or(Φ+, Φ+) | implies(Φ+, Φ+) |
until(Φ+, Φ+) | after(N, Φ+) | within(N, Φ+) | during(N, Φ+) | always(Φ+) |
repmax(N, Ψ) | replim(N,N,N, Ψ) | repuntil(N, Ψ, Φ+)

As events might be modified or blocked for enforcement, distinction between
attempted/desired and actual events is needed. Formulas of the form E(·) and
T (·) denote actual and desired events; not, and, or , implies have their intuitive
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semantics; until is the weak until from LTL; the always operator is intuitive;
after(n, a) is true if a becomes true after n time steps; within(n, a) is true if a
holds true at least once in n timepsteps, whereas during(n, a) is true only when
a is constantly true in n timesteps. repmax(n, a) specifies that a must be true
at most n times in the future; replim(l,m,n, a) specifies lower(l) and upper(m)
bounds on repetitions of a in n timesteps and repuntil(n, a, b) limits the maximal
number of times a holds until b holds.

Sometimes, it is convenient to specify policies not in terms of events but in
terms of states a system must or must not enter. E.g., our example policy in §1,
“don’t copy photos,” would mean that in an operating system, all sequences of
system calls corresponding to “copy” actions must be inhibited. But infinitely
many such sequences can achieve the effect of “copy,” and it is infeasible to
come up with a complete list of all of them. Instead, the same requirement can
be expressed as, “data must not leave a specific set of containers.” To allow this
type of policies, three operators Φi have been added to Φ+ [9, 19]:

Φi ::= isNotIn(Data,PContainer) | isCombinedWith(Data,Data) |
isOnlyIn(Data,PContainer)

where isNotIn(Data,PContainer) is true if data is not in a specific set of con-
tainers; isCombinedWith(Data,Data) is true if two data items are stored in the
same container; and isOnlyIn(Data,PContainer) is true if data is only in a spec-
ified set of containers. The extended language is Φ+

i = Φ+ ∪ Φi with semantics
|=+

i ⊆ (Trace × N)× Φ+
i .

ECA rules, that we need for system-level enforcement, are specified in the
past temporal logic Φ− with added state-based operators, Φi . The extended
past-time OSL is Φ−

i = Φ− ∪ Φi with semantics |=−
i ⊆ (Trace × N)× Φ−

i .
Φ− ::= Ψ | not−(Φ−) | and−(Φ−, Φ−) | or−(Φ−, Φ−) | implies−(Φ−, Φ−) |

since−(Φ−, Φ−) | before−(N, Φ−) | within−(N, Φ−) | during−(N, Φ−) |
always−(Φ−) | repmax−(N, Ψ) | replim−(N,N,N, Ψ) | repsince−(N, Ψ, Φ−)

since−(a, b) is true if b has been true ever since a happened; before−(n, a) is true
if a was true n time steps ago; within−, during− and always− are intuitive, given
the semantics of their future-time duals. repmax−(n, a) specifies that a has been
true at most n times in the past; replim−(l,m,n, a) specifies a lower(l) and an up-
per limit(m) upon repetitions of a in the last n timesteps; and repsince−(n, a, b)
specifies that b has been true at most n times since a became true.
Step 2: Refinement of actions. In the usage control model of step 1, both
abstract actions and their technical counterparts are called events. But to re-
fine actions, we must be able to distinguish between action (copy, delete etc.)
and its technical representations (generic copy file or delete file; or more specif-
ically, read, write, unlink systems calls in unix). Our domain meta-model [22],
reproduced in Fig. 1, distinguishes among user-intelligible high-level actions on
data like “copy photo” at the platform-independent (PIM) layer; correspond-
ing implementation-independent technical representations (called transform-
ers) like “take screenshot” at the platform-specific (PSM) layer; and the specific
implementations of these transformers like “getImage()” function in the X11 win-
dowing system at the implementation-specific (ISM) layer. Mappings between
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various components at different layers in the model provide the semantics of a
high level action in terms of a number of mapped transformers. As an example,
the meta-model is instantiated for the refinement of copy in WBSN domain (Fig-
ure 2). The “copy photo” part of Alice’s WBSN policy would be refined in this
model as “copy&paste DOM element” and “screenshot of window” at the PSM
layer; and at the ISM layer as “copy cmd on HTML element” in Firefox web
browser and as “getImage” function on a drawable in X11 windowing system.
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Fig. 1. The Domain Meta-model
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Fig. 2. A WBSN instance of Fig 1

The concepts of data and action (PIM layer) and containers and transformers
(PSM and ISM layers) are also present in the usage control model, with some
differences. Firstly, the above usage control model uses the term event to refer to
both actions and transformers. In the domain meta-model, there is a clear dis-
tinction between the two. Secondly, in the domain meta-model, these constructs
have been grouped according to the level of technical detail they encompass.
Thus data and action form the PIM part whereas container and transformer
form the ISM part in the meta-model. Thirdly, to systematically reach from
elements of PIM to ISM, another layer of detail that maps the two, called the
PSM layer, is introduced in the meta-model. This is motivated by the systematic
translation requirement that the platform-specific result of a transformer on a
container must remain the same, irrespective of the implementations. For exam-
ple, deleting a file can be achieved in many ways. But by defining it as “overwrite
file with random bytes OR remove file” at the PSM level narrows down the in-
terpretation of deleting a file irrespective of the file system implementations.

