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Abstract

Visual illustrations are an important tool in natural sciences and engineering, considering
that such information is quite natural for the human mind. For centuries, researchers were
required to possess considerable artistic skills to accurately reproduce their own impressions,
both in terms of shape and colour. In fact, arts and science have often occurred in conjunction,
considering the inventions and studies of Leonardo da Vinci, for example. This situation
changed considerably with the invention of photography around 1830, turning the illustration
process into a largely technical one, thus making images feasible in more cases.
Another leap was Wilhelm Conrad Röntgen’s discovery of X-rays in 1895. Their properties

are of high interest for physicists, but the fact that they can penetrate matter and expose
photographic paper afterwards has made their discovery epochal. For the first time, internal
structures could be imaged in a seemingly safe, non-invasive way. For this reason, X-ray
transillumination has become a key technology particularly in medicine, providing patient-
specific and accurate anatomical images in a short time, thus paving the way towards evidence-
based medicine. Obversely, it also took time to realise the perils of ionising radiation.
The next major advancement in medical imaging was the development of X-ray computed

tomography (CT) during the 1960s. Instead of a projection, a three-dimensional structure
is computed from several X-ray images of a static scene. Like that, the perspective and
appearance of the illustration is not predetermined, but can be chosen retrospectively. To-
gether with other imaging modalities such as magnetic resonance imaging, ultrasonography,
or nuclear functional imaging, X-ray CT has become an integral part of medical diagnosis,
intervention planing and monitoring.
Computers form a key component of CT systems, and since the design of the first devices,

computer technology has improved dramatically. For years, computing a CT reconstruction
imposed a considerable burden onto the machinery, and simplifications and rough approxima-
tions have been used. Only in recents years, processors, particularly graphics processors, have
become sufficiently fast to abandon the classical way of computing tomographic reconstruc-
tions, thus allowing to consider new problems.
This thesis discusses three such problems ‘beyond’ current practice, after reviewing the

history and established methods of tomographic reconstruction.
As first problem, the possibility of reconstructing a scene even from incoherent projections

is investigated. Standard CT requires the projection images to show the same static object
from different perspectives, but in reality, data acquisition may be too slow for this to be true,
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Abstract

for example when imaging a beating heart. In order to still reconstruct a useful shape with an
acceptable level of motion-related artefacts, special measures must be taken to compensate.
This thesis presents a level-set-based method combining shape and motion field reconstruction.
Second, raw measurements for tomographic reconstruction are usually acquired in gantry-

based devices where the sensors take a pre-determined, standard trajectory known to work in
general cases. Still, there are cases where irregular, patient-specific acquisition of the input
perspectives would be beneficial. This is of particular interest when radioactive tracers are
involved where measurements drop off exponentially with distance, and the detector should
be as close as possible to the patient. The thesis demonstrates an acquisition scheme designed
to yield optimal sensor paths for such cases.
Finally, the thesis describes a novel constrained tomographic reconstruction method for X-

ray scattering tensors, using data obtained in a grating-based X-ray interferometry setup and
the respective forward model proposed by Malecki et al. [Mal14]. While standard CT limits
itself to attenuation information, phase-shift and scattering data can also be acquired in an
appropriately equipped setup, and tomographic reconstruction of the latter signal component
is of particular interest. Unlike attenuation CT where scalar values are reconstructed, tensor-
valued data will need to be recovered, thus presenting new challenges in terms of computing
and constraining iterates and visualising results.
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Zusammenfassung

Bildliche Darstellungen sind ein wichtiges Mittel in den Natur- und Ingenieurswissen-
schaften, da Bilder für den Menschen sehr selbstverständlich sind. Über Jahrhunderte hin-
weg mussten Forschende beträchtliche künstlerische Fähigkeiten besitzen um ihre eigenen
Eindrücke im Hinblick auf Form und Farbe exakt wiederzugeben. Tatsächlich waren Kunst
und Wissenschaften oft eng verknüpft, so beispielsweise in den Erfindungen und Studien von
Leonardo da Vinci. Dies änderte sich erheblich mit der Erfindung der Photographie um 1830,
wodurch sich der Bildgebungsprozess zu einem eher technischen Verfahren wandelte, und so
auch die häufigere Erstellung von Bildern ermöglichte.

Ein weiterer Schritt war die Entdeckung der Röntgen-Strahlen durch Wilhelm Conrad Rönt-
gen im Jahr 1895. Die genauen Eigenschaften dieser Strahlung sind für Physiker von großem
Interesse, aber die Tatsache, dass sie Materie durchqueren und anschließend Photopapier be-
lichten können, machen sie zu einer bahnbrechenden Entdeckung. Zum ersten Mal konnten
so verdeckte Strukturen in einem scheinbar sicheren Verfahren sichtbar gemacht werden. Aus
diesem Grund wurde die Röntgen-Durchleuchtung zu einer Schlüsseltechnologie, vor allem in
der Medizin, wo dank ihrer patienten-spezifische, exakte anatomische Bilder in kurzer Zeit
erstellt werden können. So wurde dieses Bildgebungsverfahren zu einem wichtigen Teil mo-
derner Evidenz-basierter Medizin. Auf der anderen Seite dauerte es auch einige Zeit bis die
Gefahren ionisierender Strahlung verstanden wurden.

Die nächste große Entwicklung im Bereich der medizinischen Bildgebung war die der Rönt-
gen-Computertomographie (CT) während der 1960er Jahre. Statt einer einfachen Projektion
wird aus mehren Röntgen-Bildern die dreidimensionale Struktur einer statischen Szene berech-
net. Dadurch sind Blickwinkel und Erscheinung der Darstellung nicht mehr ab dem Aufnah-
mezeitpunkt vordefiniert, sondern können im Nachhinein frei gewählt werden. Zusammen mit
anderen bildgebenden Verfahren wie Magnetresonanz-Tomographie, Ultraschall-Sonographie
oder nuklearmedizinischer Bildgebung wurde Röntgen-CT zu einem integralen Bestandteil
medizinischer Diagnostik und wird ebenso verwandt für die Planung von Eingriffen und bei
der Überwachung von Heilungsverläufen.

Rechner sind eine Schlüsselkomponente von CT-Systemen, und die Computertechnik hat
sich seit den ersten derartigen Geräten geradezu dramatisch entwickelt. Über lange Jahre
hinweg stellte die Berechnung einer CT-Rekonstruktion für die Prozessoren eine komplexe,
langwierige Aufgabe dar, weswegen vereinfachende Annahmen nötig wurden. Erst seit relativ
kurzer Zeit sind die Rechenkerne, vor allem Graphik-Prozessoren, schnell genug um sich von
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Zusammenfassung

den klassischen Berechnungsverfahren zu lösen und neue Fragen anzugehen.
Diese Arbeit beschäftigt sich mit drei derartigen Problemstellungen „ jenseits“ aktuell prakt-

isch eingesetzter Technik. Zuvor werden die Geschichte und die bewährten Methoden zur
tomographischen Rekonstruktion beleuchtet.
Als erstes Problem wird die Frage untersucht, ob eine Szene auch rekonstruiert werden kann,

wenn die Projektionen durch Bewegung nicht „stimmig“ sind. Eigentlich erfordert CT ja, dass
die Eingabedaten ein statisches Objekt aus verschiedenen Perspektiven zeigen. In Wirklichkeit
jedoch kann die Datenaufzeichnung zu langsam sein, beispielsweise wenn ein schlagendes Herz
aufgenommen werden soll. Um trotzdem eine sinnvolle Rekonstruktion zu erhalten, die durch
bewegungsbedingte Bildfehler allenfalls begrenzt verfälscht ist, müssen spezielle Maßnahmen
getroffen werden. Diese Arbeit stellt hierzu einen Methode vor, bei der, basierend auf einer
Niveaumenge, die gleichzeitige Rekonstruktion von Form und Bewegung versucht wird.
Weiter werden die Ausgangsmessungen für tomographische Verfahren normalerweise in spez-

iellen Scannern aufgenommen, bei denen sich die Mess-Sensoren in einer vorbestimmten Weise
um die Zielregion bewegen bzw. fest angeordnet sind. Es gibt jedoch Fälle, in denen eigens er-
rechnete Patienten-spezifische Perpektiven von Vorteil wären. Derartiges ist von besonderem
Interesse wenn radioaktive Kontrastmittel verwendet werden, bei denen die Strahlung mit
wachsender Entfernung exponentiell abnimmt, und die Gammakamera als Strahlungssensor
dementsprechend möglichst nahe am Patienten messen sollte. Die Arbeit stellt ein Steuer-
schema vor, das für derartige Szenarien einen optimalen Pfad ergibt.
Zuletzt beschäftigt sich diese Arbeit mit einer neuen Rekonstruktionsmethode für aniso-

tropische, tensor-wertige Röntgenstreuung, die insbesondere die getroffenen Annahmen als
Nebenbedingung berücksichtigt. Dieser Teil der Arbeit nutzt Daten aus einem Gitter-basierten
Aufbau zur Röntgen-Interferometrie und verwendet die von Malecki et al. [Mal14] vorgeschla-
gene mathematische Modellierung. Während sich nämlich klassisches CT auf die Abschwächung
der Röntgenstrahlung beschränkt, können in entsprechend ausgerüsteten Messaufbauten auch
die Phasenverschiebung und die Streuung gemessen werden. Die tomographische Rekonstruk-
tion der letztgenannten Komponente ist von speziellem Interesse, wobei jedoch keine skalaren
Werte, sondern Tensoren berechnet werden müssen. Dadurch ergeben sich neue Herausfor-
derungen im Hinblick auf das Rekonstruktionsverfahren, aber auch auf die Darstellung der
Ergebnisse.
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Part I.

Basics





1. About Images

Thousands of years ago, in the Palaeolithic Age, when humanity was still organised into
small nomadic groups of foragers, some of them have taken the time to create astonishing cave
art. Among the most notable examples are the cave paintings of Altamira [San80; Car03] and
Lascaux [Bre52]. The fact that illustrations of the ancients survived for (potentially far) more
than 10’000 years appears to be fantastic, and their discovery in the late 19th century initially
incited considerable scepticism [Car02]. Since, however, archeologists and art historians have
accepted them as genuine and produced several theories about the motivation of what they
refer to as Parietal Art.

Independent of this question – may it be shamanism, hunting magic, or plainly art – there
is another intriguing aspect concerning these paintings: Despite the fact that many years and
dramatic social, philosophical, technological and scientific advances separate ‘us’ from ‘them’,
seeing their designs of horses, deers and aurochs, we can empathise with these ancient tribes.
Every human being, independent of education or experience, can simply develop vivid ideas
of what mattered for a society of hunter-gatherers.

Unlike such illustrations, people struggle much more with ancient writing. Understanding
age-old characters can quickly become a highly complicated endeavour, often requiring skills
in cryptanalysis. An example is the deciphering of the Egyptian hieroglyphs by Jean-François
Champollion [Cha22], based on the famous Rosetta Stone, and Kahn [Kah96a] lists many
more such examples. But even when language and glyphs are perfectly known, like Latin or
sometimes even contemporary texts, translating and interpreting a document can be a task
for an expert.

Consequently, independent of who is communicating information to whom, there appears
to be a fundamental difference in how text (or even data) and graphical illustrations are
perceived by the human mind. Among the first scholars to develop a modern theory about
visual perception was Hermann von Helmholtz [Hel67]. In short, he explains vision as a two-
stage process where optical stimuli, the sensation, are transformed into a perception. The first
stage is truly unconscious and described to be of a rather ‘technical’ nature, encompassing
colour and stereo-vision, for instance. In particular, it can not be influenced by knowledge or
experience, a conclusion Helmholtz bases on recurring optical illusions that can not be avoided.
On the other hand, the second stage appears to organise the sensation into semantic entities of
a higher order and deducts features based on experience, such as shape from shading or words
and glyphs from lines. Particularly this second phase is of a logical, but still subconscious
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nature. The entire process is hence referred to as unconscious inference – a construct which was
met with scepticism1 at the time. As justification, Helmholtz explicates that an individual will
typically not be able to tell exactly why he or she arrived at a certain impression, which stimuli
have lead to it, which have been (unwillingly) discarded, and which parts of the perception
are experience-based. In particular, the eye reports impressions necessarily as true, and does
not subject them to rational scrutiny. Finally, Helmholtz also distinguishes between passively
perceiving things and actively observing them, where senses are tuned to collect particular
impressions that the conscious mind is interested in. Later, Karl Popper [Pop72] would stress
this distinction and define observation as key scientific activity, as necessary tool to challenge
hypotheses.
Despite their age, Helmholtz’ conclusions are highly respected to this day, and perception

and gestalt psychology (Wolfgang Metzger [Met53], for instance) have extended our under-
standing of the visual sense over the years. In a nutshell, vision appears to be an intricate
pre-rational system to quickly perceive large amounts of information by subconsciously inter-
preting stimuli in the light of one’s experience. In real life, this mechanism – together with
other senses – allows us to quickly orient ourselves, perceive a complex environment with
situation-dependent focus and abstraction, and to attach meaning to objects.
Aware of his powerful visual sense, in spite of it falling prey to illusions at times and its

inherent subjective nature,2 (re-)creating visual impressions via images, models and sculp-
tures seems to be a natural activity for humans,3 and archeologists have found such evidence
from many cultures and ages. The reasons for crafting such a depiction can be different:
Remembering activities, idolising or taming supernatural powers, coping with traumata, to
name a few. In all such cases, studying the images, the impressions subconsciously spark the
observer’s imagination and serve as starting point for associative chains. Written text and
spoken language, on the other hand, are usually processed by the conscious mind and require
knowledge of context and conventions.

1. Apparently, at earlier times, logical conclusions have been considered to be exclusive to a conscious, intelli-
gent mind. Particularly since the invention of computers, we seem to be more comfortable with Helmholtz’
concept of unconcious inference.

2. Popper [Pop72] interprets Heisenberg’s uncertainty principle [Hei27], originally a finding related to quantum
physics, abstractly as general acknowledgement of subjectiveness. Consequently, there is no way to perceive
an arbitrarily objective impression.

3. We even expect extraterrestrials to rely on their eyes: Two Pioneer spacecraft launched in 1972 and 1973
carry plaques showing sketches, and the Arecibo message transmitted in 1974 is effectively a two-dimensional
image showing sketches and data. See Kahn [Kah96b] for an early account of research towards logic- and
image-based interstellar communication as pursued by Drake and Sagan, for instance.
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Figure 1.1.: The famous Face on Mars as photographed by NASA’s Viking 1 Orbiter spacecraft
in July 1976. A combination of shadows, bluriness and noise deceives the human mind into
seeing a human face, a shape well-known from experience. (NASA/JPL)

1.1. Arts and Sciences

Taking into account the wide range of creative activities leading to images, the focus needs to
be restricted. In a first refinement step, consider natural sciences in general: As collaborative
activity, they inherently rely on communication of experiments, observations, and conclusions.
In a classical setting, a researcher will try to deduce an explicandum – an effect or condition
to be explained – by proposing a logically sound explicans – a hypothesis. These expressions
have been borrowed from Popper’s theory about the progress of scientific knowledge [Pop72].
Further following his concept, public communication of the two would lead to colleagues
challenging the explicans, in an attempt to falsify it.

Exploiting the specialised visual sense, images can be used very advantageously in pub-
lishing and discussing scientific work. For instance, an unknown explicandum, a novel visual
observation, is – trivially – best presented as faithful reproduction. By examining such an
image, a peer with a different background is downright challenged to question interpretations.
A written text describing the same observation would necessarily be biased and devoid of
many alternatives. Instead, it would be a description of the particular impression a conscious
mind had, and thus filtered and abstracted by its experience. Furthermore, a novel, complex
concept or model (an explicans) can often be conveniently presented as illustration with high
information density. On the other hand, factual information such as hypotheses, interpreta-
tions, experimental data or conclusions can be more precisely stated as written text or with
tables of numbers.

Consequently, images play a vital role in natural sciences since centuries. Originally, re-
searchers were required to possess considerable artistic skills to accurately reproduce their
own impressions – both in terms of shape and colour – and arts and sciences have long oc-
curred in conjunction. Famous examples are known from anatomy, archeology, architecture,
astronomy, biology, botany, geography, and microscopy, among many others. In most such
cases, by means of traveling or creating novel optical devices, individuals acquired and shared
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(a) Galilei’s moon, 1610
(Wikimedia Commons)

(b) Darwin’s finches, 1845
(Wikimedia Commons)

(c) Runge’s colour sphere,
1810

Figure 1.2.: Early scientific drawings. Taken from the original publications by Galilei [Gal10],
Darwin [Dar45], and Runge [Run10]. (Public Domain)

previously unknown impressions of exotic plants and animals, of microbes only observable
through a microscope, or of planets only visible as small bright dots in the night sky without
a telescope. Consider, for instance, the various studies by Leonardo da Vinci, the sketches of
the moon by Galileo Galilei [Gal10], the drawings in the books by Charles Darwin [Dar45] or
the colour theories of Johann Wolfgang von Goethe and Philipp Otto Runge [Run10]. In many
fields, these abilities have been canonicalised, and to this day, engineering and architecture
students spend considerable time practicing technical drawing.

1.2. Photography

However, this situation changed fundamentally with the development of modern photography
by Joseph Nicéphore Niépce in 1822 (cf. Barthes [Bar80]). While components have been
known before, namely the pinhole camera (camera obscura) since the ancient world, and
photo-sensitive chemicals like silver chloride since the middle ages, the major novelty was to
fix the exposed light-sensitive material afterwards, thus making the picture permanent and
copiable. Already in the 1840s, the new technology has been sufficiently improved, for instance
by Louis Daguerre, to allow its wider-spread use. The impact of this invention onto the
illustration process is two-fold: First, light directly and immediately exposes a photographic
medium and thus creates an image capturing an exact moment, without an artist-scientist
carefully trying to reproduce an (potentially biased) impression faithfully. Second, imaging
has become a largely technical and mechanised process, thus making images feasible in more
cases. Of course, photography still requires technical and ideally aesthetic skills. (See the
essays of Susan Sontag [Son77] or Roland Barthes [Bar80] for a more universal, philosophical
introduction into photography and its implications.)
In the roughly two centuries since the invention of photography, technology has changed

dramatically. Colours, not just brightness, could be acquired, the photo-sensitive material has
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evolved and was eventually replaced by electronic sensors, and exposure time was reduced to
first enable shooting of movies and later even high-speed sequences. In our age, photography is
a key technology in many scientific fields, not only when conveying information. Particularly
whenever remote sensing, robotics, or unusual spatial or temporal resolution are involved, like
in space exploration, oceanography, physics, or surveying, it has become a scientific tool of its
own.

1.3. Computers and Networks

Like in many other fields, computers and networks have had tremendous impact on imaging.
Storing pictures in digital memory leads to technical implications, but also aesthetic and
philosophical ones. (See the vanguard work of Abraham A. Moles [Mol71] for a comprehensive
discussion.) In particular, computers have enabled to acquire novel kinds of images, fuse input
from several sources, and provide finding aids to work with many images.
In this context, it must also be noted that computers can easily generate synthetic, photo-

realistic images, with correct perspectives and shadows, or alter original images. In terms of
trustworthiness, this is a step backward, and photographies have largely lost the connotation
of undoubtedly reproducing reality. Instead, information about the source of an image is much
more important in present days.
Furthermore, in recent years, due to cheap storage and overwhelming speed of processors and

data links, images and videos have become ubiquitous, also in science. In the battle for research
money and public perception, research institutes have started to generate spectacular images
for public relation purposes. In astronomy for instance, a domain particularly dependent on
the taxpayer’s goodwill, the well-known colourful pictures are heavily post-processed following
cultural memes [Kes12; Web15] and have not much to do with actual research imagery, but
still carry the aura of scientific incorruptibility.

Considering the different motivations for creating images, their purposes and the wide spec-
trum between accurate reproduction and artistic interpretation, even in science, this thesis
will restrict itself to a particular subset of mechanised imaging. The intent is to produce
best-possible, unbiased images of actual settings, intended for scientific and engineering use,
with a particular focus on medical imaging.
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2. X-rays, Among Others

Visible light only makes up a relatively small range of the entire electromagnetic spectrum.
First fundamental ideas about the nature of light were developed in the 17th century. At
that time, Christiaan Huygens [Huy90] came up with wave optics, and Isaac Newton [New04]
refracted a beam of white light into the colour spectrum using a prism. In 1800, astronomer
Friedrich Wilhelm (William) Herschel [Her00] decomposed sunlight into a spectrum, and no-
ticed that a thermometer showed increased temperature ‘below’ visible red light. A year later,
physicist Johann Wilhelm Ritter [Rit06] performed the same experiment and found that sil-
ver chloride, a light-sensitive salt, is darkened ‘above’ visible violet light. Like that, the two
researchers added the infra-red and ultra-violet ranges to the known spectrum. (See fig. 2.1.)

Therefore, at the time of its invention, photography was apparently limited to producing
views of scenes that either emit such light themselves, or are illuminated by a light source. Only
in rare cases, when an object is sufficiently transparent or thin, like in microscopy, light passing
through matter could be captured. Consequently, in order to “perceive whatever holds / the
world together in its inmost folds” as Doctor Faustus proclaims1 in Goethe’s tragedy [Goe08],
samples still needed to be cut open for investigation and photographic reproduction.

2.1. X-radiation

This changed in November 1895, when Wilhelm Conrad Röntgen discovered X-rays [Rön95;
Rön96], thus extending the known spectrum2 beyond ultra-violet light. Operating an elec-
trical discharge tube as described by William Crookes [Cro79] that was covered with black
cardboard, Röntgen noticed that a fluorescent screen was still showing a typical glow. He
concluded that a previously unknown kind of radiation was responsible, conducted all kinds
of optical experiments and termed the phrase X-rays. Note that the tube itself was known
since 1878, and other scientists including Philip Lenard [Swi96; Lan97], Nikola Tesla3 and
Ivan Pavlovich Puluj [Pul96] noted effects on photographic plates before, but it was Röntgen’s
achievement to thoroughly investigate and precisely characterise X-radiation based on rigor-

1. English translation by George Madison Priest.

2. For completeness, it must be added that the extension of the electromagnetic spectrum towards the lower
frequencies has been predicted theoretically by James Clerk Maxwell [Max65] in 1865. Heinrich Hertz [Her87]
proved Maxwell’s equations experimentally in 1886.
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400 nm 450 nm 500 nm 550 nm 600 nm 650 nm 700 nm 750 nm

Wave Length [m] 10-13 10-12 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103 104

Frequency [Hz] 105106107108109101010111012101310141015101610171018101910201021

.-rays X-rays Ultra-violet
Visible light

Infra-red

Terahertz
Microwaves

Radio waves

Figure 2.1.: Electromagnetic spectrum. The human eye can only perceive a relatively small
band between wavelengths of about 380 nm (violet) and 780 nm (red). X-rays and γ-radiation
have considerably smaller wavelengths.

ous experimentation. Within only a couple of weeks, Röntgen performed all studies feasible
at the time, thus providing a complete description that represented the state of knowledge for
about an entire decade [Lan97].

X-radiation is an important finding of physics and related domains, but a particular property
gives them greater importance: X-rays penetrate matter, are attenuated on the way and
expose a photographic plate afterwards. (See fig. 2.2.) Unlike photography, the developed
image will not only show the surfaces of the respective closest objects, but a superposition
of structure-specific absorptions within a certain cone-shaped field of view: The inside of an
object, projected onto a two-dimensional image. From the very beginning on, an iconic (and
still somewhat blurry) X-ray image of Berta Röntgen’s hand (see fig. 2.13(a)) was published
along with the physical description, and early reviews [Swi96] explicitly mention and reproduce
it. The interest is easily explained: Röntgen has discovered humankind’s first way to inspect
“inmost folds” in a (seemingly) non-invasive way. Exactly this made the news of the discovery
spread like a wildfire, with Nature publishing an English translation [Rön96] of the original
paper [Rön95] only within a month. Röntgen received the Nobel prize in physics for his work
in 1901. (See Landwehr [Lan97], Patton [Pat96] and Eisenberg [Eis96] for early X-ray history.)

2.1.1. Generation of X-rays

Before continuing the discussion of the use of X-rays for imaging, take a purely physical and
technical perspective: X-rays occur in nature, and can be generated artificially. Astronomy is
heavily interested in the first category [Trü97], but active imaging requires the latter.

3. Sometimes, Nikola Tesla is identified as true discoverer of X-light, allegedly kept from earlier publication by
a fire in his laboratory in March 1895. (See, for instance, Hrabak et al. [Hra08] or Mahaffey [Mah14].) A bril-
liant man, Tesla surely possessed both, ability and equipment, to generate X-rays and to note their presence,
but his first (known) article on the topic only dates to March 1896, giving full credit to Röntgen [Tes96].
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X-radiation

Figure 2.2.: X-ray geometry: The radiation is generated at a point-like source (orange dot,
left), traverses an object of interest (such as a human thorax, indicated by the gray skeleton),
and is recorded afterwards (orange screen, right). The image contains a superposition of
structures from the entire cone- or pyramid-shaped field of view. Ideally, as long as the image
is taken directly without an intensifier and when using a line-focus tube, the setup is perfectly
described by the pinhole model (an application of the intercept theorem), and distortion-free.

X-ray tubes

A common method to produce X-rays is to use vacuum tubes. The basic idea is to generate
a stream of electrons in an evacuated environment, and to accelerate these electrons away
from a cathode (negative electrical charge) towards a suitable target anode (positive electrical
charge). The individual electrons of this beam will abruptly lose their kinetic energy upon
impact. Following the law of energy conservation, this will lead to an effect such as heat or
light, and the dissipation of X-ray photons if the acceleration voltage and target materials
(tungsten, or a tungsten alloy) are chosen correctly.
As mentioned above, Röntgen originally used a Crookes tube [Cro79] to generate X-rays.

Such a tube is not entirely evacuated and contains some residual gas molecules which are ion-
ised in the strong electrical field between cathode and anode. That is, electrons on the highest
electron shells of the individual atoms are torn away, thus turning the (electrically neutral)
atoms to (positively charged) ions. In such a setup, the number of remaining molecules limits
the strength of the electron beam, and thus of the X-radiation. The amount of residual gas is
hard to control, making the X-ray production hardly predictable and potentially dangerous.
In 1913, William D. Coolidge invented the Coolidge tube [Coo16] which has effectively

become the standard since about 1920 [Hak14]. (See fig. 2.3(a) for a schematic drawing.) In
this setup, the electron beam is generated by thermionic emission [Gut73; Pre85], that is a
filament is heated up, and electrons are dissipated. This filament also serves as cathode of the
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(a) Original design with spiral-shaped cathode and
static anode.

(b) Modern ‘line focus’ design with helical
cathode and rotating anode.

Figure 2.3.: Schematic design of Coolidge-type ‘hot cathode’ X-ray tubes. Electrons (blue)
are emitted from a glowing cathode (orange) in an evacuated environment and accelerated
towards a target anode (gray) manufactured from a durable metal alloy. Upon impact, X-rays
(violet) are emitted. Modern tubes use rotating anodes to reduce wear.

electron acceleration component, while the anode is kept as before. For this reason, Coolidge
tubes are also referred to as hot cathode, and Crookes tubes as cold cathode tubes.

Apart from X-rays, the tubes generate considerable heat and require cooling particularly
of the anode. Still, the process damages the target over time. In order to reduce wear,
modern tubes use a rotating anode. Like that, the beam is not concentrated to a single
area. Interestingly enough, William Herbert Rollins mentioned the rotating anode already in
1899 [Rol03, Note 50], but it was formally patented only in 1916, also by Coolidge [Coo17]. The
modern setup where anode and tube form an electric motor was patented in 1927 [Bou33].
Furthermore, in order to produce sharp images, line focus cathodes are used, making the
radiation appear to originate from a single small spot,4 thus reducing blurring artefacts. This
cathode design was invented by Otto Goetze [Goe26] in 1918. (See fig. 2.3(b).)

Electrons and X-rays

With either of the setups in place, consider now the interaction between the electron beam and
the atoms of the target anode. As already stated, the impact of the electrons eventually leads
to X-rays. Among several effects causing them, the two most relevant ones are bremsstrahlung
(deceleration radiation) and characteristic radiation, a variant of X-ray fluorescence.

4. Later, the X-ray cone-beam setup will be modeled as pinhole camera.
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Figure 2.4.: When passing through the electric field between a nucleus and the electron shell,
a free electron is deflected and slowed down. Consequently, a continuous spectrum of X-
rays is emitted, an effect called bremsstrahlung (deceleration radiation). A similar concept is
synchrotron radiation where the deflection is caused by magnetic fields.

Figure 2.5.: Characteristic X-radiation is due to an external stimulus (blue arrow) kicking out
an electron from a low shell. In case of an X-ray tube, this stimulus will usually be caused by a
colliding free electron. The ‘hole’ is immediately filled by an electron from a higher shell. Due
to the law of energy conservation, an X-ray photon (violet) is emitted while falling down. The
electron shells have discrete energy levels depending on the chemical element, and a transition
between certain shells will require or yield a characteristic energy. This effect is also causing
X-ray fluorescence.
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Figure 2.6.: Schematic X-ray spectrum for a tungsten anode. It consists of several charac-
teristic spikes, and a continuous spectrum caused by bremsstrahlung. Note that this sketch
is simplified; in reality, each spike consist of a group of spikes, depending on the subshells
involved. The lower energies are undesired and removed by adding respective filters into the
X-ray beam, causing the original spectrum (blue) to be ‘shifted’ up towards higher energies
(green and red). This also happens while measuring, an effect referred to as beam hardening.

Bremsstrahlung is caused when an electron passes an atomic nucleus in close vicinity, trav-
eling through the electric field between the core and its shell electrons. Carrying a negative
charge, the electron will be deflected towards the nucleus, thus losing speed. The difference
in kinetic energy is compensated for by the emission of X-ray photons. (See fig. 2.4.) The
energy of the latter depends on the initial speed of the electron and distance to the core. For
this reason, the X-ray bremsstrahlung energy spectrum caused by a beam of many electrons
will be continuous [Buz08].

In addition to bremsstrahlung, characteristic radiation will appear. This effect was dis-
covered by Charles Glover Barkla [Bar17], a work which was awarded with the 1917 Nobel
prize in physics [Bar20]. In this case, the electron beam causes shell electrons to be kicked from
an anode atom, thus ionising it. If such a ‘hole’ appears on a lower electron shell (particularly
‘K’), an electron from a higher shell (‘L’ or ‘M’) will drop down to fill it, thus minimising
the energy. Falling down, the energy imbalance is compensated by emitting an X-ray photon.
Electron shells have discrete energy levels depending on the chemical element. The transition
of an electron between two such (sub-)shells will, therefore, yield (or require) a characteristic
energy [Des05]. (See fig. 2.5.) Consequently, all X-ray photons caused by this effect will appear
as characteristic spikes in the energy spectrum. Particularly prominent are the Kα transitions
from L to K, and the Kβ transitions from M to K, both at a relatively high energy.
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Consequently, the X-ray spectrum generated by a tube will be a combination of the two
effects: A continuous spectrum caused by bremsstrahlung, and some very characteristic spikes.
The positions of the latter depend on the materials used for manufacturing the anode. As will
be seen later, this raw spectrum needs to be filtered in order to avoid unsuitable radiation
energies. (See fig. 2.6 for a sketch.)

Synchrotron

Another means to produce X-rays is based on synchrotrons. In this case, the electron beam is
generated using a ring-shaped accelerator and sent through wigglers and undulators, effectively
sequences of electro-magnetic fields. As described above for bremsstrahlung, the beam is
deflected to follow a wave-shaped trajectory and consequently slowed down, again leading
to the production of X-ray photons. This kind of radiation is referred to as synchrotron
radiation, and can be controlled very well to yield a desired energy spectrum by setting
suitable parameters [Win97]. In contrast to X-ray tubes, however, a synchrotron requires a
large facility, and its use is typically restricted to research institutions [Dow99; Mar12b].

2.1.2. Interaction of X-rays and Matter

Once a X-ray beam is available, it can be sent through matter. Traveling along, this beam is
attenuated, effectively causing the ‘look inside’ as described above when used to finally expose
a photographic plate. Like in the target anode of the X-ray tube, this is due to an interaction
of X-rays and matter on an atomic scale. Among several effects, the two most important ones
are photoelectric absorption and Compton scattering .

Atomic Scale

Photoelectric absorption of photons is the micro-scale process leading to the photoelectric
effect. Observed and investigated by several researchers for several years, a satisfactory ex-
planation was developed by Albert Einstein [Ein05] in 1905, and was awarded with the Nobel
prize in physics in 1921. An X-ray photon of sufficient energy will displace a shell electron,
typically on a low shell, and its entire energy will be converted into kinetic energy. If there are
higher shells, an electron will drop down to minimise the atom’s energy. Like in the case of
characteristic X-radiation as generated in X-ray tubes, an electron transitioning to the lower
shell will emit an X-ray photon, following the law of energy conservation. (See fig. 2.7.) The
latter effect leads to X-ray fluorescence.
The second relevant effect is Compton scattering [Com23]. Besides the photoelectric effect,

it conclusively shows the wave-particle duality of light, and Arthur H. Compton received the
1927 Nobel prize in physics [Com27] for its discovery. In this case, the photon interacts with a
quasi-free electron on an outer shell. The electron is kicked out from its shell, and some of the
photon’s energy is converted into the electron’s kinetic energy. Unlike the first case, however,
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Figure 2.7.: Photon absorption and X-ray fluorescence: An X-ray photon kicks out an electron
from a electron shell, is completely absorbed, and another electron from a higher shell will
fill the gap. Again, a new X-ray photon of a characteristic energy is emitted to compensate
for the energy difference, causing X-ray fluorescence. Losing a negative charge, the atom is
‘ionised’.

Figure 2.8.: Compton scattering: An X-ray photon again kicks out an electron, typically from
an outer shell, but is not entirely absorbed. The photon ‘survives’ but loses some of its energy.
Also in this case, the atom is ‘ionised’.
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Figure 2.9.: Modeling X-ray attenuation: An X-ray source (orange dot, left) emits mono-
chromatic X-radiation with initial intensity I0. The detector (orange ‘bucket’, right) reads
a radiation intensity of IS = I0 · exp

(
−
∫
L µ(x) dx

)
, following the Beer-Lambert law. In

this case, assuming two discrete blocks with lengths w1, w2 and homogeneous attenuation
coefficients µ1, µ2 in vacuum, the expected sensor reading is IS = I0 ·exp (−µ1 · w1 − µ2 · w2).

the photon is not entirely absorbed and only loses some of its energy. It continues onwards
with a larger wave length. (See fig. 2.8.)
Note that in both cases, the atoms temporarily lose an electron and thus a negative charge,

turning it into an ion. For this reason, X-radiation is referred to as ‘ionising’ radiation.
Furthermore, there are more effects eventually causing the attenuation of the X-ray beam.
(See Buzug [Buz08, chap. 2.3.2] for an extensive description.)

Macroscopic Scale

Seen from a macroscopic perspective, the absorption of X-radiation intensity is given by the
Beer-Lambert law [Bou29; Lam60; Bee52]. Assume a X-ray source emitting a beam of initial
intensity I0, and an X-ray sensor on the far side of a sample object, measuring an attenuated,
residual intensity of IS . Furthermore, let L denote the line of sight between source and
detector, and µ : R3 → R a function mapping a location x to a respective local attenuation
coefficient µ(x). (See fig. 2.9 for a sketch.) Then, according to this law, the two intensities
will be considered to be related as follows:

IS = I0 · exp

(
−
∫
L
µ(x) dx

)
(2.1)

Note that this equation is only an approximation assuming monochromatic X-radiation, that
is, a single spike in the energy spectrum. In reality, though, the X-light will be polychromatic,
and there will be X-ray photons of a range of energies. Interacting with matter, lower energies
are attenuated to a higher degree. Consequently, comparing the energy spectrums before and
after crossing the sample object, the second spectrum will not just be scaled down, but lower
energies will be affected over-proportionally. This ‘shifting’ effect towards higher energies is
called beam hardening [Her09]. Taking the energy dependence into account, a more accurate
mathematical description of the attenuation is, following Kak et al. [Kak87, chap. 4.1.2] or
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Buzug [Buz08, chap. 2.4]:

IS =

∫ Emax

0
I0(E) · exp

(
−
∫
L
µ(E,x) dx

)
dE (2.2)

In general, the exact attenuation measured at the far side depends on several properties,
such as the thickness of the specimen, its density, its material, and, again, the energy of the
radiation [Buz08, chap. 2.4].
In practical settings, particularly medicine, exposure of the sample to X-ray photons of

low energy is largely undesirable. As will be seen below, exposure to ionising radiation should
generally be avoided as far as possible, and over-proportionally attenuated ranges of the energy
spectrum will not yield additional information. For this reason, low energies will be blocked
by adding a filter of a suitable material, like aluminum, into the X-ray beam directly at the
tube, thus ‘pre-hardening’ it. (See fig. 2.6.)

