On Quantitative Dynamic Data Flow Tracking

Enrico Lovat, Johan Oudinet, Alexander Pretschner
Technische Universitat Minchen, Germany
{lovat,oudinet,pretschn}@in.tum.de

ABSTRACT

We present a non-probabilistic model for dynamic quantita-
tive data flow tracking. Estimations of the amount of data
stored in a particular representation at runtime — a file, a
window, a network packet — enable the adoption of fine-
grained policies which authorize or prohibit partial leaks of
data. We prove the correctness of the estimations, provide
an implementation that we evaluate w.r.t. precision and per-
formance, and analyze one instantiation at the OS level.

Categories and Subject Descriptors

H.4 [Information Systems Applications|: Miscellaneous

Keywords

Information flow; runtime monitoring; usage control

1. INTRODUCTION

Information flow tracking can be used to support access
and usage control [29]. In order to enforce real-world usage
control requirements on data, one must take into account
that data exist in multiple representations. This requires
tracking the data flow from one representation to another
within and across different abstraction layers [29]. For exam-
ple, a picture to be protected may be at the same time a file
on the disk (operating system (OS) level), a browser object
(application level) and/or a set of pixels on the screen (win-
dow manager level). It is therefore convenient to distinguish
between abstract data (e.g., a picture) and concrete repre-
sentations of data at different levels of abstraction, which
we also call containers (e.g., a file at the OS level, a record
at the database level, a set of pixels at the windowing level).
Using this model, one can track the distribution of data
among different containers in the system at any time and,
using such information, enforce advanced usage control re-
quirements such as “every copy of this data item must be
deleted in 30 days.” However, the information this model
can offer about a certain container ¢ and a certain datum d
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CODASPY’14, March 3-5, 2014, San Antonio, Texas, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2278-2/14/03...$15.00. http://dx.doi.org/10.1145/2557547.2557551

is binary: either ¢ potentially contains (possibly partially)
d, or it does not, similarly to the notion of tainting in infor-
mation flow analyses.

We propose a refinement of this model that keeps track
of the (estimated) amount of data that flows to a container.
We do not limit our analysis to whether or not data flowed,
but answer the question of how much data flowed?

The benefit of this extension is the ability to express and
enforce quantity-based policies, such as if more than 5% of
customer data is stored in a file, then that file must not leave
the system and must be deleted on log out.

Quantitative measurements are useful for preventive en-
forcement but also for a posteriori analyses. Consider a
company’s software querying a customer database and the
policy access to these data allowed during opening hours
only. Without preventive enforcement mechanisms, employ-
ees might take home sensitive data. Often, this is the only
way to get the job done in time, in violation of the policy.
For auditing purposes, it should then at least be recorded
how much sensitive data have been disclosed. An auditor
spotting a policy violation that concerns only 0.01% of cus-
tomer data once a month may decide to ignore it, while daily
disclosure, or disclosure of 30% of data, must be sanctioned.

This concept of acceptable exception is very important in
security in practice. Even though confidential data should
never be disclosed, this restriction is occasionally circum-
vented to accomplish specific tasks. While quantifying the
threshold between an acceptable exception and a violation
to report depends on the context-specific security goal (e.g.,
cost in case of disclosure), thanks to Quantitative Data Flow
Tracking (QDFT) it is possible to measure quantitative flows
of data and to enforce rules on them.

Research problem We study how to perform quantita-
tive data flow measurements and how to incorporate these
measurements into a data usage control framework.

Solution and contribution We define a formal model
for dynamic quantitative information flow measurements;
implement it; and integrate it into a usage control frame-
work, thus allowing the specification and enforcement of
quantity-based policies. We see our contribution in a generic
model for quantitative data flows that can be instantiated to
different layers of abstraction and that uses a non-probabilistic
layer-specific quantitative measure for data (units). We pro-
vide an exemplary instantiation at the OS level.

Structure After an introduction to measuring data in
[E 2 [E3 presents our model for measuring data flow quan-
tities. |3 4] sketches quantitative policies. describes an
experimental evaluation. [§ 6] puts our work in context. We

discuss the underlying assumptions and some perspectives
in[§ 7 Future work and conclusions are left to[§ 8

Running example Alice works as an analyst for a smart-
phone manufacturer. All sensitive projects are stored in a
central repository, which is accessible by each client ma-
chine, like Alice’s. She regularly requires information about
new models under development. Her job includes combin-
ing it with data from field experiments and from various
public sources into reports for suppliers and for other de-
partments. To prevent leakage of sensitive data, each enter-
prise machine implements measures such as forbidding the
installation of third-party software. However, too restrictive
measures, such as preventing sensitive data from being saved
locally, proved not to be very effective in the past. This is
because they slow down the business process too much and
sometimes were circumvented on a regular basis. For this
reason, each machine is equipped with an OS-level monitor
that tracks the amount of sensitive data that is processed
by each system call. This system aims at the enforcement of
policies such as: if a file contains more than 1MB of sensi-
tive data, then it must be saved in encrypted form and may
not be emailed. Such a policy allows Alice to send to a
supplier some details about a specific smartphone, like for
example size, weight or screen resolution, but prevents her
from disclosing too many details such as a high-resolution
pictures of the circuit board. In order to prevent violations
of the policy by splitting data in multiple different files and
mails, the aggregated number of chunks mailed to the same
destination is recorded and stored for a reasonable amount
of time, e.g., until the phone is publicly released.

2. MEASURING DATA QUANTITIES

In the rest of this paper we use the following terminology:
a data item is a representation-independent abstract content
that we want to protect (e.g., a phone specification). Data
(items) are abstract concepts that exist in the system only in
the form of layer-specific representations, called containers
(e.g., a file, a window, a database record). For example, if
picture P is stored in file F, then we say that F is a (partial)
representation of P or equivalently that container F (par-
tially) contains data item P. Note that one container may
contain more than one data item (e.g., one single file may
contain the specifications of two phones).

With our model, we want to track the distribution of data
across different containers. If we know that data are stored
in one particular container, and an action (e.g., a copy com-
mand or a query) transfers half of the content of the con-
tainer into a new one, intuition suggests that also half of the
data is stored in the new representation. Thus, our model
refines the so-called tainting approach (yes, data are stored
in this container / no, they are not) by the notion of quan-
tity (50% of data are stored in this representation). Given
a specific container, such as a file or a database, we want to
know how much different sensitive data are stored in it. We
can then enforce policies such as if more than 1MB of data
related to a phone specification are stored in a file, then that
file must be encrypted and deleted on log out.

