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ABSTRACT

Dramatic growth in the volume of data made a compact and

informative representation of the data highly demanded in computer

vision, information retrieval, and pattern recognition. Non-negative

Matrix Factorization (NMF) is used widely to provide parts-based

representations by factorizing the data matrix into non-negative

matrix factors. Since non-negativity constraint is not sufficient to

achieve robust results, variants of NMF have been introduced to ex-

ploit the geometry of the data space. While these variants considered

the local invariance based on the manifold assumption, we propose

Farness preserving Non-negative Matrix Factorization (FNMF) to

exploits the geometry of the data space by considering non-local

invariance which is applicable to any data structure. FNMF adds

a new constraint to enforce the far points (i.e., non-neighbors) in

original space to stay far in the new space. Experiments on different

kinds of data (e.g., Multimedia, Earth Observation) demonstrate that

FNMF outperforms the other variants of NMF.

Index Terms— Non-negative Matrix Factorization, Farness Pre-

serving, Clustering.

1. INTRODUCTION

The exponential growth of the available data (e.g., multimedia, Earth

Observation) increases the demand for efficient methods to provide a

compact and informative representation of the data contents. Nowa-

days, the contents of the data is represented to data mining algo-

rithms by a matrix composed of high-dimensional vectors of the

most descriptive features of the data samples, so-called feature vec-
tors. However, high-dimensional data leads to the storage problem,

the curse of dimensionality which increase the compuation effort,

and the limited degree of freedom [1].

Matrix factorization methods have shown impressive perfor-

mance in addressing these problems by providing a compact rep-

resentation of the original high-dimensional data. The main idea

behind matrix factorization is to decompose a matrix into two or

three lower-dimensional matrix factors such that their product is

a good approximation of the original matrix. A variety of these

methods have been proposed using different constraints on matrix

factors such as PCA [2], SVD [3], and VQ [4].

Because the main goal in data mining algorithms is to provide

human understandable results, developing methods which perform

similar to human brain have attracted a great attention in recent

years. Non-negative Matrix Factorization (NMF) is a widely used
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Fig. 1. Data from high-dimensional (RD) space are mapped to low-

dimensional one (RK ), where K � D, such that the farness prop-

erty is respected. The red points located in the red circle are the

neighboring points of the blue interest point where the green points

are the non-neighboring points.

matrix factorization method following the parts-based perception be-

havior of the human brain, i.e., perception of an object by combining

the perceptions of its parts [1, 5, 6]. The parts-based representation

is achieved by enforcing non-negativity constraint to the matrix fac-

tors which only allows additive combinations of the original data.

However, the non-negativity constraint is not enough to achieve ro-

bust data representations [1]. Therefore, wide range of applicability

of NMF motivated the researchers to improve it by introducing ad-

ditional constraints. For example, many of the recent works focused

on preserving the intrinsic geometry of the data space by defining

new objective functions. GNMF, proposed by Cai et al. [6], con-

siders the local invariance by constructing a nearest neighbor graph

and encoding the geometrical information of the data space. Liu

and Wu [7] introduced CNMF to constrain NMF to use the prior

annotation of the data. This enforces the points from same class to

be encoded similarly. Gu and Zhou [8] used local linear embedding

assumption to propose NPNMF. They introduced a new constraint

to allow each data point to be presented by its neighbors. All the

mentioned variants of NMF assume that the data points are sampled

form a sub-manifold of the ambient space, i.e., data points form

a flat high-dimensional euclidean space. Therefore, the proposed

constraints were applied only to the neighboring points to exploit

the geometry of the data space.

In this paper, we introduce a novel algorithm, called Farness pre-

serving Non-negative Matrix Factorization (FNMF) to exploit the

geometry of the data space by introducing a new constraint to en-

force the far points (i.e., non-neighbors) in original space to be also

far in the new space. While the previous variants of NMF consider

the similarity of the neighboring points based on manifold struc-

ture assumption, FNMF considers the discrimination of the points



which is applicable to any structure of the data space. Fig 1 shows

the mapping of the data points from high-dimensional space to the

lower-dimensional one using FNMF. The red points located in the

red circle are the neighboring points of the blue interest point where

the green points are the non-neighboring points. FNMF enforces the

green points to stay far away from the interest point. Experiments

on different real word datasets demonstrate that FNMF outperforms

NMF and its manifold-based variant as well as other state-of-the-art

dimensionality reduction methods.