2.2. γ-radiation

Shortly after the discovery of X-rays, in 1896, Antoine Henri Becquerel began a series of exper-
iments originally intended to show fluorescence of matter when excited under various lighting
conditions, including X-light, and he describes his progress in a series of articles [Bec96a;
Bec96b; Bec96c; Bec96d; Bec96e; Bec96f]. He was able to demonstrate that uranium salts
could in fact expose photographic paper wrapped into a black envelope, but he realised that
this effect can even be observed without excitation, i.e. in the absence of external light. Ruling
out other effects such as chemical reactions, he concluded that uranium salts emit radiation
of some sort themselves.
Following up Becquerel’s experiments, Pierre Curie and Marie Skłodowska Curie discovered

more powerful, previously unknown chemical elements showing the same behaviour, and coined
the term radioactivity [Cur98; Cur03]. For their pioneering work, all three of them received
the 1903 Nobel prize in physics [Bec03; Cur05].
In 1898, Ernest Rutherford began to investigate the radiation emitted by radioactive sub-

stances, and was able to distinguish two different kinds of radiation that he called α- and β-
radiation [Rut99]. Later, both would be identified as particle radiation, helium nuclei ( He4

2
2+)

in case of α-radiation, and electrons (e−) in case of β-radiation. Rutherford received the 1908
Nobel prize in chemistry [Rut08a] for his achievements.
In 1900, Paul Villard observed a third kind of particularly strong radiation [Bec01] which,

unlike the other two known kinds of radiation, could not be deflected by magnetic fields.
Furthermore, it required much more material to entirely absorb it. Following his scheme,
Rutherford introduced the name γ-radation in 1903 [Rut03], but it took until 1914 that
he was able to show, together with Edward Andrade, that γ-radiation is an electro-magnetic
radiation [Rut14], as X-radiation and visible light are. Like that, the electromagnetic spectrum
was extended beyond the energy range of X-rays, towards even higher energies. (See fig. 2.1.)
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Figure 2.10.: Image intensifier: X-rays (violet, left) cause the emission of electrons (blue) from
a photocathode (violet/black). The electron beam is focused by means of electrostatic lenses
(black/gray), and causes an image on the secondary fluorescent screen (green, right) that
can be enlarged by ‘usual’ optical means. Using an intensifier, the brightness of the image
is improved several 100 times. Note that the image is slightly distorted due to the radial
geometry.

Due to the close relation between γ-radiation and X-rays, the interaction with matter is
very similar, and the same attenuation effect can be expected. The major difference is the
generation of radiation in practical setups: X-rays are typically generated using electrical
devices such as tubes, but γ-radiation is generated ‘naturally’ by suitable radioactive isotopes.

2.3. Making Radiation Visible

After a radiation beam has been attenuated by an object of interest, the remaining problem
is to record an image. As has been mentioned before, X-rays and also γ-rays expose photo-
sensitive material, particularly photographic plates and film. This discovery has already been
made before Röntgen, and he formally describes it in the initial publication [Rön95; Rön96]. A
particularly beneficial aspect of this approach is that a relatively low dose is enough to create
an image of good quality [Kas01; Kas03], but the exposed medium needs to be developed
after exposure. (See Haus et al. [Hau96] for a comprehensive history of X-ray film and its
development.)

Recall that Röntgen’s interest in ‘the new kind of rays’ was not triggered by exposed film,
but by the reaction of a photo-fluorescent screen that happened to be around. In contrast
to film, such a screen immediately produces a visible image, as the material – excited by
invisible rays – emits light of a wavelength that the human eye can see. As the news of the
discovery spread around the world, Thomas Alva Edison was quickly intrigued, started to
look into optimal fluorescent materials, and identified calcium tungstate. Already in 1896, he
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Figure 2.11.: Schematic design of a scintillator-based digital X-ray detector. The basic idea
is to let a X-ray photon excite a scintillator crystal, thus converting high-energy X-light or
γ-radiation to a flash of low-energy light that can be detected by photo-diodes. In order
to reduce measurement noise, a collimator (also referred to as ‘anti-scatter grid’ [Buz08]) is
added, annihilating all erratic photons not coming from a certain direction of interest. Several
such sensors arranged in a grid make up a camera.

patented a bright fluorescent lamp [Edi07] creating light by exciting this material with X-rays.
As will be seen later, Edison quickly withdrew from experimenting with X-rays, but the idea
of fluoroscopy was established. A fluoroscopic image is usually rather dim, thus constantly
requiring strong radiation to produce an image. Even more, the viewer is quite likely to also
expose himself to ionising radiation.

In the early years, viewers were required to examine fluoroscopic images in the dark, and
their vision needed to be adapted beforehand, for instance by wearing goggles with red
glasses [Hak14]. This changed with the invention of image intensifiers. The original idea
goes back to the late 1920s, when Gilles Holst and Jan Hendrik de Boer [Hol30; Hol34] of
Philips invented a special vacuum tube where an image produced on a primary (input) fluor-
escent screen causes a photocathode to emit a beam of electrons towards a secondary (output)
fluorescent screen. On the way, this beam is accelerated and focused by means of electrostatic
lenses, causing an amplified image to appear on the secondary screen. (See fig. 2.10.) This
technique was initially used for night-vision equipment, that is, to make dim visible light and
infrared light visible. In the late 1940s, the technology was adapted to X-ray imaging by
Lloyd P. Hunter and Richard L. Longini [Hun51; Col48] of Westinghouse, and the first X-ray
intensifier, the Fluorex , became commercially available in the 1950s [Hak14], thus enabling
work under daylight conditions. The intensified image was originally viewed via mirrors or
periscopes, but soon the image was recorded by a television camera and shown on a respective
screen.

In recent years, particularly the last two decades, it has become relevant to digitise the
images. Image intensifiers are still used, and their amplified images as recorded by a camera
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Figure 2.12.: Rectilinear scanner: A single radiation sensor (gray) moves over a specimen,
following a regular grid (blue arrow), and a mechanically coupled printhead (orange) moves
along. At discrete positions, the measurement obtained from the sensor leads to an appropriate
mark on the paper, creating a two-dimensional ‘projective’ image.

can be digitised like any other picture. Still, in order to simplify the devices and to enable
advanced image processing, there has been a move towards radiation sensors providing digital
information right away. Interestingly enough, this move has begun already in the 1950s in
the field of nuclear medicine. A particularly prominent and wide-spread design is based on
‘observing’ a scintillation crystal. Incoming radiation photons of high energy will trigger a
visible light pulse of lower photon energy within the crystal that can be detected by means
of photodiodes, and electronically forwarded as counting impulse. The detector is usually
extended by a collimator, a metal grid restricting the field of view to a narrow cone and
thus limiting the influence of erratic photons. (See fig. 2.11.) This principle – at the time
still based on a photomultiplier tube instead of semiconductors – was originally developed by
Samuel C. Curran [Cur48; Cur49] during the Manhattan Project in the 1940s, as alternative
to other radiation and radioactivity detector designs such as particularly the Geiger-Müller
counter [Rut08b; Gei28].

While electric detectors were originally only able to measure a single scalar activity, first
two-dimensional images could be produced with the rectilinear scanner. Invented and im-
proved by Benedict Cassen during the early 1950s [Cas49; Cas50; All51; Bla96], such a device
systematically scans along a grid and stores the accumulated counts by exposing a film using
an auxiliary light controlled by the electrical impulses sent by a radiation sensor and moving
in conjunction with it. (See fig. 2.12.) Soon afterwards, in 1958, Hal O. Anger patented
the Anger camera [Ang61], the first imaging device to use a scintillation crystal and a grid
of sensors (photomultiplier tubes) to create the image. Today, digital systems typically use
flat-panel detectors essentially following the same design principle, only using semiconductors
instead of tubes. (See Cherry et al. [Che12c, chap. 7ff.] or Buzug [Buz08, chap. 2.5] for a
detailed description and discussion of contemporary radiation detector design principles and
their characteristics.)
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2.4. Ionising Radiation and Medicine

So far, the physical process of generating radiation and creating an image has been described.
Returning to the earlier discussion of imaging from a more abstract viewpoint, it must be
be noted that X-ray images do not only recreate a sensation as photographs usually do, but
they constitute ‘transillumination’ pictures of an unique and, at the time, novel kind. As
such, they provide insight into the anatomy and potentially even the metabolism of a specific
patient, and Röntgen’s contemporaries quickly embraced X-ray imaging as invaluable tool. In
particular, the discovery is probably the first step on a path towards what we call ‘evidence-
based medicine’ today, as it seriously limited the uncertainty where, due to a lack of data,
even well-trained physicians are forced to resort to elaborate, experience-based guessing.
However, the author even would argue that X-ray imaging introduced scientific approaches

into clinical practice. In the previous chapter, it has been reasoned that images play a key role
in science, particularly when communicating new findings. In contrast to own perception, an
image enables physicians to unbiasedly discuss a case with colleagues, or to compare features
with cases reported in literature, thus closing the gap between scientific work and day-to-day
patient care. The patient-specific acquisition of images of different kinds, along with other
data, is routine nowadays, and it started with X-ray imaging.

2.4.1. Radiology

The use of X-light for transillumination in medicine is referred to as radiology. This field has
been born immediately with the first publications and public demonstrations, for instance
during a session on 23rd January 1896 where Röntgen X-rayed the hand of anatomist Rudolf
Albert von Kölliker [Lan97]. (See fig. 2.13(a).) In the typical setup, an external source yields
X-radiation which passes through the patient’s body, is attenuated, and finally leads to an
image being acquired on the far side. (See fig. 2.2.)
In first medical applications, X-rays have been used directly to image structures with high

X-light contrast such as bones and teeth, or also foreign bodies such as bullets, lost needles,
among others [Hay96]. Particularly the latter category quickly made X-rays prominent with
army field surgeons, starting in the Spanish-American War [Bro95b], and especially during
the First World War [Cur21]. Already during the first year after their discovery, clinicians also
came up with the idea to inject or swallow agents to improve the contrast where usually only
little to none would be visible. Among the earliest examples are the works of Haschek et al.
[Has96] and Braus [Bra96] who both contrasted the vessels of hands using rather adventurous
chemicals such as mercury. (See fig. 2.13(b), and refer to DiSantis [DiS96] for early medical
practitioners.)
Quickly, radiology has been established in many medical fields, such as chest [Hei96], ab-

domen [Goo96], urological [Pol96a], heart and vascular imaging [Abr96; Fer96; Wak11], or in
neurology [Huc96], to name a few. To this day, radiology is primarily used to yield anatomical
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(a) Bertha Röntgen’s hand [Rön95], December
1895 (Wellcome Library, London)

(b) Mercury-contrasted vessels [Bra96], 1896
(Universitätsbibliothek Heidelberg)

Figure 2.13.: Early medical X-ray imaging. (Public Domain)

information, or, in natural words, to image the body as it is, potentially supported by contrast
agents. In general, there are two large fields of application: The first is diagnostic imaging,
that is the pre-operative collection of information, often by means of exposing film, even in
our digital era. The other is interventional imaging, where X-rays are used intra-operatively,
mainly for navigation and monitoring purposes, for instance during resections or biopsies. In
the latter case, fluoroscopic images are usually preferred, in order to have real-time imaging.

2.4.2. Nuclear Imaging

Concerning the more energetic γ-rays, it would theoretically be possible to use them for exactly
the same purposes as described above for X-light. In fact, however, X-radiation is perfectly
enough to transilluminate a human body, and nuclear imaging is usually used for a different
purpose: Functional imaging, that is the collection of information about dynamic processes in
the human body, particularly concerning the metabolism, by tracing a radioactive substance, a
so-called radiopharmaceutical or tracer, administered to the patient’s body. Consequently, in
the typical setup, an internal radioactive distribution (eventually) emitting γ-rays is observed
from the outside using passive sensors, and anatomical features are usually not directly shown.
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Figure 2.14.: Nuclear imaging: A radiopharmaceutical is administered to the patient, and
taken up by specific organs depending on the exact type of tracer used. The γ-rays will
radiate in all directions, but a detector with a collimator attached will only see the photons
coming from about the direction it is facing to. The image does not show the anatomy such as
the bones in this sketch, but only the radioactively marked organ, the kidneys in this example.
Note that, unlike X-ray transillumination, there is no external radiation source. (Cf. fig. 2.2.)

(See fig. 2.14.)
The original idea of tracing radioactive markers from the outside in order to understand

the previously unknown mechanics within an organic system is due to George Charles de
Hevesy [Chr24a; Chr24b; Chi35; Hev36] who was awarded with the 1943 Nobel prize in
chemistry [Hev44] for his invention. (See Levi [Lev67; Lev76] for a detailed account of Hevesy’s
work.) Following the advent of nuclear medicine during the late 1940s, this idea was adapted
from general research work to patient-specific diagnostic imaging.
As described in section 2.3, it took some time to develop appropriate two-dimensional

radiation detectors yielding complete images. The starting point of medical functional imaging
is marked by the development of the rectilinear scanner [Cas49; Cas50; All51], and the Anger
camera [Ang61] is effectively still the standard means of acquisition. (See Pollycove [Pol96b],
Blahd [Bla96] and Lottes et al. [Lot00] for a more detailed history of nuclear imaging.)
Today, the acquisition of nuclear images is referred to as scintigraphy , and it is usually

used in cancer diagnosis and tumour localisation. In this case, the idea is simply that tumour
tissue exhibits over-proportional energy consumption. Consequently, a suitable tracer emit-
ting γ-radiation, often a radiopharmaceutical based on metastable technetium-99 ( Tc99m ) is
injected into the patient’s bloodstream, and concentrates in cancer tissue. Observing this
process with a gamma camera from outside, a radioactive hotspot will emerge in the im-
age, hinting at cancerous tissue. (See Cherry et al. [Che12c, chap. 5] for more details about
radiopharmaceuticals.)
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2.4.3. Hazards and Perils

There is, however, also another medical perspective onto ionising radiation: Depending on the
dose, it can inflict both, deterministic as well as stochastic health effects.

The first reports surfaced very soon after the discovery of X-rays: For instance, an anonym-
ous letter to the editors of Nature [R96] describes the case of a man who used to demonstrate
the novel technology during the summer of 1896, thus frequently exposing his hand to X-light.
Consequently, he suffered from radiation dermatitis, a deterministic effect initially similar
to sunburn, began to treat it in a, from our modern perspective, shockingly naïve way, and
continued to expose his hand on a regular basis.

The same behavioural pattern can be observed in many instances during the first decade,
also among highly trained scientists, physicians and engineers. Initial warning signs such as
dermatitis or general discomfort have often been ignored, people continued to irradiate their
extremities with high doses, and quickly showed signs of severe skin damage such as ulcera,
and finally cancer . The latter condition is usually a stochastic effect, caused by damaged
genetic information that the body fails to repair, but in the case of these early victims and
their enormous doses, the consequences became overwhelmingly certain. At this stage, the
typical medical response was a series of amputations, initially individual fingers, then the
hand, and finally the entire arm, without a chance to stop the spread of metastases. The
patients died cruelly within a relatively short time.

A particularly prominent early case is the death of Clarence M. Dally [Bro95a], a glassblower
and technician working on X-ray tubes for Thomas Edison. His death in 1904 was widely
communicated in the newspapers [NYW03; NYT04], and – also because his own eye was
damaged by X-light – led Edison to abandon his pioneering research in this direction, for fear
of the “hidden perils” [NYW03]. Another prominent victim is Mihran Kassabian [Bro95c],
a pioneer of X-ray research who succumbed to the cancer in 1910, despite the fact that he
himself described X-light as “irritant” [Kas00] a decade earlier. There are also famous women
among this group, for instance Elizabeth Fleischman Ascheim [Bro95b] who died in 1905, or
Marie Skłodowska Curie in 1934. Curie definitely suffered from radiation-induced cancer, but
people argue whether her physical experiments (and thus radioactive materials) [Cur38] are
to blame, or her X-ray exposure during the First World War [Cur21] where she played a key
role in equipping the French army with X-ray devices.

Also in medical and clinical practice, X-rays have initially been handled rather carelessly,
and over-exposure of patients has been common, particularly due to the fact that the human
can not feel the rays themselves directly, only their effects – at which time it may be too late.
Allegedly, the first US medical malpractice lawsuit is exactly due to such an accident [Ber01].
Similarly, the medical operators – radiologists, technicians and nurses – have not been properly
protected in the very beginning, and it took time to introduce lead aprons, lead glass, and
other protective gear. As most extreme example, a head-worn fluoroscopic screen [Hak14] was

25



X-rays, Among Others

Figure 2.15.: Radiology monument on the premises of St. Georg Hospital in Hamburg, Ger-
many. Listing 359 names, it is dedicated to “the röntgenologists and radiologists of all nations,
physicians, physicists, chemists, technicians, laboratory assistants and nurses who sacrificed
their lives struggling against the diseases of their fellow human beings. They were heroic
pioneers enabling successful and safe application of X- and Radium-rays in medicine.”

quite common in the early years, and surgeons operated while constantly transilluminating
the patient and also themselves. Consequently, the death toll among the early practitioners
was considerable: The Radiology Monument situated on the premises of St. Georg Hospital
in Hamburg, Germany, is dedicated to the commemoration of 359 victims from around the
world [Vog06]. (See fig. 2.15.)

Even after the adverse effects of X-rays have become clear, it took time to understand that
they are inflicted by the rays themselves, and that they are not just byproducts of the electrical
currents, or random chemicals such as air turning into ozone under X-illumination. Also, the
distinction between deterministic and stochastic conditions was initially not discussed, and a
proper nomenclature needed to be found. In this context, two particular scientists deserve
mentioning: Among the earliest to understand the dangers of ionising radiation was William
Herbert Rollins who described respective animal experiments and proposed protective equip-
ment [Rol03, Notes 123ff., 136, 139, 145, 170]. The first to properly investigate the influence
of ionising radiation onto genetic information was geneticist Hermann Joseph Muller [Mul27],
who managed to artificially create mutations by means of X-irradiation when experimenting
with fruit flies. This lead him to explain radiation-induced cancer as being caused by DNA
damaged beyond feasible repair during photon-matter-interaction as described above.

As the perils of X- and γ-radiation have become clear, physicians need to carefully trade
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off the expected insight with the potential harm before acquiring an image. This is especially
important when treating young patients [Gri96], or when using X-radiation for screening
purposes, that is, for monitoring the health of the population in a wide-spread manner, in
order to detect particular diseases as early as possible. An important historical example is
tuberculosis screening5 based on chest fluoroscopy [Hei96], but the use of X-rays for screening
purposes has largely been abandoned in general. The only remaining exception is breast
cancer screening using mammography [Dod96; BfS15a], due to the large number of new cases
per year, and the high mortality rate.6 Still, in recent years, the average radiation dose
caused by medical imaging increased,7 and even accidental over-exposures have still been
reported quite recently [Koe01a; Koe01b]. Such cases usually occur in interventional settings
like angiography, and sometimes, even skin grafts have been necessary to treat the wounds.

Note, however, that the effects of ionising rays on tissue can also be exploited for thera-
peutical purposes in a field referred to as radiotherapy [Due97], extending the field of nuclear
medicine beyond imaging. In particular, they can be used to kill cancer cells, and this ap-
plication is thus, besides tumour resection and chemotherapy, among the primary tools of
oncology . The technique shares many properties with the imaging techniques discussed in this
thesis, but will need to be omitted from further discussion.

Before closing the section on the dangers of ionising radiation, a particularly pointless ex-
ample of fluoroscopy outside of the medical domain must be mentioned: In 1919, a decade
after the enthusiastic early years, the shoe-fitting ‘pedoscope’ [Low27] was invented. Installed
in stores selling footwear, this device allowed customers to X-ray their feet in order to control
the fit of shoes, promising a more ‘scientific’ way to do so. This assumption is plainly wrong,
but the devices still survived until the 1970s [Duf00]. Years before their final withdrawal,
clinical cases have been discussed where shop assistants have been critically irradiated by
accident due to poor maintenance [Kop57], but apparently, the pedoscopes were just too im-
portant, attracting children and, along with them, their free-spending parents. (See Schoenen
[Sch07] for an extensive general collection of remarkable cases connected to radiation-induced
accidents, also including radioactive sources.)

5. In Germany, tuberculosis screening of the general public was terminated during the 1980s [Wik15], and
Bavaria was the last German country to formally abandon the respective law in March 2000 [VwReformG].
For refugees, however, tuberculosis screening appears to be still mandatory. In 2015, due to a capacity
bottleneck, the city of Berlin has even acquired a new mobile X-ray unit contained in a truck trailer, thus
reviving an idea from the 1950s [Ges15; RBB15].

6. Note that mammography screening is disputed, not so much because of radiation effects, but due to a high
number of false positives – women wrongly diagnosed with cancer. Its positive effects appear to be limited
to certain age groups [Lau15; Zin15].

7. For Germany, see the statistics provided by the Bundesamt für Strahlenschutz [BfS15b]. The increase
appears to be due to normal radiographs being replaced by tomographic images, thus incurring a higher
radiation dose per exposure.
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2.5. Material Science and Security

Besides medicine, the two other fields heavily relying on X-rays are non-destructive testing
and security monitoring as done routinely at air- and seaports. Concentrating on the former
domain, a typical example is the inspection of welding seams by transillumination. This is
particularly important when constructing modules that will be subject to high pressure such
as oil or gas pipelines, large forces or weights such as bridges, or that will be used within
sensitive installations such as nuclear power-plants or chemical manufacturing facilities. The
technical development largely went in parallel with the medical counterparts.
The most remarkable difference to medical imaging is that, depending on the thickness

and absorption of the material, transillumination will be performed using radioactive sources
containing a suitable isotope, rather than an X-ray tube. The imaging process is then referred
to as gammagraphy. Despite many industrial standards (for instance [ISO 4993] and [ISO
5579], among many others), several serious accidents involving abandoned, unmarked isotope
sources have been reported, also by the International Atomic Energy Agency (IAEA) [Whe00;
Tur02; Bug09].
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3. Volumetric Imaging and Computed Tomography

X-ray images have justifiably revolutionised medicine, but their projective nature makes
them hard to interpret: Due to their character as transillumination pictures, they will show
a superposition of all attenuating structures between radiation source and image sensor, and
they will exhibit perspective foreshortening. The latter effect will be more prominent the
closer the (ideally point-like) source and the (potentially large) detector are to each other.
Consequently, X-ray images are easier to interpret for flat structures, like human hands,

or when looking for obvious targets with strong contrast, such as bullets. In case of more
complex structures, such as the head or the thorax, a cross-sectional image is preferable, and
a stack of such ‘slices’ would convey a volumetric impression of the region of interest. (See
fig. 3.1.) This is exactly the idea of tomography, a word made up from the ancient greek words
τομή (tomé, section) and γράφειν (gráphein, to write).
It is important to note that today, digital tomographic images are no longer considered

to be a stack of slices, but a single volumetric image. It is quite common that radiologists
browse through (artificial) two-dimensional slices extracted from such a three-dimensional
image, but considerably more advanced, sometimes highly specialised visualisation methods
have been developed, particularly three-dimensional, coloured renderings [Eng06; Eng04]. The
key conclusion to draw is that, unlike two-dimensional modalities such as classical radiography,
volumetric imaging provides the means to retrospectively choose a perspective. In this work,
the respective techniques are used to visualise concepts and results, but a proper discussion
of them is, unfortunately, outside of the scope.
Furthermore, volumetric images are no longer exclusively used to look at things, but they

serve as foundation for computerised data processing. In the last decades, the vast field
of computer-aided medicine has emerged, and people use volumetric images to automatically
label organs, diagnose conditions, plan interventions, among many others, and apply advanced
techniques such as artificial intelligence or machine learning to them.

3.1. Conventional Tomography

Today, tomography is often associated with Computed (or Computerised) Tomography, but
the original idea – in an analogue version – dates back to the time of the Great War, and it
was invented independently for multiple times. The idea is to jointly move X-ray source and
film during acquisition in an opposite sense, thus only projecting a single slice-shaped region

29



Volumetric Imaging and Computed Tomography

Figure 3.1.: The paradigm of tomographic imaging is to acquire one or more cross-sectional
slices, rather than projective transilluminations. A stack of such slices produces a volumetric
impression of the region of interest, such as a human thorax as in this sketch. Today, volumetric
imaging is quite common in medicine, and the datasets are used as input for advanced data
processing.

statically. Consequently, mainly this region of interest will be visible on the developed picture,
and structures above and below will be blurred away, as their projections changed during the
imaging process. (See fig. 3.2 and fig. 3.3 for sketches; cf. Herman [Her09, chap. 2.2].)
The first one to describe the acquisition of sectional images was André Bocage who patented

several tomographic imaging setups in 1921 [Boc22; Mer98], based on his wartime experience.
A little earlier, in 1916, Carlo Baese already patented an apparatus to fluoroscopically locate
bullets using similar motion schemes [Bae17], but did not try to record a permanent tomo-
graphic image. Some time after Bocage and independent of his patent, the first images were
produced by Alessandro Vallebona around 1930 [Val30; Val31; Bis05]. Other important con-
tributors were Bernard Georg Ziedses des Plantes [Zie31; Zie32], Jean Kieffer [Kie34] and
Gustav Grossmann [Gro38; Cha38]. Not only are there several independent inventors, there
are also other names besides ‘tomography’, and such methods have also been referred to as
planigraphy or stratigraphy , depending on the exact implementation [Buz08, chap. 3.2], and
also on the inventor. (For an extensive history of the field, see Littleton et al. [Lit96].)
Before the introduction of Computed Tomography as described below, conventional tomo-

graphy was a common clinical modality. In fact, it has still survived to this day [Dob03],
appropriately extended by computer technology [Str79] to remove the blurring effects, but the
name was changed to tomosynthesis, to avoid confusion. With ongoing development, it is even
possible to remark a certain convergence of the related technologies.
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Conventional Tomography

Figure 3.2.: Conventional tomography: The X-ray source (orange dots, top) and the film
(orange squares, bottom) are moving simultaneously, only keeping a single region (red square)
in constant focus. Like that, the film will be exposed several times, but structures above and
below the static focus region are blurred away, creating a (potentially hazy) sectional image.

Figure 3.3.: In conventional tomography, points in the focus plane (center blue dot) are projec-
ted to a single, static position on the image, despite the synchronous motion of X-ray source
and film (bottom blue dots). Points off the focus plane (center red dot) are projected to
different spots (bottom red dots), and are thus blurred ‘away’.
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Figure 3.4.: Transaxial conventional tomography: The X-ray tube is static, but the patient and
the film are rotated synchronously, leading to a conventional tomogram of the focus slice (red
circle). Due to the cone-shaped geometry and limited film size, this setup does not appear to
be suitable for larger objects of interest. Apparently, it was mainly intended for brain imaging.

3.2. X-rays and Transmission Computed Tomography (CT/TCT)

Among the different motion schemes used in conventional tomography, a particularly inter-
esting one is transaxial tomography. The invention is usually attributed to William Wat-
son [Wat40], but others, particularly Bocage, seem to have thought of it before. In this case,
the tube is static, but patient and film are rotated synchronously, leading to the known effect
of keeping a single slice in focus, and blurring structures above and below. The tube is still
above the section of interest, and the acquired image is two-dimensional. (See fig. 3.4.)

At the same time of Watson’s patent application, in 1939, the first real forerunner to Com-
puted Tomography was invented by Gabriel Frank [Fra42]: Back-projection. His approach
was entirely relying on analogue, optical mechanisms, but it shares the basic principle with
modern scanners, and the entire device is inherently aimed towards transaxial tomographic,
slice-wise imaging: A specimen is transilluminated by a fan of X-rays, and a single line-shaped,
one-dimensional projection is acquired on film wrapped around a drum. Afterwards, specimen
and film drum are slightly rotated in a synchronous fashion, and another such projection is ac-
quired, until the full 360° have been sampled. Consequently, the film will contain a sinogram,
an image where one axis relates to the viewing angle, and the other to a translational offset.
(See figs. 3.6 and 3.7.) In a separate step after development, this sinogram is back-projected
onto a secondary, flat film which again rotates synchronously. Each line of the sinogram is
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(a) Forward projection. X-rays are emitted from a source (orange circle), transilluminate the specimen
(for better visibility a simple target with two rods), pass a diaphragm, and expose a film on a roll,
leading to a sinogram. Specimen and film roll rotate synchronously.

(b) Backward projection. The developed film roll with the sinogram is illuminated from within (yellow),
the light is focused by means of another diaphragm and fanned out using lenses, to eventually expose
a flat film. The latter and the film roll rotate synchronously again, leading to a cross-sectional image.

Figure 3.5.: Optical X-ray tomography as initially proposed by Frank [Fra42] and later im-
proved by Edholm [Edh77]. This general principle still applies today, but particularly the
back-projection has been computerised, and data is processed more accurately, thus reducing
blur.
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Figure 3.6.: Considering the setup shown in fig. 3.5, a single projection is acquired at an angle
φ, leading to a one-dimensional projection with running index t. Parallel incoming X-rays are
depicted in this sketch, for simplicity.

Figure 3.7.: Several projection operations as shown in fig. 3.6 lead to a two-dimensional image,
a so-called sinogram. One axis corresponds to the angle, the other to the offset. In this sketch,
each row of the sinogram contains the projection acquired at a single specific angle φ.
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fanned up and projected over the entire image, and as result of these multiple, overlaid expos-
ures, a blurry cross-sectional image will become visible on the secondary film. (See fig. 3.5.)
This process can be thought of as ‘intersecting’ different well-known lateral views to come up
with a cross-sectional image optimally explaining the measured observations. Note that exact
knowledge of the perspective is essential, a constraint guaranteed in this case by mechanical
coupling. In 1977, even after digital systems have been presented, the purely optical approach
of back-projection was improved by Paul Edholm [Edh77] by adding a de-blurring component.

Apparently, the optical and mechanical approach was not particularly successful in clinical
practice, probably due to the troublesome two-stage process, or for being too blurry. Some
twenty years later, in 1963, however, the problem of reconstructing a cross-sectional image
from a sinogram was revisited by Allan MacLeod Cormack. At that time, Cormack pub-
lished two articles [Cor63; Cor64] where he treated it from a mathematical perspective: The
sinogram, after some post-processing, can be considered to contain line integrals, based on
the Beer-Lambert law as stated in eq. (2.1), and Cormack devised a mathematical frame-
work and closed-form solution equations for computing a reconstruction of the original image.
This, together with sufficiently mature computer technology, lead to the computerisation of
the back-projection process, and thus lay the foundations for Computed (or Computerised)
Tomography (CT). Working on non-medical settings, another researcher publishing on the
topic was William H. Oldendorf [Old61; Old63].

The most important step towards wide-spread clinical use was the development of licensed,
easily usable scanning systems. This work was first done at EMI laboratories by Godfrey
Newbold Hounsfield during the late 1960s and early 1970s, and very early medical research on
brain tumours was done by James Ambrose. The novel system was widely published in 1973,
in a series of publications [Hou73a; Amb73; Per73], and the technology was quickly adopted.
More traditional suppliers of medical imaging technology soon followed with own CT scanning
systems. The novel imaging modality has had a tremendous clinical impact, combining novel
imaging with relatively simple acquisition, and Cormack and Hounsfield jointly received the
1979 Nobel prize in medicine [Cor79; Hou79] for their work. (See Webb [Web90], Evens [Eve96]
and Buzug [Buz08] for a detailed history of Conventional and Computed Tomography.)

From a technical perspective, the development of Computed Tomography scanners over the
years to present time happened in a series of steps. The first question was the choice of an
appropriate radiation source, and X-ray tubes have not necessarily been the most prominent
choice, but people also planned to use radioactive isotopes for transmission imaging. This idea
was prominent in related fields [Kuh66], too. The second question was the actual scanning
pattern, i.e. the mechanics within the scanner, to acquire the input sinogram. The first four
canonical scanner generations are all focussing on slice-based data acquisition, starting with a
single rotating and translating source/detector pair, and leading to more complex geometries
involving different fan-shaped combinations of a single source and multiple detectors [Her09;
Buz08]. (See fig. 3.8.) Like that, a series of cross-sections could be scanned, and radiologists
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(a) Pencil beam, rotating and translating pair of
X-ray source and single detector. (1st gen.)

(b) Fan beam, rotating and translating arrange-
ment of source and multiple detectors. (2nd gen.)

(c) Fan beam, rotating arrangement of source
and multiple detectors. (3rd gen.)

(d) Fan beam, rotating source and static detector
ring. (4th gen.)

Figure 3.8.: Classical slice-based CT scanning patterns, commonly referred to as generations
one through four. Orange dots indicate the location of the X-ray source, single X-ray sensors
are drawn as ‘buckets’. Blue arrows denote motion patterns of the source/sensors arrangement.
In reality, 4th generation data is read out slightly differently as ‘inverse fans’.
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Figure 3.9.: Modern CT scanners use several improvements to quickly acquire data, such as
helical trajectories and cone-shaped fields of view.

were able to browse through a stack of transaxial tomographic slices. (See fig. 3.1.)
Unfortunately, slice-based scanning is not sufficiently quick for moving organs such as the

heart or the lung, and images may show motion artefacts. Compared to the original genera-
tions, modern CT scanners employ a series of improvements to make heart and lung imaging
feasible, and they are vaguely referred to as 5th, 6th and 7th generation scanners. First and
foremost, modern devices are multi-line scanners, that is, they acquire multiple slices at the
time, eventually leading back to the paradigm of cone-shaped acquisition geometries [Buz08,
chap. 3.9]. Next, scanners may rotate more than one radiation source around the patient, and
dual-source setups appear to be a particularly popular design. A very influential invention
are the helical (also ‘spiral’) trajectories as proposed by Willi A. Kalender [Kal90]. There,
the patient is moved through the scanning apparatus while the X-ray component is rotat-
ing, rather than doing individual slice-wise rotations and only moving the patient in-between.
(See fig. 3.9.) Finally, a special CT-variant has been developed for cardiac imaging, Electron
Beam CT [Buz08, chap. 3.8]. Vice versa, classically two-dimensional imaging modalities such
as angiography or mammography systems have been equipped to also produce volumetric
images.
Despite their technical differences, all these different scanner setups all share the same basic

principles, and the tomographic images can be reconstructed using the same mathematical
methods. Details about the numerical reconstruction process are discussed in chapter 4.
Note that, from a strict perspective, CT images are interpreted differently than classical

X-ray images: The latter (unless post-processed) usually show transmission information, that
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is, the radiation that still passes through a specimen. For CT, it makes more sense to consider
attenuation or absorption information, as will be seen in chapter 4. Both ‘flavours’ are highly
related, as can be concluded from the Beer-Lambert law in eq. (2.1). Recall that, according
to this law, the original measured intensity is given by the relation

IS = I0 · exp

(
−
∫
L
µ(x) dx

)
(3.1)

where the transmitted intensity IS on the far side is given based on a line integral over location-
specific attenuation values µ(x), along a ray L. For CT, the forward model is rewritten to a
‘pure’ line-integral:

− ln

(
IS
I0

)
=

∫
L
µ(x) dx (3.2)

This makes it easier to tackle the reconstruction problem mathematically, and abstracts away
context-specific information, the initial intensity I0 and the actually measured value IS .
Also note that while the general term ‘Computed Tomography’ is often used in conjunction

with X-ray imaging, the idea of computerised cross-sectional imaging is much more universal.
Consequently, the term ‘Transmission Computed Tomography’ (TCT) has been proposed for
X-ray CT.

3.3. Nuclear Imaging and Emission Computed Tomography (ECT)

The need for distinguishing X-ray CT from other tomographic modalities becomes clear when
considering that scintigraphy, the probably most prominent two-dimensional nuclear imaging
modality, has also been extended to yield volumetric images. In this case, the general term
‘Emission Computed Tomography’ (ECT) may be used. Again, the idea is to administer a
radiopharmaceutical tracing metabolic processes, to detect the rays coming from within the
patient’s body, and to reconstruct a volumetric approximation of the distribution of radioactiv-
ity. An unexpected radiation hotspot may hint at cancer tissue, for instance. The imaging
modality is thus not anatomical, that is intended to show body structures, but functional,
that is intended to visualise processes going on in the body of the patient. (See section 2.4.2,
and refer to Pollycove [Pol96b] for a detailed history of nuclear imaging.)

3.3.1. Single Photon Emission Computed Tomography (SPECT)

The straight-forward extension of planar scintigraphy to volumetric imaging is Single Photon
Emission CT (SPECT). Instead of a single static gamma-camera, the detector is rotated
around the patient, and – like in TCT – images are correlated with the perspective, i.e. the
position of the sensor while detecting the γ-photon counts must be well-known. ‘Intersecting’
such views from well-distributed perspectives leads to a volumetric view of the radioactiv-
ity distribution. (See fig. 3.10.) Again, details about the reconstruction are postponed to
chapter 4.
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Figure 3.10.: In a SPECT setup, at least one gamma-camera rotates around the patient and
observes γ-rays, in this sketch emitted from radioactively marked kidneys. By correlating
radiation counts and camera perspectives, the three-dimensional distribution can be recovered.