We define as data unit the smallest part of a container
that can be addressed by an event of the system, like a sys-
tem call or a query, and as size of a container the number
of units that compose it. The size of an event is the num-
ber of units the event processes. Units may differ depending
on the level of instantiation. For example, at the database

level, records (or cells) are units (“database d.db contains
14 sensitive records”) whereas at the file system level, con-
tainers are measured in bytes or blocks, depending on the
granularity of the events that operate on them (“file f.doc
contains 150KB of sensitive data”). If data flow across dif-
ferent layers, units at one layer must be converted into units
of the other layer. We get back to conversion in

The goal of this work is to estimate how many different
units of sensitive data are stored in a specific container. Mul-
tiple copies of the same unit stored in the same container do
not make the container more sensitive than a single copy: if
a document contains the same paragraph twice, it contains
as much information as a document with only one instance
of this paragraph. Given a data source (the initial represen-
tation), we want to know how many different units of this
data item are stored in each container of the system at a
specific moment in time. If a container ¢ contains ¢ units of
data d, then, by looking at ¢, one may come to know up to
q different units of (the initial representation of) d.

We assume each unit to be as informative as any other
unit, i.e., no unit is more important than another. If this
assumption cannot be justified, then we may assume that the
data items are structured into parts of different informative
value, and we separately cater to the different parts of the
structure. We do not consider covert or side-channels (e.g.,
knowing whether a unit has been copied or not does not
leak any information about its actual value). Compression
and/or different encoding schemas conflict with the assump-
tion of informative equality of units. However, in closed or
semi-closed environments as in our example, it is reasonable
to assume the behavior of every single event or process in
the system to be known, and therefore also knowledge of
where compression takes place. For simplicity’s sake, we do
not consider this case in our solution but discuss it in[§ 7]

Knowing how many data units are stored in a container
does not necessarily imply knowledge of which data units.
Knowing exactly which units of data are transferred requires
monitoring and storage capabilities that may not be avail-
able in every scenario. For example, in a database system, it
may be reasonable to log the number of records retrieved by
a query (size of the result table), but not to log the complete
content of each query (values in the result table).

The precision of our quantitative approach is in-between
coarse-grained and fine-grained tainting approaches. Coarse-
grained tainting tracks data at the level of containers: if one
data unit flows to a container, the whole container is consid-
ered as sensitive as if the complete data item had been trans-
ferred to this container. Fine-grained tainting tracks each
data unit independently and computes exactly which data
unit is stored in each container. Our quantitative method
records the size of each event and infers that the destination
container of a transfer operation of size n contains at most
n different data units, but not which ones. If tracking every
data unit is not possible or requires too many storage or
computational resources, the quantitative approach can be
a good compromise between security and usability.

3. QDFT MODEL

We now describe how to compute for every container, at
each moment in time, an upper bound for the number of
different units of a sensitive data item in this container. This
is done on the grounds of a quantitative data flow model.

The model relies on three abstractions: data, contain-
ers, and events. Three types of events affect the amount
of data in a container: container initializations, transfers of
data units from one container to another (e.g., copying or
appending parts of a file), and deletion of data from a con-
tainer (e.g., deleting some records from a database table).
These abstract events need to be instantiated according to
the instantiation of the model (e.g., system calls for an OS,
queries for a database).

Initially, each container in the system contains no unit of
sensitive data. If a new sensitive data item is introduced into
the system, this event is modeled by mapping the number
of sensitive units in this data item to its initial representa-
tion(s). Usually, the initial amount of sensitive data corre-
sponds to the size of the initial representation, but we allow
for the case where a data item is only partially sensitive, i.e.,
the number of sensitive units may be strictly smaller than
the size of the initial representation.

After the initialization of a data item d, every event in the
system that corresponds to a transfer or deletion of units of
d in some container is monitored. We will show how differ-
ent events lead to different upper bounds for the number of
sensitive units in each container.

The amount of sensitive data transferred by an event is
bounded by the amount of sensitive data stored in the source
container. This bound can sometimes be improved. Con-
sider two transfers of 6 units each from a container A of size
10 to a new container B. Simply adding units to the destina-
tion after every transfer would assign to B an upper bound
of 12, even though A is bounded by 10 (hence no more than
10 different units could have flowed from A to B).

A similar observation can be made if a container receives
data from multiple related sources. Consider a scenario
where 6 units are transferred from A of size 10 to B. An
additional transfer of 6 units from A to C' and a subsequent
transfer of 6 units from C' to B would lead to the same
result of B containing 12 different units—but all the units
in B originate in A of size 10. To increase precision, we
hence need to keep track of previous transfers. This historic
information is stored in a provenance graph.

Provenance graphs For simplicity’s sake, we assume
that there is only one data item d in this section. If there
is more than one item, we need more than one provenance
graph, which we discuss in[§ 4 Data provenance is recorded
by a flow graph ¢ = (N,€). Each node n € N in this
graph represents a container at a specific moment in time,
encoded by a natural number: AV C C x N, where C is the
set of containers. We assume the existence of a special ex-
ternal source node (5,0) € N for the data item for which
the graph is built. Edges £ C N x N x A represent events
that add data to or remove data from containers. The la-
bel of an edge is the actual amount (number of units) of
data that flowed from the source container to the destina-
tion container in the considered event. As a consequence,
it also is an upper bound for the amount of sensitive data
units that flowed from the source node’s container to the
destination node’s container. Its precise value is determined
by the event, e.g., 100 bytes or 10 records have been copied.

Goal We want to compute an upper bound for the number
of different sensitive units of data item d in each container
in the system. For reasons that will become apparent in
step 6 of the example below, we do this on the grounds of
a provenance graph. We will define a function x that com-

putes such an upper bound for those nodes of the provenance
graph that correspond to the containers in the current (that
is, latest) time step.

Construction at runtime A provenance graph is incre-
mentally built at runtime. This gives rise to a sequence of
graphs Go,...,G; for each moment in time, t. Let G; =
(N, &) for all t. For a node n € Ny, let k(n) be the above
mentioned upper bound for the maximum number of sensi-
tive units in the container that corresponds to the node (the
computation of £ will be discussed below). For every event
at time ¢, at most one new node as well as one or two new
edges are created. This evolves G;_1 into G; where G,_; is a
subgraph of G;. Possible graph evolutions are the following;:

I step The initialization of data is modeled by copying all
data from the data source node to an initial container c;.
Assuming the event at time ¢ is the initialization, we add
a node (c¢;, t) to Ny—1 and, for m units of sensitive data
contained in data item d, an edge ((570),m, (ci, t)) to
Ei—1, which yields G, = (N, &).

C steps If, at time ¢, container ¢; may contain some sen-
sitive units and the event copies, without knowledge of
whether or not they are sensitive, ¢ units of data from
container c¢1 to ¢z, then we add a node (c2,t) and the
first or both of the following two edges to G;_1:

C1 step ((c1,t'),4,(cz,t)) for the node (c1,t") € N1
with ¢’ < t such that there is no (e, t"”) € M;—1 with
t" < t"” < t (this ensures that we copy data from the
“latest representation” of container ¢;).