The presentation of the domain meta-model [22] also contains a model-based,
semi-automated approach to policy translation. However, that work discusses ini-
tial results at a high level and does not explain the exact relationship between
actions and transformers. Actions are mapped to transformers using UML as-
sociations, but no semantics has been given to these associations. So we do not
know what high-level actions like copy mean in terms of transformers. For exam-
ple, looking at the system calls executed in a Unix operating system, we cannot
know if a copy action has indeed taken place because we do not know if copy
corresponds to the set or the sequence of these system calls. Even if we know
that it is the sequence, we do not know how the sequence is to be interpreted:
if the system calls must happen one after the other or if some other executions
can take place between any two of them. Reference [22] also does not relate
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high-level actions to system states: the authors only mention a refinement of
the former in terms of the latter for cases where transformer-based refinements
are not sufficient; they do not explain how this refinement is achieved (step 3b
below). To address these issues, we combine this domain meta-model with the
usage control model of step 1 to use the concept of system states and the se-
mantics of language in terms of traces to formally refine actions and translate
specification-level policies.

3 A Combined Model

Data is the set of all data, Action is the set of all actions, PSMContainer is the set
of all PSM containers, PSMTransformer is the set of all PSM transformers and
so on. Event is the set of all actions and transformers at all levels in the domain
model: Event = (Action ∪ PSMTransformer ∪ ISMTransformer). Associations
between the elements of these sets are functions. So, dataPotentiallyIn : Data→
P(PSMContainer) maps data to a set of PSM containers that potentially store
that data and containerImplementedAs : PSMContainer → P(ISMContainer)
gives a further refinement of PSM container in terms of a set of ISM containers
that actually store data. Additionally, transformers are functions that modify
respective containers:

PSMTransformer : PPSMContainer → PPSMContainer
ISMTransformer : P ISMContainer → P ISMContainer

Function inputContainer : PSMTransformer 7→ PPSMContainer gives all con-
tainers modified by a PSM transformer. inputContainer is overloaded to get
input containers of ISM transformers. While the refinement of data is straight-
forward, actions can be refined in two ways: SETrefmnt maps an action to a set
of PSM transformers with the intuitive semantics that any one of the mapped
transformers corresponds to the high-level action; SEQrefmnt maps an action to
a sequence of PSM transformers: all of the specified transformers in the particu-
lar sequence correspond to the high-level action. As PSM and ISM transformers
can be further refined, both within and across their respective levels in the
meta-model, their refinement functions are overloaded to express both of these
refinements. SETrefmnt and SEQrefmnt express intra-level refinements

SETrefmnt : PSMTransformer → PPSMTransformer
SETrefmnt : ISMTransformer → P ISMTransformer
SEQrefmnt : PSMTransformer → seq PSMTransformer
SEQrefmnt : ISMTransformer → seq ISMTransformer

and, crossSETrefmnt and crossSEQrefmnt express inter-level refinements.
crossSETrefmnt : Action→ PPSMTransformer
crossSETrefmnt : PSMTransformer → P ISMTransformer
crossSEQrefmnt : Action→ seq PSMTransformer
crossSEQrefmnt : PSMTransformer → seq ISMTransformer
In a specific domain model, the PSM level talks about the static, design-time

system while the ISM level talks about the concrete system at the runtime.
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Data Storage. The storage function in the usage control model tells which con-
tainer stores what data. For the translation of actions on specific data, we need
the reverse relationship; we need to know where a specific data is stored in a par-
ticular moment in time. Function dataActuallyIn : Data×Σ→P ISMContainer
gives this information:
∀ d ∈ Data; t ∈ Trace; n ∈ N; σ ∈ Σ • σ = states(t,n) ∧

dataActuallyIn(d, σ) = {c ∈ ISMContainer | d ∈ σ.1(c)}
where σ.1 denotes the projection on the first component of σ.