The rest of the paper is organized as follows. Section 2 presents

a review of NMF. In Section 3, we explain our algorithm followed

by its optimizing rules. The experimental results are provided in

Section 4. Finally, in Section 5 we draw our conclusion.

2. A REVIEW OF NMF

Non-negative Matrix Factorization (NMF) is a widely used matrix

factorization method which provides a part-based representation

of data by enforcing non-negative constraint to the matrix factors.

Given a non-negative matrix X = [x1, . . . , xN ] ∈ R
D×N , where

each column is a feature vector representing a data sample, the goal

of NMF is to factorize X into two non-negative matrices U and V
such that:

X ≈ UV T , where U ∈ R
D×K , V ∈ R

N×K
(1)

This factorization is a constrained non-convex optimization problem

with the cost function equal to:

F = ‖X − UV T ‖2F (2)

s.t. U = [uik] ≥ 0,

V = [vjk] ≥ 0

The cost function is convex only in U or V , but not convex in both

together. Therefore, there is no global solution for the algorithm, but

Lee and Seung [5, 9] presented an iterative update algorithm to find

a local minimum as follows:

uik ← (XV )ik
(UV TV )ik

, vjk ← vjk
(XTU)jk
(V UTU)jk

(3)

It is proved that the updating rules can converge to a local minimum

of the cost function [9].

3. FARNESS PRESERVING NON-NEGATIVE MATRIX
FACTORIZATION

NMF is an unsupervised learning algorithm which represents the

data in parts. Additionally, specific constraints can also be imposed

to its main objective function in order to hold some properties of

the original data space during mapping to the new space. Possibility

to add new constraints makes NMF a powerful framework to derive

new data representation algorithms. In this section, we introduce our

Farness Preserving Non-negative Matrix Factorization (FNMF) al-

gorithm which is proposed to exploit the geometry of the data space

by enforcing the far points in the original data space to stay far in the

new one.

3.1. Objective Function

The input data is represented as a matrix X = [x1, ..., xN ] ∈
R

D×N , xi ∈ R
D , where N denotes the number of samples and D

represents the feature dimension.

In spectral graph theory [10] and manifold learning [11] K-nearest

neighbor (Knn) graph represents the locality of data points. This

graph is represented as an adjacency matrix W ∈ R
N×N , whose

elements are 0 or 1. Evidently, the complement of W (i.e. W ) rep-

resents the far points, where W ij = 1 states that point j is far from

point i (i.e., non-neighboring point). For simplicity in the equations,

we use G = W . Using matrix G, in FNMF, a new regularizer is

added to the main objective function of NMF to consider the farness

of the points. This regularizer increase the value of the objective

function when the far points become close. The new objective

function is represented by Equation (4) which should be minimized.

C = ‖X − UV T ‖2F + λR

=

N∑

i

N∑

j

(xij −
K∑

k=1

uikvjk)
2 + λR

(4)

In this equation R is the regularizer which is defined as an exponen-

tial function (see in Equation (5)). Parameter λ controls the contri-

bution of the regularizer in the objective function.

R = exp(−β

2

N∑

i=1

N∑

j=1

‖vi − vj‖2Gij)

= exp(−β
N∑

i=1

vTi vjDii + β

N∑

i=1

N∑

j=1

vTi vjGij)

= exp(−βTr(V TDV ) + βTr(V TGV ))

= exp(−βTr(V TLV ))

(5)

In Equation (5), Tr(.) denotes the trace of a matrix, D is a di-

agonal matrix whose elements are sum of the rows of the matrix G,

and L = D − W is the laplacian of the matrix G. Therefore, the

objective function of FNMF can be written as

C = ‖X − UV T ‖2 + λe−βTr(V TLV )
(6)

3.2. Optimizing rules

To minimize the the cost function, Equation (6), we first expand it to

C = Tr((X − UV T )(X − UV T )T ) + λe−βTr(V TLV )

= Tr(XXT )− 2Tr(XV UT ) + Tr(UV TV UT )

+ λe−βTr(V TLV ).