C2 step If ¢, already exists (copying then is appending),
we also need to consider its content at time ¢ — 1. In
this case, there is a t' < t such that (ca, t') € N1
and there is no ¢ with ¢ < t” < t such that (cz,t") €
Ni—1. To make sure that the sensitive content of ¢z at
time ¢ (which is the same as at ¢ — 1) is not forgotten
at time ¢, we add the edge ((c2,t),k((c2,t")), (c2, 1))
to &—1. Replacing the label x((c2,t')) by oo would
not impact correctness nor precision; our choice of
k((c2,t")) is motivated by presentation concerns. See
the introductory remark in the appendixEI

T step If the event at time ¢ is a truncation of ¢, we need to
compare the amount of sensitive data in ¢ (i.e., k((c, t’))
such that (¢, t') € My—1 and (¢, t") € Ny—1 =t <) to
the new size of ¢, m. Since a container cannot store more
sensitive data than its actual size, if k((c,t")) > m, we
add a node (c, t) and an edge ((c,t'), m, (c,t)) to Gi—1.
Otherwise, no new node is added.

Example Before we explain how to compute k, consider

the example in

1. First, container A is initialized with the content from
the external data source (an I step). This yields node
(4,1) as well as the edge labelled 20 from (S, 0) to (4,1),
indicating that the data item in question contains 20 units
of sensitive data (and possibly more non-sensitive data).
The only useful estimation is k((4,1)) = 20. Note that
this only measures the number of sensitive units; similar
to S, A may well contain more non-sensitive units of data.

! Note that a C step can be performed with more than one
source container. This is modeled as a C1 step for each
source container and only one C2 step if the destination
container already exists.

Figure 1: Example provenance graph at time ¢ = 6. Dashed
arrows are C2 steps.

2. In the second step, 5 units of data are copied from A to
B, which results in node (B,2) and the edge labelled 5
from (4,1) to (B,2) (a C1 step). Since only five units of
data have been moved, x((B,2)) = 5 is reasonable.

3. The third event copies 30 units of data from container A
to container C' (another C1 step), resulting in an edge
with label 30 from node (4,1) to a newly created node
(C,3). Note that it is possible to copy 30 units because
the size of A may well exceed the number of sensitive
units. Still, since A contains at most 20 units of sensi-
tive data, 20 is also an upper bound for the number of
sensitive units in C, yielding «((C, 3)) = 20.

4. The fourth event copies 6 units from C to D (another C1
step). This yields a new node (D, 4) and an edge labelled
6 from node (C,3) to (D,4). We know that C contains
at most 20 sensitive units and have hence to assume that
all data copied from C to D is sensitive. We estimate
k((D,4)) = 6.

5. The fifth event copies 2 units from B to D (a C1&C2
step). This results in a new node (D, 5), an edge labelled
2 from (B,2) to (D,5) and, in order to reflect the con-
tent previously contained in D, another new edge from
(D, 4) to (D, 5) labelled 6 (which is the k value of (D, 4)).
The maximum number of sensitive units in D now is
x((D,5)) = 8, the sum of at most 2 units from B and
at most 6 units from the earlier instance of D.

6. The sixth event copies another 7 units from B to D (an-
other C1&C2 step). We create a new edge labelled 7
from (B,2) to a new node (D,6), and an edge labelled
k((D,5)) = 8 from (D,5) to (D,6). This is where the
computation of a precise value for K becomes non-trivial.
A first estimate for the upper bound is k((D,6)) = 847,
a result of the flows from B and an earlier version of D
to D, similar to what happened in step 5. However, we
know that the actual flows are upper bounds for flows of
sensitive data, and since x((B,2)) = 5 and k((D, 5)) =8,
it is impossible to have more than 13 distinct sensitive
units in D. A better estimate is hence x((D,6)) = 5+ 8.
Yet, it is impossible that 13 different units flowed from A
to D: The upper bound of x((D,5)) = 8 units of sensitive
data includes 2 units received from B (step 5). Since we
do not need to count these units twice, D cannot contain
more than x((D,6)) = 5+ 6 different sensitive units.

7. The seventh event truncates the size of container C' to
the new size of 5. This results in a new node (C,7) and
an edge labelled 5 from (C,3) to (C,7). «((C,7)) =5,
because C' is now composed of 5 units only, i.e. C' contains
at most 5 different sensitive units.

Motivation for provenance graphs Step 6 of the ex-
ample motivates the use of provenance graphs: The fact that

(D, 6) necessarily contains duplicates of two units of sensi-
tive data is something that we can know only by considering
the history of data flows (in this case, step 5 that appended
two units of data to container D—and the transfer of sen-
sitive data in step 5 depends on steps 2 and 4, as we will
see below). It is this historical knowledge that allows us to
reduce the upper bound x((D, 6)) from 13 to 11 units.

Motivation for max-flow/min-cut In fact, the num-
ber of units transferred from (B,2) to (D,5) (i.e., the Gth
event) is not the only relevant influence for the computa-
tion of k((D, 6)); regardless of the number of units that had
been transferred from B to D in step 5, we would still have
an upper bound of at most x((D,6)) = 11. From this per-
spective, the provenance graph now reveals that (B,2) and
(D, 5) together cannot contain more than 546 units of sen-
sitive data: historically, B received 5 units in step 2 and D
received 6 units in step 4. This information is stored in the
form of the edge labels. This motivates the computation of x
via the max-flow/min-cut theorem rather than via recursive
computations on predecessors or dominators of the newly
created nodes as follows. Remember that the actual flows of
possibly non-sensitive data in-between containers (the edge
labels) are upper bounds for the flow of sensitive data. We
can hence interpret them as capacities for sensitive data in
the flow graph. Then, the upper bound for the amount of
different sensitive data in each container (corresponding to a
node n) equals the maximum flow of sensitive data from the
source node to this node n. In our example, the max flow to
D in step 6 is determined by steps 2 and 4, corresponding
to the edges from (A,1) to (B,2) and from (C, 3) to (D, 4).

Computation of x The definition of x then is simple:
if n € N; is the new node created in time step ¢, then
k(n) = mazflowg, ((S,0),n). Since every container can be
the destination of a copying event in the next step (a C step),
we always need to know the current x value of all nodes.

Algorithmically, we need to compute at most one max-
flow/min-cut on a directed acyclic graph per event for the
new node. This is because we never add incoming edges to
existing nodes; their x value is constant over time.

Correctness Our model is correct if, at each moment in
time, the number of different units of a sensitive data item
actually contained in a container is not greater than the
K value we have computed. We assume a function ¢ that
provides this actual amount for a node (i.e., container and
a moment in time). We do not say how to compute ¢, we
just assume its existence.