As described for X-ray CT, there have been conventional, non-computerised forerunners to
SPECT. The first was published in 1963 by David Kuhl and Roy Edwards [Kuh63], where
stereoscopic rectilinear scanning is employed to obtain several exposed films, and then the work
suggests to super-impose them. The same paper mentions transmission scanning and sketches
the TCT process, the authors can thus also be considered to be among the pioneers of X-ray
CT. In 1965, Harper et al. [Har65] suggested the use of Anger cameras instead and drafted
another conventional ‘reconstruction’ method. The real forerunner to SPECT, however, was
published by Anger et al. [Ang67] in 1967. Still conventionally producing images, a patient
was now rotated in front of a (heavy and thus static) camera.
Also in this case, the conventional imaging systems do not appear to have been very success-

ful outside of research institutions. Again, the computerisation of the image building process
became key on the way towards wide-spread clinical use, and Budinger et al. [Bud74] appear
to be among the first contributors. (See Webb [Web90] for a more complete history of SPECT
imaging.)
From a physical point of view, the forward model for SPECT is more complicated than

the one for X-rays as given in eq. (3.2). Recall that there is an (unknown) radioactivity
distribution within the region of interest. If, as result of nuclear decay events, γ-photons
are emitted, these photons will encounter the same attenuation effects discussed above for
transmitted X- or γ-photons. Consequently, on top of the radioactivity distribution which
one seeks to reconstruct, attenuation values also need to be considered. Following Kak et al.
[Kak87, chap. 4.1.2] and Lasser [Las11a, chap. 1.3.2], a suitable equation is:

IS =

∫
L
f(x) · exp

(
−
∫
L(x)

µ(y) dy

)
dx (3.3)
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Figure 3.11.: A sensor observing a radiation distribution will typically count photons emitted
from a larger region. The field of view can be restricted by means of collimation: A metal
shielding (black) around the sensor (gray) will narrow down the field of view (blue), thus
leading to better images, but the photons suppressed by collimation will be lost.

Considering a line-shaped field of view L for a single sensor, the measured intensity IS is
the line integral over the unknown radioactive intensity distribution f(x), weighted by the
accumulated attenuation along the partial ray L(x) between position x and the sensor.
When practically reconstructing an activity distribution, the attenuation usually needs to

be considered. Ideally, a registered CT-image allows to use realistic, patient-specific values for
attenuation correction. Depending on the setting, simplified values are often used instead.

3.3.2. Positron Emission Tomography (PET)

Considering SPECT (and scintigraphy), an important feature is the use of strong collimation,
thus narrowing down the sensor-wise fields of view to narrow cones. Without, it would be hard
to relate individual measurements with spatial locations, particularly for a human observer,
thus leading towards increased blurriness. The drawback, however, is that many potential
measurements are physically suppressed by the collimation material. This situation is not
desirable as the patient’s radiation exposure is defined by the amount of injected activity, and
a scanning device should pick up as many measurements as possible, in order to maximise
image quality at a certain exposure level. (See fig. 3.11.)
An alternative to radiopharmaceuticals emitting γ-photons directly (based on Tc99m , for

instance) is the use of positron emitters. Theoretically predicted in 1928 by Paul A. M. Dirac’s
quantum theory of electrons [Dir28], and experimentally demonstrated in 1933 by Carl D. An-
derson [And33], the positron (e+) is the electron’s (e−) anti-particle. That is, it carries a
positive instead of a negative charge, but shares (almost) all other properties. Unless in a
complete vacuum, a positron will collide with a free electron, and the two particles will be
annihilated, leading to two γ-photons of a well-defined energy of 511 keV to be emitted in
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Figure 3.12.: Following a primary decay event, a positron (e+) is emitted. This particle will
rapidly lose kinetic energy and annihilate with an electron (e−) within a certain distance
d from the primary event. According to Cherry et al. [Che06], d will typically be between
0.01 cm and 0.1 cm. The energy balance is leveled after annihilation by the emission of two
γ-photons of 511 keV energy that are sent off in opposite directions.

opposite direction [Che06]. Again, the findings of the two researchers have been awarded with
Nobel prizes in physics in 1933 and 1936, respectively [Dir33; And36].

Originally, the positron has been demonstrated in the context of cosmic radiation. In 1934,
Iréne and Frédéric Joliot-Curie found a first decay reaction where a radioactive substance emits
positrons [Cur34]. In such a case, the positron will have a very short lifetime and annihilate
within a short distance of the nucleus, typically between 0.01 cm and 0.1 cm away [Che06],
leading to the γ-photon-burst in opposite directions as described above. (See fig. 3.12.)

This particular behaviour can be exploited advantageously for imaging purposes. First of
all, due to the well-defined energy level, it is rather simple to differentiate between relevant
photons and background radiation. Second, instead of collimation, one can detect coincident
gamma photons, and deduce that an annihilation event happened along the respective ‘line
of response’ (LOR). For that reason, positron imaging systems typically employ sensor rings
observing a region of interest and collect such LORs. Based on them, tomographic reconstruc-
tion techniques can be used to compute the volumetric radioactivity distribution, leading to
Positron Emission (Computed) Tomography (PET). (See fig. 3.13.)

Looking back into history, the use of positron emitters for imaging purposes goes back
to Frank R. Wrenn [Wre51] and Gordon L. Brownell [Bro53; Bro99], originally with static
opposite detectors. The first ring-shaped detector (nick-named ‘head-shrinker’) was built by
Robertson et al. [Rob73] during the early 1960s. Again, a decisive event was the move towards
computerised tomographic reconstruction. This probably happened for the first time within
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Figure 3.13.: In a PET system, coincident γ-photons are detected by means of a detector ring
(orange) without collimation. Connecting the detection spots (yellow dots) leads to a line of
response (yellow dotted lines) which are known to pass through radioactive area. Based on
many such LORs, the radioactivity distribution can be recovered.

the Brownell group, and pioneering work has been published by David A. Chesler [Che71;
Che73a; Che73b] in the early 1970s. After these initial steps, the first PET systems were
developed by Michael E. Phelps and Michel Ter-Pogossian [Ter75; Phe75], particularly the
first human-sized scanners [Phe76; Hof76; Ter79]. (See Cherry et al. [Che06] for technical
details, and Webb [Web90] and Nutt [Nut02] for more information on the history of PET.)
The physical forward model of PET is similar to the one of SPECT as defined in eq. (3.3).

Again following Lasser [Las11a, chap. 1.3.3], a suitable equation is:

g =

∫
L
f(x) · exp

(
−
∫
L+(x)

µ(y) dy −
∫
L−(x)

µ(y) dy

)
dx (3.4)

Here, L does no longer denote the field of view of a particular sensor (as used to be the case
for X-ray CT and SPECT), but a line of response (LOR) defined by the two sensors actually
discovering the coincident γ-photon burst. Similarly, g can be considered a ‘LOR-intensity’.
L+(x) and L−(x) are partial lines between position x and the two sensors. They are used,
as for SPECT, to accumulate the radiation attenuation caused by the anatomy. Considering
that these two partial lines together form the full line of response, the attenuation information
becomes independent of the position x, and eq. (3.4) can be simplified [Las11a, chap. 1.3.3]:

g = exp

(
−
∫
L
µ(y) dy

)∫
L
f(x) dx (3.5)
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This product cleanly separates attenuation information from the radioactivity distribution.
The first factor deals with attenuation µ(x) and resembles the Beer-Lambert law as given in
eqs. (2.1) and (3.1), respectively. The second factor concerns the radioactivity distribution
f(x) and is a simple line-integral resembling eq. (3.2). This decomposition is the foundation
for elegant attenuation correction schemes for PET.

3.3.3. Multi-modality Scanners (SPECT-CT and PET-CT)

There are two reasons – a perception-related one, and a technical one – why emission CT should
be operated in conjunction with a transmission CT system, eventually leading to SPECT-CT
and PET-CT. First, the functional ECT images do not show the full anatomy by design and
have less resolution than TCT images. During diagnosis, it is highly desirable to have both
image components available, and to relate functional with anatomical information. This could
be done by retrospective registration of the images, but a coherent acquisition of all signals
during the same session is clearly superior.

Second, as has been described for both, SPECT and PET, knowledge of the radiation
attenuation is necessary for reconstructing good activity distributions. This fact has become
obvious quite soon, and early scanners already took an additional external radiation source
for transmission measurements along [Kuh66].

Consequently, ‘multi-modal’ scanners, SPECT-CT and PET-CT [Bey00; Boc00], have be-
come the de-facto clinical standard. (Also see Ziegler et al. [Zie00].) Such scanners are
effectively a combination of two scanning systems in a single gantry, and acquire input data
from the same (quasi-)static scene. During reconstruction, the transmission information is
used to compute the emission image.

Quite recently, however, Defrise et al. [Def12] have published a special algorithmic improve-
ment for time-of-flight PET (TOF-PET). The latter is an extension of PET which attracts the
community’s interest already for several years: TOF-PET does not only measure coincident
γ-photons, but also the (extremely small) temporal delay between the two detections of a
single line of response (LOR). Based on it, it is possible to roughly locate the positron anni-
hilation along the LOR. Using a probabilistic approach [Def14], the authors are apparently
able to recover an attenuation map from TOF-PET-data. That is, they claim to arrive at a
result comparable to PET-CT, but without a distinct transmission measurement.

3.4. Other Biomedical Imaging Modalities

So far, this chapter has outlined transmission and emission CT as fundamental (medical)
imaging techniques, and the thesis will restrict itself to discussing related aspects. However,
there are further (even tomographic) imaging modalities that deserve brief mentioning.
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3.4.1. Ultrasonography

A very well-known and – due to its non-invasiveness and the relatively cheap scanning devices –
widely used medical imaging modality is ultrasonography. Originally developed for naval
warfare (sound navigation and ranging – sonar) and non-destructive testing, the technology
was adapted for medical imaging from the 1940s on [Gol96].
The best-known variant of it is echography : An ultrasound pulse is sent from a so-called

transducer into the patient’s tissue. Depending on the anatomy, this sound pulse travels
some distance until it has been fully reflected, and returns to the transducer which is now set
into receiving mode. Based on such echoes, cross-sectional (and thus tomographic) or even
volumetric images can be computed. Even more, by exploiting the Doppler effect, echography
is also able to yield functional images, showing information about blood flow, for instance.
(For historical and technical details, see Goldberg et al. [Gol96] and Budinger [Bud97]; the
latter also contains a comparison to other imaging modalities.)
In addition to echoes, it is also possible to consider true ultrasound transmission, both in

the sense of amplitudes as well as propagation times. Like in X-ray CT, a pulse is generated
on one side, attenuated while on the way through the patient’s body, and measured on the
other side by a receiver. Based on a more complex forward model, tomographic reconstruction
methods can be used to compute an ultrasound transmission map from many such individual
measurements. There has been extensive research on the topic, but currently, there appears
to be only limited practical interest. (See Kak et al. [Kak87, chap. 4.3] or Deans [Dea07,
chap. 1.4] for details and references.)

3.4.2. Magnetic Resonance Imaging (MRI/NMR)

Another important medical imaging modality is (Nuclear) Magnetic Resonance Imaging1

(MRI, formerly NMR). First proposed by Paul C. Lauterbur [Lau73] in the early 1970s, MRI
employs the nuclear spin for imaging purposes. Together with Peter Mansfield, the other MRI
pioneer, Lauterbaur received the 2003 Nobel prize in medicine [Lau03; Man03].
Very briefly and superficially, an atomic nucleus with an odd number of subatomic particles

exhibits a magnetic moment, the spin. This applies particularly to the hydrogen nucleus
(a single proton) which is practically omnipresent in organic tissue. In the presence of a
strong magnetic field, the moments of the nuclei align to the field lines. Using an additional,
orthogonal magnetic field, the spinning nuclei can be excited (to ‘wobble’). Afterwards, they
will return to their equilibrium state and send out a radio-magnetic wave while doing so. The
latter signal can be received using an antenna, and it depends on the chemical element and the
strength of magnetic field. By using overlaying magnetic ‘gradient fields’, the resonance signal
can be read out systematically over a volume of interest and processed into a volumetric image.

1. Note that the modality is related to atomic nuclei, but not to radioactivity. To make this clear for the
general public, the term ‘nuclear’ has largely been dropped from the name.
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(See Dawson [Daw13], Meaney [Mea96] and Budinger [Bud97] for historical and technical
details; again, note the comparison of different imaging modalities in the latter article.) While
there exist special MR image reconstruction algorithms, the usual reconstruction techniques
are relatively similar and have originally been used directly. (See Kak et al. [Kak87, chap. 4.4]
or Deans [Dea07, chap. 1.7] for details and references.)

MRI is usually used for anatomical imaging. X-ray CT and MR images are largely compli-
mentary, and there are certain diagnostic settings where either of the modalities yields better
results in terms of resolution and contrast. An obvious advantage of MRI is the fact that the
patient is not exposed to ionising radiation, but the effects of the magnetic fields are sometimes
disputed. MRI can also be used for functional imaging of the brain (fMRI) based on blood
oxygenation [Oga90], and will thus show brain activity. Another well-known anatomical sub-
domain is diffusion tensor imaging (DTI or MR-DTI) [Le 86; Fil09]: Instead of measuring the
anatomy directly, water perfusion is tracked to obtain anatomical information. Again, DTI is
particularly interesting for brain imaging. A third subdomain is phase contrast MRI [Mar12a;
Mor82; Dij84; Bry84] (4D flow MRI), a functional modality primarily intended for measuring
blood flow: As usual, the nuclei of the blood will respond to the magnetic fields while moving
through the vessels, but the motion causes the response signal, an electro-magnetic wave,
to be phase-shifted. Exploiting this, flow MRI is able provide two co-registered volumetric
images, an anatomical picture, and a vector-valued velocity distribution. This is particularly
interesting for cardiac imaging, and current research aims towards combining flow MRI with
computational fluid dynamics (CFD) [Kol15b; Kol15a].

Finally, inspired by SPECT-CT and PET-CT, it has been suggested to combine MRI with
emission CT [Sha97]. In this case, the computation of attenuation information from MRI
is more challenging, but such a device offers the chance to visually relate emission (tumour)
information with anatomy that is more advantageously depicted in MR images.

3.4.3. Other Modalities

The modalities described so far have all very high clinical relevance and are used on a regular
basis. There are some further imaging techniques which are intended for research work or that
are still in development.

Optical Tomography The term optical tomography [Ntz05; Las11a] does not appear to be
entirely well-defined, and it relates to a group of optical methods designed to yield volumetric
data. They differ with respect to illumination, optics, presence of fluorescent tracers, and
physical effect used for tomography. In its most basic variant, the approach is similar to X-ray
CT, but due to increased scattering, the modality appears to be confined to small-animal-
imaging for now.
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Electron Microscopy Tomographic methods are also used in the context of electron micro-
scopy [Fra06; Dea07, chap. 1.6]. A recent example is Cryo-Electron Tomography (CET) [Luč05].
In this case, a very tiny sample of molecular scale is observed in an electron microscope, and
images are acquired from different perspectives. Afterwards, a volumetric image is recovered
from the individual views. Unlike other methods, the CET community appears to rely on
heavier post-processing and model-fitting [Che12a] once the tomographic image has been re-
constructed, due to a reportedly low signal-to-noise ratio.
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4. Reconstructing Images

Several imaging setups have been described so far, along with respective mathematical
forward models. These equations effectively specify how a physical process interacting with
a certain sample leads to measurements. These sensor readings are derived from specific
properties of the specimen which are linked to the imaging process, like the ability to attenuate
radiation in case of X-rays.
Based on such data, the reconstruction process aims to recover the sample’s (unknown)

properties from the measurement. In case of X-ray CT, the objective is to compute an at-
tenuation map of the specimen from the X-ray images. In mathematics, such problems are
generally referred to as inverse problems. According to Jacques Hadamard’s [Had02] defini-
tion, a problem is well-posed if a solution exists after all, if this solution is unique, and if this
solution depends continuously on the initial conditions. Unfortunately, this is typically not
the case for tomographic reconstruction problems, due to discretisation, incomplete measure-
ments and noise. An important aspect is, therefore, awareness and proper handling of this
ill-posedness.

4.1. Analytical Reconstruction

There are many methods to compute tomographic reconstructions which can be categorised
into two large classes by general architecture. The first such class contains the analytical meth-
ods: The inversion problem has been tackled theoretically, and closed-form solution equations
have been developed ‘on paper’. Based on these equations, a fast computer programme can
be implemented that turns measurements into tomographic images. Analytical methods are
often quite strict in terms of assumptions concerning acquisition geometries, noise character-
istics, among others, making them rather static and less flexible. Consequently, analytically
reconstructed images are prone to show noise and artefacts. To a certain degree, such diffi-
culties can be controlled quite well, and due to their speed, analytical methods are used in
most clinical X-ray CT systems to this day.

This chapter is intended to convey an overview about common mathematical approaches to tomographic
reconstruction. Less common methods, exact definitions, proofs, and related general concepts such as linear
systems will be omitted, and the reader is referred to the respective literature. Books providing in-depth
discussions have been published by Natterer [Nat86; Nat01b], Natterer et al. [Nat01c], Herman [Her09], Deans
[Dea07], Kak et al. [Kak87], Helgason [Hel99], among others. For a very practical discussion, see Buzug [Buz08].
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Figure 4.1.: The two-dimensional Radon transform considers all line integrals over a certain
signal f (left). Polar coordinates are typically used to denote individual lines, and are used to
store the integral values into a so-called sinogram (right). The name is due to the sine-shaped
traces left by the original signal. (Cf. figs. 3.6 and 3.7.)

4.1.1. The Radon Transform and Its Inversion

The analytical methods discussed in this section mainly relate to slice-based X-ray data, that
is, a single two-dimensional cross-section. As has already been discussed for the analogue
case in the context of Frank’s back-projection patent [Fra42] (section 3.2), the problem is
the reconstruction of a two-dimensional attenuation map based on a set of one-dimensional
projections contained in a sinogram. (See figs. 3.6, 3.7, and 4.1.)
In order to tackle the reconstruction problem, the attenuation map is considered as function

f : Ω→ R (4.1)

where Ω ⊂ R2 denotes the volume of interest . The map assigns an attenuation value f(x) to
every location x = (x, y)T ∈ Ω. Aim of the reconstruction process is the recovery of f based
on many line integrals

Rf(L) =

∫
L
f(x) dx (4.2)

that have been systematically acquired. Interestingly enough, this problem has first been
described from a purely theoretical perspective by Johann Radon [Rad17; Rad86; Rad07] in
1917, and the link between Radon’s work and computed tomography was only discovered and
confirmed in the 1970s. (See section 4.9.)

Definition 4.1 (Radon Transform). Let f : Rn → R be sufficiently nice. Let Rf : Rn−1 → R
denote f ’s integral over a given (n−1)-dimensional linear manifold of Rn. Then, the transform

f 7→ Rf (4.3)

from the original signal to all its respective integrals is called the Radon Transform of f .
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The original two-dimensional Radon Transform (n = 2) is, therefore, the process of mapping
a two-dimensional signal to all its line integrals,1 yielding a sinogram. In order to encode these
lines, polar coordinates (t, φ) are commonly used:

Rf(t, φ) :=

∫
f(t cosφ− s sinφ, t sinφ+ s cosφ) ds (4.4)

This scheme was already employed while describing Frank’s analogue setup. (See fig. 4.1.)
Alternatively, lines can also be encoded using a normal vector n = (cosφ, sinφ)T and a
center-offset t. Defining the normal’s orthogonal vector n⊥ = (− sinφ, cosφ)T , eq. (4.4) can
be re-written:

Rf(t,n) :=

∫
f(tn + sn⊥) ds (4.5)

Having described the ‘forward’ setting, two interesting problems arise: Can the Radon
transform be inverted, i.e. is it possible to recover f based on its line integrals? If so, is there
a closed-form equation? Radon has answered the first question positively, and demonstrated a
very theoretical solution which relies massively on the availability of all (infinitely many) line
integrals. Unfortunately, the latter assumption is not realistic in practical settings, rendering
Radon’s equation unsuitable to serve as basis for implementing an image reconstruction pro-
gramme [Smi77]. (See the original theorem [Rad17, thm. III], and Deans [Dea07, chap. 5f.]
or Natterer [Nat86, chap. 2.2] for a full discussion of Radon’s approach and its properties.)
Before focusing on computationally feasible reconstruction methods, note that the two-

dimensional Radon transform is the mathematical counterpart of the acquisition paradigm
used in a first-generation ‘pencil-beam’ X-ray CT scanning setup (see fig. 3.8(a)) where the
data is provided by a translating and rotating source/detector-pair. For more modern ar-
chitectures featuring fan-beam-geometries, the data needs to be sorted and interpolated to
parallel-beam projections [Kak87, chap. 3.4.3] if analytical methods for inverting the Radon
transform are to be used for image reconstruction. This process is called rebinning . Also note
that the measured raw intensities follow the Beer-Lambert law, and must be preprocessed to
pure line-integrals following eq. (3.2). (This entire section is based on Deans [Dea07, chap. 2,
5f.]; also see Buzug [Buz08, chap. 5.2f.], Natterer [Nat86, chap. 2], or Kak et al. [Kak87,
chap. 3.1] for further details.)

4.1.2. Fourier-Based Reconstruction

In 1956, unaware of Radon’s work and unrelated to tomographic imaging, astronomer Ronald
N. Bracewell published an important result [Bra56; Bra67] relating the Radon transform with
the Fourier transform [Fou22]. (See Herman [Her09, chap. 6.5] or Natterer et al. [Nat01c,
chap. 1.3.1] for details on the Fourier transform; see section 4.9 for the historical background.)

1. Note that the extension of Radon’s work to three dimensions leads to integrals over planes. On the other
hand, the so-called ray transform always considers one-dimensional manifolds (line integrals) independent
of the dimension. Clearly, the two transforms are equivalent for two dimensions.
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Theorem 4.2 (Fourier Slice Theorem, Central Slice Theorem, Projection-Slice Theorem). Let
f : R2 → R be sufficiently nice. Let Fn denote the n-dimensional Fourier transform. Then:

(F2f)(t, φ) = (F1(Rf(·, φ)))(t) (4.6)

According to this theorem, the Fourier coefficients of a single projection equal the Fourier
coefficients of the (unknown) signal f within a line-shaped region. (See fig. 4.2.) In natural
language, the Fourier coefficients of the signal f can be assembled by properly copying the
Fourier coefficients of the individual projections, and an inverse Fourier transform will yield f .
However, on the way, polar coordinates need to be converted into Cartesian coordinates. (See
fig. 4.3.) The quality of the reconstruction depends massively on the use of proper interpolation
techniques during this so-called regridding stage as small, well-localised interpolation errors
in Fourier space have global effects in the Cartesian domain. For this reason and despite its
speed, Fourier-based reconstruction is rather uncommon for medical applications. However,
it seems to be popular for tomographic reconstruction from synchrotron acquisitions, due to
the massive amount of data and comparatively low noise levels [Dow99; Mar12b]. A suitable
implementation is gridrec [OSu85] where interpolation is based on prolate spheroidal wave
functions.2

Note that Cormack’s original papers [Cor63; Cor64] also exploit the tight connection to
the Fourier transform in order to reconstruct images, but they do so in a slightly different
sense. Besides the Fourier transform, the relation to other transforms has also been investig-
ated [Dea07, chap. 4]. (This entire section is based on Deans [Dea07, chap. 6]; also see Natterer
[Nat86, chap. 5.2], Kak et al. [Kak87, chap. 3.2], Herman [Her09, chap. 9.2], or Buzug [Buz08,
chap. 5.3] for further details.)

4.1.3. Back-Projection Methods

A different, slightly slower image reconstruction method avoiding the regridding problem is
back-projection. As has been done mechanically in Frank’s apparatus [Fra42], the idea is to
‘smear’ back the individual measurements along the respective rays and to add up all these
images. (See fig. 4.4.)

Definition 4.3 (Back-Projection). Let f : R2 → R be sufficiently nice. Let g := Rf denote
the Radon transform of f . Then,

(R∗g)(x, y) :=

∫ π

0
g(x cosφ+ y sinφ, φ) dφ (4.7)

is the (simple, unfiltered) back-projection of g.

2. Prolate spheroidal wave functions are known to be well-localised in both, Cartesian and Fourier space, thus
limiting the impact of interpolation errors. (For details, see Slepian, Landau and Pollak [Sle61; Lan61;
Lan62; Sle64].)
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(a) Line integral in Cartesian space. (b) Fourier coefficients in frequency space.

Figure 4.2.: Following the projection slice theorem, the Fourier coefficients F2f of the unknown
image signal f can be recovered from the known projections Rf . In more detail, the one-
dimensional Fourier decomposition of a single projection, F1(Rf(·, φ)), yields the Fourier
coefficients along a line orthogonal to the viewing direction in frequency space (orange line).
Having collected sufficiently many projections, application of the inverse Fourier transform
will yield the reconstructed image. Note that interpolation issues may arise. (See fig. 4.3.)

Figure 4.3.: While copying coefficients during Fourier reconstruction, data discretised using
polar coordinates (black dots) needs to be ‘regridded’ to Cartesian coordinates (grey dots).
Consequently, there are many noisy samples at the center, and few remote samples at larger
distances. The quality of the interpolation process massively affects the reconstructed image.
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(a) Projection. (b) Back-projection.

Figure 4.4.: The idea of back-projection is to ‘smear back’ the projections along their respective
rays over the volume of interest and to accumulate all these images, leading to a blurry
‘reconstruction’ of the original image.

Back-projecting the measured values will lead to a somewhat blurry reconstruction of the
original signal. This is obviously due to ‘shadows’ of the original shape smeared over the entire
reconstruction. A possible solution would be to post-process the back-projection in order to
de-blur it. (See Buzug [Buz08, chap. 5.6ff.] or Herman [Her09, chap. 9.4] for further details.)

Another way to produce sharp images is to filter the measured values before back-projection.
This approach is probably the most commonly used analytical reconstruction method, partic-
ularly in clinical devices, and is usually referred to as filtered back-projection (FBP). Already
mentioned by Bracewell in 1967 [Bra67], the decisive study was published by G. N. Rama-
chandran and A. V. Lakshminarayanan (‘Ram-Lak’) in 1971 [Ram71].

Theorem 4.4 (Filtered Back-Projection). Let f : R2 → R be sufficiently nice. Let g := Rf
denote the Radon transform of f , and R∗ the back-projection operator. For a given φ, define
the filtered projection

gδ(t, φ) := (δ ∗ g(·, φ))(t) (4.8)

where δ(x) ≈ |x| is a filter and ∗ the one-dimensional convolution. Then, R∗gδ is the filtered
back-projection, and f ≈ R∗gδ if the filter is chosen appropriately.

The reconstruction by back-projecting filtered projections leads to a visually sharp image.
However, this will also lead to increased noise and image artefacts. (See fig. 4.5.) For this
reason, different filter functions have been proposed for the discrete reconstruction from actual
data, depending on the practical settings. The ‘classical’ choice δ(x) = |x| is commonly re-
ferred to as Ram-Lak or Ramp filter. Note that the convolution is usually computed as product
in Fourier space, and also that pre-filtering can improve Fourier-based reconstruction as well.
(This entire section is based on Deans [Dea07, chap. 6]; also see Natterer [Nat86, chap. 5.1],
Herman [Her09, chap. 7f.], Kak et al. [Kak87, chap. 3.3], or Buzug [Buz08, chap. 5.6ff.] for
further details.)
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Figure 4.5.: Comparison of unfiltered (left column) and Hann-filtered back-projection (right)
for a growing number of input projections of a simple square-shaped phantom. (First row:
2 projections at 0◦ and 90◦; second: 9 projections every 20◦; third: 45 projections every 4◦.)
The unfiltered version exhibits considerable smoothing while the filtered version recovers a
better, sharper square-shape. However, noisy artefacts appear as well in the latter case.
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4.1.4. Other Analytical Reconstruction Settings

This section has introduced the concepts of the most common and fundamental analytical
reconstruction techniques. Over the years, several additional reconstruction approaches have
been suggested for inverting the Radon transform, that is, the parallel-beam line-integrals re-
construction setting. (For instance, see Natterer [Nat86, chap. 5.6] or Deans [Dea07, chap. 7].)
In addition, specialised closed-form methods for related problems have been published.

Particularly important is the so-called Feldkamp (FDK) algorithm [Fel84] which supports
cone-beam shaped geometries for line-integral-data. Similar closed-form equations for fan-
beam (‘divergent’) geometries have been proposed. (See Herman [Her09, chap. 10] or Kak
et al. [Kak87, chap. 3.4] for further details.) For emission CT, several analytical solutions to
inverting the attenuated ray transform have been suggested [Mar84; Nat01a]. (For a review,
see Finch [Fin03].)

4.2. Algebraic Reconstruction as Least Squares Problem

While analytical methods are fast and well-understood, they are also rather static. It is
possible to extend such methods, particularly by pre- and post-processing data, but in order
to support iterative processes enforcing constraints, a more general, algebraic approach can
be taken. As the name implies, algebraic or series expansion methods discretise the volume
of interest, leading to linear systems.

4.2.1. Building the Linear System

In contrast to the analytical setting, the number of dimensions no longer needs to be pre-
determined. Therefore, the objective is to reconstruct an (unknown) scalar-valued signal

f : Ω→ R (4.9)

where Ω ⊂ Rn denotes a n-dimensional volume of interest . In order to recover f , a set of J
scalar measurements is available. The physical model linking the signal to the specific scalar
measurement mj , j ∈ {1, ..., J}, is defined generically:

Mj : (Ω→ R)→ R (4.10)

This mapping is required to be linear, and the jth scalar measurement is given by

mj =Mj(f). (4.11)

These definitions are deliberately chosen to be very generic, in order to support as many
settings as possible. In case of X-ray CT,Mj will continue to be defined as line integral along
a certain corresponding line Lj :

Mj(f) =

∫
Lj

f(x) dx (4.12)
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Of course, full projections will continue to be recorded, but the model treats these pictures
as sets of individual pixel measurements. In other words, j will extend over all pixels of all
projective images, and the index will also be used to refer to geometric information (as has
been done implicitly by introducing line Lj).
Reconstructing the signal requires a way to deal with f . Consequently, the function needs

to be discretised with respect to a set of I suitably chosen spatial basis functions bi : Ω→ R:

f(·) ≈ f̂(·) :=
I∑
i=1

ci bi(·) (4.13)

The coefficients ci are initially unknown, and recovering them is synonymous with solving
the inverse problem. Once the coefficients are computed, a discrete approximation of the
original signal can be computed via the synthesis operator given in eq. (4.13). Note that the
actual set of basis functions can be chosen arbitrarily, but certain choices are particularly com-
mon, among them pixels (two-dimensional) and voxels (three-dimensional), or ‘blobs’ [Her09,
chap. 6.5] as smooth variant of the former. Other basis functions such as wavelets or the
Fourier basis are also possible [Jaf01].
The discrete signal f̂ is required to approximate the (unknown) continuous signal f . Con-

sequently, applying the measurement models Mj to f̂ is required to yield values similar to
the original measured values, and eq. (4.11) becomes:

mj ≈Mj(f̂) =Mj

(
I∑
i=1

ci bi

)
(4.14)

Exploiting the fact that theMj are required to be linear, eq. (4.14) can be re-arranged:

mj ≈
I∑
i=1

ci Mj(bi) (4.15)

Note that in this expression, only the coefficients ci are unknown. In particular, factors
aji :=Mj(bi) can be precomputed, and they describe the contribution of basis function bi to
measurement mj . Defining the coefficient vector c = (ci) ∈ RI and vector aj = (aji) ∈ RI ,
eq. (4.15) can be written as scalar product:

mj ≈ 〈aj , c〉 = aTj c (4.16)

Considering all J measurements, a measurement vector m = (mj) ∈ RJ can be defined, and
all the scalar products defined in eq. (4.16) can be collected into a linear system:

m ≈


— aT1 —
— aT2 —

...
— aTJ —

 c =: Ac (4.17)
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(a) Continuous signal, continu-
ous integral: Mj(f)

(b) Discrete signal, continuous
integral: Mj(

∑I
i=1 ci bi)

(c) Discrete signal, discrete in-
tegral:

∑I
i=1 ci Mj(bi)

Figure 4.6.: In case of X-ray CT, the original measurement is a line integral over a continous
function, but the objective is the reconstruction of a pixelised approximation which is supposed
to yield very similar integrated values, by design of the problem. The line integral over the
pixelised mesh is replaced with a discrete sum of pixel-wise line integrals.

Note that this system cleanly partitions the problem into the system matrix A ∈ RJ×I con-
taining a geometric description of the scanning setup, the measurement vector m containing
the values measured in a particular experiment, and the unknown coefficient vector eventually
leading to the signal. To clarify the reasoning used in eqs. (4.14) and (4.15), consider the case
of X-ray CT and a pixel-based discretisation: The original measurement is physically explained
as line integral over the signal. During reconstruction, pixel-wise attenuation values need to
be computed, and the corresponding (artificial) line integral over the pixel mesh ideally leads
to a value very close to the originally measured one. Due to the linearity of the integration,
the integral over the mesh is replaced with a discrete sum of pixel-wise line integrals which
can be pre-computed and stored in the system matrix. (See fig. 4.6)
The linear system set up in eq. (4.17) is not exact, due to the ill-posedness of the recon-

struction process caused by measurement errors and the discretisation. Furthermore, the
matrix is usually not square. For both reasons, an exact solution cannot be expected, and the
corresponding least-squares problem may be solved instead:

arg min
c

{
1

2
‖Ac−m‖22

}
(4.18)

Recall that the solution to eq. (4.18) is given by the normal equation:

ATAc = ATm (4.19)

In order to solve eq. (4.19) for a coefficient vector, the usual standard methods could be
used in theory: One could compute a Gaussian elimination, or employ matrix decompositions
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Figure 4.7.: Each row of the CT system matrix describes a ray. In case of a pixel basis,
projector software computes the entries aji =Mj(bi) in real-time as ray-pixel intersections.

such as LU, QR, SVD (possibly with truncation [Han87]), among others [Str09]. Apart from
toy examples and very small setups, however, these approaches will not work due to the
prohibitively large size3 of the system matrix.

Consequently, iterative methods [Saa03; Bar94; Bri00] will be used that do not require
knowledge of the full matrix, but only intermediate results such as its application to a vector,
Ac, or the one of its transpose, ATm. In order to compute such results, the respective system
matrix entries obviously cannot be queried from memory, but are computed in real-time by
projector software simulating the measurement process. This is particularly necessary in case
of X-ray CT due to large voxel counts, and projectors are used since many years [Sid85].
Luckily, X-ray setups follow the mathematical camera models used in computer graphics and
computer vision, enabling the fallback to techniques established in these fields for describing
systems, and for quickly and accurately simulating rays intersecting voxels. (See fig. 4.7, and
Hartley et al. [Har04] for details on camera models in computer vision.)

Also note that Ac is the forward projection of the discretised signal f̂ , based on its coefficient
vector c. Vice versa, ATm is the backward projection of the measurement vector m. In case
of parallel-beam X-ray CT, Ac is thus a discretised approximation of the Radon transform
as defined in eqs. (4.2) and (4.3), and similarly, ATm is a discretised approximation of the
back-projection operation given in eq. (4.7).

The next sections will discuss several approaches to iterative inversion that are commonly
used in tomographic reconstruction, and the selection is non-exhaustive. (See Saad [Saa03],

3. For instance, the problem of reconstructing a 512×512 pixel image (I = 262,144) from 180 parallel projections
of 600 pixels each (J = 108,000), a realistic, small two-dimensional setting, leads to a system matrix
containing 28,311,552,000 entries. Assuming single-precision floating point numbers (4 bytes), this matrix
would have over 113 gigabytes (over 105 gibibytes), and thus by far too much for the working memory of
most computers.

57



Reconstructing Images

Figure 4.8.: The Algebraic Reconstruction Technique (ART) considers each row of the linear
system as hyperplane, and iteratively projects a solution estimate orthogonally onto these
hyperplanes until convergence (blue trajectory). However, there may not be a unique solution
despite a large number of iterations. Using relaxation, the steps are not taken fully, and
convergence may be improved by avoiding far positions (orange trajectory, λ= 0.2). In this
plot, every line represents a row of a two-dimensional, over-determined, noisy linear system.

Barrett et al. [Bar94], or Briggs et al. [Bri00] for a discussion of general iterative inversion
techniques; for further details on algebraic methods in the context of tomographic imaging,
see Buzug [Buz08, chap. 6.1f.], or Kak et al. [Kak87, chap. 7].)