(7)

We define Lagrange multiplier αik and βjk for the constraints uik ≥
0 and vjk ≥ 0, respectively. Therefore, by defining A = [αik] and

B = [βjk], the Lagrangian L is

L = Tr(XXT )− 2Tr(XV UT ) + Tr(UV TV UT )

+ λe−βTr(V TLV ) + Tr(AU) + Tr(BV ).
(8)

The partial derivatives of L with respect to U , V are

∂L
∂U

= −2XV + 2UV TV +A (9)



∂L
∂V

=− 2XTU + 2V UTU

− 2βLV e−βTr(V TLV ) +B

(10)

Using the Karush-Kuhn-Tucker (KKT) conditions [12], where

αijuij = 0 and βijvij = 0, the following equations are obtained:

−(XV )ikuik + (UV TV )ikuik = 0 (11)

[−XTU + V UTU − βLV e−βTr(V TLV )]jkvjk = 0 (12)

Introducing L = L+ − L−, where Lij = (|Lij | + Lij)/2 and

Lij = (|Lij | − Lij)/2, we come up with the following updating

rules for U and V

uik ← uik
(XV )ik

(UV TV )ik
(13)

vjk ← vjk
(XTU + βL+V e−βTr(V TLV ))jk

(V UTU + βL−V e−βTr(V TLV ))jk
(14)

The convergence of updating rules can be proved using an aux-

iliary function similar to the one used in [13].

4. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of the proposed FNMF

for data clustering on four different real world datasets. The statistics

of these datasets can be seen in Table 1. We compare our method

with NMF and its related variants such as GNMF and NPNMF.

4.1. Datasets and feature descriptors

In our experiments we used three different datasets, two multimedia

datasets, namely AT&T ORL1 and Caltech-1012, and an Earth Ob-

servation dataset, namely TerraSAR-X3. Figure 3 shows some rep-

resentative samples of these datasets.

AT&T ORL contains 400 images of 40 individuals, where each per-

son has 10 images of size 32× 32 pixels. Caltech-101 contains 101

non-equal size categories of images of size roughly 300×200 pixels.

In our experiments, 10 largest categories are used containing 3379

images. TerraSAR-X contains 3434 TerraSAR-X satellite images of

size 160× 160 which are grouped in 15 classes.

To input the images to the algorithms, they are represented by

vectors of their most representative features, so-called feature vec-

tors. For each image in AT&T ORL, all the pixel values are con-

sidered as feature values. For Caltech-101 data, rgb-Histograms are

extracted locally from the images, then Bag-of-Words (BoW) model

of the images are used for data representation. For each image of

TerraSAR-X, the pixel values of local windows of size 32 × 32 are

used as local feature vectors. Then the images are represented using

BoW model.

1http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
2http://www.vision.caltech.edu/Image Datasets/Caltech101
3The images are collected from TerraSAR-X data by Shiyong Cui, Remote Sens-

ing Technology Institute (IMF), German Aerospace Center (DLR), Germany, shiy-
ong.cui@dlr.de.

dataset size (N) dimensionality # classes

AT&T ORL 400 1024 40

Caltech-101 3379 64 10

TerraSAR-X 3434 64 15

Table 1. The statistics of the datasets used in the experiments.

(a) (b) (c)

Fig. 2. Representative samples from (a) AT&T ORL, (b) Caltech-

101, and (c) TerraSAR-X datasets.

4.2. Evaluation metrics

Using the provided annotations, the performance of the clusterings

are evaluated by two widely used metrics, namely Accuracy (AC)

and normalized Mutual Information (nMI) [14]. Additionally, in or-

der to compare our results with others we need to use these metrics

as well.

Assuming there are N data points, ci is the provided label of

data point Pi and li is the label assigned by the clustering algorithm

(e.g., Kmeans) in the new space. To compare the prior labels to the

newly assigned ones, the mapfunction finds the best mapping us-

ing Kuhn-Munkers algorithm [15]. Then AC is computed according

to Equation (15) where δ(x, y) is the delta function which is equals

to one if x = y.