We need to assume that all events in the system are ad-
equately reflected in the construction of the flow graph.
Whenever an event moves data in-between containers, this
event is used to construct the provenance graph as described
above. Conversely, no edge or node is added if there is no
corresponding event. This assumption connects the model
(provenance graph) to the real system. Note that x denotes
a property of the model and ¢ a property of the real world.

The proof that V¢ € NVc € C: (e, t) < k((c, t)) indeed
holds is provided in

Simplification Because the complexity of the computa-
tion of maximum flows depends on the size of the graph, it
is desirable to keep graphs small. We are hence interested
in reducing their size while maintaining correctness and pre-
cision of the algorithm presented above. Our simplification
rules are motivated by the observation that a sequence of
event can sometimes be shortened to another sequence that

leads to a smaller provenance graph that provides the same
upper bounds for every current and future container.

Intuitively, provenance graphs G; and G, are equivalent if
(1) for each container c, if n and n' are the most recent nodes
created for ¢ in G; and G; respectively, then x(n) = «'(n’)
where #'(n') = mazflowg((S,0),n'); and (ii) if the content
of any set of containers (i.e., most recent nodes) is copied to a
(possibly new) container after time ¢, then the evolutions of
the two graphs yield the same upper bounds for the amount
of sensitive data in this container. (i) stipulates that the
two graphs yield identical upper bounds for every container.
Since future evolutions of a provenance graph add edges to
the respective most recent nodes only, (ii) stipulates that
independently of the events that connect such nodes in the
future, the maximum flows from the source to the new nodes
must be identical in both graphs.

Formally, let cng(X), the current nodes, be the nodes
in G that are the latest representation of each container
in X C C: VG = WN,E),X C C : eng(X) = {(c,¢) |
c € X A (¢t) e N AVE @ (e,t) € N = ' <t}
Assuming a set of containers X, G; x denotes the graph
in which every node in ¢ng,(X) is connected to a dummy
node dn that represents a virtual sink of all future opera-
tions on the nodes in cng,(X) (and therefore all future evo-
lutions of G; on every possible set of containers): G, x =
WN:u{dn}, & U UnECngf(X) {(n, 00, dn)}). For a node n, let

ke, x(n) = mazgflowg, ((S,0),n) and, similarly, &} x(n) =
maxﬂowgix((S,O),n). Equivalence of provenance graphs

then reads as Gy ~ G; & VX C C: ky,x(dn) = k; x(dn).
We now describe several cases where we can obtain a
smaller but equivalent provenance graph that will consid-
erably increase performance in the experiments of We
believe these to be the interesting cases but make no claim
of completeness. The proof that these simplifications are
correct in that the original provenance graph, G;, is equiv-
alent to the modified graph, G; (i.e., Vt € N: G ~ G}), is
provided in
Remowal of a truncation. If at time k there is a copying
action of size ¢ from ¢, to a new container c;, and a trunca-
tion of ¢, to size m occurs at time ¢ > k, and, between these
two events, there is no other truncation or transfer to cs,
and the sum of transfers from ¢; is lower than ¢ — m, then
this sequence leads to a provenance graph equivalent to the
one yielded by the sequence that transfers exactly m data
units to ¢, at time k, copies data from ¢, instead of ¢, from
time k£ + 1 to t — 1, and does not contain the truncation of
¢y at time t. We hence modify the edge label of the copying
step at time k, replace any further copying action from ¢, by
a copying action from c¢,, and remove the final truncation.
Remowval of a copy (case 1). If a copying action from ¢, to
¢y, of size s1 takes place at time k, and another copying action
from c. to ¢, of size s2 occurs at time ¢t > k, and in between
these two events there is no truncation or transfer to ¢, or
to/from cp, then this sequence leads to a provenance graph
that is equivalent to the one yielded by the sequence that
directly transfers s; and sy data units at time &k from ¢, and
cc, respectively. We hence add ¢, to the source containers
of the copying at time £ and remove the last copying step.
Remowval of a copy (case 2). If at time k there is a copying
action from ¢, to a new container c¢; of size s;, and another
copying action also from ¢, to ¢, of size sy occurs at time
t > k, and in between these two events there is no truncation

or transfer to ¢, or ¢y, and the sizes of all transfers from
¢y after time k£ sum to a value that is below s;, then this
sequence leads to a provenance graph that is equivalent to
the one yielded by the sequence that copies s1 + s2 data units
at time k£ and does not contain the final transfer.

4. QUANTITATIVE POLICIES

Semantic Model We now use provenance graphs to gen-
eralize the model presented in [29] to combine QDFT with
data usage control. In that model, possibilistic data flows
are captured by sequences of states that map data items
to their representations, i.e. containers. The considered
systems are modeled as tuples (P, Data, Event, C, %, 0, 0),
where P are principals, Data are data items, Fvent are
events happening in the system that are triggered by princi-
pals’ actions, C are data containers, 3 are the states of the
system with o; being the initial state (&), and g is the state
transition function. We first show how to compute a prove-
nance graph for each data item at each moment in time and
then use this definition for the specification of usage control
policies that restrict a provenance graph’s evolution.

States ¥ = Data — Graph associate each data item with
a provenance graph. Provenance graphs consist of nodes,
Nodes C C' x N i.e., container-timestamp pairs. We require
Nodes to contain a reserved identifier (S,0) that stands for
the external source of data. Provenance graphs are modeled
as a (partial) function of type Graph = Nodes x Nodes — N
which associates each edge with the corresponding event’s
size, i.e., the number of flowed data items.

Given a provenance graph and an event, function step :
(Graph x Event) — Graph updates the graph according to
the rules presented in ‘We hence assume that each con-
crete event in the system is (1) mapped to one of the ab-
stract events and therefore possible graph evolutions (init,
transfer, truncation) and (2) associated with a size, possi-
bly 0. Then, ¢ : (¥ x Event) — ¥ where g(c,e) = ¢’ and
o'(d) = step(a(d), e) for each data item d € dom(o).

Quantitative usage control policies are defined over traces
that map abstract time points to events. For simplicity’s
sake, we assume it is always possible to linearly sort events
chronologically, and therefore only one event per timestep;
Trace : N— Event. Then, given a trace tr, function statesq :
(Trace x N) — 3 computes the information state at a given
moment in time ¢ via statesqs(tr,0) = o; and t > 0 =
statesq(tr,t) = o(statesq(tr,t — 1), tr(t — 1)).