4.2.2. Algebraic Reconstruction Technique (ART)

The first iterative method widely used for tomographic reconstruction was the Algebraic Re-
construction Technique (ART), published by Gordon et al. [Gor70] in 1970. This method has
been identified to be a variant of Kaczmarz’s method [Kac37], proposed in 1937.
Considering the original linear problem Ac = m, every row aTj ∈ RI of A ∈ RJ×I describes

an (I−1)-dimensional hyperplane, together with the respective measurement mj : The normal
vector of the jth hyperplane is given by aj , the distance to the origin by mj . In case of a
square matrix (I = J) of full rank, all J such hyperplanes intersect in a single point, the
solution vector c to the system Ac = m. If A is overdetermined (J > I) and noisy, there
will not be a single intersection point anymore, but a ‘hotspot’ can be expected where all
hyperplanes pass in close proximity.
Exploiting this concept, the idea of Kaczmarz is now to iteratively project solution estimates

c(q) orthogonally onto these hyperplanes, yielding new estimates c(q+1). (See fig. 4.8.) The
process starts at an arbitrary location, often c(0) = 0, and terminates once the solution
estimates have converged. Note that the same hyperplane will be visited multiple times, and

58



Algebraic Reconstruction as Least Squares Problem

the number of iterations will typically exceed the number of hyperplanes. Mathematically,
the single such projection performed in iteration q is given as follows:

c(q) = c(q−1) + λ(q) ·
mj(q) − aTj(q)c

(q−1)

aTj(q)aj(q)
aj(q) (4.20)

Here, j(q) is simply a mapping from the current iteration index q to a row j(q) of the linear
system, and the simplest choice is j(q) = (q mod J) + 1. Convergence can be improved by
randomising the selection of rows by defining j(q) appropriately [Her93], effectively breaking
‘evil’ cycles. The relaxation factor λ(q) ∈ (0, 1] can be used to reduce the step size per iteration
which may help to improve convergence in noisy settings [Her78]. In Kaczmarz’s original
version, the updates were not relaxed, and λ(q) = 1. It has been shown that ART converges
towards the solution of the least-squares problem given in eq. (4.18) if this regularisation factor
approaches 0 with increasing number of iterations [Cen83].
In general, ART yields stable results that usually exceed the quality of normal analytical

methods, and its mathematical properties are well-understood. In particular, ART does not
impose special requirements onto A, and is able to tackle eq. (4.17) directly. Considering
only a single row of the linear system at the time, however, ART is a so-called row-action
method [Saa03, chap. 8.2], and is not particularly fast to converge. Furthermore, this design
inhibits optimised interfacing with the projector software. (See Natterer [Nat86, chap. 5.3],
Herman [Her09, chap. 11], Kak et al. [Kak87, chap. 7.1f.], Buzug [Buz08, chap. 6.3] or partic-
ularly Sørensen et al. [Sør14] for further details on ART.)

4.2.3. Simultaneous Iterative Reconstruction Technique (SIRT)

From an engineering point of view, a reconstruction algorithm is ideally defined in terms of
forward (Ac) and backward projections (ATm). This enables easy interfacing with projector
software whose core functionality exactly consists of these methods. The first and easiest
example of such a method is the Simultaneous Iterative Reconstruction Technique (SIRT)
published by Gilbert [Gil72] in 1972. Again, this algorithm has been identified as rediscovery
of the Landweber method [Lan51] known since 1951.
The core concept behind SIRT is the residual of the linear system defined in eq. (4.17):

r(c) := m−Ac (4.21)

Given a signal estimate c, the residual is actually the error between the true measurement m
and a simulated measurement obtained by forward-projecting the estimate via Ac. Starting
at some initial solution estimate, SIRT iteratively determines this residual, projects it back
along the rays and updates the estimate with it. In natural language, SIRT iteratively ‘smears’
back the error over the solution estimate until the latter perfectly explains the measurements,
yielding the following update equation:

c(q) = c(q−1) + λ(q) ·AT (m−Ac(q−1)) (4.22)
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Again, q denotes the iteration index, and λ(q) a relaxation factor. (See alg. 4.1.) In order for
eq. (4.22) to converge, the relaxation must be chosen sufficiently small.4

c = c0 {initialise estimate, c0 = 0 without prior knowledge}
for iteration q do
m̃ = A c {project current estimate to obtain pseudo-measurement}
r = m− m̃ {compute error with respect to actual measurement}
c̃ = AT r {back-project error to obtain update}
c = c + λ(q) · c̃ {apply relaxed update to estimate}

end for

Algorithm 4.1: Simultaneous Iterative Reconstruction Technique (SIRT)

Note that from a mathematical point of view, the Landweber method is a gradient des-
cent method on the least-squares problem. It is a simple example of a larger class of re-
lated approaches, and the generic form is referred to as CQ method [Byr02]. In general, the
Landweber method is rather slow to converge [Slu90], but related methods with improved be-
haviour have been suggested [Cen01b; Cen01a]. (See Herman [Her09, chap. 12.2], Kak et al.
[Kak87, chap. 7.3], or Sørensen et al. [Sør14] for further mathematical details.)

It has been mentioned above that many clinical scanners use analytical methods for image
reconstruction. Interestingly, the very first prototype scanners used a SIRT-like row-wise
iterative scheme back-projecting the residual, as stated in Hounsfield’s early patent [Hou73b].

4.2.4. Simultaneous Algebraic Reconstruction Technique (SART)

Comparing ART and SIRT, a hybrid of the two would be beneficial: A method combining the
better convergence behaviour of ART with the favourable forward/backward projection inter-
face of SIRT. The respective algorithm is known as the Simultaneous Algebraic Reconstruction
Technique (SART) and has been published by Andersen et al. [And84] in 1984.

Unlike above, the update equation of SART is typically given with respect to the single
coefficient ci:

c
(q)
i = c

(q−1)
i + λ(q) · 1∑

j aji

∑
j

aji
mj − aTj c

(q−1)∑
i′ aji′

(4.23)

Once more, q denotes the iteration index, and λ(q) a relaxation factor. Despite this seemingly
complex notation, after substituting variables, SART can also be considered as Landweber-
style method [Byr02]. (See alg. 4.2; for mathematical details, see Kak et al. [Kak87, chap. 7.4].)

4. A theoretical bound can be computed based on the largest eigenvalue of ATA [Byr02]. For a practical setup,
an empirical approach is usually necessary.
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c = c0 {initialise estimate, c0 = 0 without prior knowledge}
s = A 1 {compute row-sums of A by projecting ones}
t = AT1 {compute column-sums of A by back-projecting ones}
for iteration q do
m̃ = A c {project current estimate to obtain pseudo-measurement}
r = m− m̃ {compute error with respect to actual measurement}
r̃ = r� s {normalise error by component-wise division by row-sums}
ĉ = AT r̃ {back-project normalised error to obtain update}
c̃ = ĉ� t {normalise update by component-wise division by column-sums}
c = c + λ(q) · c̃ {apply relaxed update to estimate}

end for

Algorithm 4.2: Simultaneous Algebraic Reconstruction Technique (SART)

4.2.5. Conjugated Gradients on the Normal Equation (CGNE)

Apart from algorithms (re-)discovered within the tomographic reconstruction community such
as the ones described so far, there are additional methods for iteratively solving linear systems
in mathematics. Particularly well-known for its rapid convergence [Slu86] is the method of
Conjugate Gradients (CG) [She94] proposed by Hestenes and Stiefel [Hes52; Sti52] in 1952.
Considering the least-squares problem stated in eq. (4.18), recall that a solution can be

found via the normal equation ATAc = ATm given in eq. (4.19). Define auxiliary variables

B := ATA (4.24)

k := ATm (4.25)

for brevity, and note that B ∈ RI×I is square, symmetric and positive-definite. Based on
them, define furthermore the quadratic form

g(c) =
1

2
cTBc− kT c. (4.26)

Due to the properties of B, function g will exhibit a favourable bowl-like shape around a
minimal point where the gradient becomes zero, ∇g(c) = 0. (See fig. 4.9.) This gradient
computes as

∇g(c) = Bc− k, (4.27)

leading to the essential idea behind the relaxation technique: A vector c solving the linear
system Bc = k (⇒ Bc − k = 0 = ∇g(c)) also minimises the quadratic form g(c). The
gradient is exactly the residual of the linear system, the normal equation in this case. Turning
this relation around, instead of solving the normal equation ATAc = Bc = k = ATm, one
can also search for a minimum of the corresponding quadratic form g(c) when computing a
least-squares image reconstruction.
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Figure 4.9.: A typical quadratic form corresponding to a normal equation (symmetric, positive-
definite) will have a (possibly elongated) bowl-like shape. Searching for the minimum c∗ using
steepest descent from an initial position c0 may lead to zig-zagging (blue trajectory). The
method of conjugated gradients uses an optimal scheme to reach the minimum quickly (orange
trajectory) with a minimal number of iterations.

This minimisation problem is non-linear, and a possible approach to solving it would be
steepest descent (gradient descent): The gradient is known to point towards the direction
of steepest ascent, and ‘walking back’ along the negative gradients will lead towards the
minimum. More specifically, the iterative process evaluates the gradient ∇g(c) at the current
location c, follows its negative direction towards a relative minimum, and computes a new
gradient there. This process continues until the minimum has been reached. Unfortunately,
this method leads to ‘zig-zagging’, the method takes many more steps than necessary. In
particular, the trajectory may search along the same direction several times. (See fig. 4.9.)
Note that the Landweber method (SIRT) is exactly gradient descent on the least-squares
problem, just usually without maximal step lengths.
The idea of CG is to restrict oneself to a minimal set of search directions, and to take the

optimal step size such that a second search along the same direction is superfluous. In order
to achieve this without knowing the solution beforehand, the concept of B-orthogonality5

(conjugacy with respect to matrix B) is employed. In short, CG starts at an arbitrary initial
location, and evaluates the gradient to obtain a search direction. Then, a new estimate is
computed by moving along this search line to the point as ‘close’ as possible to the solution
with respect to B-orthogonality. Once there, a new search direction is computed that is
required to be B-orthogonal to all previous search directions. Exploiting the interrelations,

5. Two vectors x, y are orthogonal if xTy = 0. They are B-orthogonal with respect to matrix B if xTBy = 0.
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this can be achieved by taking the gradient at the new location, and making it B-orthogonal to
the previous search direction by a variant of the Gram-Schmidt method. The search directions
are thus B-conjugated gradients, giving the name to the method. (See alg. 4.3 and fig. 4.9.)
An important feature of CG is the fact that there is an upper bound on the number of

iterations: CG is guaranteed to find the optimal solution to the least-squares problem in as
many steps as there are dimensions, grace to the mutually B-orthogonal search directions
combined with optimal step lengths. This result is of a rather theoretical nature in case of the
normal equation as given in eq. (4.19), as there are still I unknowns,6 much more than feasible
iterations. Convergence studies [Slu86; Slu90] show, however, that CG practically converges
very quickly towards the solution in average cases.
It turns out that CG, like other methods, converges fastest if matrix B features clustered

eigenvalues. In two dimensions, the surface produced by the corresponding quadratic form
will resemble a round bowl in such a case where CG can simply head for the minimum, rather
than a narrow valley. This leads to the idea of preconditioning [Bar94, chap. 3]: Assume a
matrix M ≈ B which is easy to invert. Then, the linear system

M−1Bc = M−1k (4.28)

has the same solution as the original system, but it will be more suitable for inversion. The
selection of an optimal preconditioner M−1 is generally a complicated endeavour for large
systems such as the one arising in tomographic reconstruction. General preconditioners such as
diagonal (scaling) matrices have limited impact, and better schemes require in-depth analysis
of the actual case at hand. For example, special preconditioners have been proposed for
PET [Mum94; Fes99] and SPECT [For89; Lal95].
Summing up, CG is an optimisation method showing rapid convergence behaviour, particu-

larly when supported by preconditioning. As will be seen below, it can be extended to optimise
non-linear functions, and can serve as basis for more advanced reconstruction problems. (This
entire section is based on the excellent tutorial by Shewchuk [She94] which contains many
additional details including a proper derivation; also see Sluis et al. [Slu90] for a comparison
with SIRT.)

4.3. Algebraic Reconstruction via Likelihood Maximisation

The reconstruction methods presented so far essentially assume well-posed settings with rel-
atively good measurements. Particularly the least-squares methods are robust to noisy input
to a certain degree, but none of them model the statistical properties of the measurement pro-
cess. As the trend goes towards minimising radiation exposure, and thus towards lower photon
counts, this question becomes increasingly important. Particularly in nuclear imaging where

6. I was the number of basis functions, that is, the number of pixels in the reconstructed image, for instance.
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c = c0 {initialise estimate, c0 = 0 without prior knowledge}

{compute initial search direction via residual/gradient of the quadratic form}
m̃ = A c {project initial estimate}
r = AT (m− m̃) {compute residual of the normal equation}
d = M−1 r {compute initial search direction with pre-conditioning}
δnew = rTd {compute energy norm}

for iteration q do
{perform optimal update along search direction d}

p = A d

α = δnew/(p
Tp) {compute optimal step size}

c = c + α d {apply update to estimate}

{compute next search direction via residual/gradient of the quadratic form}
if necessary then
m̃ = A c {compute exact residual every now and then}
r = AT (m− m̃)

else
r = r− α ATp {estimate residual with reduced effort if possible}

end if
s = M−1 r {apply pre-conditioning}
δold = δnew

δnew = rT s {compute energy norm}

{make next search direction ATA-orthogonal (conjugate) to previous direction}
β = δnew/δold {compute ATA-orthogonal projection of s onto d}
d = s + β d {remove ATA-orthogonal component (Gram-Schmidt)}

end for

Algorithm 4.3: Conjugated Gradients on the Normal Equation (CGNE) with pre-conditioning.
Use the identity M−1 = I to disable the latter. (Adapted from Shewchuk [She94, chap. B3].)
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radiopharmaceuticals are injected, likelihood-based methods are the standard since decades,
in order to support lower activity doses.

4.3.1. The Statistical Nature of Measuring

In X-ray transmission CT, the common assumption is that the measurement obtained at the
sensor is exactly the expected value considering the setting, potentially subject to some noise.
In emission tomography, however, the photon count read by a gamma camera needs to be
understood as sampled from a probability distribution.
Again, the radioactivity distribution will be considered as signal f , discretised into coefficient

vector c as defined above in eq. (4.13). Then, in the fashion known from eq. (4.16), the expected
photon count mj for observation j can be computed as follows for emission CT:

mj =
∑
i

ajici = aTj c (4.29)

This equation can be considered as forward model, and aji =Mj(bi) again denotes a system
matrix entry. This time, however, the model needs to be interpreted in a probabilistic way:

aji := P[ photon contributes to measurement j | decay event in domain of basis function i ]

(4.30)
If the expected photon counts mj could be measured in reality, the least-squares methods as
presented in section 4.2 could be used directly. For the physical measurements mj , however,
it can be derived theoretically [Bar81; Bar97] that the values are Poisson-distributed with
respect to the expectation:

mj∼Poi{mj} (4.31)

This result has also been confirmed experimentally [Can78]. Consequently, the probability to
measure a count of exactly mj is:

P[mj |c] = e−mj
(mj)

mj

mj !
(4.32)

The probability for the entire measurement vector m = (mj) is, therefore,

P[m|c] =
∏
j

P[mj |c], (4.33)

leading to the reconstruction likelihood L(c|m) = P[m|c], and – dropping constant sum-
mands – the corresponding reconstruction log-likelihood

l(c|m) := log(L(c|m)) = log(P[m|c]) =
∑
j

mj log(mj)−mj . (4.34)

The tomographic reconstruction problem, that is, the recovery of coefficients c optimally
explaining known measurements m can then be stated as maximisation problem:

arg max
c
{L(c|m)} or arg max

c
{l(c|m)} (4.35)
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Note that the likelihood and the log-likelihood have the same maximum. Both these problems
are non-linear, and require respective optimisation methods, as will be discussed below. Usu-
ally, the log-likelihood l(c|m) is preferred to work with as its derivatives are easier to compute.
(See section 4.3.4.)
Before focusing on optimisation, note that similar equations can be derived for X-ray trans-

mission CT as well. The number of photons detected in such a setup also follows a Poisson
distribution, and this number is proportional to the intensity IS as given by the Beer-Lambert
law in eqs. (2.1) and (3.1), respectively. Consequently, the expected photon count for trans-
mission CT is essentially a discrete variant of these equations:

mj = m0 · exp

(
−
∑
i

ajici

)
(4.36)

Here, m0 denotes the number of X-ray photons generated by the tube, a value proportional
to the initial intensity I0. From this point on, techniques derived for emission CT can also be
used for transmission CT settings if the different definition of the measurement expectation
is taken into account. In this work, likelihood-based methods will be considered for emission
settings only, and the respective transmission variants will be omitted from further discussion.
(This section is based on the derivation presented by Shepp et al. [She82], and on Buzug

[Buz08, chap. 6.5]; also see Fessler [Fes00] for an extensive discussion.)

4.3.2. Maximum-Likelihood Expectation-Maximisation (ML-EM)

Probably the most-used optimisation algorithm for solving the likelihood maximisation prob-
lem as defined in eq. (4.35) is Maximum-Likelihood Expectation-Maximisation (ML-EM). It
was first published by Shepp and Vardi [She82] in 1982 and uses the expectation maximisation
method [Dem77; Wu83] to recover the unknown coefficients c. This leads to the following
multiplicative update equation:

c
(q)
i = c

(q−1)
i

1∑
j aji

∑
j

aji
mj

aTj c
(q−1)

(4.37)

The variable q once again denotes the iteration index. (See alg. 4.4.)
With improving detector technology, it has become possible to distinguish individual photons.

In such a setup, images need to be reconstructed based on lists of detection events instead of
accumulated counts. A variant of ML-EM has been suggested for such list-mode data [Bar97;
Par98; Byr01], leading to a similar update equation, but a different algorithm.

4.3.3. Separable Paraboloid Surrogates (SPS)

An alternative class of methods employs the optimisation transfer principle [De 93; De 95;
Lan95] and uses paraboloid surrogates to maximise the likelihood: Rather than maximising
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c = c0 {initialise estimate, c0 = 1 without prior knowledge}
t = AT1 {compute column-sums of A by back-projecting ones}
for iteration q do
m̂ = A c {project current estimate to obtain pseudo-measurement}
m̃ = m� m̂ {compute ratios by component-wise division}
ĉ = AT m̃ {back-project ratios to obtain update}
c̃ = ĉ� t {normalise update by component-wise division by column-sums}
c = c� c̃ {apply update to estimate by component-wise multiplication}

end for

Algorithm 4.4: Maximum-Likelihood Expectation-Maximisation (ML-EM)

the likelihood function itself, the idea is to locally fit a simple paraboloid at the location of
the current estimate. That paraboloid serves as surrogate target function to maximise, and
due to its simple shape, its maximum is known. Consequently, the estimate is moved to
this maximum, where a new surrogate paraboloid is fit. Again, this project continues until
convergence. (See fig. 4.10, and Fessler [Fes00] for more details.)

Among the methods using surrogates, a more common one is the Separable Paraboloid
Surrogates (SPS) [Erd99b; Erd99a] approach. In this case, the paraboloid curvature is pre-
computed, and a relaxation scheme is usually used. The method has been adapted for emission
tomography by Ahn et al. [Ahn03], and it relies on the measurement-wise log-likelihood and
its derivatives:

hj(m̂) = mj log(m̂)− m̂ (4.38)

ḣj(m̂) =
mj

m̂
− 1 (4.39)

ḧj(m̂) = −mj

m̂2
(4.40)

In these equations, m̂ denotes an estimate for the expected jth measurement, and mj the
actual measurement, as usual. Based on these equations, SPS pre-computes the paraboloid
curvature as −ḧj(mj), and during iteration, the gradient ḣj(m̂) is evaluated to obtain the
next iterate. (See alg. 4.5.) Furthermore, it is possible to compute an upper bound for the
solution, enabling range checks and clipping during iteration [Ahn03].

4.3.4. Likelihood Maximisation as Non-Linear Problem

Apart from specialised approaches, usual gradient-based non-linear optimisation methods can
also be used to maximise the likelihood or log-likelihood as defined in eq. (4.35). Note that
both equations are differentiable, but the log-likelihood is easier to handle. Using eq. (4.39),
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Figure 4.10.: Optimisation transfer: Rather than maximising the original target function
(blue, likelihood for a single measurement) directly, one can locally fit a surrogate curve
(orange parabola) at the current estimate cq and ‘jump’ to the surrogate’s known maximum
cq+1. This procedure can be repeated until convergence, leading to an iterative optimisation
scheme. Note the warning of Fessler [Fes00] that such a sketch ‘does not do full justice to the
problem, since 1D functions are usually fairly easy to maximise,’ unlike the multi-dimensional
likelihood maximisation problem.

c = c0 {initialise estimate, c0 = 0 without prior knowledge}
s = A 1 {compute row-sums of A by projecting ones}
gPC = 1�m {pre-compute curvature as −ḧj(mj) by component-wise inversion}
dPC = AT (s� gPC) {back-projection of component-wise products}
for iteration q do
m̂ = A c {project current iterate to obtain mean-measurement estimate}
ḣ = (m� m̂)− 1 {compute gradient of log-likelihood ∇l(c|m) = (ḣj(m̂j))}
c̃ = (AT ḣ)� dPC {compute optimum of surrogate}
c = c + λ(q) · c̃ {apply relaxed update to estimate}

end for

Algorithm 4.5: Separable Paraboloid Surrogates (SPS)
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the components of the latter’s gradient compute as follows [Kau93]:

∂

∂ci
l(c|m) =

∑
j

ḣj(a
T
j c) aji = −1 +

∑
j

mj

aTj c
aji (4.41)

While likelihood-based reconstruction is stated as maximisation problem, optimisation al-
gorithms and regularisation schemes (to be discussed in section 4.6) are often designed for
minimisation problems. For this reason, the problem is usually recast as minimisation prob-
lem, and becomes:

arg min
c
{−l(c|m)} (4.42)

For brevity, define the auxiliary energy function T (c) = −l(c|m), ∇T (c) = −∇l(c|m).
In order to minimise T , a simple option would be gradient descent again. (See section 4.2.5.)

In short, starting at an initial estimate, one would evaluate the negative gradient to obtain
a search direction of maximal down-hill slope, and perform a line search along this direction
to find the minimal value of T . There, a new negative gradient would be evaluated, and the
process continues until a minimum has been reached. While leading to results, this method
would again exhibit slow convergence behaviour.
Luckily, better minimisation schemes have been devised. In particular, the method of con-

jugated gradients (see section 4.2.5) has been adapted to this more general setting by Fletcher
et al. [Fle64]. In contrast to the linear case, however, there are several limitations: First,
like other gradient-based approaches, only local optima will usually be found. Second, no as-
sumptions concerning the shape of the function can be made any longer, and the optimal step
length needs to be searched iteratively. Finally, the method may get stuck, requiring the pro-
cess to be reset, thus forgetting about the previous conjugate search directions. Consequently,
convergence will be slower. (See Shewchuk [She94, chap. 14] for a concise description including
algorithms.) In case of the likelihood-based reconstruction problem for emission CT, special
preconditioning and estimation schemes have been proposed [Kau87; Kau93].
Of course, further optimisation schemes exist and could be used to compute the minimum.

4.4. Initialisation, Termination and Constraint Enforcement

Iterative methods share the common framework of evolving an initial estimate over a series of
discrete steps, pushing the estimate towards a solution along the way. Several questions arise
in this context.

Choice of the Initial Estimate The very first problem is to find an initial estimate. If
enough measurements are available, most methods are robust enough to support initialisation
with a default value. For additive methods, the default is 0, and for multiplicative methods,
it is 1. Of the methods presented above, only ML-EM belongs into the second category.
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Convergence can be improved if a good initial guess is available through prior knowledge. A
typical choice is to quickly compute a filtered back-projection (FBP, see section 4.1.3), and to
use it as initial estimate. Note, however, that FBP can only validly be used for transmission
CT settings.

Termination of Iteration The second problem is the termination of the loop. In normal
optimisation setting, one would typically monitor the progress of the evolution and stop if there
is no further progress. A common measure is the norm of the update: For additive methods,
it must be sufficiently different from the null-vector 0, and for multiplicative methods from
the one-vector 1. Similarly, the value of the cost function to minimise could be tracked. The
proper choice of a termination condition is usually not simple, and it depends very much on
the actual optimisation setting.

For tomographic reconstruction problems, a single iteration of the loop is usually rather
costly, due to the large amount of work. For this reason, it can rarely be afforded to iterate until
such a termination condition holds. Instead, one typically chooses a fixed number of iterations,
and the evolution is strictly terminated afterwards. It has been shown that early termination
by iteration number can be considered as regularisation [Def88; Eng00, chap. 6], depending
on the optimisation scheme in use. Quite often, lower frequencies are reconstructed first, and
consequently, pictures with less iterations are likely smoother and contain less noise. However,
note that care must be taken to select the appropriate number of iterations, particularly as
the different parts of an image may evolve at different speeds. (See Dutta et al. [Dut13] for a
discussion in the context of likelihood maximisation.)

Constraint Enforcement Finally, the iteration algorithms obviously do only consider the
mathematical setting. It may make sense to interfere with the optimisation process, in order
to enforce additional constraints. Note, however, that this may also break convergence.

For instance, both, radiation attenuation in transmission and radioactivity distribution in
emission tomography are non-negative entities according to the physical model. Still, during
optimisation, negative values may appear. In order to keep the reconstruction realistic, posit-
ivity can be enforced by clamping at the end of every iteration. Similarly, it may be possible
to compute an upper bound, and it could be enforced similarly. (For SPS, see Ahn et al.
[Ahn03].)

A similar example is image smoothness, a property particularly desirable in nuclear imaging.
A simple approach to favour smoother images is to blur the current estimate in every iteration
after the update has been applied.
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4.5. Ordered and Unordered Subsets

Particularly for modern diagnostic scanners, forward and backward projection operations will
consume considerable time due to the large amount of data involved. With the exception
of row-action methods such as ART, these operations define the lower temporal bound for
a single iteration of the update loop. In particular, all measurements together are used to
compute a single update.
In order to improve convergence speed, the use of subsets has been proposed, leading to

so-called block-action methods [Egg81; Hud94]. These subsets are created by partitioning the
input measurements into K distinct groups. Every iteration of the original method is then
extended to process these subsets one after the other, updating the estimate in-between. (See
alg. 4.6.)

c = c0 {initialise estimate}
Sk = ... {partition measurement indices {1, ..., J} into K subsets}
for iteration q do
for subset k do
c = update(ASk

, c,mSk
) {apply update to estimate based on subset Sk}

end for
end for

Algorithm 4.6: General iterative reconstruction using subsets. The method update(A, c,m)

is an auxiliary function abstractly containing the method-specific update rules. ASk
and mSk

are row-wise sub-blocks of the original linear system relating to the measurements contained
in subset Sk.

An important point in this context is the construction of the subsets. A simple choice would
be a randomised selection, leading to so-called unordered subsets. Another way to construct
the subsets is by sub-dividing the problem into regular blocks, thus splitting up the large
reconstruction problem into K similar problems of effectively the same geometry but less
measured samples. In most gantry-based systems with well-sorted input data, this can be
done by assigning every Kth measurement to the same subset. (S1 = {1,K + 1, 2K + 1, ...},
S2 = {2,K+2, 2K+2, ...}, ...) The second approach is commonly referred to as ordered subsets
(OS) method, and it can be shown to be more promising than randomised subsets [Hud94].

4.6. Regularisation with Differentiable Penalties

At the very beginning of this chapter, the reconstruction problem has been described as ill-
posed. The practical consequence is that the recovered images may show noise and artefacts
when just minimising the least-squares problem (eq. (4.18)) or maximising the likelihood
problem (eq. (4.35)). Despite following different approaches, these two problems effectively
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only consist of a data fidelity term, and a solution is supposed to optimally explain the physical
observations following the respective model.
Images can be improved by imposing additional constraints onto the image. For instance,

the solution can be required to optimally fit the input data subject to a smooth shape. Math-
ematically, this can be done by means of Lagrange multipliers [Lag97]. Consider a data fidelity
term T (c) which is minimised (least-squares fit, negative log-likelihood), and a penalty func-
tion or regulariser V (c). The latter is minimised if the additional constraint is met. Then,
the regularised reconstruction problem is:

arg min
c
{T (c) + βV (c)} (4.43)

Here, β denotes the (chosen) weight of the penalty term V , and thus its impact in comparison
to the data fidelity term T . V is usually a non-linear function, and for now, it is expected to
be continuously differentiable, i.e. ∇V (c) needs to exist, and it must be continuous.

4.6.1. Tikhonov Regularisation

Within these requirements, penalty functions can be defined freely. A frequent choice is
Tikhonov regularisation [Tik63; Phi62], named in honour of Andrey Nikolayevich Tikhonov.
The sense of this penalty is to restrict the Euclidean norm of the solution vector, or of a vector
derived from it. With L denoting the Tikhonov matrix, the penalty is given as follows:

VTikhonov(c) = ‖Lc‖22 (4.44)

L can be used in an application-specific sense, and an operator mapping the coefficients into
the Fourier domain can be employed to level the frequencies in the image. More often, however,
simple scaling matrices are inserted here. (For more details, also on the background and the
relation to other schemes, see Hansen [Han98, chap. 5.1].)

4.6.2. Total Variation Regularisation (TV) and Gibbs Penalties

In the context of imaging and noise suppression, a particularly well-known further regularisa-
tion method is the Total Variation (TV) penalty [Jor81; Rud92] which limits the variation of
the original signal f as given by the norm of its gradient, ‖∇f‖2. Prior to discretisation, TV
is simply defined as:

min
f

∫
‖∇f‖2 dx (4.45)

Note that in an image, two fundamentally different kinds of intensity or colour variation
can be expected: Desired changes are caused by the contrast between different visible objects
and their textures, and are required in order to tell things apart. Undesired changes on the
other hand are caused by noise, and they happen within image regions that are supposed to
be uniform. By tendency, desired changes are supposedly larger in magnitude than undesired
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Figure 4.11.: The gradient magnitude picture (center, left) is a measure for the amount of
variation encountered in the original image (left). Sparsifying it (center, right) leads to the
suppression of small variations, yielding a total-variation-regularised version of the original
image (right). In this example, this has deliberatly been done in a very excessive way, leading
to typical ‘staircasing’ artefacts caused by piece-wise constant regions.

changes. A variation-based penalisation scheme needs to consider this difference in order to
yield an image with low noise level but sharp features.7

To see that TV is exactly doing this, consider its equation after discretisation:

VTV(c) = ‖Dc‖1 =
∑
i

|(Dc)i| (4.46)

Here, D denotes an operator mapping the coefficients to gradient norms, for instance by
approximation via numerical differentiation. In case of a basis other than pixels or voxels, a
basis transform will also be necessary. Dc is effectively a discrete picture showing the variation
of the original discretised signal, that is, changes in intensity per location stacked into a vector.
Minimising the `1-norm of a vector is known to promote its sparsity [Don03; Don06]. A

vector is said to be sparse if it has few non-zero entries, but the latter can be of large mag-
nitude.8 Applying this concept to the discrete ‘variation picture’ Dc, increased sparsity causes
many small changes to vanish, but will keep the large ones, thus exactly steering towards a
separation between the ‘good’ and the ‘bad’ variations. (See fig. 4.11.)
Unfortunately, as sum of absolute magnitudes, the `1-norm is not continuously differentiable

as there are singularities whenever a component reaches the optimal value of 0. Consequently,
the usual gradient-based schemes can not be used directly. (See section 4.3.4 for some notes
on non-linear optimisation.) For this reason, many specialised optimisation schemes tailored
to TV-minimisation have been proposed [Rud92; Blo98; Pan99; Jør11]. (Also see section 4.7
for `1-optimisation schemes.)
Alternatively, TV can be modified to use a continuously differentiable surrogate of the

absolute magnitude | · | which is smooth in the vicinity of 0. This idea leads to Gibbs pen-

7. It is disputed, though, whether this model yields good images [Cha97a; Gou01]. Particularly when the
wanted and unwanted variations are of similar magnitude, total variation will likely break down.

8. In other words, the `1-norm penalises smaller components of the vector over-proportionally. Vice versa, the
`2-norm penalises larger components over-proportionally.
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Figure 4.12.: Continuously differentiable surrogates for the absolute magnitude (purple).
Shown are the functions proposed by Geman et al. [Gem85] (orange) and Green
[Gre90a] (blue). Many more alternatives exist.

alties [Gem85; Gre90a]. In case of a two-dimensional pixel basis, it is originally defined as
follows:

VGibbs(c) =
∑
r,s

wr,sW (cr, cs) (4.47)

Here, r and s denote pixel indices,

wr,s :=


1 direct neighbours√
1/2 diagonal neighbours

0 else

(4.48)

a weighting factor describing whether the pixels are neighbours, and

W (xs, xr) = Φ

(
xs − xr

δ

)
= Φ

(
|xs − xr|

δ

)
= Φ

(
xr − xs

δ

)
= W (xr, xs) (4.49)

a symmetric function penalising intensity differences with δ denoting another weighting para-
meter. The difference can be considered as numerical approximation to the derivative, and the
potential Φ(·) is exactly the continuously differentiable surrogate of | · |, and different options
have been proposed [Gre90a; Lan90]. (See fig. 4.12.) Equation (4.47) is continuously differ-
entiable if Φ is, and the Gibbs penalty can then be optimised using gradient-based methods,
ideally leading to a TV-like image with reduced noise but sharp boundaries.

4.6.3. Regularisation for Least-Squares Approaches

Having described two particularly common continuously differentiable penalty functions, the
remaining problem is now to optimise the joint minimisation problem as stated in eq. (4.43).
Again, the latter contains both, a data fidelity and a regularisation term.
In case of the least-squares approach, the data term is given by eq. (4.18), and one obtains:

T (c) =
1

2
‖Ac−m‖2 (4.50)

arg min
c

{
1

2
‖Ac−m‖2 + βV (c)

}
(4.51)
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When using Tikhonov regularisation, the problem continues to be linear, and the normal
equation can be extended appropriately [Han98, chap. 5.1]:

(ATA+ βLTL) c = ATm (4.52)

In general, though, the regularisation term is non-linear, thus rendering the entire penalised
reconstruction problem non-linear. In such cases, non-linear optimisation methods such as
non-linear CG need to be used. (Again, see section 4.3.4 for some notes on non-linear op-
timisation.) Note once more that the derivative of the data term is related to the normal
equation (4.19)

∇T (c) = ATAc−ATm = AT (Ac−m), (4.53)

and a simple gradient descent leads to a SIRT/Landweber-style scheme with slow convergence.

4.6.4. Regularisation for Likelihood Maximisation Approaches

For penalised likelihood-based approaches, the problem is obviously always non-linear. Using
eq. (4.42), one obtains:

T (c) = −l(c|m) (4.54)

arg min
c
{−l(c|m) + βV (c)} (4.55)

This minimisation problem can be solved using the generic approach already discussed in sec-
tion 4.3.4 [Kau93]. However, the same equation can also be derived in a Bayesian sense [Lev87]:

P[c|m] =
P[m|c] · P[c]

P[m]
(4.56)

Here, P[c|m] denotes the posterior probability to have regularised coefficients c given the
measurements m. An optimal reconstruction needs to maximise this magnitude. P[m|c] is
the probabilistic forward model, and exactly the likelihood derived above in eq. (4.33). P[m]

denotes the prior probability of the measurement vector. This entity is independent of the
unknown coefficients c, and it can be ignored in this context. The other prior, P[c], relates
to the signal, and it is used to favour signals minimising the penalty V . Following Green
[Gre90a], this can be modelled by the following proportion:

P[c] ∝ exp (−βV (c)) (4.57)

Then, dropping P[m], eqs. (4.56) and (4.57) can be combined to obtain:

P[c|m] = P[m|c] · P[c] = L(c|m) · exp (−βV (c)) (4.58)

Again, this equation must be maximised to obtain the optimal a posteriori estimate respecting
the penalisation. Applying the logarithm and turning the problem into a minimisation problem
leads to eq. (4.55), as expected.
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The maximum a posteriori approach may seem somewhat artificial to justify eq. (4.55), but
it forms the relevant foundation for making maximum-likelihood algorithms support regular-
isation. In case of ML-EM (see section 4.3.2), the penalised version is commonly referred to
as One Step Late (OSL) [Gre90b; Gre90a], and the update equation (4.37) becomes:

c
(q)
i = c

(q−1)
i

1∑
j aji + β ∂

∂ci
V (c(q−1))

∑
j

aji
mj

aTj c
(q−1)

(4.59)

Consequently, the update in alg. 4.4 is modified accordingly:

c̃ = ĉ� (t + β∇V (c)) (4.60)

Similarly, the method of Separable Paraboloid Surrogates (SPS) can be extended to support
regularisation [Erd99b; Ahn03]. To do this, the surrogate optimum c̃ in alg. 4.5 needs to
be changed to consider the gradient of the penalty. For a single coefficient ci, the penalised
update becomes:

c̃i =
(AT ḣ)i − β∇V (c)i

dPCi + 2β∇V (c)i
ci

(4.61)

4.7. Compressive Sensing and Sparse Regularisation

In recent years, following the massive interest caused by the success of compressive sens-
ing [Can06], the problem of proper `1-minimisation and the use of sparsity for optimisation
purposes has been extensively re-visited. In the context of tomographic image reconstruction,
this concept is primarily relevant in the field of `1-based sparse regularisation. In general,
assume a sparsifying operator T , and postulate that the solution vector needs to be sparse
after application of T . This leads to the following general penalty:

VSparse(c) = ‖T c‖1 (4.62)

A widely used example for such a `1-penalty has already been described above: Total
variation (TV). In this case, T is the gradient operator, and the idea is to suppress small
variations in the signal [Rud92]. (See section 4.6.2.) Whether or not TV leads to better
images is disputed [Cha97a; Gou01], and this question depends largely on the properties of
the signal one seeks to recover.
Another example for `1-penalties are basis-like transforms which aim to represent a sig-

nal sparsely with respect to a finite set of atomic elements. For instance, images are often
represented using pixels or voxels as atomic elements. These elements are highly localised
in Cartesian space, but not in frequency space. Consequently, a sparse representation would
favour black regions in the image. The exact opposite is the Fourier basis [Fou22] where
the signal is described by a coefficient vector containing frequency contributions. The basis
functions are thus highly localised in frequency space, and it is known that ‘sparsifying’ the
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100 % 40 % 10 % 1 %

Figure 4.13.: Image reconstruction from sparse Fourier coefficients: Original grey-level pic-
ture (left column, top) with respective Fourier coefficient magnitudes (left column, bottom,
logarithmic scale with darker colours denoting larger values). A large portion of the Fourier
coefficients of smallest magnitude can be discarded by resetting them to 0 (bottom row) before
the respective reconstructed images (top row, by inverse Fourier transform) show artefacts.

coefficient vector will first be practically invisible, and eventually lead to smoothing. (See
fig. 4.13.)