Remember that formulas of the form E(·) and T (·) denote actual and desired
events in the OSL. Therefore, refinement of actions corresponds to the translation
of OSL formulas of the form E(·) and T (·). A high-level action is refined in two
ways: firstly, in terms of sets/sequences of transformers using function τev;
secondly, in terms of system states using function τstate. We combine both
refinements to get the complete refinement of a high-level action.
Step 3a: Action Refinement using Transformers. As it is impossible to
predict the length of executions between any two members of a sequence of trans-
formers in real systems, we allow arbitrary executions between any two members
of a sequence of applicable transformers in SEQrefmnt. This introduces liveness
in our action refinement definitions. Because indefinite past can be checked in a
running system as opposed to indefinite future, we first translate a specification-
level policy from future to past tense and then execute action refinement. For
this reason, our action refinement functions act on, and are formalized, using
past-time OSL operators. A translation function τp : Φ+→Φ− that works along
the lines of the methodological guidance provided in [22], translates a formula
in Φ+ to another in Φ−. To express indefinite past, we use eventually−, se-
mantically equivalent to not−(always−(not−)) in the language Φ−

i . Intuitively,
eventually−(ϕ) is true if the formula ϕ was true at least once in the past.

τev : Φ− × Σ→ Φ− translates an action into sets/sequences of transformers
that are further refined using πev : Φ−×Σ→Φ−. The system state (Σ) provides
the knowledge of data storage in specific containers and is filled in by the “higher”
translation function τaction, defined later in this paper.

We refine high-level actions by taking into account all representations of data
in a concrete system. Therefore, only those transformers that modify contain-
ers where data may reside, refine the corresponding high-level action. If the
data on which an action operates, cannot be stored in a particular container,
all transformers that operate on this container are left out of the refinement
process. For example, a copy action is refined into the set {copyFile(file), take-
Screenshot(window)} at the PSM level. When the data is a song and the pol-
icy addresses copy(song), the action is refined into set {copyFile(file)} rather
than {copyFile(file), takeScreenshot(window)}. This is because the other trans-
former operates on windows where a song cannot be stored. In this example,
{copyFile(file)} is the set of applicable transformers. The set of applicable
transformers for a data (appTransformer : Data 7→ PPSMTransformer) is com-
puted as follows:
∀ d ∈ Data • appTransformer(d) =

{t ∈ PSMTransformer | inputContainer(t) ⊆ dataPotentiallyIn(d)}
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Using set and sequence mappings from action to PSM transformers that
modify potential storage of data object of the action (via ran SEQrefmnt(e) ∩
appTransformer(d) etc.), we compute action refinement upto the lowest level
in the platform-specific model (ran is the standard operation for sequences [23]
that gives the set of objects which are elements of the sequence)
∀ s ∈ Trace; x ∈ N; σ ∈ Σ • σ = states(s, x)⇒
∀ d ∈ Data; e ∈ Event; {t1, .., tn} ∈ P(PSMTransformer); ϕ ∈ Φ− •
τev(E(e, {(obj, d)}), σ) = ϕ⇔
ϕ = and−(τev(E(tn , {(obj, d)}), σ), eventually−(and−(τev(E(tn−1, {(obj, d)}), σ),

...eventually−(τev(E(t1, {(obj, d)}), σ))...))) ∧
({t1, .., tn} = ran SEQrefmnt(e) ∩ appTransformer(d) ∨
{t1, .., tn} = ran crossSEQrefmnt(e) ∩ appTransformer(d))

∨ ϕ = or−(τev(E(t1, {(obj, d)}), σ), or−(τev(E(t2, {(obj, d)}), σ),
..., τev(E(tn , {(obj, d)}), σ))) ∧

({t1, ..., tn} = SETrefmnt(e) ∩ appTransformer(d) ∨
{t1, ..., tn} = crossSETrefmnt(e) ∩ appTransformer(d))

∨ ϕ = πev(E(e, {(obj, d)}), σ)
πev further refines these transformers till the ISM level. Meanings of sequence
and set refinement remain the same. From all the possible input containers,
mapped transformers act on only those containers that indeed store the specific
data object (c ∈ inputContainer(t) ∩ dataActuallyIn(d, σ)):
∀ s ∈ Trace; x ∈ N; σ ∈ Σ • σ = states(s, x) ∧
∀ d ∈ Data; e ∈ Event; {t1, .., tn} ∈ P(ISMTransformer); t ∈ {t1, .., tn};
c ∈ (inputContainer(t) ∩ dataActuallyIn(d, σ)); ϕ ∈ Φ− •
πev(E(e, {(obj, d)}), σ) = ϕ⇔
ϕ = and−(E(tn , {(obj, c)}), eventually−(and−(E(tn−1, {(obj, c)}),

...eventually−(E(t1, {(obj, c)}))...))) ∧ 〈t1, .., tn〉 = crossSEQrefmnt(e)
∨ ϕ = or−(E(t1, {(obj, c)}), or−(E(t2, {(obj, c)}), ...,E(tn , {(obj, c)}))) ∧

{t1, ..., tn} = crossSETrefmnt(e)
∨ ϕ = false

Step 3b: Action Refinement using State. We have seen in §2 that expressing
the semantics of high level actions in terms of sets/sequences of transformers
might not be the best approach in many cases because one high-level action can
be refined to infinitely many sequences of transformers at the system level. To
address this issue, we define another refinement of action, τstate, using state-based
operators of Φi . This translation captures the state a system reaches when a high-
level action is executed on some data. The power user models the execution of
each action and defines the resultant state as a StateFormula for each high-level
action. Intuitively, when no resultant state is defined for an action, its state-based
translation is false.