Policies Policies describe situations to be avoided or en-
forced. In usage control contexts, this is often specified by
sequences of allowed/disallowed events or states (mappings
from data to containers) using temporal logic formulae. We
do not discuss general usage control policies here, since this
has been done elsewhere [40} |29], but concentrate on one
possible way of restricting data quantities. To this end,
we need to capture function s introduced in Given
a graph G; and a container ¢, function K : (Graph x C) —N
returns the maximum amount of different sensitive units
stored in ¢ according to the provenance graph G;. K cor-
responds to the application of () to the most recent ver-
sion of ¢ in G;. We then define one state-based operator
(P4 ::= atMostinSet(Data,N,P(C))) to specify quantitative
policies: atMostInSet(d, q, Cs) limits the combined ca-
pacity of a set of containers. For example, the policy “No
more than 1MB of customer data can be saved on a re-
movable device” could be checked by the proposition at-

MostInSet(d, 1MB, REMOVABLE), where REMOVABLE is the set
of containers that represent files on removable devices. The
policy “no more than 10MB may be sent over the network”
is specified as atMostInSet(d,10MB,CNET) where CNET is
the set of all network sockets. Lack of space prevents us
from presenting other operators in ®, here, for instance,
atMostInEach(d, q, Cs) with its intuitive semantics.
Given a trace and a time point, we define the semantics f=,C
(Trace x N) x @, of this quantitative data usage operator by
Vir € Trace,Yt e N,V € @, Vo € Do (tr,t) =q ¢ <
o = statesq(tr,t) A 3d € Data, Cs C C, Q € Ne

¢ = atMostInSet(d, Q, Cs) N Y oo, K(o(d), c) < Q.

Using ®, we can specify simple information flow policies
only. In order to express more complex policies like those
presented in our reference scenario in we need a more
expressive policy language. For reasons of space, we do not
describe here how to embed ®, into a full temporal logic lan-
guage such as the ones defined in [29,40]. However, by lever-
aging =, and statesy, it is possible to define the semantics of
a new language ® D ®, for the specification of quantitative
policies that capture temporal and propositional operators
as well. Using this language @, it is then possible to specify
policies such as always(—atMostInSet(d, g, Cs) = mnotify)
that issue a notification whenever the amount of data d
stored in the specified set of containers Cs exceeds g. This
kind of policies will be used in

S. EXPERIMENTAL RESULTS

We conducted two experiments to evaluate the adequacy
of the QDFT model in terms of the scenario in[§ 1} First,
we measured precision and performance of the model alone,
i.e., at an abstract level. Then, we instantiated the model to
the OS level, extending previous work [19] and refining the
abstract events from the first experiment to system calls.

5.1 Implementation and methodology

Remember that Alice performs a sequence of report gener-
ation/ update actions in the phone scenario presented in
and that she is subjected to a set of policies of the kind
always(—atMostInSet(d,1MB, MAIL) = notify) as intro-
duced in An action is a transfer of some units of data
from a specification or from an existing report to another
(possibly new) report. We generated random sequences of
actions of different lengths, and observed the evolution of
our model during their execution. In each step, Alice can
choose between creating a new and updating an existing re-
port with probability PN. We ran 100 sequences for each
length and used average and median values for the analyses
in the remainder of this section.

In the first set of experiments (atomic, denoted by A),
we modeled each action after the initialization as one sin-
gle abstract event, either a T or a C step (see , where
specifications and reports are containers. In the second set
of experiments (syscalls, denoted by S), we instantiated the
model to the OS level and performed QDFT at this level.
In this refined context, events are system calls, and contain-
ers are files, pipes, memory locations, and message queues.
Specifically, the MAIL set from the above policy is a set of
sockets for email communication. Specifications and reports
are modeled as files, and each abstract action from the first
set of experiments corresponds to one system call or a se-
quence of system calls: initialization is done in the beginning
by extracting the data item d to be protected from the pol-

100%
eeeU=0 '_..0"
—= .
80% a0k
= .
U=15K .
o =U=20K o
60% ==U=30K K
- @=50K

40%

20%

Percentage of sensitive reports

0% —
2 4 8 16 32 64 128 256 512 1024204840968192
Number of actions

Figure 2: Percentage of reports considered sensitive by a
quantitative policy vs. number of actions (PN=50%)

icy and mapping it to the initial representation; truncation
is modeled as open() with the overwrite flag set, as trun-
cate(), ftruncate(), or unlink(); transfer is modeled by
mmap (), as read () from file to process, and as write() from
process to file or socket. These are the concrete events used
to define the p relation in They also refine, by disjunc-
tion, the abstract events specified in the above policy.

The length of an event sequence depends on the size of
the files and of the transfers involved. In our tests, one ab-
stract action corresponds, on average, to 40 system calls.
We started each experiment from the same arbitrary yet
fixed amount of (sensitive) specifications and (initially non-
sensitive) reports. For both experiments, we evaluate our
model with (denoted s) and without (denoted n) simplifica-
tion. For the syscalls tests without simplification (i.e., the
Sn configuration), we considered sequences of at most 1024
actions because the time required to perform 100 executions
longer than 1024 is prohibitive without simplification.

For the second set of experiments, we extended an ex-
isting usage-control framework for system call interposition
based on the Systrace tool [30]. The amount of bytes that a
process tries to read/write from/to a file corresponds to the
event size used by our tracking framework. If any of the de-
fined policies does not allow the respective system call to be
executed, the system call is denied. Otherwise, the system
call is dispatched to the kernel and executed as usual.

We study the following questions: (i) How precise is our
model (i.e., how far is the estimated value from the exact
amount of different sensitive data units)? (ii) What is the
overhead of QDFT w.r.t native execution?

5.2 Precision

One problem with possibilistic data flow tracking is usabil-
ity: because of the involved over-approximations, systems
quickly become unusable because very many data items are
quickly tainted (“label creep”). For a typical run of the sys-
tem, shows the relative number of reports consid-
ered sensitive (tainted) for the policy “do not distribute a
report if it contains more than U units of sensitive data,”
for varying U (50K is the number of sensitive units in the
system), as a function of the number of hitherto executed
actions. The figure suggests that usability may indeed be in-
creased because reports are considered sensitive less quickly
and thus not blocked when sent, depending on the value
of U. Note that all curves are well below the uppermost
reference line U = 0 (possibilistic estimation).

=

[S)

(=]
L

>
o
L

@
=]
L

N
o
L

‘...-" = =(Coarse-grained tainting (size)
o Quantitative tracking
o* e ¢« Fine-grained tainting (exact)
e T T T T T T T T T
2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Number of actions

N
o
L
.
.

% of different sensitive units

o
I

Figure 3: Estimation of different sensitive units in an ex-
emplary container during one execution (PN=50%). Before
the 16th action, no sensitive data is stored in the container.