For most pictures, neither the pixel nor the Fourier basis lead to optimal sparsity. For
this reason, other sets of basis functions in-between the two extremes have been developed,
leading to wavelets [Jaf01] that are somewhat reasonably localised in both, Cartesian and fre-
quency space. The earliest example is the Haar-wavelet [Haa11] proposed in 1911. Effectively,
it encodes the signal as superposition of piecewise-constant functions, and ‘sparsifying’ the
respective coefficient vector leads to results similar to total variation minimisation [Ste04].
This entire idea of sparse coefficient vectors with respect to a suitable basis is applied in lossy
compression schemes such as JPEG [Pen93].

Each of these examples constitutes a basis, that is, there is a minimal number of mutu-
ally orthogonal basis functions, and the respective coefficient vectors are well-defined. The
concept can be extended by dropping the orthogonality constraint, leading to so-called frames
where the atomic elements are redundant or over-complete. Frames can be more finely tuned
towards applications, but they inherently require an additional sparsity constraint to handle
the redundancy. More famous examples include ridgelets [Can98], curvelets [Can02; Fri13;
Wie15a], and shearlets [Guo07].

In all these cases, operator T can be defined as analysis operator , transforming the pixel
coefficients into the coefficients of the respective basis or frame. Its inverse, denoted T ∗, is
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Figure 4.14.: The soft-thresholding operator (blue, S2) maps values of small magnitude to zero,
and increases values of large magnitude, consequently favouring sparse vectors. (Identity in
black.)

the synthesis operator and yields a pixel representation given coefficients.
Returning to the problem of penalised least-squares-based tomographic reconstruction as

defined in eq. (4.51), the objective is then to recover an image which can be encoded sparsely
with respect to a certain basis or frame. Consequently, using the two operators, there are two
ways to pose the problem, the analysis approach

arg min
c

{
1

2
‖Ac−m‖22 + β‖T c‖1

}
, (4.63)

and the synthesis approach

T ∗ arg min
x

{
1

2
‖AT ∗x−m‖22 + β‖x‖1

}
. (4.64)

In effect, the former optimises with respect to pixels and transforms into coefficients to enforce
sparsity, and the latter optimises with respect to coefficients, but transforms to pixels for
projection. (For details and a comparison, see Chen et al. [Che01] and Elad et al. [Ela07].) In
either case, a special solver is required which supports the `1-norm despite its discontinuity.

4.7.1. Iterative Soft-Thresholding Algorithm (ISTA)

Many contemporary optimisation methods rely on soft-thresholding [Don95] to minimise `1-
problems. The operator is defined as follows:

Sα(x) := sign(x) (|x| − α)+ = sign(x) max {|x| − α, 0} (4.65)

Obviously, smaller values are set to zero, larger values are increased, and Sα is thus referred
to as proximity operator to the `1-norm. (See fig. 4.14.)
A rather simple approach exploiting soft-thresholding is the Iterative Soft-Thresholding Al-

gorithm (ISTA) [Dau04]. Effectively, it can be described as Landweber method (SIRT) with
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additional constraint enforcement via the soft-thresholding operator Sα(c) in every iteration.
(See section 4.2.3 for SIRT.) The immediate consequence is that only the unknown iterate
itself can be regularised,9 and penalties on derived values such as ‖T c‖1 can not be enforced.
For this reason, only synthesis problems as given in eq. (4.64) can be solved using ISTA. In
particular, it is not applicable to TV-penalised problems as there is no matching synthesis
operator in this case.
Furthermore, as a Landweber-method, ISTA is not particularly fast to converge. An im-

proved version is the Fast Iterative Soft-Thresholding Algorithm (FISTA) [Bec09d] which im-
proves the speed by a certain relaxation strategy.

4.7.2. Alternating Direction Method of Multipliers (ADMM)

In order to solve problems as stated in eq. (4.63) where the `1-constraint relates to a derived
value, ‖T c‖1, a more complex approach needs to be taken. A possible option is to apply
splitting . The idea is to use two distinct variables during optimisation, one minimising the
least-squares data fidelity term, and the other one the sparsity constraint. In order for these
two split variables to evolve in conjunction, the two are coupled by means of a constraint:

arg min
c,z

{
1

2
‖Ac−m‖22 + β‖z‖1

}
s. t. T c = z (4.66)

The idea of primal-dual splitting is quite flexible, and it allows to interleave different optim-
isation concepts. Consequently, several such methods have been proposed [Cha11; Cha99],
and particularly important are Split-Bregman [Gol09] and the Alternating Direction Method
of Multipliers (ADMM) [Eck92; Boy11].
Focusing on the latter, consider the augmented Lagrangian corresponding to eq. (4.66):

Lρ(c, z,u) =
1

2
‖Ac−m‖22 + β‖z‖1 + uT (T c− z) +

ρ

2
‖T c− z‖22 (4.67)

The chosen parameter ρ couples T c and z, and u denotes a Lagrange multiplier. In general,
each iteration q of ADMM consists of three distinct steps evolving estimates of the three
unknown vectors c, z, and u:

c(q+1) = arg min
c
Lρ(c, z(q),u(q)) (4.68)

z(q+1) = arg min
z
Lρ(c(q+1), z,u(q)) (4.69)

u(q+1) = u(q) + T c(q+1) − z(q+1) (4.70)

Denoting the discretisation of sparsifying operator T as T , the three sub-problems of ADMM

9. The least-squares problem with `1-penalty on the solution vector is commonly referred to as lasso (least
absolute shrinkage and selection operator) problem.
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become in the case of eq. (4.67) [Wie15a]:

(ATA+ ρT TT ) c(q+1) = (AT y + ρT T (z(q) + u(q))) (4.71)

z(q+1) = Sβ/ρ

(
T c(q+1) + u(q)

)
(4.72)

u(q+1) = u(q) + T c(q+1) − z(q+1) (4.73)

The first sub-problem is a linear problem10 that can be solved using the methods described
above, particularly CG, and its solution constitutes the next estimate for the data fidelity
coefficient vector c. The second step minimises the `1-penalty on the dual variable z, and the
last step updates the Lagrange multiplier u. (This section is based on an earlier, non-public
draft of [Wie15a]; the published version contains an explicit derivation of the equations.)
In contrast to ISTA, ADMM does not impose requirements onto the optimisation algorithm

used within. In its general form, ADMM is very generic, and it can be adapted to many
problems and domains. In particular, the method has also been used to implement `1-penalised
maximum-likelihood estimation [Lin10].

4.8. Summary

This section has introduced the most important solution concepts for the tomographic re-
construction problem. Particularly the iterative schemes allow to impose prior knowledge
such as smoothness requirements onto the solution, and there are fundamentally two general
approaches: Least-squares methods model the imaging setup using a system matrix, assume
rather decent measurements and compute a least-squares solution to a noisy, non-square linear
system. Likelihood methods on the other hand model data acquisition as stochastic process
and compute a maximum-likelihood solution optimally explaining the measurements.
X-ray transmission CT systems usually provide rather nice data, and least-squares ap-

proaches can usually be used. In this case, CGNE is probably among the most promising
methods. However, likelihood-based methods are frequently and successfully used as well,
but they require a proper adaption due to the different expected observations. Emission CT
systems on the other hand typically require proper probabilistic modelling, and ML-EM or a
comparable method should be used. In both cases, imposing regularising penalties onto the
solution may help to compute (at least visually) nicer results. Many more algorithms have
been proposed. Still, they usually solve one of the two problems, and differ from the methods
presented in this work in smaller or larger details.
The other large group of algorithms besides the iterative methods contains analytical ap-

proaches. Being non-iterative, they exhibit tremendous speed, and are still heavily used. Note
in particular that they usually assume line integrals, and they can only validly be used for

10. The augmented Lagrangian is similar to Tikhonov regularisation, and the linear system obtained here is
similar to the extended normal equation arising for Tikhonov-regularised problems.
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transmission CT in this case. There exist special-closed form solutions for other imaging
modalities as well. Furthermore, these methods usually do not model noise appropriately,
potentially leading to image artefacts. Advanced filtering methods have been proposed to
improve closed-form solutions, both in the sense of pre-filtering the input sinogram as well as
post-filtering the reconstructed image.

4.9. Short History of the Inversion of Line Integrals

Before closing this chapter, an interesting point should be considered: The problem of re-
constructing a function based on known integrals over manifolds – like the inverse Radon
transform – appears in several scientific fields, and particularly closed-form solution methods
have been independently re-invented multiple times.
The first person reported to have possessed knowledge of an inversion equation is physicist

Hendrik A. Lorentz. The result was used in a paper on propagation of light in a crystal
by Bockwinkel [Boc06], published in 1906, but Lorentz’ own motivation for dealing with the
problem is unknown. However, the inversion problem occurs in several sub-fields of optics,
for instance interferometry. (See [Dea07, chap. 1.8] for details.) In 1925, physicist George
E. Uhlenbeck [Uhl25] published an extension using Fourier coefficients.
Next came mathematician Johann Radon [Rad17; Rad86; Rad07], publishing his independ-

ent theoretical work in 1917. In 1934, John [Joh34] re-considered the problem in the context
of differential equations. Aware of Radon’s work, he established the link to the Fourier trans-
form, thus paving the way towards Fourier-based inversion. Two years later, in 1936, Cramér
and Wold [Cra36] dealt with Radon’s theory in the context of probability distributions inde-
pendently of John’s work, and also discovered the relation to the Fourier transform. These
results were extended by Rényi [Rén52] in 1952.
Also in 1936, and initially unaware of related work, astronomers began to work on inversion

problems. At that time, Victor A. Ambartsumian dealt with the problem of reconstructing the
speed distribution of the stars in the galaxy from earth-based observations [Amb36; Amb80].
He is usually credited for having computed the first numerical inversion. (See Cormack [Cor82]
for details.) With the development of radio-astronomy after the Second World War, the inver-
sion issue surfaced again. Among the earliest examples is the problem of reconstructing images
from so-called strip-scans: A target region, the sun at the time, is observed using a long an-
tenna with a trough-shaped reflector. This device measures the accumulated electro-magnetic
emissions originating from a strip-shaped region, and thus a line integral over the solar disc.
In order to reconstruct a picture, Bracewell proposed the Fourier slice theorem [Bra55; Bra56;
Bra67], thus again independently discovering the connection between line integrals and the
Fourier transform. (See section 4.1.2). With more complex installations such as antenna ar-
rays, even more problems arised requiring mathematical inversion of integrals. (See [Dea07,
chap. 1.5] for details.)
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In medical imaging, as has been discussed in section 3.2, the idea of tomographic imaging
dates to the first decades of the twentieth century, culminating in Frank’s back-projection
patent [Fra42]. From a mathematical point of view, the topic was probably first discussed by
Jacek Szarski and Tadeusz Ważewski [Sza47] in 1947, however, without providing a solution.
The first solution approaches to the computed tomography inversion problem were suggested
independently by Cormack [Cor63; Cor64] and Oldendorf [Old61; Old63] in the early 1960s.
It took until the early 1970s to connect the individual threads to form a joint framework of

reconstructing signals from known integrals, and particularly to make people aware of Radon’s
early work11 [Vai72; Ves74; Cor73]. At the same time, the iterative least-squares methods have
been proposed, and Gabor T. Herman [Her09] is among the pioneers. The likelihood-based
iterative approach was developed a decade later, and Lawrence A. Shepp is one of the key
figures in this respect.
Following the success of medical tomographic imaging and the general interest in the Radon

transform triggered by it, many researchers have applied similar techniques in their own field
of work. Examples include stress analysis [Wil73], seismography [Ric79] and general geophys-
ics [Din79], among many others. (For many more details on the history and related fields,
see Cormack [Cor82], Deans [Dea07] and Helgason [Hel99]; this section is based on these
works.)

11. Recall that Hounsfield used an iterative scheme [Hou73b] at the very beginning, due to missing awareness
of the analytical inversion schemes.
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5. An Outlook over the Original Work Discussed in
this Thesis

Having sketched the history and technology behind computed tomography systems, the
remainder of this thesis will present a selection1 of original work done by the author. The
presented projects all have in common that they constitute tomographic reconstruction prob-
lems going beyond the ‘classical’ settings described until this point.

Part II: Accounting for Motion

In computed tomography systems, the basic assumption is that there are multiple perspectives
acquired from a static scene. Knowing the geometry, the perspectives are used to compute a
tomographic reconstruction. If the assumption is wrong and inconsistent projection images are
used, motion artefacts may occur. For this reason, diagnostic scanners have been optimised
to acquire data as quickly as possible. However, with the advent of interventional imaging
devices capable of tomographic imaging, the motion problem has recurred. A possible way to
deal with motion in software is discussed in part II.

Part III: Optimal Sensor Trajectories

Diagnostic scanning devices are also optimised to cover the volume of interest with as many
useful perspectives as possible. In special settings, this set of views will need to be restricted,
but even then in a pre-determined way. However, under certain circumstances, it becomes
overwhelmingly important to adapt the imaging process to a specific patient. This is par-
ticularly true for interventional nuclear functional imaging where the radiation sensors are
required to be as close as possible in order to have high statistical value. In this case, the
trajectory of the sensor needs to be found in real-time, and part III presents energy measures
and a trajectory control scheme for this purpose.

Part IV: X-ray Scattering Tensors

Clinical X-ray CT scanners are limited to measuring the absorption of X-rays. From a physical
point of view, additional information – phase contrast and dark-field – could be acquired.

1. A list of further projects is given in appendix A.
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These new image signals require new forward models and lead to novel images. Part IV
discusses the reconstruction of tensor-valued scattering tensors from dark-field data.
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Part II.

Accounting for Motion





6. Dynamic Reconstruction with Level-Sets

Heart-beat and breathing are involuntary motions taking place within the body of every
human being, obviously also during the acquisition of X-ray measurements. Tomographic
reconstruction methods, however, expect a static scene, and assume that all input images
show the same setting from a series of well-known and well-distributed perspectives. If organ
movement is not considered, artefacts and blur will become visible in the reconstructed images.
For diagnostic CT scanners, this problem was tackled by ‘outracing’ the inherent motion

during data acquisition as far as possible. The respective clinical scanners are highly specialised
data acquisition devices with a very stable gantry, allowing to rotate X-ray source and detector
at high speed. Employing further engineering tricks such as the use of multiple sources, cone-
beam geometries and helical trajectories, the measurements can be acquired at breath-taking
speed. This is even more the case when using special scanners for heart imaging which
follow the electron-beam design principle. (See section 3.2, p. 37.) In order to reconstruct
a sufficiently nice image, projections from at least 180◦ are required, and the data could be
acquired in 165 ms already in 2006 [Ach06b]. Due to the semicircular trajectory, the respective
images are referred to as ‘half-scan’ reconstructions, and they are computed from contiguously
acquired data. Note that heart imaging requires administration of a radio-opaque contrast
agent, and the heart rate will be lowered via beta-blockers [Ach06a].

6.1. Interventional Tomographic Cardiac Imaging

Besides diagnostic purposes, X-rays are also used for interventional imaging. A prominent
example is angiography [Abr96; Fer96; Wak11]. Particularly since the invention and wide-
spread adoption of minimally invasive catheter-based operation techniques such as stenting,
interventional cardiac imaging has become quite frequent.
The respective images are acquired by means of a so-called C-arm scanner. (See fig. 6.1.)

The basic design principle is that X-ray source and flat-panel detector are attached to a C-
shaped mount, thus allowing rotation around the iso-centre of the assembly. This setup was
originally intended to allow easy and flexible re-positioning of the device in interventional set-
tings, but it is now also used to acquire data for tomographic imaging. The latter is sometimes

The project was carried out in cooperation with Andreas Keil in 2008 and 2009 [Kei09a; Kei09b; Kei10b], and
it has been discussed extensively in the doctoral thesis of Andreas Keil [Kei10a] and in the diploma thesis of
the author [Vog09b]. The discussion here is deliberately short and focuses on the general principle only.
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Figure 6.1.: The core component of a C-arm system is the C-shaped mount carrying an X-ray
tube (bottom) and a digital flat-panel detector (top). Due to its shape, the assembly can be
rotated around an iso-centre. (Courtesy of José Gardiazabal.)

treated as separate imaging modality and commonly referred to as rotational angiography or
computed tomography angiography (CTA). Its primary purpose is not intervention guidance
due to the additional radiation exposure incurred by tomographic imaging, but the idea is the
combination of diagnosis with intervention at a single location during a single session.

In contrast to a diagnostic scanner, however, the rotating part of a C-arm system is quite
large and heavy, and it is not mounted within a stable gantry. For mechanical and security
reasons, the devices can thus not rotate as quickly, and they are limited to a 180◦ degree
sweep. Consequently the acquisition cannot be optimised beyond a certain degree, and a
sweep will take about 4 to 5 s. During this time, the heart will go through 4 to 7 heart
cycles. For this reason, the input projections will show the usual tomographic rotation, and
an orthogonal dynamic, non-linear motion caused by the beating heart on top. Consequently,
the question arises how the situation of inconsistent projections can be handled in tomographic
reconstruction software.

6.2. Non-Applicability of Gating

A classical approach to deal with a supposedly periodic motion is gating . In case of heart
imaging, electrocardiography (ECG) [Coo86; Bar03] can be used to monitor heart activity, and
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0.99338 0.99338 0.9989 1.0044 1.0099

0.94862 0.9552 0.98814 1.0211 1.087

Figure 6.2.: Electrocardiograms of a healty subject (top) and a heart patient (bottom). The
former signal shows distinct heart phases of recurring shape and duration. Unfortunately, the
patient’s ECG is very irregular, making the identification of phases other than the character-
istic R-peaks very hard. (Raw data by courtesy of Günter Lauritsch, Siemens.)

the assumption is that the heart returns to the same position during every phase of the heart-
beat. Following the idea further, projections acquired at the same heart phase are supposed
to show a quasi-static setting, even when recorded during different heart cycles. Gating can
be used to control data acquisition, and it can also be used to partition a previously recorded
dataset retrospectively. Even when no ECG signal is originally available, methods have been
proposed to estimate a synthetic ECG signal from the projection images. Consequently, several
authors have proposed reconstruction methods essentially relying on the alleged periodicity of
the heart-beat [Blo06; Han08; Mov06; Prü06; Sch06]. (For reviews of ECG-gated cardiac CT,
see Desjardins et al. [Des04] and Achenbach [Ach06a].)

Unfortunately, there are two problems about gating: First, the assumption of periodicity is
only very approximate. As demonstrated by Achenbach [Ach06b], the offset between the posi-
tions during the same heart phase at different cycles is larger than the diameter of the coronary
vessels. However, these vessels are of primary interest, and their reconstruction needs to be
reliable. Second, the ECG signal of heart patients is typically very irregular [Ach06b], making
the identification of stable phases complicated. This is particularly problematic for patients
with pathologies like congenital cardiac defects or a prior bypass-surgery. (See fig. 6.2.)

Consequently, multi-phase reconstructions cannot be expected to yield sufficient results. An
alternative approach is to estimate a motion model and a shape from the projections [Kei09a;
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Figure 6.3.: The level-set function encodes a shape (orange) implicitly as zero-level-set. Dis-
cretised into voxels (grid), the coefficients can be updated based on constraints, thus moving
the zero-interface between the ‘inside’ as modelled by a negative sign and the ‘outside’.

Kei09b; Roh09]. (For a much more detailed review doing justice to the different possible
reconstruction methods, see Keil [Kei10a] and Rohkohl [Roh12].)

6.3. Outline of the Proposed Approach

In case of cardiac imaging, the ideal result is a four-dimensional (3D+t) image: A volumetric
image of the heart, over time. However, the direct tomographic reconstruction appears to be
particularly ill-posed, and this fact suggests to seek a symbolic/binary reconstruction along
with a motion model first. In the case at hand, such a symbolic recovery is performed based
on the coronary arteries since they are contrasted and cover the motion in the relevant area
around the patient’s heart. At a later stage, the recovered motion field can be used for a
separate tomographic reconstruction.
Therefore, the core idea of the proposed method [Kei09a; Kei09b] is to segment the coronary

vessels from the input projections, and to reconstruct a symbolic three-dimensional vessel tree
employing a level-set framework [Osh88; Set99]. Originally, the latter can be considered as
binary segmentation method. The interface between ‘inside’ and ‘outside’ is not modelled
explicitly as mesh as is done in active contour methods [Kas88], but as the zero-level-set
Γ = {x|Φ(x) = 0} of a so-called level-set function Φ : Ω ⊂ Rn → R, and

Φ(x)


< 0 : x is inside of the boundary Γ

= 0 : x ∈ Γ

> 0 : x is outside of the boundary Γ.

(6.1)
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Similar to the signal in tomographic reconstruction, this function is discretised into voxels
(see fig. 6.3), and evolved in an iterative scheme in order to satisfy constraints which will be
based on projections and penalties. The evolution is done by adapting the coefficients, thus
moving the interface Γ in the domain of the level-set function Φ by changing its potential.
The advantage of the framework is that complex constraints can be included rather easily,
thus allowing for extended mathematical modelling.
The rationale for taking this approach is as follows: First, contrasted angiographic X-ray

projections usually have a bad image quality, and the varying contrast agent flow may lead
to additional inconsistencies. It is hard to track certain key points over the sequence of
projections, and a soft coupling in three-dimensional space is highly desirable. Second, as has
been outlined above, exact re-positioning and perfectly periodic ECG signals are unrealistically
strong assumptions, but the motion is still pseudo-periodic, and an approximate return can
be assumed. To this end, a soft coupling in time domain will also prove to be advantageous.
Finally, there is no prior knowledge about the topology of the vessel tree, and the level-set
paradigm has the further advantage of being able to handle this agnostically.
Although the method uses novel data terms and a new space-time coupling, it shares ideas

with some other approaches: Yoon et al. [Yoo06] perform a CT-like reconstruction from X-ray
data using multiphase level-sets. This work enables the reconstruction of piece-wise constant
tissue from very few projections, but it does not deal with motion. Rathi et al. [Rat05] and
Cremers [Cre06] perform deformable tracking on two-dimensional images using active contours
which is related to the proposed time-coupling. Additionally, there is a lot of related work
on three-dimensional reconstruction from optical images using level-sets, graph cuts, or voxel
occupancy techniques. For instance, Franco et al. [Fra05] give a nice derivation and solution
to the problem of three-dimensional reconstruction from probabilistic silhouette images in a
synchronised multi-view environment.

6.4. Methods

In order to implement the proposed symbolic reconstruction approach, several components
need to be developed: First, the four-dimensional level-set function Φ(x, t) needs to be encoded
in a useful way to ensure the coupling requirements outlined above. Then, data fidelity terms
need to be developed which use the projected coronary vessels to evolve this function Φ towards
a reconstruction of the moving artery tree. Finally, due to the ill-posedness, additional penalty
terms are required to make the reconstruction feasible.
Note that the method does not use raw X-ray projections, but pre-processes them to vessel

segmentations. This is done by first applying a vessel enhancement filter [Kol95; Fra98]
to make the coronary vessels more prominent. Then, a suitable segmentation is computed,
effectively turning the projections into ‘vessel probability’ pictures. (See fig. 6.4.) From an
elevated point of view, the method is, therefore, dealing with a dynamic shape-from-silhouette
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Figure 6.4.: Rather than using raw projections (left), the proposed method considers vessel
segmentations (right). Therefore, the method back-projects shadows to obtain a symbolic
model. (Raw data by courtesy of Klinikum Coburg, Germany.)

problem.

6.4.1. Dynamic Level Sets

Following the level-set approach, define a four-dimensional level-set function Φ : Ω× T→ R.
Here again, Ω ⊂ R3 denotes a spatial volume of interest, and T ⊂ R denotes the temporal
range of interest. This function Φ(x, t) uses the encoding scheme shown in eq. (6.1): At time t,
location x is ‘inside’ of a vessel if Φ(x, t) < 0, and ‘outside’ if Φ(x, t) > 0. Over the iterations
of the solver algorithm, the coefficients of voxels within the vessel tree will need to assume
negative values, and the others positive values. The respective voxel-wise update steps will be
controlled via the segmented vessel probability projections.
It would be possible to discretise Φ(x, t) directly, leading to a four-dimensional reconstruc-

tion problem. Alternatively, one can consider the level-set function Φ(x, t) to only be virtual,
and decompose it in a way similar to what was proposed by Blume et al. [Blu09], as follows:

Φ(x, t,α) = Φ0

(
ϕ(x, t,α)

)
(6.2)

Here,

Φ0 :

{
Ω ⊂ R3 → R

x0 7→ Φ0(x0)
(6.3)

denotes a time-independent reference level-set containing the static prototype shape. The
dynamic behaviour is enabled via a separate motion model ϕ mapping point x at time t to a
location x0 in static reference space using motion parameters α. This motion model is only
required to be differentiable with respect to the parameters. Considering the decomposed
model from eq. (6.2), note that the unknowns to recover are the function Φ0 encoding the
reference shape, and parameter α encoding the motion.
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A typical choice for the motion model could be a combination of different contributions:

ϕ(x, t,α) = R(t,α) · x + T (t,α) + u(x, t,α) + v(x, t,α) (6.4)

Here, R and T together represent a global rigid motion with six degrees of freedom. u and v
denote additional local deformable motion fields locally distorting the global motion. In order
to model the behaviour of the heart, R, T and u can be assumed to be periodic, and v a
global, non-periodic, low-amplitude motion, for instance. Such a motion model will require
interpolation schemes, and temporal B-splines [Die93] would be a possible option.
Combining a static shape Φ0 with a dynamic warping function ϕ has several advantages:

First of all, the shape reconstruction is implicitly regularised over time, since there is only
one shape model. Then, the motion can be recovered directly, simplifying its later use in
a tomographic reconstruction as well as enabling a direct motion regularisation. Finally,
memory requirements are much lower compared to a four-dimensional grid if ϕ is properly
parametrised.

6.4.2. Data Fidelity Terms

Having described a model for shape and motion, an energy functional needs to be set up that
fits the reconstruction parameters Φ0 and α to the given L measured images Il acquired at
times tl, 1 ≤ l ≤ L. As has been described above, their pixels are assumed to contain intensity
values in [0, 1] corresponding to the probability that the associated ray hit a vessel. Later-on,
the energy functional will be minimised, yielding the reconstructions of the two unknowns.
Similar to the idea of SIRT, the data fidelity terms will consider differences between synthetic

forward projections and actual measurements, but errors in the shape-from-silhouette problem
are also symbolic: If a ray projects onto a ‘no-vessel’ pixel in a projection, all positions along
the ray are known not to be within the vessel tree. Vice versa, if it hits a ‘vessel’ pixel, it
is known that at least one location along the ray is within the vessel tree. Consequently,
the penalties will be constructed from false positives and false negatives in space, taking into
account the projective character of the imaging device. This works in a manner similar to
what was first presented by Chan and Vese [Cha01].
The first term penalises false positives, that is, points within Φ0 which are reconstructed as

part of the vessel tree, despite being projected to a ‘no-vessel pixel’. Let Pl : R3 → R2 denote
the projection operator for frame l, and

H(x) =

0 : x < 0

1 : x ≥ 0
(6.5)

the Heaviside step function. (See [Cha01].) Then, the false positive term is:

EFP(Φ0,α) =

L∑
l=1

∫
Ω

SFP

(
Il
(
Pl(x)

))
·
[
1−H

(
Φ0(ϕ(x, tl,α))

)]
·
[
1− Il

(
Pl(x)

)]
dx (6.6)
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Figure 6.5.: The level-set function (coloured contour lines) describes two reconstructed blobs
in this two-dimensional example. The close one (white disc with blue contour) is correct,
the far one (blue contour) is a false positive as the respective rays (green) map into void.
Consequently, the level set function needs to be increased at the respective spots (red arrows).

This expression extends over all L projection images (sum) and the entire volume of interest Ω

(integral). At every such pair of a location x in space and its projection Pl(x), the product of
three factors is evaluated: The first factor enables the term for projections to ‘no-vessel pixels’
by means of auxiliary switching function SFP(i) := H

(
1
2 − i

)
. Consequently, the first factor

is 1 for low image intensities/probabilities in the image Il, and 0 else. Similarly, the second
factor is 1 for negative values of Φ0 ‘inside’ of the vessel tree, and 0 for the positive values
‘outside’ of it. Together, the first two factors filter out the false positive reconstructions, and
the third factor is the respective weighted penalty. (See fig. 6.5.)
Penalising false negatives works in a similar way, however, with the difference that penalties

cannot be accumulated in volume space Ω. As the images are probabilistic projections, a false
negative penalty can only be imposed if, and only if, no object is reconstructed along a whole
ray corresponding to a high intensity ‘vessel pixel’. Thus, entire rays have to be considered
instead of single points, and the proposed false negative term is:

EFN(Φ0,α) =
L∑
l=1

∫
A

SFN
(
Il(p)

)
·H
(

min
x∈Xl(p)

Φ0

(
ϕ(x, tl,α)

))
· Il
(
p
)

dp (6.7)

Here, A ⊂ R2 is the projection image space, and Xl(p) denotes the set of volume points
projecting onto pixel p in image Il, that is, the ray hitting the image Il at p. Therefore, the
term extends over all pixels/rays (integral) of all projection images (sum), and again evaluates
a product of three factors: The first uses a switching function SFN(i) := H

(
i− 1

2

)
to enable

the term for ‘vessel pixels’ only. Similarly, the second factor enables the term if the minimal
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Figure 6.6.: The level-set function (coloured contour lines) describes a single reconstructed
blob (near white disc with blue contour) in this example, but a second one (far white disc)
is missing. The latter is a false negative as the respective rays (green) map into a vessel.
Consequently, the level set function needs to be decreased at a single location (!) along the
ray, and it is done at the relative minimum (red arrow).

level-set function value along the ray is positive, that is, if all locations along the ray are
‘outside’ of the reconstructed vessel tree. Together, the first two factors select the case of false
negative reconstructions, and the third factor is again the respective weighted penalty. (See
fig. 6.6.)

Note again that the two data terms are constructed quite differently. This is remedied
by either appropriately weighting them or reformulating the false negative term to a volume
integral using the co-area formula.

6.4.3. Regularisation

In terms of regularisation, only shape constraints need to be considered since the motion
parameters can be inherently regularised by appropriate interpolation schemes such as B-
splines with a matching number of knots. For obtaining a smooth shape reconstruction in the
reference frame, a total-variation-like penalty

Eshape(Φ0) =

∫
Ω
δ(Φ0(x)) · ‖∇Φ0(x)‖ dx (6.8)

can be enforced in the immediate vicinity of the Φ0 = 0 zero-level-set as selected by the Dirac
function δ(·). This term favours a low surface curvature at the interface between ‘inside’ and
‘outside’, leading to a smoother vessel tree reconstruction.
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Figure 6.7.: Evolution of the static reference shape after 1, 20, and 110 iterations. Note that an
approximate shape is carved out first, and that this intermediate shape may show duplicated
side-branches. After further iterations, this doubled structures are merged. The input data
has been obtained using the XCAT phantom [Seg99; Seg01b; Seg01a].

6.4.4. Optimisation

The data fidelity and regularisation terms (6.6)–(6.8) can be collected into a common energy
functional:

E(Φ0,α) = βFN · EFN(Φ0,α) + βFP · EFP(Φ0,α) + βshape · Eshape(Φ0) (6.9)

Here, the different β... denote weighting factors, and the reconstruction problem can be stated
as follows:

arg min
Φ0,α
{E(Φ0,α)} (6.10)

Optimising this system is rather complex as two sets of parameters must be computed sim-
ultaneously, namely the shape model Φ0 and the deformation parameters α. The former is
minimised using the variational derivative δE

δΦ0
, the latter by calculating the gradient ∇αE.

Computing these terms from their analytic forms involves deriving the minimum functional
from equation (6.7), several numerical approximations, and a step size management during
gradient descent for Φ0 and α.
The most demanding issue to solve is the computation of EFN and its derivative. It involves

ray-casting for computing the minimum contained in the equation’s second factor. Further-
more, updates to Φ0 have to be applied at the respective ray-casting sample points and thus
need to be extrapolated to the nearest grid locations of the discretised approximation of level-
set function Φ0. (See Keil [Kei10a] and Vogel [Vog09b] for details on the optimisation.)

6.5. Results, Conclusion and Summary

Several experiments have been conducted using phantoms and real data. For phantom data,
the synthetic motion is usually rather simple, particularly periodic, and the results in this case
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Figure 6.8.: Dynamic reconstruction result after 140 iterations. Shown are renderings of the
reconstructed moving vessel tree (3D+t) after 0.0, 0.3, and 0.6 s. Note the The input data
has been obtained using the XCAT phantom [Seg99; Seg01b; Seg01a].

are likely not significant in terms of judging the real performance. The probably most com-
plex phantom experiment was done with projections of the XCAT phantom [Seg99; Seg01b;
Seg01a]. (See figs. 6.7 and 6.8 for sample results; numerical results are excluded for brevity,
see Keil [Kei10a] for such evaluations.)
In case of real data, it turned out that proper preprocessing of the images into vessel seg-

mentations is a major obstacle. The clinical images typically do not show strong contrast, and
the flow of the contrast agent was not sufficiently constant, at least in the few datasets that
have been available. It is unclear whether the physical data acquisition can be improved, and
whether doing so imposes an excessive burden onto the clinical personnel, thus preventing the
use of the method in clinical scanners. It would also be interesting to see whether modern ma-
chine learning techniques yield better vessel classifications than the, from today’s perspective
antiquated, vessel enhancement schemes. Some early reconstructions have still been computed
at the time, and the approach seems to work in general, but an accurate quantification of the
performance has not been possible.
Unfortunately, the project was industry-related and needed to be concluded at a too early

stage. The level-set-based dynamic reconstruction method was still included in this thesis
to present thought-provoking impulses for handling motion-related inconsistencies. For this
reason, a quick outline is considered to be sufficient. (For a more complete discussion including
a probabilistic model, extensive results, and open research questions, see Keil [Kei10a].)

This entire chapter, particularly section 6.4 on the actual equations, is a revised and partly extended version
of the original research papers [Kei09a; Kei09b].
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Part III.

Interventional SPECT Imaging
and

Optimal Sensor Trajectories





7. Freehand and Robotic SPECT

Diagnostic tomographic scanners are designed to optimally acquire data for image
reconstruction, and they are intended to be used in a dedicated radiology or nuclear medicine
department. In particular, these devices are not equipped for use in operating rooms, and
cannot be used for interventional imaging. This is mainly due to the massive scanning gantries
which entirely surround the patient, and the relatively long scanning times required for nuclear
imaging modalities. For this reason, surgeons often rely on pre-operative images which do
not show the actual situation: The patient is usually in a different position, resections may
have taken place, and depending on the interval between image acquisition and intervention,
wound healing, digestion or similar processes may have had effects. (For details on deformable
registration of datasets, see Zikic [Zik11] and Glocker [Glo11].)
On the other hand, interventional imaging is highly relevant for intervention guidance and

quality control. Classical two-dimensional means are ultrasonography [Gol96] and X-ray flu-
oroscopy. (See section 2.4.1 for the use of X-rays in medicine.) Imaging technology has signific-
antly advanced in this respect, and tomographic techniques such as 3D ultrasound [Fen00] and
C-arm CT [Gan11] are applied in clinical practice with considerable success. (See section 6.1
for interventional tomographic cardiac imaging.) Considering the two modalities, ultrasono-
graphy is typically human-guided, and the surgeon will position the sensor manually. C-arm
CT on the other hand is mechanised, and X-ray tube and detector are moved robotically. In
recent years, medical robotics has been investigated intensively also for imaging. For instance,
Schneider et al. [Sch11] proposed a robotic laparoscopic ultrasound system.

7.1. Introducing Interventional SPECT

Considering tomographic nuclear imaging, the interventional extension has been proposed
rather recently. Classically, a radio-tracer was administered for pre-operative imaging, and
during the intervention, a ‘normal’ hand-held radioactivity sensor such as a ‘single-pixel’
scintillation counter would be used to triangulate radioactive hotspots and to check excised
tissue for radioactivity. (See section 2.4.2 for details on nuclear imaging.) In 2007, Wendler
et al. [Wen07b] proposed to ‘track’ such an sensor using a optical tracking system [Kha00],

The author has contributed to some more recent developments of the freehand and robotic SPECT systems,
cooperating particularly with Tobias Lasser, José Gardiazabal and Philipp Matthies, among others [Mat13;
Mat14; Gar14; Las15; Gar15b]. A data acquisition scheme [Vog12; Vog13] will be discussed in chapter 8.
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Figure 7.1.: The freehand SPECT system uses an optical tracking system (top left) to track
position and orientation of a γ-radiation sensor (centre, on cart, with cross-shaped tracking
target) which is hand-guided by a surgeon. Like this, measured counts are related to sensor
perspectives, thus enabling tomographic reconstruction. (Courtesy of José Gardiazabal.)

thus establishing a known connection between sensor perspectives and activity counts. (See
figs. 7.1 and 7.2.) Based on this data, they demonstrated successfully the first tomographically
reconstructed interventional volumetric images for a phantom setup. A first clinical version
followed in 2010 [Wen10b], and the term freehand SPECT (fhSPECT) was coined as name.