To define the set of all possible events that can occur in a concrete sys-
tem, event declarations were introduced in [6]. These event declarations are
purely syntactic and are given by EventDecl == EventName × EventClass ×
(ParamName 7→PParamValue). To express the state-based refinement of an ac-
tion, we modify this event declaration by adding StateFormula to it. Thus, an
event declaration is given by the event name, the event class, a partial function
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that defines the name and possible values of each possible parameter and, the
resultant state formula that gives the state-based refinement of the event.

EventDecl ==
EventName × EventClass × (ParamName 7→ PParamValue)× StateFormula
The relationship between an action and its declaration is bijective. For

the state-based translation of action, a function getStateFormula fetches the
resultant state from the declaration of the specific action:

getStateFormula : Action 7→ StateFormula
∀ a ∈ Action; ed ∈ EventDecl • getStateFormula(a) = ed.4⇔ a.1 = ed.1
The resultant state formula for an action is statically defined, before the

action is used to specify policies. Actual data objects and their containers are
known only when a policy is deployed in a concrete system. So resultant state
formulas must address all potential data and their containers. To specify po-
tential data in the state-based formula, we use variables which are substituted
by actual data when a policy is specified. To specify containers that potentially
store data, we extend the language Φi to include state-based operators on PSM
containers. At runtime, respective ISM containers are extracted via function
containerImplementedAs, introduced in the beginning of §3.

PSM Containers in state-based operators. To specify PSM containers in
state-based operators, we classify ISM containers according to the PSM contain-
ers they implement. So each ISM container belongs to a container class that is a
PSM container. Function getContainerClass : ISMContainer → PSMContainer
extracts the class of a container using function containerImplementedAs:
∀ c ∈ ISMContainer ; cl ∈ PSMContainer •

getContainerClass(c) = cl ⇔ c ∈ containerImplementedAs(cl)
We extend the language by overloading two operators with PSM contain-

ers: isNotIn(Data,PPSMContainer) and isOnlyIn(Data,PPSMContainer). In-
tuitively, isNotIn(d,Cl) is true if data d is not in any container whose class is
in set Cl. This operator is useful for defining state-based refinement of actions
like copy or print. For example, if print is refined as not(isNotIn(d, {printcont}))
where printcont represents the class of printer containers. When data d flows into
any container that belongs to this class, the enforcement infrastructure would
recognize a print. Similarly, isOnlyIn(d,Cl) is true when data is restricted to
specific classes of containers. This is useful to express semantics of weak deletion
where data is not actually deleted but only quarantined. We did not find any
use case where the semantics of isCombinedWith(d, d) need to be specified using
container classes. The new operators are added to the language Φi :

Φi ::= isNotIn(Data,P ISMContainer) | isNotIn(Data,PPSMContainer) |
isOnlyIn(Data,P ISMContainer) | isOnlyIn(Data,PPSMContainer) |
isCombinedWith(Data,Data)

The semantics of Φi is |=i⊆ (Trace × N)× Φi , shown in Figure 3.

Variables in OSL. Resultant state formulas are expressed in terms of potential
data and their containers because actual data and their containers are known
only when a policy is deployed in a concrete system. To specify state formulas
with potential data items, we introduce variables in the language. Only variable
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data is needed; potential containers are specified using PSM containers. In case
of isCombinedWith, the first data is variable, the second data is given by the
power user. The respective language is Φiv.

Var ::= V (N1)
VarData == Var ∪Data
Φiv ::= isNotIn(VarData,P ISMContainer) | isNotIn(VarData,PPSMContainer) |

isOnlyIn(VarData,P ISMContainer) | isOnlyIn(VarData,PPSMContainer) |
isCombinedWith(VarData,Data)

Elements from Φiv are instantiated into elements from Φi using substitution.
Finally, the refinement of actions in terms of states is achieved using τstate :

Φ−→Φ−
i . When an action is refined, the variable in the respective state formula

is substituted by the value of the obj parameter of the action.
∀ a ∈ Action; d ∈ Data; ϕ ∈ Φiv; vd ∈ VarData •

τstate(E(a, {(obj, d)})) =
{
ϕ[d/vd] if(ϕ = getStateFormula(a))
false otherwise

We have defined the refinement of a high-level action in terms of sets/se-
quences of transformers (using function τev) and in terms of system states (us-
ing function τstate). We now combine both functions to express the “complete”
refinement of a high-level action, given by τaction : (Φ−×Σ)→Φ−

i . Intuitively, at
least one of the refinements is needed to express a high-level action in a concrete
system. Hence the disjunction (or−) over the refinements (Figure 4).
Step 4: From specification-level policies to enforcement mechanisms
Policy specification and translation is semi-automated with two roles of users: the
end user specifies usage control policies with constructs and templates defined
by the more sophisticated power user §1.