A second perspective is provided by [Figure 3 which shows
how many units are considered sensitive according to differ-
ent tracking methods for one typical container. As expected,
the quantitative estimation is in-between coarse-grained and
fine-grained tainting.

To more precisely answer the first research question we
want to know in general how close the quantitative tracking
curve is to the fined-grained tainting curve; the smaller this
gap is, the more precise our model is. We therefore empiri-
cally measure the precision of our model, for a container ¢
at a specific moment in time, by letting Prec(c) = (Size(c)—
Estim(c))/(Size(c) — Ezact(c)) if Size(c) # Ezact(c), and 1
otherwise, where Size(c) is the total number of data units
in ¢ (including non-sensitive data and duplicates), Ezact(c)
is the precise number of different sensitive units in ¢, and
Estim(c) is the number computed by our model, i.e., the
value of k. Thus, Ezact(c) < Estim(c) < Size(c). The
estimation is most accurate if Estim(c) = Fzact(c) (i-e.,
Prec(c) = 1), and the worst case (Prec(c) = 0) is Estim(c) =
Size(c). In the special case Size(c) = Ezact(c), our estima-
tion is still correct (i.e., Prec(c) = 1). The proportion of
non-sensitive units (or duplicates of sensitive units) in a con-
tainer ¢ that are incorrectly considered additional different
sensitive units by our model corresponds to 1 — Prec(c).

Precision obviously depends on the sequence of actions
considered. For instance, if the user always copies the com-
plete content of one container to another, then the quantity-
based approach will not be more precise than any coarse-
grained tainting approach. Similarly, if the user always
copies the same few specific units from a container that con-
tains a lot of other sensitive units, the quantity-based ap-
proach will be significantly less precise than a fine-grained
tainting approach. However, it is interesting to see how the
precision evolves in scenarios in-between these two extremes.

shows the median precision for all containers af-
ter Alice performed a number of transfers. Since she can
choose between creating a new report or updating an exist-
ing one, we varied the probability PN that she creates a new
report in each step from 0, where no new report is created
but only existing ones are updated, to 1, where every ac-
tion creates a new report. Precision monotonically decreases
for each value of PN but 0. For PN = 0, only updates of
existing reports are possible: Alice keeps transferring data
to and in-between the same fixed set of reports, with the
consequence that after a while all data in the specifications
is transferred to every report. Let maz be the maximum

1 — L
oo PN=0% :

c 08
S PN=20% N -
£ 06 ‘. 7
2 PN=40% % 3
8 g 4
g 0% mpN=60% e
2 N
9 02 | —pN=80% Re
& -

2 4 8 16 32 64 128 256 512 102420484096 8192
Number of actions

Figure 4: Median precision vs. number of events and per-
centage of new reports for syscalls tests

number of different sensitive units in the specifications (and
thus, in the system). If a report contains all specification
data (Ezact(c) = maz), we call it saturated. Considering
that max is an upper bound for our estimation, precision
for saturated containers is equal to 1 (mazx = Ezact(c) <
Estim(c) < max = FEzact(c) = Estim(c)), and the closer
to saturation a container is, the higher its precision will be.
shows the positive correlation, after some time, be-
tween the median precision (dotted line) and the average
report saturation (average (Ezact(c)/maz) over every re-
port container ¢, dashed line) for PN = 0. For other values
of PN, median precision asymptotically decreases to a limit
that depends on PN: the higher PN, the higher precision.

5.3 Simplification

Without simplification , the provenance graph grows
by one node and one or two edges per event on a sensi-
tive container. Memory and also time consumption may
then become critical because max-flow computation time is
quadratic in the size of the graph. In particular, monitor-
ing Alice’s behavior at the OS level requires observing many
events (~ 40 system calls per action), which significantly
impacts the size of the provenance graph.

shows the growth of the provenance graph as
the number of actions increases. We compare the moni-
toring of each action as an atomic transfer (1 action = 1
event) with the instantiation at the OS level (1 action ~ 40
events), with and without simplification. By construction,
the graphs grow by at most one node after each event. As
expected, monitoring a fourty-fold number of events is re-
flected in a graph fourty times larger (Sn). However, sim-
plification (Ss) made the graph as small as the atomic one
(As), with direct implications in terms of time required to
capture a new event, as explained in the next section. Af-
ter 336248 events, Ss contains 5460 nodes only, which is less
than 2% of the non-simplified graph’s size.

5.4 Performance

In addition to precision, we are also interested in evaluat-
ing the storage and the time required to update our model
when receiving an event. As for the graph’s size, perfor-
mance depends on the sequence of actions performed by the
user. Our implementation requires a fixed amount of ~12Mb
of RAM plus ~285 bytes per node and ~110 bytes per edge,
i.e. less than 17Mb in total for traces of more than 330K

100000 ¢

10000 b
n - a
g I]
o 1 = —
S 1000 |]
< L il
g 100 & —
S
10 L 7
1 7\ Il Il Il Il Il Il Il Il Il Il Il Il]
R
2, O, s OO, YO, Y,
NN e o % % %70
RN NN v o 5 %
VY), 00 %0 % %, e, (8, (4, (3,
D %)% % o K, %
RN
7

Number of actions (syscall events)

Figure 5: Graph size vs. number of actions (PN=50%), level
of abstraction (Atomic/Syscall), with (s) and without (n)
simplification. Note As and Ss overlap.

events. Because these numbers are negligible on modern
machines, we focus our analysis on the dimension of time.
‘Worst-case scenario We observe that it is possible for ev-
ery C2 step to replace the edge’s capacity by oo without
impacting correctness or precision. This allows us to build a
provenance graph at runtime without computing max-flow:
only if a usage event (i.e. an event whose execution is con-
strained by a quantitative policy) addressing a container c is
observed, max-flow from source to ¢ is computed (lazy eval-
uation). Concretely, in our scenario this means computing
max-flow only if we observe a write() system call to one
of the containers in MAILS, and not for every read() and
write() in the trace. For instance, if only 1 in every 10
reports is actually sent via email (the rest is sent to other
departments), then the median overhead after 8192 actions
(336248 events) is 43 seconds instead of 72 (124% vs 211%).
To answer the second research question, we measure the
performance overhead of maintaining our provenance graph
with and without applying optimizations (simplification rules
and lazy evaluation). [Figure 6| shows the median perfor-
mance overhead compared to the native execution time. For
the optimized case, we distinguish between the minimum
overhead, introduced by the pure creation of the graph,
without any max-flow computation (Graph (simpl.)) and
the maximum overhead, required to compute max-flow af-
ter the execution of each event (Estimation). Although the
time to maintain the non-simplified graph grows very quickly
(13700% of the native execution time for 1024 actions), the
overhead remains quite small for the optimized version (43
seconds, 124%, two orders of magnitude less than before for
traces 8 times longer). In this example, a max-flow compu-
tation on such graphs always requires less than 115 msec.
Average-case scenario The numbers obtained from the
previous experiments make scalability a concern in the worst
case. However, these experiments were designed to stress
this particular aspect. In order to test whether or not scal-
ability is an issue in an average real-world scenario, we
conducted another experiment: we instantiated the model
at the level of MS Windows, where events are API calls
(WriteFile(), ReadFile(), CreateFile(), etc.) and con-
tainers are files, pipes and memory locations. As in the pre-
vious experiments, we considered a set of sensitive source
files and the creation of 64 reports with PN=50%. In this
scenario, we simulated a user opening two files with a text