7.1.1. Medical Scenarios

Before continuing with a technical description, consider possible medical scenarios first. In
this context, two aspects are relevant: First, interventional imaging is obviously not intended
for whole-body acquisitions, but to monitor the situation in a confined region of interest. This
situation is compatible with the proposed hand-guided mode of operation.
Second, interventional imaging needs to fit into the surgical work-flow, thus consuming as
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Figure 7.2.: Close-up of radiation detector with retro-reflective balls as target for optical
tracking system. (Courtesy of José Gardiazabal.)

little time as possible. Dealing with nuclear tracers, the quality of the reconstructed images
depends massively on statistically significant measurements, as usual. The radiation intensity
is known to drop off exponentially with distance, and longer acquisition times will be necessary
for more distant regions of interest.
Consequently, fhSPECT works best if the relevant hotspots can be expected to be close to

the accessible surface. In this case, a quick, patient-specific scan will lead to useful tomographic
images. In detail, primarily two interventional settings appear to be promising and have been
clinically investigated.

Sentinel Lymph Nodes (SLN) Some types of cancers are known to spread along the
lymph system. The first lymph node after the tumour, the sentinel lymph node (SLN), has
high significance in detecting metastases. An important aspect of tumour resection is thus
SLN biopsy, that is, a check whether it already contains cancer cells. For this procedure,
the patient is typically injected with a radioactive tracer a few hours in advance, and a
planar scintigraphy is taken to ascertain the tracer uptake. During the biopsy procedure,
fhSPECT three-dimensional imaging can be used to plan and guide the resection for that
particular patient and control any residual radioactivity intra-operatively. Freehand SPECT
has found clinical application in sentinel node biopsy for breast cancer [Sch12; Blu13], for
melanoma [Rie11; Naj11] and for oral cancer [Heu12], as well as in parathyroidectomy [Rah12].
Sentinel lymph node pictures typically show distinct hotspots. The latter exhibit some

contrast variations, but the picture is typically treated as pseudo-binary. (See fig. 7.3.)

Thyroid Imaging Another application is thyroid imaging. The thyroid is a butterfly-shaped
gland of two lobes, located in the neck, at the throat. In the last decades, thyroid cancer
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Figure 7.3.: Augmented reality view of a fhSPECT reconstruction of radio-marked lymph
nodes in the axilla of a breast cancer patient. (Courtesy of Philipp Matthies.)

incidence rates have risen dramatically in many countries, and the reasons for the increase
appear to be unclear [Fer13; Jem10; Dav06; Har95; Reg09]. It has been suggested that both,
incidental detection during ultrasound examinations as well as risk factors such as radiation
exposure and obesity, might be among the causes [Lee04]. Similar to other cancers, survival
chances depend largely on quick and accurate staging and stratification [Sim12].
Localisation of tumours inside the thyroid is usually based on nuclear imaging, most com-

monly on two-dimensional scintigraphy [Grü97], but several studies have shown that volumet-
ric visualisation based on SPECT leads to better performance [Mok00; Mar12c]. (See fig. 7.4.)
Consequently, fhSPECT has also been suggested for thyroid imaging, and early phantom stud-
ies have appeared [Las15; Gar15b; Gar16]. Thyroid pictures are usually more complex than
SLN images, and they require recovery of contrast, to tell apart hot and cold nodules from
background. (See fig. 7.5.)

7.1.2. Fundamental Considerations

Returning to technical aspects, recall the basic setup of fhSPECT: A hand-guided radiation
sensor is tracked by an optical tracking system, and counts and sensor poses are synchronously
recorded. Afterwards, the two data-streams are used to reconstruct a tomographic image.
Due to the probabilistic nature of nuclear decay, a statistical reconstruction technique will be
employed for the last step, thus requiring measurement probabilities. (See section 4.3 for the
mathematical background and section 7.2 for technical details.)
In diagnostic SPECT scanners, the gamma cameras follow a pre-determined path, and the

system matrix entries giving the measurement probabilities can be obtained via known values.
In freehand SPECT, however, the sensor trajectory is initially unknown and provided by the
tracking system. Each position corresponds to a set of new rows of the system matrix which
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Figure 7.4.: Clinical scintigram of a thyroid patient. Note the shape of the neck and the
chest, and particularly the hotspot at the thyroid. (Courtesy of Klinikum Rechts der Isar,
Nuklearmedizin.)

Figure 7.5.: A thyroid phantom (left) was filled with a radio-tracer, measured, and recon-
structed using the fhSPECT technique (right). Chamber II of the phantom did not con-
tain radioactivity and models a ‘cold’ nodule, but chambers I, III, IV were ‘hot’. The large
butterfly-shape chamber containing the smaller chambers I–IV was filled with less activity to
model background radiation. (Courtesy of José Gardiazabal and Tobias Lasser.)
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is implicitly stacked up along the way.
Consequently, the quality of the tomographic images depends highly on the performance

of the person doing the actual scan. In general, tomographic image reconstruction does not
require high counts only, but also low counts in order to carve away inactive regions. Surgeons,
however, are used to triangulation, based on the characteristic sound known originally from
Geiger counters.
Furthermore, tomographic reconstruction also needs as many orthogonal views on the region

of interest as possible. In fact, however, many clinical settings lead to limited angle problems
due to the confined space available. Within these bounds, the human operator of the probe
needs to take care to sample the region of interest not only in a translatory sense, but also in
terms of looking directions.
Additional constraints have been mentioned above: The time frame available for image

acquisition is limited, and the radiation sensor must be kept in close proximity to the region
of interest for optimal statistics. All these points are enforced mechanically in diagnostic
scanners, but need to be met ‘manually’ in this case for optimal image quality.

7.2. Technical Details of Freehand SPECT (fhSPECT)

Considering the major components of the fhSPECT system, additional engineering questions
arise. (For a more complete discussion, see the doctoral theses of Thomas Wendler [Wen10a]
and Tobias Lasser [Las11a], and the future theses of José Gardiazabal and Philipp Matthies.)

7.2.1. Sensors

As has been mentioned above, fhSPECT originally used γ-radiation sensors available for op-
erating room use. These devices come in different variants with respect to the target energy
of the incoming γ-photons and collimation, that is the angular opening of the field of view.
Typically, fhSPECT sensors would use a rather wide opening angle of around 120◦, to allow
for simpler coverage of the region of interest. On the other hand, this leads to blurring and
problems in regions with higher background or overlapping activities.
A possible option is to replace these simple sensors with a miniaturised gamma cam-

era [Wei00a; Wei01], thus obtaining more readings and statistically more meaningful meas-
urements at the same time. Proposed by Matthies et al. [Mat13; Mat14], this has become the
standard sensor for fhSPECT. (See fig. 7.6.)

7.2.2. Tracking

Knowing the location of the detector with high precision is key in tomographic reconstruction,
to intersect the observations as exactly as possible. For this reason, fhSPECT typically uses an
optical ‘outside-in’ tracking system [Kha00] to find out the position of the sensor. Following
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Figure 7.6.: Interventional radiation senors as used with fhSPECT: Originally, ‘single-pixel’
detectors (left) have been employed which provide a single scalar signal. These types of devices
have been used in operating rooms before for triangulation. More recent setups usually employ
a mini gamma camera (right) which provides an image of 16× 16 pixels. (Courtesy of Tobias
Lasser and Philipp Matthies.)

Figure 7.7.: Positioning table for sensor calibration: In order to obtain measurement probabil-
ities, one option is to exhaustively measure the response to a point source. The latter (bottom
centre, a Co57 source in the white holder) is moved systematically within the field of view of
the camera in x- and y-directions. Once completed, the camera is moved up in z-direction,
and the process repeats. Many such measurements eventually lead to lookup tables. (See
fig. 7.8.) (Courtesy of José Gardiazabal.)
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the paradigm known from radars in flight control, an active system observes the scene from
outside using optical cameras, and computes the location of a tracking target (mounted onto
the sensor) consisting of retroreflective markers using stereo-vision techniques. For this to
work, a direct line of sight between the over-head optical camera system and the target is
required. (See Feuerstein [Feu07a] for some background on tracking systems.)

Alternatives would be mechanical or optical ‘inside-out’ tracking. In case of the latter,
the gamma sensor is no longer tracked from outside, but computes its own location. This
is usually done by mounting an additional optical camera onto the radiation sensor which
observes certain markers. Using computer vision techniques, this can be done quite accurately.
Of course, the approach still requires a direct line of sight, but there is more flexibility in terms
of positioning the reference markers. This approach has been employed before by Rafii-Tari
et al. [Raf11] for an ultrasound guidance system using a transducer-mounted camera to create
three-dimensional panorama images relative to skin markers, and by Magaraggia et al. [Mag14]
for a video-based solution for screw fixation guidance. Recently, Matthies et al. [Mat15] have
proposed inside-out tracking for freehand SPECT.

In all such cases, an important point is to accurately synchronise the two data streams,
photon counts and positions. Typically, the two provide data at different sampling rates and
may show measurement lag. Proper calibration and synchronisation methods are thus required
for optimal data acquisition. In particular, it needs to be considered that photon counts are
usually integrated over certain little time frames, and the computer vision techniques employed
in optical tracking systems consume time. Exploiting the ability of the gamma camera to
report individual photons, Gardiazabal et al. [Gar15b; Gar16] have recently looked into list-
mode reconstruction [Bar97; Par98; Byr01] for fhSPECT and consider the question of blurring
problems associated with time-integrated counts.

7.2.3. Modeling Measurement Probabilities

As discussed in sections 4.3.1 and 7.1.2, an important ingredient of likelihood-based recon-
struction are the measurement probabilities. In case of fhSPECT, these are obtained by
relating the general characteristics of the radiation sensor with the perspective of this sensor
onto the chosen volume of interest at a given time.

In general, there are several approaches to modelling the response characteristics of a sensor
to a radiation source [Har15; Las11b]: First, one can try to find a mathematical model in-
cluding exponential drop-off with distance and a restricted field of view by collimation, an
approach used in the original fhSPECT system. Second, the response can be simulated based
on the known mechanical design of the sensor using Monte Carlo methods. Finally, the re-
sponse can be measured in long-time experiments (to avoid bias by under-sampling), leading
to lookup tables (LUTs).

With the introduction of gamma cameras to fhSPECT [Mat13; Mat14], the last option has
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Figure 7.8.: The lookup tables (LUTs) for the mini gamma camera contain 16 × 16 = 256

individual pixel-wise measurement probabilities (left). Considering all sensors together, one
obtains the full lookup table for the camera (right). Obviously, there are considerable differ-
ences between the individual pixels of the camera. (Raw data by courtesy of José Gardiazabal.)

become the standard. In order to obtain the LUTs, a Co57 point source was systematically
stepped through the field of view of the gamma camera, leading to highly accurate pixel-wise
measurement probabilities. (See figs. 7.7 and 7.8.) Unlike mathematical models and imperfect
simulations, the tables automatically describe manufacturing-related variations.

Another important aspect in nuclear imaging is attenuation correction. In fhSPECT, an
accurate transmission image is usually not available, rendering patient-specific attenuation
correction impossible. However, as the hotspots are expected to be close to the sensor, a
typical assumption is to have a uniform attenuation. For simplicity, the reference attenuation
value for water may be used to modify the LUT values which have been acquired with air
between source and detector [Gar16]. This is equivalent to the typical correction approach
taken in ultrasound-echography.

7.2.4. Coordinate Frames

In order to compute reconstructions, the remaining problem to solve is transforming everything
into the same coordinate system. So far, the lookup tables are defined with respect to the
pixel-sensors of the camera, a respective coordinate system will be referred to as {sensors}.
The tracking target mounted to the camera defines another camera-relative coordinate system
{camera}, and its location with respect to some world frame {world} is reported by the
tracking system as rigid transform cameraTworld . The ‘missing link’ between the two camera-
relative frames, sensorsTcamera , can be established via co-calibration using a tracked pointer
device [Mat13; Mat14]. Finally, the volume of interest (VOI) Ω where the radioactivity
distribution needs to be reconstructed has its origin {voi} also defined via a rigid transform
voiTworld relative to world origin {world}. (See fig. 7.9.) Technically, this is done by using
the camera to position a default-sized VOI, assisted by an augmented reality view.

Consequently, to obtain the measurement probability of an event occurring at location pvoi ,
the point is transformed into the coordinate system {sensors} of the lookup tables by chaining
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Figure 7.9.: Freehand SPECT involves several coordinate frames. In terms of reconstruction,
the only interesting transformation (dotted blue double-arrow) is the one between camera
pixels (lower left) and region of interest (ROI, red box, lower right), as it relates the true
radioactivity distribution with the measured values reported by the camera. It is not given
directly, and everything is defined relative to a world origin (black arrows, top centre) as
defined by the tracking system: The world location of the camera is reported in real-time,
and an additional transformation describes the hop onwards into the coordinate system of the
lookup tables (yellow fan). Similarly, the ROI is defined with respect to the the world frame.

the respective transformations. With worldTvoi =
(
voiTworld

)−1:

psensors = sensorsTcamera · cameraTworld · worldTvoi · pvoi (7.1)

The respective lookup tables can be read out directly at psensors to obtain the measurement
probabilities for every pixel of the gamma camera.

7.2.5. Tomographic Imaging, Finally

Putting things together, the camera will assume a series of K poses for observing the radio-
activity distribution. Using the notation defined in section 4.3.1 and denoting the first pose
as k = 0, measurement mj will refer to the count obtained in a specific pixel s while the
camera is in a certain pose k. Defining S as the total number of sensors, S = 256 in case of
the gamma camera, one obtains the relation j = k · S + s.
Assume that the volume of interest Ω is discretised into I voxels. For reconstruction of

coefficients, these voxels need to be related with the measurements via the measurement
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probabilities encoded in the system matrix. In order to obtain its component

aji = P[ photon contributes to measurement j | decay event in voxel i ] (7.2)

as defined in eq. (4.30), voxel i needs to be transformed into coordinate system {sensors}
to look up the calibrated probability there. This is done by evaluating the transformation
chain given in eq. (7.1) where pvoi = pvoi(i) is set to the relative location of voxel i and
cameraTworld =camera Tworld (k) to the camera position in pose k, yielding a result psensors(i, k).
Using j = k · S + s, the probability is then:

aji = LUTs(psensors(i, k)) (7.3)

Recall that the lookup tables are defined per pixel, and LUTs is the table for camera pixel s.

7.3. Robotic SPECT (rSPECT)

In section 7.1.2, several inherent problems of fhSPECT have been itemised that are connected
to the fact that a human operator is controlling the acquisition of the images. This person
is likely a medical expert, and interest in the numerical backgrounds of tomographic recon-
structions cannot be presupposed. For this reason, the performance of fhSPECT will always
be tightly connected to the goodwill of the user, and clinical results will only be reproducible
if this is given.
For this reason, it is desirable to mechanise fhSPECT by using a robotic arm to guide the

detector, in a way somewhat similar to C-arm CT. Unlike the latter, however, the detector can
not be rotated around the patient at a safe distance, but it needs to move in closest proximity
to the patient in order to catch as many photons as possible. This fact calls for patient-specific
trajectories.
In this context, the first thing to realise is that robotics is a very complex field [Cra05;

Cho05]. It is highly non-trivial to securely navigate a robotic arm with several limbs through
an environment with obstacles such that there are no (self-)collisions and without the robot
getting stuck in singularities. Considering the presence of a patient, severely increased security
requirements apply when operating a robot in such a setting as Taylor et al. [Tay91] pointed
out already in 1991.
For this reason, robotic SPECT (rSPECT) is still in its infancy, and probably will be

for years to come. For now, the robot is exclusively used for preclinical phantom experi-
ments, and path-planning is only performed to a very limited degree, such as moving between
human-controlled via-points, following human-controlled trajectories, or reproducing a tra-
jectory recorded from a human operator. In all such cases, the robot needs to be considered
as ‘smart holder’ allowing for a certain reproducibility. A first working rSPECT setup was
demonstrated by Gardiazabal et al. [Gar13] in 2013, following an earlier theoretical study by
Bowsher et al. [Bow12] on a robotic multi-pinhole SPECT system. A robot was also used for
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Figure 7.10.: Robotic SPECT prototypes with simple γ-radiation probe (top) and gamma-
camera (bottom) mounted to the wrist of a robotic arm. For testing purposes, redundant
optical tracking targets with silver-coloured retroreflective marker balls are also mounted onto
the sensors. The blue box is a simple phantom containing radioactively marked spheres in a
known pattern. (Courtesy of José Gardiazabal.)
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sensor positioning in the work of Matthies et al. [Mat13; Mat14] which introduced the mini
camera. (See fig. 7.10.) Likewise, Gardiazabal et al. [Gar14] used a robotic arm in a first
proof-of-concept interventional SPECT-CT system where an rSPECT system and a C-arm
CT were operated in a hybrid context. The only work towards real patient-specific robotic
SPECT was published by the author of this thesis [Vog12; Vog13], but it only considers the
specific sub-problem of picking optimal sensor poses and assumes perfect robot control. (See
chapter 8 for a full discussion.)
There is yet another aspect about robotic SPECT: As mentioned in section 7.2.2, mechan-

ical tracking could also be used to obtain the poses of the gamma camera. While requiring
a mechanical connection to the camera, this tracking technique can yield highly accurate po-
sition information at very high sampling rates. Therefore, for clinical settings where human
guidance is required for security reasons, a suitable robotic arm could be operated in gravity
compensation mode, i.e. inactively self-supporting and easily yielding to external forces. A
human user could thus move the camera without having to support its weight, and the system
would record highly precise tracking information along the way using the results obtained by
forward kinematics.

This chapter is partly based on co-authored publications, extended and revised where necessary.
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8. Optimal Sensor Trajectories

Freehand and robotic SPECT both require closer consideration of the detector’s traject-
ory. Unlike diagnostic SPECT where the path of the gamma cameras around the patient is
defined by design, the trajectory in case of interventional SPECT is unknown in advance and
defined only during the scan, as has been outlined in section 7.1.2. Still, the path must be
chosen in a useful way, ideally leading to optimal data for tomographic reconstruction. To
this avail, a human operator possibly needs to be instructed about the next poses to acquire,
and a robotic system needs proper path planning anyway. In both cases, the core question is
how to characterise the difference between a ‘good’ and a ‘bad’ trajectory.

8.1. Geometry in a System Matrix

Thinking in a goal-oriented way, the quality of a trajectory could be defined via the quality of
the reconstructed image. Unfortunately, ‘image quality’ is hard to quantify [Her09, chap. 5.2],
and it depends very much on the actual setting of what is being imaged for which purpose.
Furthermore, it requires prior knowledge of some sort which may not be available. It is thus
desirable to define the quality of an acquisition in geometrical terms only, decoupling it from
the measurements.
A possible approach to do this would be to explicitly model the fields of view of the moving

camera. By computing intersections, an estimate of the spatial and angular coverage could be
obtained. Such a method would likely be laborious, and it would totally ignore the fact that
the geometrical model has already been established for the core tomographic reconstruction
problem.
Recalling the derivation of the least-squares approach in section 4.2.1, particularly eq. (4.17),

it has been said that the respective linear systemm ≈ Ac partitions the problem into measure-
mentsm, signal coefficients c, and the system matrix A which contains exactly the geometrical
interrelations between the two. Note that the system matrix abstracts away all the inform-
ation that one would typically consider when discussing geometrical properties of a system
such as basis functions, line integrals, etc. Also from a purely mathematical point of view, it
is natural to look at matrix A. Solving the linear system effectively means the inversion of
A (or ATA), and one would typically consider properties such as A’s rank or condition when
dealing with questions about the numerical stability of the process.

The project was carried out in cooperation with Tobias Lasser in 2012 and 2013 [Vog12; Vog13].
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In case of a diagnostic setup, system matrix A is defined by construction of the scanner.
For an imaging system without pre-determined sensor trajectories, however, system matrix A
can be thought of as being built up while measuring, potentially implicitly in a parameterised
sense. Consequently, when generating a detector trajectory, it is a useful strategy to pick
poses that make the linear system easier to invert in terms of a rank-like estimate.
Dealing with nuclear imaging, however, it has been said that the least-squares approach

cannot be assumed, and that likelihood-based modelling is necessary. This was motivated
by the fact that the measurements are considered as random variables, drawn from a Poisson
distribution. (See section 4.3.1.) On the other hand, the expected measurement values as given
in eq. (4.29) still obey the linear relation. Having decided to ignore the actually measured
values and their randomness, it is thus entirely valid to transfer the idea to freehand and
robotic SPECT: In order to compute a trajectory quality value, system matrix A and its
rank-like estimates should be considered.

8.2. Evaluating Geometry with Energy Measures

Aiming at the simple comparison of different trajectories as encoded by their respective system
matrices, one optimally obtains a scalar-valued energy estimate per candidate. Several such
measures have been described.

8.2.1. Column Sums

Let ãi = (aji) denote the ith column vector of the system matrix A:

A =

 | |
ã1 ã2 · · ·
| |


Each column vector ãi then contains the impacts of all J measurements onto the coefficient ci
of basis function bi. In particular, ãi = 0 implies that no measurement hit this basis function,
and it will not be possible to compute a meaningful coefficient ci at all. Vice versa, a high
accumulated sum hi :=

∑
j aji implies good coverage. For all basis functions, the individual

sums can be collected into a coverage vector h = (hi). Note that A has non-negative entries
only.
The column sums are rather easy to compute as h = AT1, and they can be updated in-

crementally while scanning. For this reason, commercial freehand SPECT systems1 use the
column sums as foundation for a user guidance scheme: The coverage vector contains a value
per voxel, and a volume rendering can be computed. Presented as supportive augmented
reality visualisation, the human operator will need to ‘fill in’ the region of interest using the

1. declipseSPECT, SurgicEye, Munich, Germany
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Figure 8.1.: The column sums of system matrix A lead to a vector of I components, with
one value per basis function (voxel). Consequently, the column sums can be visualised in the
region of interest (ROI) Ω. Freehand SPECT systems use this as foundation for an acquisition
guidance system where the user is required to fill in the ROI in a kind of augmented reality
drawing game. (Courtesy of Tobias Lasser.)

radiation detector. (See fig. 8.1.) While this visual guidance improves results significantly
over no guidance [Wen10b], an experienced operator is still required for clinically useful re-
constructions. The reason for this will become clear in the experiments. (See section 8.6.)
Based on the column sums, a scalar-valued energy measure can be defined via the `1-norm

of the coverage vector h:

ηC(A) := ‖h‖1 =
∑
i

hi =
∑
i,j

aji (8.1)

Maximising ηC should thus yield a better measurement coverage of the region of interest Ω.

8.2.2. Null-Space Estimation

Assuming a null-space (kernel) vector c̃, that is Ac̃ = 0, and a vector c solving Ac = m,
an additional solution vector can be trivially generated: A(c + c̃) = m. This fact is well-
known in mathematics where a matrix is defined to be invertible iff. its null-space contains the
zero-vector only, thus eliminating the ambiguity. Consequently, a good trajectory will aim to
reduce A’s kernel to 0. (See Zeng et al. [Zen11] for an application with respect to SPECT.)
To estimate the null-space of A, k different approximate solutions c̃k to Ac̃ = 0 can be

computed (using a few iterations of the conjugate gradients method, for instance) for random,
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non-zero initial values. ‖c̃k − 0‖2 should then be minimal in order for the kernel of A to be
close to 0. Note that as randomised approach, the method may miss non-zero-kernel elements.
For trajectory optimisation, a scalar-valued energy measure can be defined via the maximal

`2-norm of all such approximate solutions:

ηN (A) := −max
k
‖c̃k‖2 (8.2)

This energy will be higher for measurement configurations with less ambiguity. However,
each evaluation of this energy measure is relatively costly, as it involves solving several linear
systems iteratively.

8.2.3. Singular Values

Assuming that system matrix A is explicitly known and small enough, it can be decomposed
as

A = U


σ1

σ2

. . .


︸ ︷︷ ︸

=: D

V T

using singular value decomposition (SVD). The typical singular value spectrum of a system
matrix will show some large values with low indices, and some very low values with high indices.
(See fig. 8.2(a).) This shape is rather typical, and analysis of the singular value spectrum is a
common tool for linear inverse problems. (See Lasser et al. [Las07] for optical tomography, for
instance.) Even for badly conditioned matrices (caused by sub-optimal trajectories), however,
there will not be a true rank deficiency, and no clear threshold to distinguish relevant from
irrelevant singular values. Matrices with good condition, on the other hand, will show a very
similar spectrum, only with a steeper slope.
Consequently, an energy measure needs to consider the entire spectrum, and

ηS(A) :=
∑

i
σi = ‖diag(D)‖1 (8.3)

is a possible term [Vog12]. This energy value will yield higher values for better-conditioned
system matrices, however, it is only useful for comparing matrices of the same size. As
the number of columns equals the number of basis functions chosen (which is usually fixed
beforehand), this constraint relates particularly to the number of rows; that is, the number of
poses in a trajectory must be equal for the two matrices to compare.
Furthermore, computing the SVD of a large matrix is rather slow: The process consists of

two steps, a transformation into bi-diagonal form using Householder transformations, followed
by an iterative ‘clean-up’ to diagonal form [Gol65]. Considering the incremental nature of
collecting data while moving the detector, updating the SVD after adding a single row or
column to a matrix is an advantageous alternative over doing a full computation. This problem
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has already been investigated in the fields of Data Mining, Latent Semantic Analysis, and also
Computer Vision, and there are several approaches, depending on whether exact values are
required or whether approximations suffice. Also, some applications use the dominant singular
values only, and omit the smaller ones entirely.
Interested in the full spectrum, the incremental scheme suggested by Gu et al. [Gu94] and

extended by Chetverikov et al. [Che10] can be used. Assuming knowledge of the current
decomposition, A = UDV T

1 , an extended matrix A′ can be preliminarily decomposed:

A′ =

(
A

aT

)
=

(
U 0

0T 1

)
︸ ︷︷ ︸

=: M

(
D 0

zT ζ

)
︸ ︷︷ ︸

=: L

(
V T

1

vT

)
︸ ︷︷ ︸

=: NT

=

(
UDV T

1

zTV T
1 + ζvT

)
(8.4)

Here, z = V T
1 a ∈ RJ is the projection of a into the subspace defined by the rows of V1. The

other unknowns, ζ ∈ R and v ∈ RI , can be solved from the equation w := a − V1V
T

1 a = ζv

which is obtained from the last row of the decomposition of A′. If the additional vector aT is
linearly independent of the rows of A, v is orthogonal to all columns of V1, as required. Com-
puting the SVD of the inner – relatively small – square matrix L ∈ R(J+1)×(J+1) using stand-
ard methods yields the decomposition L = ŨD̃Ṽ T with both, Ũ , Ṽ ∈ SO(J + 1) orthogonal
matrices. Using this and the preliminary decomposition A′ = MLNT , the ‘economy-sized’
SVD of A′ = U ′D′V ′T1 is given by U ′ = MŨ , D′ = D̃, and V ′ = NṼ .

For trajectory estimation, this algorithm needs to be extended in order to support the
addition of linearly dependent rows [Vog12]. This situation appears to be uncommon in
other settings where real-world measurements are used, but may appear when searching for
additional sensor poses in a structured way. In this case, ‖w‖ ≈ 0 and ζ ≈ 0, as expected,
but v is usually no longer orthogonal to all columns of V1 – leading to errors in the following
step J+1→ J+2. This case must be detected, and v needs to be reinitialised by creating an
orthogonal vector by means of applying the Gram-Schmidt orthogonalisation procedure to a
random initial vector.
Note that these equations are valid for underdetermined systems only, as can be expected

in the scenario of interventional functional imaging. Equivalent rules can be developed for
overdetermined linear systems in a very similar way, but are omitted here for brevity. (See
Gu et al. [Gu94] and Chetverikov et al. [Che10] for in-depth explanations and analyses.)

8.2.4. Pivoted QR

Though the most famous, the SVD is only one member out of the set of rank-revealing
decompositions [Han98]. Another, considerably faster one is pivoted QR decomposition:

A = Q


r11 r12 · · ·

r22 · · ·
. . .


︸ ︷︷ ︸

=: R

P T
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(b) Pivoted QR

Figure 8.2.: Two spectra of a sample system matrix: Original singular values σi (blue, left) as
obtained via SVD, and pseudo-singular values |rii| as obtained using Pivoted QR (red, right).
Note the exponential scale of the vertical axis.

In this case, Q is orthogonal and P a permutation matrix (and thus also orthogonal). Not
only is the structure of this decomposition very similar to the one of SVD, the spectra diag(D)

and |diag(R)| are also correlated. (See fig. 8.2; a detailed mathematical description of this
correlation is given by Fierro et al. [Fie95].)

The cost function can thus be adapted to

ηQ(A) :=
∑

i
|rii| = ‖diag(R)‖1 (8.5)

and a very similar behaviour in comparison to the SVD-based measure ηS can be expec-
ted [Vog13]. (See fig. 8.3 for the energy evolution of random paths.) In contrast to SVD,
however, the computation is non-iterative and thus considerably faster, also in comparison to
the incremental scheme, and ηQ can replace ηS .

8.3. Trajectory Optimisation

Treating ηQ as efficient variant of ηS , effectively three energy measures have been described,
allowing the comparison of trajectories. The column-sum- and kernel-based measures can be
evaluated rather arbitrarily, but the spectrum-based measure requires matrices of the same
size for meaningful results.

Usually, however, the scenario will not require to compare different given trajectories, but
an optimal next destination needs to be computed. In case of robotic SPECT, this next pose
can be sent to the robot’s control system directly, and in case of freehand SPECT, the user
could be instructed in a suitable way to move towards this location.

120



Trajectory Optimisation

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

iterations

en
er

gy

QR
SVD

(a) Example 1

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

iterations

en
er

gy

QR
SVD

(b) Example 2

Figure 8.3.: Evolution of the SVD- (blue) and QR-based (red) energies ηS and ηQ for two
random trajectories. The horizontal axis shows the number of measurements used for setting
up the system matrix, that is the number of system matrix rows. The vertical axis denotes
the energy value. From a certain, small number of poses onwards, the two curves behave very
similarly and run almost in parallel.

For incremental real-time optimisation of the trajectory, the time required for the detector
to move from a previous position to the current location pj can be used for calculating the
next best destination pj+1. (See fig. 8.4.) In more detail, a surface model S of the patient
(stored as a triangle mesh) is used to describe the permissible region where the detector
tip may be located. This model can be obtained interventionally, for instance by means
of laser scanning, and it should include reachability limitations as posed by the particular
operating room scenario. While the detector is on the way to location pj ∈ S corresponding
to measurement j, the system matrix Aj containing the known measurement poses from p1

to pj is computed. To find the next best destination pj+1 of the trajectory, candidate poses
p∗ ∈ S on the surface model are evaluated by adding the corresponding system matrix row
a∗ to Aj and computing

η

(
Aj

a∗

)

for one of the energy measures η. Repeating this for all triangles yields a ‘measurement
priority’ distribution for the entire surface model. (See fig. 8.5.)

Note that the theoretically optimal extension a∗ would be orthogonal to all previous rows.
Unfortunately, the problem of finding such a most orthogonal sensor perspective is com-
putationally not feasible, but it can be approximated well using random sampling [Str06].
Therefore, when sampling the mesh S, each triangle of the bounding mesh is visited, and a
candidate random pose p∗ is generated within its boundary. The triangle yielding the optimal
cost (that is, the highest priority for measurement) is stored, and the respective random pose
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current location pj

current dest. pj+1

initial location

Figure 8.4.: Schematic sketch of the greedy approach: While moving from the initial to the
current location, the optimization scheme tests several candidates (gray). As soon as a new
destination must be picked, the best currently computed candidate is chosen. Ideally, the
sampling of candidates is complete at that time, but using randomised testing allows early
termination.

Figure 8.5.: Screenshot of the actual trajectory optimisation programme. The triangulated
bounding box consists of regions where measurements could be collected (red and green).
Red triangles denote planes that should be visited while sufficient measurements are already
available for the green triangles; the colour is directly computed from the energy η. Note that
the traversed path (cyan, with purple measurement poses) correlates to green triangles.
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is taken as the next destination pj+1 := p∗. As soon as the detector has reached the cur-
rent destination pj and a sufficiently substantiated next destination pj+1 has been found, the
per-triangle-costs and random poses are cleared, and the process starts again.
Apart from just optimising one of the cost functions η, it is also possible to impose additional

constraints such as a certain minimal step length or reachability on the surface model S from
pj . This is done by excluding poses violating one of these conditions from the optimisation
process. Particularly the minimal step size is important, in order to leave enough time for
planning the next step.
Note that this evaluation can be performed for several candidate poses in parallel, and it

can thus be accelerated linearly by adding additional computing nodes. When visiting the
triangles in a randomised order, one can also expect to obtain a significant distribution of the
‘measurement priority’ long before all triangles have been processed, and an early abort is
possible, greedily choosing the best known candidate so far.
Also note that the paths between pj and the random poses p∗ are not considered while op-

timising. This is necessary for the spectrum-based energy measures, as they can only compare
matrices of the same size. As soon as the next destination is fixed, however, measurements
are acquired continuously while moving towards it.

8.4. Implementation Notes

Before dealing with actual results, note that the system matrix A is usually not known ex-
plicitly. (See section 4.2.1.) This fact does not present problems for the column-sum- and
null-space-based measures, but it is prohibitive for the spectrum-based measures.
Even if the matrix fits into memory, the trajectory optimisation scheme requires quick

computation of the energy measures. For this reason, instead of the real system matrix, it
makes sense to always use a downsampled version of the original setup: The volume of interest
should be discretised using considerably less voxels, all pixels of a camera should be fused into
a virtual single-pixel detector with the same field of view, and the system matrix should be
built up from a sparse version of the actual trajectory. The rationale behind this is that
even though accuracy is lost, the general geometry will still be contained in the compressed
matrix, and an optimal trajectory with respect to the compressed problem will lead to a good
trajectory for the original system as well.

8.5. Experiments and Results

In order to test the proposed approach, the optimisation framework has been implemented
on a 2.3 GHz Intel Core i7 quad-core portable computer with 8 GB of RAM using Boost
threads for parallelisation. The candidate poses are computed using a downsampled voxel
grid (10× 10× 7), the triangles are visited in random order, and early termination has been
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used if time ran out and at least 15 % of the triangles had been evaluated. A minimal step
length of 50 mm was enforced, and each position on the triangle mesh was supposed to be
reachable from any other position.
The prototype implementation is thus able to generate positions in real-time for all measures

(except ηN , see below), i.e. it can provide measurement poses often enough for the detector to
keep moving until sufficient measurements have been acquired. (A typical computed trajectory
in an early stage of the optimisation is shown in fig. 8.5).
The optimisation scheme was evaluated for all distinct energy measures ηC , ηN , ηQ in

numerical simulations. Using the best energy measure ηQ, a first real experiment was also
performed in a rSPECT setup where a robotic arm has been executing the optimised trajectory.

8.5.1. Trajectories

Several experiments have been performed to compare trajectories maximising the different
measures. In all cases, three adjacent sides of a bounding box of size 120× 120× 87 mm have
been measured, thus simulating the limited perspectives available during a typical sentinel
lymph node biopsy. The generated paths can be categorised as follows:

• Spectrum trajectories have been generated using the control scheme presented in this
article, and attempt to optimise the QR-based measure ηQ. For the simulation exper-
iments, such paths have been recorded to disk with a smooth interpolation between
positions pj . (See fig. 8.6(a).)

• Colum-sums and null-space trajectories have been computed similarly, but instead op-
timising the column-sum measure ηC and the null-space measure ηN , respectively. Dur-
ing kernel estimation, 20 iterations of the conjugated gradients method have been run
for every random initialisation.

• Random trajectories have been created by smoothly connecting random poses in random
triangles. The same smooth interpolation as above has been used for connecting these
poses. (See fig. 8.6(b).)

• Human trajectories have been recorded by a human expert operator in reality using an
optical tracking system, and were later re-mapped to fit the surface model. The path
has been enhanced further by moving the detector as close as possible to the surface
model, and by using a smooth interpolation method to guarantee good coverage. This
makes the human path directly comparable to the other trajectories. (See fig. 8.6(c).)

• Grid or structured pattern trajectories follow a simple regular motion pattern uniformly
distributed on the surface, with the detector orthogonal to the bounding box. This seeks
to simulate the motion pattern of inexperienced operators. (See fig. 8.6(d).)
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(a) Optimised (b) Random

(c) Human (d) Grid

Figure 8.6.: Sample trajectories (blue) with orientations (red). The black lines are the edges
of the bounding box. The vertical axis is the z-axis, the horizontal plane is the x/y-plane.
Note that the optimised path has few clusters and good coverage. At first glance, the grid
path shares this property, but there are many complementary poses with only three viewing
directions in total.