In the first step, τp translates a future-time formula into another past-time
formula [22]. In the second step, action refinement takes place. After action
refinement, we get a complex, nested formula that is broken down to subformulas
(Fischer Ladner closure) in the third step and each subformula is then mapped
to the condition part of one ECA rule in the fourth step. Thus we get a
set of ECA rules corresponding to one specification-level policy. One high-level
policy can be enforced in many ways (allow/modify/inhibit/delay). For example,
Alice’s policy “don’t copy photo” can be enforced by inhibiting every copy event;

∀ t ∈ Trace; n ∈ N; ϕ ∈ Φi ; σ ∈ Σ • (t,n) |=i ϕ⇔ σ = states(t,n) ∧
∃ d ∈ Data,C ∈ P ISMContainer • ϕ = isNotIn(d,C ) ∧

∀ c′ ∈ ISMContainer • d ∈ σ.1(c′)⇒ (c′ /∈ C )
∃ d ∈ Data,Cl ∈ PPSMContainer • ϕ = isNotIn(d,Cl) ∧

∀ c′ ∈ ISMContainer • d ∈ σ.1(c′)⇒ (getContainerClass(c′) /∈ Cl)
∨ ∃ d ∈ Data,C ∈ P ISMContainer • ϕ = isOnlyIn(d,C ) ∧

∀ c′ ∈ ISMContainer • d ∈ σ.1(c′)⇒ (c′ ∈ C )
∨ ∃ d ∈ Data,Cl ∈ PPSMContainer • ϕ = isOnlyIn(d,Cl) ∧

∀ c′ ∈ ISMContainer • d ∈ σ.1(c′)⇒ (getContainerClass(c′) ∈ Cl)
∨ ∃ d1, d2 ∈ Data • ϕ = isCombinedWith(d1, d2) ∧

∃ c′ ∈ ISMContainer • d1 ∈ σ.1(c′) ∧ d2 ∈ σ.1(c′)

Fig. 3. Semantics of Φi
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∀ t ∈ Trace; n ∈ N; σ ∈ Σ • σ = states(t,n) ∧
∀ d ∈ Data; a ∈ Action; ψ ∈ Φ−; ϕ ∈ Φ−i • τaction(ψ, σ) = ϕ⇔
ψ ∈ {true, false} ∧ (ϕ = ψ)
∨ ψ = E(a) ∧ (ϕ = or−(τstate(E(a)), τev(E(a), σ)))
∨ ψ = T(a) ∧ (ϕ = or−(τstate(T(a)), τev(T(a), σ)))
∨ ∃χ ∈ Φ− • ψ ∈ {not(χ),not−(χ)} ∧ (ϕ = not−(τaction(χ, σ)))
∨ ∃χ, ξ ∈ Φ− • ψ ∈ {or(χ, ξ), or−(χ, ξ)} ∧ (ϕ = or−(τaction(χ, σ), τaction(ξ, σ)))
∨ ∃χ, ξ ∈ Φ− • ψ ∈ {and(χ, ξ), and−(χ, ξ)} ∧ (ϕ = and−(τaction(χ, σ), τaction(ξ, σ)))
∨ ∃χ, ξ ∈ Φ− • ψ ∈ {implies(χ, ξ), implies−(χ, ξ)} ∧ (ϕ = implies−(τaction(χ, σ), τaction(ξ, σ)))
∨ ∃χ, ξ ∈ Φ− • ψ = since−(χ, ξ) ∧ (ϕ = since−(τaction(χ, σ), τaction(ξ, σ)))
∨ ∃ i ∈ N; χ ∈ Φ− • ψ = before−(i, χ) ∧ (ϕ = before−(i, τaction(χ, σ)))
∨ ∃χ ∈ Φ− • ψ = always−(χ) ∧ (ϕ = always−(τaction(χ, σ)))
∨ ∃ i ∈ N; χ ∈ Φ− • ψ = within−(i, χ) ∧ (ϕ = within−(i, τaction(χ, σ)))
∨ ∃ i ∈ N; χ ∈ Φ− • ψ = during−(i, χ) ∧ (ϕ = during−(i, τaction(χ, σ)))
∨ ∃ i ∈ N; χ ∈ Φ− • ψ = repmax−(i, χ) ∧ (ϕ = repmax−(i, τaction(χ, σ)))
∨ ∃ l, x, y ∈ N; χ ∈ Φ− • ψ = replim−(l, x, y, χ) ∧ (ϕ = replim−(l, x, y, τaction(χ, σ)))
∨ ∃ i ∈ N; χ, ξ ∈ Φ− • ψ = repsince−(i, χ, ξ) ∧ (ϕ = repsince−(i, τaction(χ, σ), τaction(ξ, σ)))