1000
B Native Execution
100 7 Graph (simpl.)
10 --| M Estimation
O Graph (not simpl.)

o
-

Time (Seconds)
=

0.01 -

0.001

D S DD D DD S NS O D
S PGB P PSSP D
BERT 07 gV Y gN O & N o
E I DU R N

AT

Number of actions (syscall events)

Figure 6: Time overhead for the syscalls tests (PN=50%)
with and without QDFT, with and without optimizations.

editor (notepad or wordpad) and copy-pasting some content
from each source to a third file, possibly adding some (non-
sensitive) content before saving it. Note that the destination
could be either a new report or an existing one.

In this scenario we noted two important differences: a)
in addition to the API calls generated by the user inter-
action, we considered every other API call in the system,
including those generated by background processes; b) some
processes in Windows read/write files using many API calls
with blocks of fixed size (e.g. 4KB for notepad), whilst other
transfer large amounts of data in a single call, similar to the
behaviors of, respectively, the syscalls experiment and the
atomic experiment described before.

We observed a total of 60K API calls, out of which 48K
were filtered using trivial heuristics (like ignoring certain
system services). The remaining 12K were ca. 10% related
to sensitive data and 90% unrelated “noise” calls created by
other processes. All the 12K calls were sent to our model
and translated into respective I, C or T actions, updating
the graph and requiring for each event an estimation of the
sensitive data in its target container. The total time needed
by our model to handle all the updates was ca. 40msec,
less than 17% of the native execution time of the 12K API
calls. With respect to the total time required by a fast user
to perform the task (at least 5 seconds per report), this
overhead is not perceptible. This further instantiation of our
model shows that it is indeed usable in a realistic scenario.

5.5 Discussion

The experimental results confirm that the precision of our
QDEFT lies in-between a coarse-grained and a fine-grained
tainting approach. Although highly dependent on the prop-
erties of the sequences of actions analyzed, the precision of
our quantitative estimation is usually quite good (i.e., the es-
timated amount of different sensitive units is close to the ex-
act amount). In terms of performance, without the applica-
tion of simplification rules we notice the expected quadratic
dependence between time required to perform an operation
on the graph and its size (which, in turn, is linearly growing
with the number of actions performed). With the introduc-
tion of simplification and lazy evaluation, the size of the
graph decreases by more than one order of magnitude and
the performance of our model improves significantly.

The quadratic complexity of the max-flow algorithm will
always be a limit to the scalability of this approach; however,
in an average-case scenario the overhead introduced by our
model may remain negligible. In several contexts, moreover,
sensitivity of data is time-bounded, e.g., a phone specification
may be sensitive only until the phone is released, hence no
need to maintain a provenance graph afterward.

Finally, if our traces represent real-world documents cre-
ation, it is unlikely that Alice would anyway notice an over-
all overhead of 72 seconds during the preparation of more
than 8000 reports (~ 9ms per report). Though this over-
head does not take into account the delay introduced by the
system call interposition framework (up to 270% [19|, and
1-3 orders of magnitude for other levels of abstraction), note
that the delay introduced by our model is absolute, i.e. in-
dependent of the time required to perform or intercept any
action. This means that, for instance, 1ms to update the
provenance graph may be an intolerable overhead if we are
modeling the execution of a system call, but may at the same
time be a negligible delay for a BPEL or ESB event [20].

6. RELATED WORK

Information flow tracking, in the context of security policy
enforcement [32], is at least thirty years old [16]. The two
main approaches are static |13} [25 18] and runtime check-
ing, based on dynamic tainting analysis. In terms of static
checking, Denning [14] first proposed to quantitatively mea-
sure information flow, defining the amount of information
transferred in a flow as “the reduction in uncertainty (en-
tropy) of a random variable”. Solutions in this area (e.g., |7}
8]) rely on a specific input distribution’s entropy or univer-
sally quantify over all input distributions. In contrast, our
analysis applies to runtime systems and is independent of
any stochastic notion of input data distribution.

Approaches more similar to ours perform dynamic taint
analysis (DTA). Several techniques have been proposed for
DTA, mainly for detecting malware and unknown vulner-
abilities in software |10} |34} 4], checking integrity (tainted
data should not affect normal behavior of the program, where
tainted means “possibly bad”) |10} [11] and confidentiality
(public output should not be influenced by tainted data,
where tainted stands for “possibly secret”) (6] [23] [38]. How-
ever, most of them are “hybrid” approaches, because they
rely on static annotations to account for implicit flows [13}
36]. In contrast, our approach does not require any static
annotation to perform the analysis. A common pattern in
all these solutions is the idea that monitoring should be done
“as close to the hardware as possible” [38]. We hence find
solutions based on binary rewriting [5} (10} |9} |21} |27} 23],
memory and pointer analysis (33} |34], partial- or full-system
emulation |20, [24} 38| 16, |12] or on making information flow
a first-class OS abstraction [15 [39 [22]. In contrast, we
believe that high-level events such as “print” or “play” or
“screenshot” are handled more conveniently at higher lev-
els of abstraction because they can directly been observed
there. For this reason, our abstract model is deliberately
not bound to one specific architecture or platform.

Our work is inspired by [23] which introduces the idea
of measuring information flow as a network flow capacity.
Their tool estimates the amount of information flowing from
inputs to outputs of a particular program for one (or some)
specific executions. Our work generalizes the idea to a generic
model that can be instantiated to multiple layers of abstrac-

tion, including the level of code considered by McCamant et
al. We have commented on the benefits of data flow tracking
at levels different from the machine code level above. Since
our model is based on the observation of events and there-
fore does not consider control flow dependencies, it does not
measure implicit flows. At the cost of manual instrumenta-
tion, these are, in contrast, considered in [23].

The idea of measuring information flows by considering
information as an incompressible fluid flowing through a net-
work appears also in [37], where it has been applied to the
socio-information networks domain. This model uses data-
flow risk estimations for access control purposes, assuming
likelihood of information leakages (e.g., in-between subjects)
to be given. Our work, in contrast, is domain-agnostic and
relies only on the size of actions that actually took place.