125



Optimal Sensor Trajectories

Each trajectory was generated to contain about 2000 measurements, corresponding to a
clinically acceptable scanning time of 3–5 minutes. For the optimised and random trajectories,
10 randomised trajectories were generated per class, and the mean behaviour with standard
deviations is considered in plots and when giving numbers.

8.5.2. Evolution of Optimised Energy

First, assume for the moment that the rank-motivated energy measure ηQ really prefers better-
posed reconstruction problems and that such linear systems yield better reconstructions.
Hence, it was checked whether the optimisation scheme really results in better numerical
condition of the system matrix, and the evolution of energy values ηQ with increasing path
length was compared for the sample trajectories. (See fig. 8.7.)
The optimisation scheme using ηQ (called spectrum) indeed yields the largest condition

estimates for the linear problems set up from the respective trajectories, as can be expected
by design of the method. More importantly, the level of the spectrum-optimised energies,
including standard deviation, is considerably higher than the level of the other approaches.
Only the null-space based measure is also performing better than chance level, while the
more structured (among them a human expert) and state-of-the-art methods (column sums)
perform below the random trajectories.

8.5.3. Numerical Simulations

Next, the assumption of better reconstruction results guaranteed by higher system matrix
condition was checked using a simulated setting. Consequently, numerical phantoms showing
different configurations of spherical activity hotspots were generated, and measurements were
simulated using a mathematical forward acquisition model [Las07]. Neither was noise added,
nor was it attempted to model nuclear statistics, in order to focus on purely trajectory-related
influences on the convergence of the image reconstruction process.
Using such virtual acquisitions for the different settings, reconstructions were generated

for increasing numbers of measurements, up to about 2000, thus simulating the incremental
scan. The reconstructions were performed on a 71× 71× 50 voxel grid (voxel size 1.4 mm3),
using 80 full iterations of ART with a relaxation factor of 0.1. The major difference to a real
measurement – apart from nuclear statistics – is that data is only simulated at control points,
and not continuously at a certain sampling rate while moving the detector.
In the resulting reconstructions, the centres of gravity of all reconstructed activity hotspots

were compared with their respective ground truth locations. The centres of gravity were
extracted from the reconstruction results by starting at the ground truth location and walking
uphill towards a local intensity maximum. This identification method is justified as intra-
operative nuclear reconstructions typically show rather simple structures with (almost convex)
activity hotspots, where higher activity is usually reconstructed at the centres of the active
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Figure 8.7.: Energies ηQ (vertical axis) over trajectory length (horizontal axis). Apart from
the ‘grid’ and ‘human’ paths where only single typical examples are shown, 10 (randomised)
examples have been computed per class, and the plot shows the mean curves with standard
deviation. It is not surprising that more measurements (thus more system matrix rows) lead to
larger energies, the decisive property is thus the growth of the curve and its relative magnitude.
Here, the spectrum-based measure (maroon) clearly features fastest growth and highest value,
thus yielding optimal condition for the linear problem solved during reconstruction. Only the
null-space based measure (magenta) is also performing better than chance level (cyan), while
the more structured (green and blue) and state-of-the-art methods (red) are inferior.
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regions. In particular, this process is more robust than sphere matching or blob identification,
as it does not depend on thresholding parameters.
Figure 8.8 shows the result of such an experiment with a particularly difficult configuration.

There, two spherical activity hotspots with different radii (7 mm and 14 mm) have been
simulated, located closely next to each other (21 mm separation). In this setting, only good
trajectories yield a result where the two hotspots are distinguishable. In fact, for the column-
sum-based trajectories as well as the human and grid trajectories, a separation of the hotspots
was not possible. Conversely, starting at around 1000 measurements, the spectrum and null-
space based as well as the random trajectories allow separation of the hotspots. The lowest
mean error with lowest variance is shown by the spectrum-based method.

8.5.4. Actual Measurements

To confirm the simulation results, a first real experiment using a rSPECT setup was performed
using a phantom with radioactive spheres and a robotic arm for detector movement.
A single-pixel gamma detector2 is mounted to the wrist of an robotic arm.3 (See fig. 8.9.) In

addition to the coordinate frames obtained via forward kinematics, transformations provided
by an optical tracking system4 were used for calibration and localisation of the phantom.
The setup was used to image a box phantom containing three hollow spheres (diameter

9.86 mm) filled with a Tc99m solution with an activity of 1 MBq arranged in a triangular
fashion, thus mimicking a sentinel lymph node case. (See fig. 8.10.) The trajectory optimisa-
tion software used a simple triangulated surface model of the box, accessible from three sides,
and used the spectrum-based measure ηQ to generate 1665 measurement positions. The robot
is fed with these measurement positions directly and moves to these poses based on inverse
kinematics calculations using the triangulated surface model of the box for collision detection.
The resulting data is reconstructed on a 120× 120× 60 voxel grid (voxel size 1.25 mm3) using
60 ML-EM iterations.
A central slice of the three-dimensional reconstruction is shown in fig. 8.10. The locations of

the three hotspots are recovered with reasonable accuracy, considering that the reconstruction
problem is massively underdetermined (system matrix A ∈ R1,665×864,000). A separation of
the two closer hotspots (which are separated by 15 mm) was not possible.

8.6. Discussion

The singular value decomposition of the system matrix A is a common tool to study imaging
geometries [Las07]. As the singular value decomposition is costly to compute, even with

2. Crystal Photonics, Berlin, Germany

3. UR5, Universal Robots, Odense, Denmark

4. Polaris Vicra, Northern Digital, Waterloo, Canada
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Figure 8.8.: Behaviour of error with increasing number of measurements. The vertical axis
shows the mean error magnitude between the ground-truth and reconstructed centres of all
activity hotspots in millimetres; the horizontal axis denotes the number of measurements being
used for reconstruction. Apart from the ‘grid’ and ‘human’ paths where only single typical
examples are shown, 10 (randomised) examples have been computed per class, and the graph
shows the mean curves with standard deviation. Using several hundred measurements, all
methods yield reconstruction results, however, the smallest error values (with small standard
deviation) are obtained from the proposed spectrum-optimised paths (maroon).
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Figure 8.9.: Robotic arm with gamma detector attached to wrist. Also visible are a blue
box phantom containing radioactive spheres, as well as retro-reflective marker spheres for the
infrared tracking system.

Figure 8.10.: Central slice (left) of the three-dimensional reconstruction of the radioactivity
distribution in the box phantom containing three hollow spheres filled with a Tc99m solution
(right). The ground truth positions of the spheres are marked by circles in red.
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incremental computing schemes [Vog12], the fast, rank-revealing pivoted QR decomposition
should be used instead [Vog13]. The diagonal entries of the R matrix are correlated with the
singular values of A and hence also allow an evaluation of the imaging geometry. Based on this
finding, the spectrum-based energy measure ηQ can be used to evaluate detector trajectories
in a randomised optimisation scheme. This can also be done using other energy measures:
a mathematically motivated null-space-based measure ηN , and a column-sum-based measure
ηC . In order to judge the resulting trajectories, they can be compared to random trajectories
as well as a structured, uniformly distributed grid trajectory and a trajectory from a human
expert.
The column-sum-based trajectories allow for consistent results with low standard deviation

in the 10 trial runs, but cannot improve results over a human expert or a structured grid tra-
jectory, both of which show comparable performances. This can be explained by realising that
high column-sum values can also be achieved by complementary poses instead of intersecting
views: Assume a set of rows together covering every voxel exactly once:

aT1 =
(
∗ 0 0

)
(8.6)

aT2 =
(
0 ∗ 0

)
(8.7)

aT3 =
(
0 0 ∗

)
(8.8)

Then, the column-sum measure can be maximised by repeating theses rows (and thus their
respective sensor poses) over and over again, but the linear system will not contain more
information. Instead, a rank problem will occur due to linear dependency:

∗ 0 0

0 ∗ 0

∗ 0 0

0 0 ∗
0 ∗ 0

 =


— aT1 —
— aT2 —
— aT1 —
— aT3 —
— aT2 —

 


— aT1 —
— aT2 —
— aT3 —
— 0 —
— 0 —

 (8.9)

Obviously, ‘coverage’ in terms of column sums is to be understood as mere presence of some
data, but required is ‘coverage’ in an angular sense, supporting perspectives from different
directions. This leads to a worse performance in comparison to a human expert or grid
trajectory which contain more intersecting views. This also fits in with clinical experience,
where human experts typically acquire better images than operators relying purely on the
column-sum guidance [Wen10b]. (See fig. 8.1.)
Random trajectories show high variation in reconstruction quality, but in average perform

better than the human expert or the structured grid trajectory.
The null-space trajectories employ optimisation based on the system matrix condition via

kernel estimation and show good results particularly in the region of up to 800 measurements.
After that, their performance levels off, because of the computational complexity involved in
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computing the energy measure: As the system matrix size grows, the optimisation algorithm
is no longer able to visit most of the triangles and starts hitting the minimal triangle testing
rate of 15 %. In fact, the average triangle sampling rate of the null-space method is 20 % over
all measurement poses on the testing hardware while the column-sum- and spectrum-based
methods achieve 85 % on average. The null-space method actually even violates the real-time
requirement occasionally, requiring extra time to sample at least the minimal rate of 15 % of
all triangles.
Finally, the spectrum based trajectories show the best performance with very low deviations,

particularly for higher measurement numbers of 1700 poses and onwards. This behaviour
is perfectly acceptable, as clinical data sets typically feature 2000 to 3000 measurements,
corresponding to scanning times of 3–5 minutes.

8.7. Summary

This chapter has presented a set of energy measures for evaluating the numerical condition of
a system matrix. Based on them, the geometry of a tomographic setting can be evaluated, and
an optimisation scheme was devised to compute detector trajectories. Consisting of a series
of perspectives, the respective poses can be automatically executed by a robotic arm. The
feasibility of this approach was shown with a real phantom experiment, where a rSPECT setup
with a robotic arm holding the detector executed the spectrum-based optimised trajectory.
Adding a robotic device to the surgical theatre is naturally a complex undertaking [Tay91].

Besides additional cost, taking up extra space and adding additional points of failure, various
safety issues need to be taken care of. A simpler approach might be to instruct the human
operator by projecting the computed trajectory positions directly onto the patient using a
steerable laser pointer, or by using an augmented reality visualisation. While this still includes
the human factor, and while it will yield less reproducible results, the incremental, real-time
nature of the optimisation scheme will be able to adapt to any deviations caused by the human
operator while following the computed trajectory.
The optimisation scheme requires a surface model of the patient to select the measurement

poses. For the experiments presented here, the object to be scanned was a box phantom,
allowing to use a simple triangulated bounding box. In a clinical setting, the bounding surface
would have to be acquired for example from segmented pre-operative data or a depth model
as obtained by a laser or an optical time-of-flight camera. It would even be possible to have
the surgeon define a rough bounding box on-the-fly using a tracked pointing device directly
on the patient, but this would give up the added detection sensitivity of having the detector
as close to the surface as possible. Reachability constraints also have to be incorporated into
this surface model.
While the optimisation scheme was inspired by fhSPECT, the approach only relies on prin-

ciples and concepts used in general tomographic reconstruction, and is thus not limited to this
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modality. Using different measurement modelsMj , the approach is also directly applicable to
other tomographic modalities such as robotic C-arm CT. Used in an offline fashion, it would
also be possible to optimise scanner designs.
The approach only takes into account the patient-specific surface model. It is also con-

ceivable to add information from the actual detector measurements into the cost-function
if necessary and justifiable. Note that such an approach adds the risk of adding bias into
the reconstructions and potentially missing critical hotspots completely. Hence this exten-
sion would also require corresponding, registered pre-operative imaging data to ensure correct
reconstructions.
Finally, among the articles published on robotic interventional SPECT so far, the work

presented in this chapter needs to be considered as pioneer towards a mechanised patient-
specific modality. (See section 7.3.) Still, it is a long way to go before the setup can be
considered complete. In particular, the method relies on a sufficiently accurate surface model
to be provided, and it only yields sensor poses, relying on the robot’s control software to
accurately follow the given trajectory in a secure way. Particularly the latter is a complex
separate problem yet to be tackled.

This entire chapter is a combination of the original research papers [Vog12; Vog13], revised and partly extended.
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9. X-ray Interferometry

Most applications of X-ray imaging limit themselves to attenuation, providing images
with strong contrast between highly absorbing structures such as bones or artificially contras-
ted arteries, and lowly absorbing background such as tissue. From a physical point of view,
however, more information can be acquired.

9.1. Imaging Concepts in Microscopy

Recalling that X-light and visible light are both forms of electromagnetic radiation at different
energy levels, consider optical microscopy [Bra98] and its variants first: The direct equivalent
to X-ray attenuation is ‘ordinary’ bright-field microscopy where a thin specimen is placed in
a beam of light. The specimen attenuates the latter and then hits an imaging plane1 where
a transmission image can be seen showing bright-field contrast. (See figs. 9.1(a) and 9.2(a).)
Using dyes, parts of the specimen can be coloured that would not be visible else; the same
principle is employed in X-ray imaging when using radio-opaque contrast agents. (See Bardell
[Bar04] for the early history of optical microscopy; the modality is popular since at least the
17th century.)
A different approach is taken in dark-field microscopy (also darkground microscopy). Again,

the specimen is placed in a beam of light, and while the light is attenuated as usual, some
photons will be scattered away from the primary beam. If the imaging plane is set up in a way
such that the main beam misses it, and only the scattered photons hit it, a dark-field contrast
image will become visible relating effectively to the ability of the specimen to scatter light,
rather than its ability to attenuate it. (See figs. 9.1(b) and 9.2(b).) This may make structures
visible that are not or only barely visible in bright-field images. (See Gage [Gag20] for the
history of dark-field microscopy; the modality was described already in the 17th century, but
it was particularly popularised after fundamental findings on microscopy by Abbe [Abb04] in
the late 19th century.)
The third variant is phase-contrast microscopy [Zer42b; Zer42a; Mar47] which exploits the

wave-properties of light. The idea is that a specimen can not only attenuate the beam, it
can also shift the phase of the light wave. In order to make this phase contrast image visible,
the beam of light is effectively split up into a reference beam bypassing the specimen, and a

1. The imaging plane is to be understood in a theoretical sense. In reality, it will likely be the retina of a
human eye, or photo-sensitive electronics in a digital camera.
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(a) Bright-field microscopy is based on the attenuation of a beam of light. Traveling through the
object, the amplitude of the wave (dark yellow) is decreased following the Beer-Lambert law with
respect to the reference wave (light yellow). Contrast depends on the presence of regions of different
attenuation ability.

(b) Dark-field microscopy is based on photons scattered by structures in the object. The main beam of
light misses the eye of the observer, leading to a black picture unless scattering structures are present
which divert some of the photons into the direction of the viewer.

(c) Phase contrast microscopy is based on the fact that suitable transparent objects may still shift
the phase of the light wave (dark yellow) with respect to the reference wave (light yellow), despite
insufficient attenuation. Contrast depends on the presence of regions of different phase shifting ability.

Figure 9.1.: Microscopic imaging is based on different interaction effects between matter and a
light wave, leading to different ‘flavours’ of image contrast: Bright-field (a), dark-field (b) and
phase-contrast microscopy (c). In all cases, the observer is situated on the right-hand side.
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Phase Contrast and Dark-Field under X-light

(a) Bright-field (b) Dark-field (c) Phase contrast

Figure 9.2.: Bright-field (a), dark-field (b) and phase-contrast (c) images of an unstained
microscopic sample. (‘Artistic’ depictions based on original images of epithelial cells.2)

scattered beam traversing it. Afterwards, the wave-shapes of the two beams can be related
again to yield the phase shift. In microscopy, this is done optically by uniformly attenuating
the reference beam and shifting its phase by −90◦. Overlaying this modified reference beam
with the scattered specimen beam leads to an interference image on the image plane which
shows the phase contrast of the specimen. (See figs. 9.1(c) and 9.2(c).) This concept was
developed by Frits Zernike [Zer35; Zer36] in the early 1930s, and he was awarded the 1953
Nobel prize in Physics [Zer53] for the discovery.
An intriguing aspect considering the different variants of microscopy is that each of them

pictures a different physical property of the specimen, and they can be used complementarily.
In particular, a transparent sample with minimal bright-field contrast may show considerable
phase or dark-field contrast. The classical alternative technique to image a transparent sample
is staining, that is the use of dyes to improve bright-field contrast by colouring. However,
this approach is quite invasive and may kill the cells, thus rendering observation of living
organism impossible. Complementary image signals may yield improved contrast right away,
thus particularly enabling the observation of living cells. (Note that there are even more
variants of microscopic contrast, like differential interference contrast.)

9.2. Phase Contrast and Dark-Field under X-light

Considering the advantages of the complementary imaging signals in microscopy, it would be
highly beneficial to obtain the equivalent signals during clinical X-ray exams as well. Note

2. Unfortunately, it has not been possible to obtain real sample images licensed for publication, despite nu-
merous attempts. Different universities, companies and other facilities have turned out to be unwilling or
(technically or organisationally) unable to provide respective pictures. Due to the importance of the figure,
sketches – though simplistic – appear to be justified.
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Figure 9.3.: Typical Talbot carpet for a simple grating. A planar wave-front is diffracted by a
grating (left), leading to a characteristic interference pattern including an image of the grating.

in particular that some X-ray contrasting agents bear risks for patients with certain precon-
ditions [Pas12; Rhe12], and it would be advantageous to have direct means of imaging body
parts of low X-ray attenuation contrast, particularly soft tissue.
Unfortunately, it is not trivial to translate the concepts to X-ray imaging, particularly due

to the ability of X-light to penetrate matter, and special lenses, gratings or crystals need to be
used. A first crystal-based X-ray interferometer was presented by Bonse and Hart [Bon65a;
Bon65b; Bon97] in 1965, and many more setups have been suggested since [Wei00b; Sta10;
Cha97b; Dav96; Mia99; Thi08; Sni95; Clo99; Gro06]. For decades, these techniques were
limited to research facilities as they require highly coherent (quasi-monochromatic) X-ray
illumination only provided by a synchrotron or an equivalent source.3

Only some few years ago, Weitkamp et al. [Wei05] and Pfeiffer et al. [Pfe06] have demon-
strated a novel setup for X-ray interferometry compatible with X-ray tubes, thus taking a
decisive step towards clinical application. An ‘ordinary’ setup of X-ray tube, specimen and
detector has been extended by inserting a source grating (G0) directly after the tube, making
the illumination sufficiently coherent, a phase grating (G1) between G0 and the specimen, and
an analyser grating (G2) directly in front of the detector. The latter two gratings (G1, G2)
form an interferometer. (See figs. 9.4 and 9.5.)
This setup uses two well-known physical effects: The interferometer (G1, G2) exploits the

Talbot effect according to which an image of a grating is repeated at a certain well-defined
distance, the so-called Talbot length, when exposed to a quasi-monochromatic beam of light.
(See fig. 9.3.) Named after Henry Fox Talbot who first described it in 1836 [Tal36], a physical
and mathematical description is due to John William Strutt (Lord Rayleigh), published in
1881 [Str81]. When a second grating (G2, analyser) of matching period is positioned at Talbot
distance from the first grating (G1, phase), and if an object distorts the wave-front in-between,
extended information about the object can be obtained by observing the changing interference

3. Recently, Compact Light Sources (CLS) have attracted attention as coherent X-light source, compatible
with the requirements of smaller facilities [Bec09b; Egg15]. A CLS is effectively a miniaturised synchrotron
where the electron beam collides with a laser ray, thus creating quasi-monochromatic X-radiation. (See
section 2.1.1, p. 15, for synchrotron radiation.)
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Figure 9.4.: Sketch of an X-ray grating interferometry setup. X-ray tube (T), source grat-
ing (G0), shifting phase grating (G1), specimen (a tooth in this sketch), static analyser grat-
ing (G2), and detector (D).

Figure 9.5.: Wide-angle view of the actual setup. From left to right: X-ray source (T) with
source grating (G0) directly in front of it, at the center the phase grating (G1), then a Eulerian
cradle with sample (S), and adjacent to it the analyser grating (G2, in the cross-shaped holder);
behind the latter the X-ray detector (D, hidden). (Courtesy of Christoph Jud.)
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Figure 9.6.: Raw X-ray images of a mouse as obtained in a grating interferometry setup. The
situation is static, but one of the gratings is shifted sideways, leading to different interference
patterns. The contrast of these images has been manually improved for better visibility.
(Courtesy of Guillaume Potdevin.)

patterns (caused by G1’s image and G2) when one of the gratings is slightly moved sideways.
This includes the object’s phase shifting and scattering ability, leading to the desired image
signals. Using a quasi-monochromatic X-light source such as a synchrotron, this setup can be
operated directly, leading to Talbot interferometry .

For a polychromatic source such as an X-ray tube, the radiation must be made coherent
(quasi-monochromatic) by means of the additional source grating G0. This effect was dis-
covered by Ernst Lau and published in 1948 [Lau48]. Again, the period of G0 and its distance
to the interferometer needs to be chosen correctly for the setup to work. The entire tube-based
setup is typically referred to as Talbot-Lau interferometer.

In order to finally obtain the three image signals already known from microscopy for a given
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Figure 9.7.: X-ray transmission, dark-field and differential phase contrast image signals ex-
tracted from the raw measurements of a mouse shown in fig. 9.6. The contrast of these images
has been manually improved for better visibility. (Courtesy of Guillaume Potdevin.)

specimen, multiple raw images are thus acquired while one of the interferometry gratings, usu-
ally G1, is shifted sideways. As described above, the raw images will show the same situation
with different interference patterns overlaid. (See fig. 9.6.) Consequently, the radiation in-
tensity at a single static location, like a certain pixel of the detector, will change due to these
patterns, and it will follow a sine-wave doing so. Comparing this wave to a reference curve
at the same location without a specimen, computed from so-called flat-field images, yields a
specific X-ray transmission value as usual, a differential phase contrast value describing the
phase shift and a dark-field or small angle scattering (SAXS) component describing X-ray
scattering [Pfe08]. Repeating this process for all pixels yields respective images. (See fig. 9.7.)
In more detail, considering a single static pixel p, the two sine-shaped curves first need to

be fit to the different raw intensities as obtained from the flat-field measurements and actual
images showing the object. This yields a reference curve Irp(tg) from the flat-field signal
without the specimen, and a measurement curve Isp(tg). The parameter tg denotes the shift of
the moving grating from its origin, and both interference curves use the same model [Bec10]:

Ip(tg) ≈ a0(p) + a1(p) cos

(
2π tg
d2

+ φ1(p)

)
(9.1)

Consequently, each of the curves is parameterised using three magnitudes, a mean value a0, an
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Figure 9.8.: Considering a single pixel, the fitted cosine-curve obtained from the actual meas-
urement (blue) may differ in three aspects from the reference curve (orange) as obtained
from the flat-field measurement: First, the mean value a0 may have decreased, indicating less
transmission (higher absorption). Second, the amplitude a1 may have decreased, indicating
scattering. Finally, the curves may be phase-shifted φr1  φs1.

amplitude a1, and a phase shift φ1. (d2 is a setup-specific constant, see Bech et al. [Bec10].)
Comparing the measurement interference curve with the flat-field curve, three changes may
have been caused by the specimen: The mean value may have decreased, indicating less X-ray
transmission, the amplitude may be smaller, indicating X-ray scattering, and phase-shift may
occur. (See figs. 9.8 and 9.9.) Consequently, the transmission for pixel p can be defined as

T (p) =
as0(p)

ar0(p)
, (9.2)

the respective scattering value as

V (p) =
as1(p)

as0(p)

ar0(p)

ar1(p)
, (9.3)

and finally the differential phase contrast value as

∇xφ(p) =
d2

λd
(φs1(p)− φr1(p)) . (9.4)

(λ and d denote further setup-specific constants, see Bech et al. [Bec10].)
Based on this method, the different image signals can be obtained in a rather simple setup,

compared to a synchrotron. Note, however, that several issues still need to be solved before
clinical imaging of living patients is possible: First of all, the gratings are rather small, thus
requiring small samples. Second, due to the stepping procedure and the additional attenuation
caused by the analyser grating between specimen and detector, the radiation exposure at the
sample is considerably higher than in a comparable ‘ordinary’ setup without gratings.
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(a) Attenuation (b) Dark-field (c) Differential phase contrast

Figure 9.9.: X-ray attenuation leads to a reduced mean of the interference curve (a), X-ray
scattering to a smaller amplitude (b), and a phase shift of the X-ray wave maps directly into
a phase shift of the interference curve (c). (Inspired by Andreas Malecki.)

9.3. Tomographic Imaging

An obvious extension of X-ray interferometry leads to tomographic imaging. In order to do
this, the stepping procedure as described above needs to be done for every relevant perspective.
Of course, the transmission signal can be reconstructed as usual, after conversion into line
integrals by application of the negative logarithm. (See fig. 9.10(a).)

9.3.1. Phase Contrast

For phase contrast, it must be considered that the signal is differential with respect to the
stepping direction of the phase grating. Consequently, the forward model for the signal requires
a differentiation operator. Defining a phase shift map µP(x) (equivalent to the attenuation
map µ(x) used in ‘classical’ CT), the forward model [Bec09a, chap. 3.2.2] is again based on a
line integral:

pj = − ∂

∂ t̂j

∫
Lj

µP(x) dx (9.5)

Here, pj denotes the jth differential phase contrast measurement, Lj the line of the respective
ray, and t̂j ∈ R3 is the normalised sensitivity direction, orthogonal to the grating lines and
parallel to the surfaces of the – mutually parallel – gratings. In order to reconstruct images,
several options exist. First, the phase contrast images can be numerically integrated and
reconstructed as normal line-integral data. Second, filtered back-projection can be modified
to use a special filter for integration in Fourier space [Bec09a, chap. 3.2.2]. Finally, a least-
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squares-problem can be defined that includes an additional differentiation operator D:

p = D A c (9.6)

Here, p = (pj) denotes the vector containing all differential phase contrast measurements, and
A is the usual system matrix as used for the transmission signal. Note that in this case, the
coefficients relate to an approximated phase-shifting signal µP, of course.
As expected, a tomographic reconstruction of the phase contrast shows improved soft-tissue

contrast [McD09]. (See fig. 9.10(c).) For this reason, tomographic phase-contrast reconstruc-
tions have become quite popular since the first demonstrations [Mom95; Mom96; Pfe07b;
Pfe07a; Bec09c; Don10], and they continue to be an active field of research.4 Examples with
promising results are mammography [Sta11; Wil14], particularly the non-invasive discrimina-
tion of malign and benign tumours [Wan14] based on micro-calcifications, and ex-vivo imaging
of plaques caused by Alzheimer’s disease [Pin12]. Note, however, that there is still a largely
unsolved problem, the issue of phase wrapping [Hah13]: Whenever the phase signal exceeds
2π, the value will be wrapped back into [0, 2π). This happens at spots with high phase con-
trast, for instance bones. At these locations, a value too low will be used for reconstruction,
leading to streak artefacts. (See fig. 9.10(c).)

9.3.2. Dark-Field

Considering the dark-field signal, a straight-forward tomographic reconstruction yields a volu-
metric representation of the respective X-ray scattering magnitudes. An appropriate for-
ward model resembling the Beer-Lambert law as given in eqs. (2.1) and (3.1), respectively,
is [Bec09a]:

dj = exp

[
−
∫
Lj

µD(x) dx

]
(9.7)

Here, dj denotes the jth dark-field measurement, Lj the line of the respective ray, and µD(x)

the scattering distribution over the volume of interest. After applying the negative logarithm,
the signal can thus be reconstructed as usual. (See fig. 9.10(b).)
The tomographic dark-field reconstructions of this kind can be of practical value when

isotropic scattering is of interest. Previous studies have shown its potential for lung and
breast imaging [Yar13; And05; Sid11], micro-bubble contrast agents [Arf10] and material

4. While there are fierce proponents of grating interferometry (GI) for medical X-ray imaging, others have
expressed considerable doubt about the technique and whether it will have any impact on clinical practice.
For instance, Raupach et al. [Rau11; Rau12] – representing a major manufacturer of clinical scanners holding
respective patents [Bau06; Hem08, among others] – conclude from theoretical studies that GI outperforms
‘normal’ attenuation CT only for very small voxel sizes. At the same time, due to different noise character-
istics, they claim that the radiation dose required in that case is prohibitively large. Based on that relation,
they compute a break-even point where GI becomes useful and conclude that only some few mammography
applications may benefit at all. In particular, they rule out GI for whole-body-imaging.
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(a) Attenuation (b) Dark-field (c) Differential phase contrast

Figure 9.10.: Two-dimensional sample reconstruction of a mouse. Attenuation (a), scattering
(b), and phase contrast (c). Note the considerably improved soft-tissue comparing (a) and
(c), but also the streak artefacts caused by phase wrapping in the last case. (Courtesy of
Guillaume Potdevin.)

testing [Rev11]. In all these cases, dark-field reconstructions have been shown to provide
contrast where the other two signals, phase-contrast and absorption, only yield poor results.

This chapter is partly based on co-authored publications, extended and revised where necessary.
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10. Directional Dark-field and Scattering Tensors

An important property of the dark-field signal has not been discussed yet: The signal
depends on the relative alignment of the small structures within the specimen causing the
scattering and the direction of the grating lines [Jen10a; Jen10b]. Consequently, when turning
the specimen around the viewing direction (rather than the tomographic axis), the signal will
change depending on the angle. Based on such data, a two-dimensional vector radiograph
can be reconstructed that shows the main scattering orientations, for instance using colour
coding, in a two-dimensional projection. Thus, the image hints at the tiny structures causing
the scattering effect. (See figs. 10.1 and 10.2.) This method has been shown to yield promising
results for the analysis of bone structure [Pot12; Sch14], for instance.
Consequently, the isotropic scattering volume reconstructed as explained in section 9.3.2

can be considered as some kind of scattering average that can be seen from all directions.
In particular, it does not capture the full information contained in the dark-field projections.
Tomographic reconstruction of the anisotropic component of the dark-field signal is thus a
highly interesting problem, but is has not yet gained much attention. Only recently, Malecki
et al. [Mal14; Mal13a] have presented tensor-valued tomographic reconstruction, thus taking
directional scattering information into account. The method uses a full directional sampling of
the dark-field signal as input data: In addition to the usual tomographic axis, the sample is also
rotated around the other two axes using an Eulerian cradle. Assuming a Gaussian scattering
model [Jen10b], the authors present a first mathematical model and a specialised SART-based
reconstruction algorithm, thus obtaining the first scattering tensor reconstructions. Informally
speaking, inspired by the shape of a three-dimensional Gaussian, they obtain an ellipsoid at
every voxel, and its size and shape hints at the structure of the specimen at this location. In
particular, plate-like scattering ellipsoids hint at fibre- or tube-like structures. (See fig. 10.3.)
The only other work on X-ray scattering tensor reconstruction has recently been presented

by Bayer et al. [Bay14]. In contrast to the aforementioned approach, this group uses the
single tomographic axis of rotation only and relies on extended mathematical modelling. In
particular, they do not reconstruct full scattering tensors, but projections of fibre directions
onto the tomographic plane, and thus a stack of two-dimensional projections rather than a
volume of three-dimensional shapes.
Tomographically reconstructing tensor-valued data, that is a shape per location, is generally

This project was carried out in cooperation with Tobias Lasser, Matthias Wieczorek, Florian Schaff, Andreas
Fehringer and Christoph Jud in 2014 and 2015 [Vog15a; Vog15b].
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Figure 10.1.: For vector radiography, the sample is rotated around the viewing direction (green
arrow). For tomographic reconstruction of scattering directions, the sample is additionally
rotated around the other axes (green and blue arrows), yielding an almost complete angular
sampling.

(a) (b) (c)

Figure 10.2.: X-ray vector radiography sample pictures of a knot made from a bunch of carbon
fibres. (See section 10.6 and fig. 10.9(a).) Turning the sample around the viewing direction
and observing the scattering signal allows to extract information about the fibre directions
from two-dimensional projections. Note that the carbon fibers are too small to be resolved
directly, but their scattering effect becomes clearly visible. The figure shows two different
colouring schemes for the same sample in (a) and (b), and a colour direction indicator in (c).
(Courtesy of Florian Schaff.)
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Figure 10.3.: Expected X-ray scattering (blue ellipsoids) at fibre- or tube-like structures (grey).
Vice versa, the smallest half-axes of reconstructed scattering ellipsoids will later be interpreted
as fibre directions for visualisation.

rather uncommon. Another well-known tensor-based imaging modality is diffusion tensor
magnetic resonance imaging (DTI) [Le 86; Fil09]. (See section 3.4.2.) Only visualisation
techniques [Con99] are shared with this modality.

The approach of Malecki et al. has been improved by the author of this thesis, and several
algorithmic improvements have been presented [Vog15b; Vog15a]. Among them are, most
importantly, a novel, more generic description for solving X-ray tensor tomography (XTT)
problems, and two ways to enforce tensor-shapes during reconstruction.

10.1. A Forward Model for Anisotropic Scattering

Scattering is not a scalar entity (as X-ray attenuation is), but a tensor-valued one, that is a
three-dimensional shape per location. This requires a more complicated mathematical model.

Malecki et al. [Mal14; Mal13a] propose to consider a finite set of K pre-defined, normalised,
well-distributed sampling directions ε̂k ∈ R3 rather than a tensor. Here, and in the remainder
of the chapter, the ‘hat’ will be used to denote normalised vectors, that is ‖ε̂k‖2 = 1 ∀k =

1, . . . ,K. For each of these ε̂k and every voxel xi, a corresponding scattering coefficient
ζk(xi) ∈ R will be reconstructed, and the tensor itself can later be approximated by voxel-
wise fitting of tensor descriptions to these ‘bouquets’ of weighted directions. (This entire
process is sketched for a single voxel in fig. 10.4, a visual account of a larger region is given in
fig. 10.5.) Note that the exact orientation of the sampling directions is rather arbitrary, and
the choice does not require any knowledge about the expected reconstruction outcome. The
sampling directions are just auxiliary, virtual entities, allowing to avoid an explicit description
of the scattering tensor at a given location by considering its projection onto a finite set of
well-distributed reference directions instead. They are chosen from a single hemisphere only,
as the scattering tensors are supposed to be symmetric.

Based on this approach, Malecki et al. derive a forward model for X-ray scattering [Bec10;
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(a) Sampling directions (b) Coefficients (c) Ellipsoid fit

Figure 10.4.: Sampling directions, and ellipsoid fitting for a single voxel. Usually, K = 13

directions are used for reconstruction, but in this sketch, K = 7 for clarity. They consist of the
standard base vectors – red, green, blue in (a) for x, y, z, respectively – and diagonals – black.
For a given voxel x, reconstruction yields a scattering coefficient ζk(x) for every sampling
direction ε̂k. These are indicated by bold black marks in (b), and they are mirrored to
the other hemisphere along the negative sampling direction, yielding the small black marks.
Finally, an ellipsoid can be fitted to that scaled, mirrored ‘bouquet’ afterwards (c).

(a) Scaled sampling vectors (b) Ellipsoids with axes

Figure 10.5.: Different variants of the same data, a downsampled detail from an actual result.
Reconstruction is performed in terms of scaling the sampling directions (a), the scattering
tensors are obtained by retrospectively fitting ellipsoids in a voxel-wise fashion (b). The
colours indicate the directions of the smallest half-axes, see fig. 10.8(a).
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Figure 10.6.: Viewing directions and Eulerian cradle. Only the perspectives marked by red
lines are in the ‘normal’ viewing plane as used in standard CT applications. Blue lines mark
additional off-plane perspectives. The dashed black line indicates the trajectory of the X-ray
source-detector “camera” around the green cube, representing a specimen. The coverage gaps
are due to limitations imposed by the Eulerian cradle. (Photo of the cradle by courtesy of
Florian Schaff.)

Rev12; Mal13b], extending the isotropic model given in eq. (9.7):

dj = exp

[
−
∫
Lj

∑
k

〈
|̂lj × ε̂k|(ζk(x)ε̂k), t̂j

〉2
dx

]
(10.1)

Here, dj ∈ R denotes the jth scalar dark-field measurement,1 and Lj the corresponding ray
with normalised direction l̂j ∈ R3. As has been defined for eq. (9.5), the normalised sensitivity
direction t̂j ∈ R3 is orthogonal to the grating lines and parallel to the surfaces of the – mutually
parallel – gratings, and thus depends on the perspective during measurement j.
Considering eq. (10.1) in more detail, the true scattering measurement at every voxel x

along the ray is generally modelled as finite sum of K measurements along the pre-defined
sampling directions ε̂k. For every such summand, two things need to be taken into account:
Scattering must be possible to occur at all, considering the normalised direction l̂j of the
incoming X-ray with respect to ε̂k. This fact is modelled by the magnitude of the cross-product
| · × · |, thus excluding head-on views. Furthermore, if scattering occurs, only components

1. As usual, despite acquiring two-dimensional projections, individual pixels are treated as independent meas-
urements with corresponding rays. Index j = 1, . . . , J extends over all pixels of all projection images
hence.
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along the normalised sensitivity direction t̂j contribute to the measurement as modelled by
the scalar product 〈·, ·〉 [Rev12; Mal13b]. Vice versa, in order to have a good sampling of the
scattering tensors, more than just the usual tomographic scanning perspectives are taken into
consideration while scanning. (See fig. 10.6.)
Returning to eq. (10.1), factoring out the (unknown) squared scattering coefficients ηk(x) :=

ζk(x)2 from the squared scalar product and defining the weight factor

vkj := (|̂lj × ε̂k|〈ε̂k, t̂j〉)2 (10.2)

yields a formulation very similar to the Radon transform as defined in section 4.1.1:

− ln dj =

∫
Lj

∑
k

vkj · ηk(x) dx (10.3)

=
∑
k

vkj

∫
Lj

ηk(x) dx (10.4)

Note that the factors defined in eq. (10.2) are independent of the unknowns, and can thus be
precomputed for more efficient reconstruction.