Fig. 4. Definition of τaction

it can be enforced by modifying the original photo with one that shows an error
message; it can also be enforced by delaying the event until a permission for
copying has been granted by Alice. For this reason, the action part of ECA rules
cannot be specified automatically. The generic format of ECA rules at the end
of step 4 is as follows (where c is one subformula)
Event : any
Condition : c
Action : ALLOW / MODIFY / INHIBIT / DELAY

Intuitively, (later configured) action takes place when the corresponding condi-
tion c is true, irrespective of the trigger event. To limit the set of trigger events
for each rule, whenever c is of the form and−(E(e), x) or and−(T (e), x) where
x is an OSL formula, we move e to the trigger event part and only x is checked
in the condition part of the ECA rule.
Event : e
Condition : x
Action : ALLOW / MODIFY / INHIBIT / DELAY

All the steps described above are automated. In the fifth step, the power user
manually specifies the enforcement mechanism. We now describe in detail the
translation of the example policy introduced in §1.

4 Example Translation

Step 5: The partial domain model with transformer-based refinement of “copy
photo” is shown Figure 5. The distinction between set and sequence refinements
of events is shown via links with arrowheads representing SETrefmnts and links
with AND(S) gate -head representing SEQrefmnts. For state-based action re-
finement, state formula is defined in the event declaration. Copy in this context
means data flows in clipboard containers; hence the respective state formula is
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Fig. 5. Example domain model

not−(isNotIn(x, clipboard)) where x is variable data and clipboard is the class of
clipboard containers.

In our implementation, “don’t copy photos” is specified by Alice in a block
editor that uses the Open Blocks Java library [24]. When the data is sent to
another user Bob, the respective policy is delivered to the policy translation
point (PTP) which immediately translates and deploys the policy.

In the runtime, when policies are deployed, only concrete containers exist.
So in our implementation, data is identified by the initial container in which
it appears in the concrete system. With our usage control infrastructure, it is
possible to track multiple representations of the same data at and across different
abstract layers in a system. Hence, the PTP knows that Alice’s photo is received
by Bob at the web browser level in the initial container “img profile” in Firefox; is
stored in “myphoto.jpg” in the cache folder and rendered in window “0x1a00005”
in X11.

The policy is always(not(E(copy, {(obj, img profile)}))) in OSL. It is of the
form always(ϕ) where ϕ = not(E(copy, {(obj, img profile)})). τp gives us the
past-time condition to be checked in the respective ECA rules. τp(always(ϕ)) =
and−(before−(1, τp(ϕ)since−START ),not−(τp(ϕ))) where START denotes the
policy activation event [22]. This means that the respective ECA rule is triggered
when ϕ has always been true since the policy was activated, except the current
time-step. As ϕ = not(E(copy, {(obj, img profile)})), the ECA rule is triggered
when E(copy, {(obj, img profile)}) is true.

The next step is action refinement as described in §3. τaction(E(copy, {(obj,
img profile)}), σ), where σ is the current state, works as follows: State-based
refinement is achieved by substituting variable x with img profile in the state
formula:
τstate(E(copy, {(obj, img profile)})) = not−(isNotIn(img profile, clipboard))
Applying τev, copy is refined to {copy&paste,screenshot,copyFile} because these
transformers operate on {domEle,window,file} where photo is potentially stored
(crossSETrefmnt(copy) ∩ appTransformer(photo) = {copy&paste, screenshot,
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copyFile}); πev refines each of these transformers till the ISM level. Note that, of
the sequence 〈open, read,write, close〉, write is not included in action refinement
because it does not operate on the file that stores photo (inputContainer(write)∩
dataActuallyIn(myphoto.jpg, σ) = ∅). Finally,

τaction(E(copy, {(obj, img profile)}), σ)
= or−(not−(isNotIn(img profile, clipboard)),

or−(E(copy cmd, {(obj, img profile)}), or−(E(getImage, {(obj, 0x1a00005)}),
(and−(E(close, {(obj,myphoto.jpg)}), eventually−(and−(E(read, {(obj,

myphoto.jpg)}), eventually−(E(open, {(obj,myphoto.jpg)})))))))))

In the third step, following subformulas are computed:
ϕ1 = not−(isNotIn(img profile, clipboard))
ϕ2 = E(copy cmd, {(obj, img profile)})
ϕ3 = E(getImage, {(obj, 0x1a00005)})
ϕ4 = and−(E(close, {(obj,myphoto.jpg)}), eventually−(and−(E(read, {(obj,

myphoto.jpg)}), eventually−(E(open, {(obj,myphoto.jpg)})))))
In the fourth step, generic ECA rules, as described above, are generated for
each subformula. ϕ2 and ϕ3 are of the form and−(E(e), true). So respective e
becomes the trigger event as described above, and the condition part of the
respective ECA rules is true. The specific action to be taken in each ECA rule
is manually specified in the fifth step.