AC =

∑N
i=1 δ(ci,map(li))

N
(15)

Normalized mutual information is another widely used metric

to evaluate clusterings by measuring the similarity between two sets

of clusters. Given two sets of clusters C = {c1, c2, ..., ck} and

C′ = {c′1, c′2, ..., c′k′}, the mutual information metric is computed

by

MI(C,C′) =
∑

ci∈C,c′j∈C′
p(ci, c

′
j). log

p(ci, c
′
j)

p(ci).p(c′j)
, (16)

where p(ci), p(c
′
j) represent the probability that an arbitrarily se-

lected data point Pi belongs to the clusters ci and c′j , respectively. In

this equation p(ci, c
′
j) represents the joint probability that Pi belongs

to the both clusters simultaneously. Due to the fact that MI(C,C′)
take a value between zero and max{H(C), H(C′)}, it is normal-

ized by dividing by max(H(C), H(C′)) to take a value between

0 and 1. Here, H(C), H(C′) represent the entropy of C and C′,
respectively. Consequently, the normalized mutual information is

given by

nMI(C,C′) =
MI(C,C′)

max{H(C), H(C′)} . (17)
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Fig. 3. Graph representation of the clustering performance of FNMF,

NMF, GNMF, and NPNMF on three different datasets using AC and

nMI metrics.

4.3. Results and discussion

To perform the clustering on each dataset, we randomly select K

classes and mix their images. After mapping the data samples to the

new space using FNMF, NMF, GNMF, and NPNMF, the samples

are clustered into K number of clusters. Finally, the resulted clusters

are compared to the prior annotation of the samples using AC and

nMI metrics. In the experiments, β set to 200 while the λ parameter

varies and the best one is taken.

Figure 3 shows the clustering results for three different datasets.

As the curves show, the clustering performances using all the

data representation methods decrease by increasing the number

of classes. This happened because increasing the number of classes

increase not only the number of data points but also the complexity

of the clusters. For example, for AT&T ORL data, by increasing the

number of classes from 5 to 20 the number of data points is increased

from 50 to 200. The results also verify that in all the three datasets

FNMF outperforms NMF and its related variants, e.g., GNMF and

NPNF. FNMF outperforms NMF due to considering the information

about the geometry of the data space. FNMF even outperforms the

geometry constrained variants of NMF such as GNMF and NPNMF

because:

• GNMF and NPNMF consider the locality by constraining the

Evaluation metric FNMF NMF GNMF NPNMF

AT&T ORL 81.25 74.51 61.79 73.75

Caltech-101 60.00 49.60 54.20 57.40

TerraSAR-X 68.10 60.60 55.54 56.76

Table 2. Average clustering accuracy (%) on the three datasets.

Evaluation metric FNMF NMF GNMF NPNMF

AT&T ORL 83.40 78.13 64.01 77.03

Caltech-101 40.40 27.60 40.20 35.00

TerraSAR-X 63.66 58.60 57.48 57.26

Table 3. Average nMI (%) on the three datasets.

neighboring points which is usually 1 - 2 % of the whole data

points, where the rest 98 % of the points are not cared. How-

ever, FNMF considers the geometry of the most part of the

data space by constraining much more number of points.

• GNMF and NPNMF enforce the neighboring points to stay

close to each other during mapping to be assigned the same

label by clustering, whereas the non-neighboring points are

not cared. This can bring some non-neighboring points closer

to the point of interest which can cause mislabeling. However,

FNMF enforce the far points to stay away from the point of

interest to avoid cluster confusion.

• GNMF and NPNMF constrain a small number of points in

comparison to the size of the clusters. This limits these meth-

ods to enforce the points from one class to stay in the same

class after being mapped to the new space. However, FNMF

constrains large number of points from different classes to pre-

serve the structure of data apace during the mapping.

Furthermore, comparing the results for different datasets helps to

understand the structure of the data. For example, in AT&T ORL

dataset, NMF performs comparably to its geometry respecting vari-

ants. This shows that the metric distances of the points have small

correlation to the semantic distances (i.e., relation between the points

respecting their labels). However, in TerraSAR-X data, the three

constrained methods highly outperform NMF, which shows that the

metric distances and the semantic distances are highly correlated. To

compare the average performance of FNMF to the other methods, the

average AC and the average nMI is presented in Table 2 and 3.

5. CONCLUSION

In this paper, we introduce Farness preserving Non-negative Matrix

Factorization (FNMF) algorithm to represent the structure of high-

dimensional data in a more compact and informative form by map-

ping the data to a lower-dimensional space. FNMF adds a constraint

to the objective function of NMF to enforce the far points (e.g., non-

neighbors) to stay far during mapping. Experimental results on real

world datasets shows that FNMF outperforms the other variants of

NMF which only preserve the locality conditions (i.e., neighboring

points) such as GNMF and NPNMF. This confirms that non-local

invariance is an important issue in data structure representation.
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