10.2. Tomographic Reconstruction of Tensors

Obviously, eq. (10.4) is a weighted sum of line integrals. In particular, in a discretised setting,
it can be rewritten as scalar product

mj = − ln dj =
∑
k

vkj 〈aj ,ηk〉 =
∑
k

vkj a
T
j ηk (10.5)

where ηk ∈ RI is the vector of the squared coefficients for the kth sampling direction for all
voxels (again, I is the number of voxels). As has been done before, aj denotes the system matrix
row for measurement j, and is thus part of the ‘standard’ matrix as used for an equivalent at-
tenuation reconstruction. Recall that this vector contains geometric information about the ar-
rangement of X-ray source, specimen and sensor during measurement j, an information already
included abstractly in eq. (10.4) as ray Lj . Let A = (aj), A ∈ RJ×I , again denote the entire
system matrix describing all J line integrals. Furthermore, let Dk = diag(vk1, vk2, . . . ) denote
a diagonal scaling matrix containing the weighting factors from eq. (10.2) for sampling direc-
tion k. Then, using eq. (10.5) and defining the measurement vector m = (mj) = (− ln dj), a
huge linear system can be derived:

m =


v11a

T
1

v12a
T
2

...
v1Ja

T
J

η1 +


v21a

T
1

v22a
T
2

...
v2Ja

T
J

η2 + · · · +


vK1a

T
1

vK2a
T
2

...
vKJa

T
J

ηK (10.6)
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=


v11

v12

. . .

v1J



aT1

aT2
...
aTJ

η1 +


v21

v22

. . .

v2J



aT1

aT2
...
aTJ

η2 + · · ·(10.7)

= D1 A η1 + D2 A η2 + · · · + DK A ηK =
∑
k

Dk A ηk (10.8)

= (D1 A, D2 A, . . . , DK A)


η1

η2

...
ηK

 (10.9)

≡ Hs (10.10)

This linear system has K times as many unknowns than the corresponding system for com-
puting a ‘traditional’ tomographic attenuation reconstruction: The original system matrix A
is of size J × I, and H is of size J × IK. Recall that in practical settings, that is when recon-
structing a sufficiently sized three-dimensional volume, the system matrix A is already far too
large to fit into computer memory, and projector software is typically used that simulates the
ray instead of handling the matrix directly, thus computing the entries of A on the fly [Feh14].
When reconstructing scattering tensors, it is desirable to use existing software infrastructure

that has been put into place for other tomographic reconstruction scenarios rather than solving
eq. (10.10) directly. Consequently, in their original work, Malecki et al. suggest a specially
crafted variant of SART [And84; Sør14] for reconstructing the unknown squared coefficients
ηk. (See section 4.2.4 for the original algorithm.)
Using eq. (10.5), however, a much more generic approach can be taken [Vog15a], sup-

porting arbitrary iterative solvers such as particularly the better-behaving method of Con-
jugate Gradients (CG) [Hes52; She94]. (See section 4.2.5 for the original algorithm.) Let
x1 = approximate(A, b, x0) denote an auxiliary function running a few iterations of an it-
erative linear solver, thus very approximately ‘solving’ the linear system Ax = b. Then, an
iterative algorithm solving the tensor reconstruction problem (10.5) can be defined: A single
iteration q essentially consists of ‘approximately solving’ K modified linear systems

(Dk ·A) t
(q)
k = m̃

(q−1)
k (10.11)

for each sampling direction k using function approximate as previously defined, where right-
hand side vector

m̃
(q−1)
k = m−

∑
l 6=k

Dl ·A · η
(q−1)
l (10.12)

denotes a reduced measurement vector relevant for sampling direction k, based on the estimates
η
(q−1)
l of the previous iteration, and t

(q)
k an intermediate, temporary vector. The latter is then
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used to compute the current iterate via relaxation as

η
(q)
k =

K − 1

K
η

(q−1)
k +

1

K
t

(q)
k . (10.13)

Altogether, this proposed approach can be thought of as simultaneously solving K linear sys-
tems in an interleaved sense. (See alg. 10.1 for the entire proposed generic tensor reconstruction
approach.) Note that the scattering coefficients need to be extracted after reconstruction of
all ηk by component-wise application of the square root:

ζk(x) =
√
|ηk(x)| (10.14)

Using the absolute magnitude of ηk is a valid security measure, considering the symmetry of
the tensors.

η
(0)
k = 0 ∀k
for iterations q do
for sampling directions k ∈ {1, . . . ,K} do
WFPk = Dk ·A · η

(q−1)
k {pre-compute weighted forward projections}

end for

for sampling directions k ∈ {1, . . . ,K} do
RHS = m−

∑
l 6=kWFPl {compute right-hand side}

TEMP = approximate(Dk ·A,RHS,η
(q−1)
k ) {run a single solver iteration}

λ = 1/K {update coefficients with relaxation}
η

(q)
k = (1− λ) η

(q−1)
k + λ TEMP

end for

... {optionally enforce constraints here}
end for

Algorithm 10.1: Generic tomographic X-ray tensor reconstruction. A denotes the system
matrix describing the imaging process, Dk a scaling matrix containing weighting factors as
defined in Eq. (10.2). m is the measurement vector, and η

(q)
k a vector containing the qth

iterate of the voxel-wise squared scattering coefficients corresponding to sampling direction k.
approximate is a function running a few iterations of an arbitrary iterative linear solver.

10.3. Ellipsoid Fitting

After reconstruction, that is after executing several iterations as described in section 10.2,
voxel-wise scattering coefficients ζk for the sampling vectors ε̂k have been recovered. Ma-
lecki et al. propose to fit ellipsoids to these weighted vectors in order to obtain voxel-wise
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tensors. In particular, they use an iterative ellipsoid fitter [Li04], apparently intended for
rather degenerate cases where ellipsoids need to be matched to just a couple of ill-distributed
sample points.
However, the sampling locations are well-distributed, and principal component analysis

(PCA) [Pea01; Hot33; Bis06] can be used instead of the iterative approach [Vog15a], thus
saving considerable computation time. (See fig. 10.4.)
In more detail, at every voxel xi, a set of 2K direction vectors

Si := {±
√
|η1(xi)| · ε̂1, ±

√
|η2(xi)| · ε̂2, . . . } (10.15)

= {±ζ1(xi) · ε̂1, ±ζ2(xi) · ε̂2, . . . } (10.16)

can be defined by scaling the normalised sampling directions ε̂k with the positive and neg-
ative reconstructed corresponding coefficients ζk(xi) = |ηk(xi)|1/2. Again, this is due to the
symmetry of the scattering tensors. Note that the mean of this set trivially equals 0. Let
Ci ∈ R3×3 denote the covariance matrix of Si. Then, its eigen-decomposition

Vi · Λi = Ci · Vi (10.17)

yields a diagonal matrix Λi ∈ R3×3 containing the three eigenvalues λi,1, λi,2, λi,3 of the
set’s covariance matrix Ci, and an orthogonal matrix Vi ∈ O(3) ⊂ R3×3 containing the
corresponding mutually orthonormal eigenvectors vi,1, vi,2, vi,3 as column vectors.
Let ηi =

∑
k |ηk(xi)|/K denote the average squared scattering magnitude at voxel xi, and

λi = (|λi,1|+ |λi,2|+ |λi,3|)/3 the corresponding average eigenvalue magnitude. Define a size
correction factor σi := ηi/λi for scaling the statistically defined ellipsoid to the point set S.
Then, the scattering ellipsoid at voxel xi is defined by half-axis lengths ri,1 = [σiλi,1]1/2,
ri,2 = [σiλi,2]1/2, ri,3 = [σiλi,3]1/2 with respect to the orthonormal basis formed by vectors
vi,1, vi,2, vi,3.

10.4. Constraint Enforcement

As it will turn out in the experiments, unconstrained reconstruction of the scattering coeffi-
cients yields useful but noisy results. Instead of just fitting ellipsoids retrospectively, it makes
sense to enforce ellipsoidal shapes during reconstruction. (See section 4.4 for constraint en-
forcement in general.) Therefore, the scattering coefficients should be post-processed at the
end of every iteration as indicated in the last comment of alg. 10.1, thus forcing them to evolve
in the vicinity of the manifold of ellipsoid-shaped tensors [Vog15a].

10.4.1. Hard Ellipsoid Constraint

An obvious approach to reach this aim is to fit ellipsoids after every iteration, and to project
the reconstructed squared coefficients ηk onto them [Vog15a]. This method will be referred
to as hard ellipsoid constraint as the coefficients will really be forced into ellipsoidal shapes.
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In detail, after the computation of all squared coefficients η(q)
k in iteration q, every voxel xi

is visited, and an ellipsoid is fitted as described in section 10.3, thus obtaining a coordinate
frame Vi = [vi,1,vi,2,vi,3] ∈ R3×3 and corresponding half-axes ri,1, ri,2, ri,3 ∈ R. Then, the
reconstructed coefficients η(q)

k are replaced with the projections of the respective normalised
sampling directions ε̂k onto this ellipsoid.
In detail, to do this for every sampling direction k and voxel xi, first rotate the (by

design normalised) vector into the ellipsoid’s coordinate frame, thus obtaining a unit vec-
tor [xi,k, yi,k, zi,k]

T = V T
i ε̂k. By definition, the scaled vector σi,k · [xi,k, yi,k, zi,k]T , σi,k ∈ R,

resides on the surface of the ellipsoid if

σi,k
2

[(
xi,k
ri,1

)2

+

(
yi,k
ri,2

)2

+

(
zi,k
ri,3

)2
]

= 1. (10.18)

This equation can simply be solved for σi,k2, and considering that squared coefficients are
reconstructed, the correctly projected coefficients are

η
(q)
i,k = σi,k

2 (10.19)

for all voxels xi and directions k. (See fig. 10.7(a) for a sketch.)

10.4.2. Soft Ellipsoid Constraint

Alternatively, a softer variant favouring ellipsoids but allowing some more freedom can be
used. Essentially, this is done by smoothing the K direction coefficients per voxel, over the
ellipsoid [Vog15a]. Consequently, this approach will be referred to as soft ellipsoid constraint.
Note that still only individual voxels and their K coefficients are considered; a neighbourhood
is not taken into account as one would do for smoothness constraints in regularised X-ray
attenuation reconstruction. (See section 4.6 for a general discussion of regularisation.)
In detail, first compute the pair-wise absolute scalar products between all K normalised

sampling directions, and obtain a matrix S ∈ [0, 1]K×K , Sk,l = |〈ε̂k, ε̂l〉|. In order to increase
the influence of more similar sampling directions, additionally apply a Gaussian and obtain a
matrix G ∈ RK×K , Gk,l = exp[−(Sk,l − 1)2/2µ] with some selectable variance µ. The larger
µ is chosen, the higher will be the influence of the smoothing.
To process coefficient k, a matching convolution kernel can be defined by normalising the

kth row of G to a sum of 1, denoted as gTk ,
∑

l[g
T
k ]l = 1. Collecting all K coefficients into a

vector, the regularised kth value for voxel xi computes as

η
(q)
i,k = 〈gTk , [η

(q)
i,1 , . . . ,η

(q)
i,K ]〉. (10.20)

In other words, this approach can be considered as angle-dependent Gaussian smoothing of the
squared coefficients ηk(xi) over all directions k for every individual voxel xi. (The smoothing
kernel is illustrated in fig. 10.7(b).)
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(a) Hard constraint (b) Soft constraint

Figure 10.7.: Constraint enforcement. In both cases, the reconstructed coefficients are forced
to be close to the manifold of valid ellipsoids while iterating. The hard constraint (a) projects
back onto ellipsoids directly, where a – in this toy example exaggerated – scattering coefficient
(dotted black line) is shortened appropriately (solid black line). The soft constraint smoothes
the coefficients with respect to the other sampling directions of the same voxel respecting the
angular relation, thus favouring ellipsoids in a relaxed sense. This is done using a Gaussian
smoothing kernel based on the scalar product as shown in (b), ranging between 0 (blue) and
1 (yellow), before normalisation.

10.5. Visualisation

A last, vital point for X-ray tensor tomography is a proper visualisation of the results. This is
of particular importance as the voxel-wise tensors can not be accurately shown using rendering
techniques intended for scalar-valued data [Eng06; Eng04]. Apart from plotting the ellipsoids
themselves, a prominent option is to visualise derived shapes.

Interested in fibre- and tube-like structures, an obvious choice is a streamline visualisa-
tion [Vog15a] based on the classical Runge-Kutta method (RK4) [Run95; Kut01; Edw07].
This metaphor is well-known in the field of diffusion-tensor magnetic resonance imaging
(DTI) [Con99; Fil09; Ten02], and commonly referred to as tractography. As sketched in
fig. 10.3, plate-like ellipsoids hint at fibres in the direction of the smallest half-axes. Then,
RK4 can be employed to trace streamlines along these smallest half-axes, adapted to account
for the symmetric, ‘bidirectional’ nature of ellipsoid axes (compared to a vector field). This is
done by inverting directions queried from the raw ellipsoid axes whenever the scalar product
with the direction of an incoming fibre is negative, i.e. new directions are chosen to continue
the streamline in forward direction. (See alg. 10.2.) Furthermore, colour coding is used to
give cues about the orientation of these fibres. (See fig. 10.8 for an example.)

Note that the streamlines do not necessarily correspond to real fibres, and there is no inten-
tion for this to be the case. The streamlines are to be interpreted as scattering visualisation,
however, using a model which is likely similar to the invisible structure.
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for steps q = 1, ..., N do
p1 = s(q−1), d1 = direction(p1) {set first intermediate point, obtain direction}
if ‖d1‖ < T then
terminate {enforce to move in relevant regions only}

end if
if 〈d1,d

(q−1)〉 < 0 then
d1 = −d1 {invert direction to follow the reference direction}

end if

p2 = s(q−1) + 1
2 H d1 {compute second intermediate point, obtain direction}

d2 = direction(p2)

... {perform the two checks as above}
p3 = s(q−1) + 1

2 H d2 {compute third intermediate point, obtain direction}
... {perform the two checks as above}
p4 = s(q−1) +H d3 {compute fourth intermediate point, obtain direction}
... {perform the two checks as above}

d(q) = 1
6(d1 + 2 d2 + 2 d3 + d4) {compute complete direction}

... {perform the two checks as above}
s(q) = s(q−1) +H d(q) {compute next streamline point}

end for

... {process or visualise streamline s(0), ..., s(N)}

Algorithm 10.2: Streamline tracing using RK4. The method direction(x) denotes a lookup
function yielding the appropriate smallest ellipsoid half-axis at a given voxel x ∈ R3. In the
reference implementation, this was simply done by a nearest-neighbour lookup. The point s(0)

is a streamline seed-point, and d(0) = direction(s(0)) the corresponding initial fibre direction.
The seed-points are chosen from a regular grid where the reconstructed smallest half-axes
exceed a certain threshold T . Spacing of the seed-points, step size H, threshold T , fibre-
length N and similar parameters are chosen intuitively to optimise the visual result. Once the
given algorithm terminates, it is repeated for the same seed-point s(0), this time following the
opposite direction d(0) = −direction(s(0)).
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(a) (b)

Figure 10.8.: Streamline visualisation and colour coding. Colours sampled from a sphere (a)
are used to give visual cues about the orientation of the ‘fibres’. Note that the colour ball is
symmetric with respect to the x-y-, x-z-, and y-z-planes. In a sample picture of the carbon
knot (b), looking down from a slightly elevated perspective, vertically (green), horizontally
(red) and obliquely (orange and yellow) oriented parts can be easily distinguished.

10.6. Experiments and Results

The reconstruction algorithm has been implemented within CampRecon [Wie14], a C++
framework for solving linear inverse problems. The discrete integration along lines Ax and its
adjoint ATb are approximated roughly via intersections between ray and pixels using projector
software as proposed by Siddon [Sid85], employing the GPU-based X-ray projector developed
by Fehringer et al. [Feh14] in OpenCL. All experiments have been run on a computer with
dual Intel Xeon E5-2687W processors and a Nvidia Tesla K20 accelerator.
In general, reconstructions of three datasets have been computed, the carbon ‘knot’, a

knotted bunch of carbon fibres embedded in hot glue, the tree ‘branch’, a short piece of raw
wood, and a ‘tooth’. (Photographs of the samples are given in fig. 10.9.) X-ray images of
all samples have been acquired in an experimental setup. (See fig. 9.5.) 732 projections of
321 × 321 pixels have been used for the knot, 551 projections of 301 × 301 pixels for the
branch, and 902 projections of 701× 701 pixels for the tooth, with trajectories resembling the
one shown in fig. 10.6.
All samples were measured at an acceleration voltage of 60 kVp. Eight phase steps were

recorded per projection with a flat panel detector2 with pixel pitch of 127 µm. The exposure
time was 1 s per phase step. A π/2 phase grating for the design energy of 45 kV composed
of 8 µm high Ni lines and period of 5 µm was used. The two other gratings were absorption
gratings with 170 µm high Au lines and a period of 10 µm. The interferometer was symmetric

2. Varian, Palo Alto, USA
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(a) Knot (b) Branch (c) Tooth

Figure 10.9.: Photographs of the samples. Knot (a), branch (b), and tooth (c). (Photos of the
knot and the tree branch by courtesy of Andreas Malecki and Christoph Jud.)

with both inter-grating distances being 92.7 cm.
Each of the datasets was reconstructed without constraint enforcement, with hard, and

with soft ellipsoid enforcement, each time with K = 13 sampling directions. In all cases,
100 iterations of alg. 10.1 have been executed and no other stopping criterion was in force.
A single iteration of CG was used as function approximate. Note that this corresponds
to a single Landweber step with respect to the sub-problem. For the soft constraint, an
experimentally established smoothing variance of µ = 0.1 was generally used, unless stated
otherwise. Reconstruction times are about 1.75 hours for the branch (2513 voxels), 2 hours
for the knot (2013 voxels), and 15.5 hours for the tooth (301 × 501 × 291 voxels). Relating
the number of voxels with the input projections, it is clear that the linear system m = Hs as
defined in eq. (10.10) is underdetermined in all experiments. The ratios of measurements to
unknowns are 24.3 % for the branch, 70.4 % for the knot, and 77.7 % for the tooth, respectively.
Furthermore, a reconstruction of the knot produced with the original SART-variant pro-

posed by Malecki et al. has been obtained for comparison.

10.6.1. Numerical Behaviour

In order to check the behaviour of the three algorithm variants (unconstrained, soft, and hard
ellipsoid constraint), the normalised residual norms

r(q) := ‖m−
∑
k

Dk ·A · η
(q)
k ‖2 / ‖m‖2 (10.21)

have been computed for iterations q ∈ {1, . . . , 100}, and also the normalised mean updates

∆(q) := mean
k
‖η(q)

k − η
(q−1)
k ‖2 / ‖η(q)

k ‖2. (10.22)

Sample plots of these sequences for the knot and the tree branch are given in fig. 10.10
and 10.11. There, the curves for both measures flatten out with increasing number of iter-
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Figure 10.10.: Behaviour of the algorithm for the knot. The plots show the normalised residual
norm r(q) as defined in eq. (10.21) over iterations q (left) and the normalised mean update ∆(q)

as defined in eq. (10.22) over iterations q (right). The unconstrained version yields smaller
residuals, but the updates are noisy.

ations. The unconstrained variant tends to reach a smaller residual norm, while the update
norms appear to oscillate. Vice versa, the constrained variants show larger residual norms,
but smooth updates. For other datasets, similar curves can be obtained.

10.6.2. Comparison with State of Art

Next, in order to compare the new method with the original SART-based approach of Ma-
lecki et al., compare an unconstrained reconstruction of the knot was compared with a reference
result. (See fig. 10.12.) As Malecki’s results can not be considered as ground truth, a visual
comparison is considered sufficient.

10.6.3. Knot

Fig. 10.13 shows volume renderings of raw scattering coefficients relating to a single sampling
direction, but for the three different constraint enforcement schemes. Most importantly, the
unconstrained version shows considerable streak artefacts, and the constrained versions do
not, hinting at a beneficial behaviour of constraint enforcement.

Fig. 10.14 shows streamline visualisations of the knot. As can be seen, enforcing the two
constraints yields visually smoother fibres that are more densely packed. Again, note that
these fibres visualise the scattering ellipsoids, and are not to be considered reconstructions of
the raw carbon fibres.
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Figure 10.11.: Behaviour of the algorithm for the tree branch. Again, the plots show the
normalised residual norm r(q) as defined in eq. (10.21) over iterations q (left) and the norm-
alised mean update ∆(q) as defined in eq. (10.22) over iterations q (right), and yet again, the
unconstrained version yields smaller residuals, but the updates are noisy.

(a) Attenuation (b) Malecki’s reconstruction (c) Novel reconstruction

Figure 10.12.: Comparison of attenuation reconstruction (a), Malecki’s tensor reconstruction
(b), and an (unconstrained) tensor reconstruction following the proposed approach (c). The
first image is included for reference, to show that scattering data is of a considerably different
nature than usual attenuation reconstructions. The two scattering reconstructions are largely
equivalent, considering the different algorithms with different parameters.
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(a) Unconstrained (b) Soft constraint (µ = 0.10) (c) Hard constraint

Figure 10.13.: Volume renderings of the knot ’s scattering coefficients for sampling direction
ε̂k = [0, 0, 1]T . The unconstrained reconstruction (a) shows strong streak artefacts, the two
constrained versions (b) and (c) are much clearer.

(a) Unconstrained (b) Soft constraint (µ = 0.10) (c) Hard constraint

Figure 10.14.: Streamline visualisation of the knot ’s scattering ellipsoids. The streamlines are
supposed to follow the directions of the carbon fibres, see fig. 10.9(a), but are not intended to
accurately reconstruct individual fibres. The unconstrained version (a) shows noise, the two
constrained versions (b) and (c) are visually considerably smoother. The ‘waves’ in the lower
right appear to be additional scattering caused by the sample holder.
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10.6.4. Branch

Fig. 10.15 shows streamline visualisations of the branch. For this dataset, enforcing ellipsoid
constraints has even more prominent effects. Considering the structure of wood, scattering
will be caused primarily by the tiny vessels transporting water towards the leaves. That
is, streamlines are supposed to run mainly in parallel to the axes of the branches. In the
unconstrained case, reconstruction of scattering along the main branch fails almost entirely,
but the constrained versions are able to recover more reasonable scattering streamlines there.
This time, the smoothing parameter µ was also modified for the soft constraint. In particu-

lar, a ‘combing’ effect can be observed for stronger constraint enforcement where streamlines
are nicely aligned to each other, but ‘combed’ away from their expected location. (See the
side branches in fig. 10.15(d).) On the other side, a smaller value of µ will increase the amount
of noise but cause the reconstruction to stay closer to the data. Especially the side branches
appear to benefit from a smaller parameter, as the ‘combing’ effect is considerably reduced,
and the main branch still reconstructs properly.

10.6.5. Tooth

The reconstruction results of the tooth are given in fig. 10.18. This sample is particularly
intriguing: Teeth generally consist of a hard crown of highly mineralised enamel, and a root
covered by cementum. Below these layers, the core of the tooth consists of dentine and,
embedded within, the pulp chamber containing living tissue, blood vessels and nerves. Dentine
is a fibrous material and less mineralised than enamel. Tiny dentinal tubules (about 2 µm in
diameter) are passing through it in radial direction, between pulp chamber and the surface
(but not through the enamel). These tubules are generally not visible in X-ray attenuation
reconstructions of usual resolution, due to their small size. (See fig. 10.16.)
Despite this, however, the scattering caused by them can be measured and reconstructed.

Note that the results in fig. 10.18 have been masked using the reconstruction of the attenuation
signal. This is necessary as the contents of the pulp chamber, relicts of the tissue, cause
considerable isotropic scattering themselves – clearly visible as distinct black region in the
scattering projection in fig. 10.17(c).
The influence of constraint enforcement is similar to the one observed for the other samples.

However, at the lower parts of the roots, the soft constraint also yields streamlines caused by
pulp chamber scattering.

10.7. Discussion

As shown in the first experiments, the proposed reconstruction algorithm apparently shows
reasonable numerical behaviour in terms of the energy measures. Plots similar to the ones
shown in fig. 10.10 can be produced for all experiments that have been conducted so far. Note
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(a) Unconstrained (b) Soft const. (µ = 0.08)

(c) Soft const. (µ = 0.10) (d) Hard constraint

Figure 10.15.: Streamline visualisation of the branch. Scattering is supposed to be caused
by the tiny tubular vessels embedded in wood that transport water towards the leaves. The
streamlines are thus expected to run mainly in parallel to the individual branches. The
unconstrained version (a) fails to recover useful scattering along the main branch. The lightly
constrained versions (b) and (c) show more reasonable scattering there. The hard constraint
(d) overshoots and produces wavy patterns along the main branch, and introduces a ‘combing’
effect for the other branches. The latter can already be seen in (c).
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Figure 10.16.: A tooth consists of a root of dentine covered by cementum, and a crown of
enamel. The pulp chamber is situated within the dentine, and it contains blood vessels and
nerves. Tiny tubular structures, the dentinal tubules, are passing through the dentine in
roughly radial direction. The latter are usually not visible in images of standard resolution.

(a) Transmission (b) Phase contrast (c) Dark-field

Figure 10.17.: Three image signals for a sample perspective of the tooth: Transmission, phase
contrast and dark-field. Note the strong isotropic scattering in the vicinity of the pulp cham-
ber, visible as distinct black region in (c). The contrast of these images has been manually
improved for better visibility, and the images have been cropped. The structure in the lower-
left quadrant is the sample holder.
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(a) (b) (c)

(d) (e) (f)

Figure 10.18.: Reconstruction results of the tooth. Volume rendering of X-ray attenuation (a)
showing enamel (white) and dentine (gray). Equivalent attenuation volume rendering showing
dentine only (b). Scattering streamlines obtained without constraint (c), with soft constraint
with µ = 0.08 (d) and µ = 0.10 (e), and with hard constraint (f). Scattering is caused by
dentinal tubules, tiny structures in radial direction, as indicated by the streamlines. The pulp
chamber was obtained by masking.
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that these plots only provide hints that the iteration does not become unstable, they neither
indicate image quality nor do they prove convergence.

Comparing with the state of art, the unconstrained variant of the new algorithm yields a
result quite similar to Malecki’s original SART-modification, considering the different nature
and parameters of the two methods.

The constrained variants of the new method have been shown to produce considerably less
artefacts and visually smoother, non-oscillating updates. As most notable example, the main
branch of the wood sample apparently requires some kind of constraint enforcement, to push
the reconstruction towards a reasonable result. On the other side, exaggerated constraint
enforcement may lead to new artefacts, particularly unexpected wavy patterns or ‘combed’
directions, as can also be seen for the tree branch sample, for instance. It appears that con-
straint enforcement is necessary, but its influence must be limited. It seems that soft constraint
enforcement with a conservatively chosen parameter µ is the most promising approach.

In general, a remarkable feature of X-ray tensor tomography is that scattering effects caused
by sub-voxel-sized structures can be recovered, thus giving insight into the microstructure.
Considering the experiments presented above, this holds for both, the vessels in the branch,
and the dentinal tubules in the tooth. Of course, highly important future work3 will be
an exact correlation of X-ray scattering results with suitable high-resolution pictures of the
samples, through µCT or microscopy, for instance.

An important consequence of the work is that the forward model using sampling directions
as given in eq. (10.1) and expecting ellipsoids appears not to be entirely correct, despite yield-
ing useful results. This conclusion needs to be drawn from the fact that, even after flattening
out, the residual norms are still rather large, particularly for the knot, and from the fact that
stronger constraint enforcement causes the results to deteriorate, showing the ‘combing’ pat-
terns as described. From the perspective of the author of this thesis, three possible conditions
are conceivable: First, the model including the sampling directions is sufficiently correct itself,
but the assumption of a Gaussian scattering model and ellipsoids, respectively, is too simple
to describe the scattering effect. As the reconstruction itself is agnostic of assuming ellipsoids,
however, the problem should have been solved by weaker constraint enforcement in this case.
Second, the K = 13 sampling directions may be chosen too sparsely, thus improperly model-
ling particularly the forward projection. Third, the entire model may only partially describe
the dark-field signal, and additional effects should be considered in the model. Considering
the visual quality of the reconstructions, the author of this thesis tends toward the latter ex-
planation. For this reason, the approach should be reconsidered from both, a mathematical as
well as a physical perspective. In particular, it will be interesting to see an integrated forward
model based on a proper manifold-based ellipsoid description as proposed by Wieczorek et al.
[Wie15b].

3. Christoph Jud has conducted extensive such studies, especially on a tooth, and a detailed article will appear.
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Considering the proposed algorithm alone, many further interesting mathematical questions
are still open and will need to be tackled in future work. As pointed out by Per Christian
Hansen, it should be possible to position the proposed algorithm in the context of other,
well-established solution algorithms, such as column-based block iterative algorithms [Sør14],
for the huge system defined in eq. (10.10). Particularly interesting will be an investigation
of two points: First, the algorithm computes the weighted forward projections WFPk based
on the previous iterates, and thus exclusively uses the previous state to update the solution.
This decision has been made from an engineering perspective, and to avoid bias towards the
scattering coefficients that are processed earlier. From a mathematical point of view, however,
it may be beneficial to only use the previous state where necessary and the already known
current state where possible. The second question is the dependence on the exact choice of
function approximate. In this context, it will also be useful to attempt to solve the original
linear system directly. More advanced mathematical topics include an investigation of the
convergence, and the influence of the constraint enforcement schemes onto it. Finally, another
important open question is inter-voxel regularisation such as total variation minimisation, and
an interesting scheme has already been demonstrated by Wieczorek et al. [Wie15b].

10.8. Summary

A new processing chain [Vog15a; Vog15b] for X-ray tensor tomography has been described. In
particular, a generic formulation for solving the inverse problem using arbitrary linear solvers
has been detailed, firmly based on the forward model and avoiding the tight coupling to SART,
along with constraint enforcement schemes improving the reconstructions considerably. Fur-
thermore, a way for quick recovery of the ellipsoids and streamline visualisation for scattering
tensors has been demonstrated.
Tensor reconstruction of X-ray scattering in general may be a promising technique. As seen

in the experiments, it is possible to visualise effects caused by sub-voxel structures, thus allow-
ing detailed insight that is infeasible when using attenuation information only. A lot of work
still needs to go into X-ray tensor tomography, besides the theoretical questions mentioned
above: At this point, the mechanical design of the setup requires small samples, and the ra-
diation exposure is considerable. The latter is due to both the large number of acquisitions
(more perspectives, more acquisitions per perspective), and the additional absorption caused
by the interferometer grating between sample and detector, thus requiring higher radiation at
the specimen in order to obtain good detector readings. Nevertheless, application in ex-vivo
imaging or material testing is well within reach today, and improvements are subject of active
research.

This chapter is based on co-authored publications, extended and revised where necessary.
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11. Summary and Closing Words

This thesis has attempted to first present a general overview over the tomographic recon-
struction problem, including a quick description of the historical development, physical and
technical principles, and mathematical approaches to invert the measurement process in order
to obtain sectional images. Then, three projects attempting to solve problems going ‘beyond’
the classical setting have been discussed: A scheme compensating for motion, an approach
towards finding optimal sensor trajectories in real time for an interventional imaging setting,
and finally, the reconstruction of scattering tensors from the X-ray dark-field (or small angle
scattering) signal. These projects are selected from the work done by the author during his
studies, and appendix A lists the remaining ones for completeness.

The first two projects both relate to interventional imaging modalities. In our time, dia-
gnostic scanners have reached a fantastic quality, and computers have become fast enough
to work gainfully with this data. Interventional imaging on the other hand still provides
ample space for improvement. Some such techniques are rather mature, like externally ap-
plied ultrasound echography or X-ray angiography, and are used in clinical practice. Others
such as robotic ultrasound or the modality discussed in this thesis, freehand/robotic SPECT,
are rather young and still require many problems to be solved. In general, the challenge is
to acquire images in a setting that is not as well-defined and carefully engineered as in the
diagnostic cases, leaving space and time to the surgeons. The author is confident that inter-
ventional imaging will see many more applications in the future, closely interleaved with the
work-flow of the surgeons.

Probably of a more radical nature is the development of novel imaging modalities, and the
third project falls into this category. X-ray grating interferometry has laid the foundation
for revolutionary imaging devices yielding information yet again orthogonal to the images
provided by the existing modalities. Some problems have already been solved so far, and
many more lie still ahead, waiting to be tackled, and cooperation between many different
communities is required to bring the respective scanners into clinics, eventually making phase
contrast and (directional) dark field imaging available to practitioners.

In both cases, once the pending issues are solved and the modalities become fully access-
ible, a second layer of challenges will unfold: Computer scientists have made many different
suggestions for post-processing and exploiting pictures in the past, and diligently continue to
propose further ones. For instance, employing state-of-the-art machine learning techniques,
objects can be identified, extensive statistical data can be collected, or even diagnoses can
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be suggested. It will be thrilling to see the impact of novel signals, and how they affect the
performance (and thus the role) of computers in medicine.
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A. Additional Projects and Cooperations

Besides the major projects described above, the author has had the opportunity to work on
additional projects over the years.

Medical Augmented Reality (Marco Feuerstein, Tobias Reichl, Thomas Wendler)
During 2006 and 2007, the author has contributed to several medical augmented reality pro-

jects. Core responsibility was spatial and temporal calibration of tracked ultrasound probes.
That is the computation of both, the rigid transform relating the tracking target and the
ultrasound image, and the temporal offset between tracking updates and ultrasound image
formation. Both pieces of information are essential to fuse ultrasound images with data
provided by other synchronised sources. The results were subsequently used for different ap-
plications, among them navigation for radio-frequency needle ablation [Alc07], laparoscopic
imaging [Feu07b; Feu08; Feu09] and hand-held nuclear imaging [Wen07a; Wen08].

Quality Estimation for Non-Linear Optimisation (Ruxandra Lasowski, Martin Brokate,
Christian Clason, Selim Benhimane)
In 2008, the author has supported a project seeking registration of a two-dimensional tomo-

graphic slice into a three-dimensional volumetric dataset [Las08b; Las08a]. Due to the extreme
ill-posedness of this problem, a unique optimum can not be expected. Aim of the author’s
work [Vog08] was to characterise the cost function potential around the supposed optimum, to
identify similarly ‘optimal’ alternative solutions, and to devise a visualisation scheme involving
all possible solution candidates.

Multi-Organ Segmentation (Kensaku Mori, Takayuki Kitasaka, Makiko Sakashita, Yas-
uhito Suenaga, Andreas Keil, Marco Feuerstein)
In 2007, the author has had the great opportunity to spend some time in Japan, working on a

project on automatic multi-organ segmentation employing expectation maximisation [Vog09a].

Interventional Freehand and Robotic SPECT (Tobias Lasser, José Gardiazabal, Phil-
ipp Matthies, Thomas Wendler)
Besides path planning for rSPECT as described in chapter 8, the author has contributed

to other aspects of freehand and robotic SPECT, particularly the introduction of miniatur-
ised gamma-cameras [Mat13; Mat14], development of an interventional SPECT/CT system
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by combination with angiography [Gar14], novel tracking [Mat15], and list-mode reconstruc-
tion [Gar15a; Gar15b; Las15; Gar16].

Tomographic Reconstruction, Curvelets and Manifolds for XTT (Tobias Lasser,
Matthias Wieczorek)
As part of a group focusing on tomographic reconstruction, the author has had the chance

to contribute to other projects of respective nature. Among them are the development of
a reconstruction framework [Wie14], regularised reconstruction via sparse curvelet coeffi-
cients [Wie15a; Wie13], a more advanced physical model for XTT (as opposed to the one
used in chapter 10) considering the manifold of scattering tensors [Wie15b], and streak reduc-
tion for dynamic PET [Che12b].

Multispectral Imaging (Alexandru Duliu)
Besides tomographic reconstruction, the author had the opportunity to also work on a

project dealing with multispectral imaging for dermatology. In particular, contributions have
been made for nevi tracking [Vog14] and denoising of multispectral images [Dul15].

Cell Classification (Darko Zikic)
During 2013, the author has enjoyed an internship in the United Kingdom where work was

done on automatic identification of cancer cells in microscopic images by means of randomised
forests. (Unpublished.)
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