5 Related Work

The goal of this work is to automate the refinement of policies in the context of
usage control. Policy refinement has been the focus of research since quite some
time [25] and in the recent years, there have been various attempts towards
automating it. Solutions have been based on refining policies using resource hi-
erarchies [26], commitment (obligations) analysis [27], goal decomposition [28],
data classification [29] and also from different perspectives viz. conflict preven-
tion, where the focus has more been on the translation of constraints [30]. In [31]
and [32], ontology-based refinement techniques are described for semi-automated
translation of access control policies. In our work, such ontologies could be used
at each level of the meta-model. In [33], authors have proposed a resource hier-
archy meta-model for translating domain-specific elements in XACML policies
for virtual organizations to generate corresponding resource-level policies. This
is similar to our work in terms of the approach. However, the policies are refined
from the abstract level (users, resources and applications) to the logical level
(user ids, resource addresses and computational commands like read/write); fur-
ther technical representations of policy elements in concrete systems are not
considered. Another work which is quite similar to ours in terms of approach is
described in [34]. This paper focuses on action decomposition in a policy refine-
ment framework. Subjects perform operations on targets (services and devices)
which are specified at a high level. Using a system model and a set of refinement
rules, actions are decomposed and one higher level policy is refined into multiple
policies. However, all elements (both abstract and concrete) of the system model
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are at the same level; which makes this approach similar to the ontology-based
refinement. Also, in the last stage of refinement, policies are transformed into
ECA rules. How this transformation is achieved is however not specified.

In almost all of the work on policy refinement, there has been some kind
of distinction between the abstract entities at high level and the corresponding
technical entities at lower levels. This approach of capturing details of a system
with several levels of abstraction has been addressed in many architecture frame-
works [35–37] and is also common in the embedded systems domain [38–40].
We have adopted a model-based approach which is analogous to the MDA
viewpoints [41] with varying level of details at the computation-independent,
platform-independent and platform-specific levels. A minor difference with the
MDA approach is in the naming of the different layers. We have combined this
approach with usage control concepts to refine policies.

The contribution w.r.t. to reference [22] is detailed out in §2, step 2.

6 Conclusion and Future Work

This paper describes a model-based policy refinement for usage control en-
forcement. Through this work, we have addressed the fundamental problem of
the lack of semantics of actions like copy or delete. Additionally, we have pro-
vided a methodological guidance for transforming specification-level policies into
implementation-level policies that configure enforcement mechanisms at different
layers of abstraction. This helps translate policies in an automated manner.

For precise semantics of action refinement, we have combined an existing do-
main meta-model with a usage control model from the literature. The combined
model captures both the static (all possible cases) and dynamic (one particular
case with runtime information) aspects of concrete systems. The refinement of
actions in this combined model is twofold: actions are refined to sets/sequences
of low-level transformers and also to state-based formulas that describe the stor-
age of data in containers. Refinement of actions is used to give semantics to
specification-level policies in terms of a set of system traces. We have also pro-
vided methodological guidance to automate the policy translation: when future-
time policies are translated to their past-time equivalents, the complex formula
with all action refinements is decomposed into subformulas and mapped to the
condition part of ECA rules.

It is hard to establish a notion of correctness between the semantics of low-
level and high-level policies because the semantics of high-level propositions is
not precisely defined but rather exists in the (end) user’s mind. In fact, we see
our translation procedure as a way to define the semantics of high-level policies
by assigning machine-level events and state changes to high-level actions.

We have deliberately introduced a limitation in this paper: we have not con-
sidered the dynamic nature of systems. Adaptive policy translation is a topic
of ongoing work. Another topic of current investigation is the evolution of poli-
cies [42] since we have not considered the fact that specification-level policies
may also change from one receiver to another in a distributed setup.



Model-Based Usage Control Policy Derivation 15

References

1. R. Iannella (ed.). Open Digital Rights Language v1.1, 2008. http://odrl.net/1.
1/ODRL-11.pdf.

2. Multimedia framework (MPEG-21) – Part 5: Rights Expression Language, 2004.
ISO/IEC standard 21000-5:2004.

3. P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter. Enterprise Privacy
Authorization Language (EPAL 1.2). IBM Technical Report, 2003.

4. Open Mobile Alliance. DRM Rights Expression Language V2.1, 2008. http:
//www.openmobilealliance.org/Technical/release_program/drm_v2_1.aspx.

5. X. Zhang, J. Park, F. Parisi-Presicce, and R. Sandhu. A logical specification for
usage control. In Proc. SACMAT, pages 1–10, 2004.

6. M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and T. Walter. A policy language
for distributed usage control. In Proc. ESORICS, pages 531–546, 2008.

7. N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder Policy Specification
Language. In Workshop on Policies for Distributed Systems and Networks ’95.

8. W3C. The Platform for Privacy Preferences 1.1 (P3P1.1) Specification, 2005.
http://www.w3.org/TR/2005/WD-P3P11-20050104/.

9. M. Harvan and A. Pretschner. State-based Usage Control Enforcement with Data
Flow Tracking using System Call Interposition. In Proc. 3rd Intl. Conf. on Network
and System Security, pages 373–380, 2009.

10. A. Pretschner, M. Buechler, M. Harvan, C. Schaefer, and T. Walter. Usage control
enforcement with data flow tracking for x11. In Proc. STM ’09, pages 124–137.

11. M. Dam, B. Jacobs, A. Lundblad, and F. Piessens. Security monitor inlining for
multithreaded java. In Proc. ECOOP, pages pp. 546–569, 2009.

12. I. Ion, B. Dragovic, and B. Crispo. Extending the Java Virtual Machine to En-
force Fine-Grained Security Policies in Mobile Devices. In Proc. Annual Computer
Security Applications Conference, pages 233–242. IEEE Computer Society, 2007.

13. L. Desmet, W. Joosen, F. Massacci, K. Naliuka, P. Philippaerts, F. Piessens,
and D. Vanoverberghe. The S3MS.NET Run Time Monitor: Tool Demonstration.
ENTCS, 253(5):153–159, 2009.

14. U. Erlingsson and F. Schneider. SASI enforcement of security policies: A retro-
spective. In Proc. New Security Paradigms Workshop, pages 87–95, 1999.

15. B. Yee, D. Sehr, G. Dardyk, J. Chen, R. Muth, T. Ormandy, S. Okasaka, N. Narula,
and N. Fullagar. Native Client: A Sandbox for Portable, Untrusted x86 Native
Code. In Proc IEEE Symposium on Security and Privacy, pages 79–93, 2009.

16. G. Gheorghe, S. Neuhaus, and B. Crispo. xESB: An Enterprise Service Bus for
Access and Usage Control Policy Enforcement. In Proc. ICTM, 2010.

17. M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song. Dynamic spyware analysis.
In Proceedings of USENIX Annual Technical Conference, June 2007.

18. P. Kumari, A. Pretschner, J. Peschla, and J. Kuhn. Distributed data usage control
for web applications: a social network implementation. In Proc. 1st ACM Conf.
on Data and application security and privacy, pages 85–96, 2011.

19. A. Pretschner, E. Lovat, and M. Buechler. Representation-independent data usage
control. In Proc. 6th Intl. Workshop on Data Privacy Management, 2011.

20. Denis Feth and Alexander Pretschner. Flexible Data-Driven Security for Android.
In SERE ’12, pages 41–50, June 2012.

21. Prachi Kumari, Florian Kelbert, and Alexander Pretschner. Data Protection in
Heterogeneous Distributed Systems: A Smart Meter Example. In INFORMATIK
2011 - Dependable Software for Critical Infrastructures, 2011.

http://odrl.net/1.1/ODRL-11.pdf
http://odrl.net/1.1/ODRL-11.pdf
http://www.openmobilealliance.org/Technical/release_program/drm_v2_1.aspx
http://www.openmobilealliance.org/Technical/release_program/drm_v2_1.aspx
http://www.w3.org/TR/2005/WD-P3P11-20050104/


16 Prachi Kumari and Alexander Pretschner

22. Prachi Kumari and Alexander Pretschner. Deriving implementation-level policies
for usage control enforcement. In Proc. 2nd ACM conference on Data and Appli-
cation Security and Privacy, CODASPY ’12, pages 83–94. ACM, 2012.

23. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall (UK), 1998.
24. Ricarose Roque. Open Blocks, 2009. http://education.mit.edu/openblocks.
25. M. Abadi and L. Lamport. The existence of refinement mappings. In LICS ’88.
26. L. Su, D. Chadwick, A. Basden, and J. Cunningham. Automated decomposition of

access control policies. In Proc. 6th IEEE Intl. Workshop on Policies for Distributed
Systems and Networks, pages 6–8, 2005.

27. J. Young. Commitment analysis to operationalize software requirements from pri-
vacy policies. Requirements Engineering, 16:33–46, 2011.

28. A.K. Bandara, E.C. Lupu, J. Moffett, and A. Russo. A goal-based approach to
policy refinement. In Proc. 5th IEEE Workshop on Policies for Distributed Systems
and Networks, pages 229–239, 2004.

29. Y.B. Udupi, A. Sahai, and S. Singhal. A classification-based approach to policy
refinement. In Proc. 10th Intl Symp. on Integrated Network Management, 2007.

30. Steven Davy, Brendan Jennings, and John Strassner. Policy conflict prevention
via model-driven policy refinement. In Proc DSOM ’06. Springer-Verlag.

31. Cataldo Basile, Antonio Lioy, Salvatore Scozzi, and Marco Vallini. Ontology-based
policy translation. In Computational Intelligence in Security for Information Sys-
tems, volume 63, pages 117–126. 2009.
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