Data provenance tracking has been thoroughly investi-
gated, in particular in the context of databases [3]. A recent
work of Demsky [12] relies on data provenance tracking to
perform basic usage control enforcement, similar to what
our system does. In addition to the more advanced types of
policies our system can enforce, the goal of our provenance
tracking is different: we use provenance to determine how
much data comes from where, whereas Demsky’s and other
approaches in literature track what data comes from where.

Our model is a quantitative extension of the data-flow
tracking model for usage control presented in [29], which
makes the distinction between data and representations of
data, in contrast to other usage control models (e.g., [31}
35, [28]). Since this model has been instantiated at different
levels of abstraction, such as OS, X11, Java-bytecode, and
Android mobile devices, it makes our extension suitable for
all these environments.

7. DISCUSSION

We start by making the assumptions of our model ex-
plicit. First of all, data must be quantifiable with respect
to a data unit. Choosing the appropriate unit for each level
of abstraction is not a trivial task, especially in presence
of heterogeneous representations (e.g., an OS handles both
files and windows). Furthermore, converting a type of units
into another type is usually not possible. For example, two
records of a database, containing ten characters each, may
have the same size in bytes as a single record containing
twenty characters. How could a monitor using bytes as data
units distinguish between the two cases?

Additionally, we also assume the absence of data compres-
sion. Otherwise, an event may transfer more data than the
size of the event itself or transferring a single data unit from
one representation could mean transferring the whole data.
This assumption can be removed if an upper bound for the
compression ratio of each event is known. An event of com-
pression ratio r (0 < r < 1) that transfers ¢ units of data
will be considered of size s = ¢/r.

Next, we assume a fized size for the initial representation.
If such size changes over time, a policy like no more than 5%
of customer data can be stored in an unencrypted file can be
interpreted in different ways: 5% of the amount of customer
data when the policy is activated (static), 5% according to
the current amount of customer data (current), or 5% ac-
cording to the total amount of different customers (max).
For example, if at time ¢ the customer database contains
1000 records, at time t2 it contains 200 records and at time
t3 it contains 2000 records, the maximal amount of data

that can be stored in an unencrypted file at time ¢3 without
violating the property can be either: 50 (static), 100 (cur-
rent), or 140 (max). To handle these various interpretations,
the roots of each provenance graph need some adjustments
whenever the size of an initial representation changes. We
implemented all these different interpretations but do not
include them in this paper due to space limitations.

A common problem in data-flow tracking solutions is the
over-tainting issue. Quantitative estimations can be used
as declassification criterion to mitigate the problem by con-
straining the application of a policy to only those containers
containing at least a certain amount of sensitive data (cf.
Figure 2). However, if a small amount of data is allowed
for disclosure, we also need to make sure that such disclo-
sures cannot be channeled to the same recipient via unknown
ways. For example, in our scenario, we need to make sure
that the same supplier cannot receive mails on more than
one account. Otherwise she could receive 10KB of different
data on each email address, and with enough addresses (and
Alice cooperation) she could possibly obtain all the phone
specifications and test results via mail. For this reason, us-
age control usually requires a fully controlled environment.

Our QDFT maintains a flow graph per data item. Assum-
ing D sensitive data items and at most V representations
per item, linked by at most F edges, the memory overhead is
in O(D(V+E)) =O(DE). We use a maxflow algorithm [2]
which gives the best performance on graphs with less than
10° nodes [17]. The augmenting paths algorithm is based on
a residual graph that is reused for subsequent maxflow com-
putations. It is hence particularly suitable for our problem
because the provenance graph is built incrementally.

The existence of one independent provenance graph per
data item introduces an overapproximation. Consider a con-
tainer ¢, containing units of data items d; and dz. A transfer
of size [from ¢, to ¢, would be modeled as a transfer of [
units from ¢, to ¢, in the provenance graph of di, and as a
transfer of [units from ¢, to ¢ in the graph of d;. However,
in a single transfer of size [, it is not possible to transfer both,
[units of data d; and [units of data dz. This overapprox-
imation can be reduced by modifying the analysis, but the
task must be done carefully, in order to preserve soundness
(e.g., multiple data may share capacity via coding [1]).

As a final remark, quantitative measurements, in them-
selves, do not always reflect the usefulness of data. For
example, consider a group picture: removing every second
pixel or taking only the bottom half of the picture reduces
in both cases the size of 50%. But the reduction in terms of
information content may be very different in the two cases
for someone who wants to identify people in the picture. In
general, quantitative measurements make sense only if com-
bined with the interpretation of data.

8. CONCLUSION

In this paper, we presented a model for quantitatively
tracking flows of sensitive data. This model works in a dy-
namic context of runtime monitors. We proved the correct-
ness of this model and assessed its precision and performance
by embedding it in a usage control infrastructure.

Depending on the specific actions performed by a user,
our model’s precision can be as good as a fine-grained ap-
proach, which knows exactly how many different data units
are in every container, or as bad as a coarse-grained ap-
proach, which knows only if a data item could be in a con-

tainer but not exactly how many data units are in it. Usu-
ally, our model precision lies somewhere in between because
it knows that not every data unit in a container is sensitive
but over-approximates the exact amount of sensitive units.

Our model is embodied in a usage control infrastructure,
similarly to what has been done in [29], and used to enforce,
preventively or detectively, usage control policies. A valu-
able use of our system is to support the notion of acceptable
exceptions, i.e. quantitative policies defined a posteriori. For
example, in case of a data leakage, analyzing the logs of the
actions with our model may establish that only 0.1% of sen-
sitive data have been leaked. At this point, an auditor may
decide that this violation is still acceptable, whereas it is un-
likely that a policy defines a leakage of 0.1% to be acceptable
in advance, i.e., before the leakage happens.

In terms of future work, we want to extend our model
to cope with compression, model sources of data of variable
sizes and investigate the problem of measuring data across
different layers of abstraction (i.e., converting units of data).

Acknowledgments This work was done as part of the
DFG’s Priority Program SPP 1496 “Reliably Secure Soft-
ware Systems,” ref. numbers PR-1266/1-2. Fabio Massacci
suggested to present the results as done in

9. REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung.
Network information flow. IEEE Transactions on
information theory, pages 1204-1216, 2000.

[2] Y. Boykov and V. Kolmogorov. An experimental
comparison of min-cut/max-flow algorithms for energy
minimization in vision. TPAMI, pages 1124-1137,
2004.

[3] P. Buneman, S. Khanna, and T. Wang-Chiew. Why
and Where: A Characterization of Data Provenance.
In ICDT, pages 316-330, 2001.

[4] L. Cavallaro, P. Saxena, and R. Sekar. On the limits of
information flow techniques for malware analysis. In
DIMVA, pages 143-163, 2008.

[5] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige.
Tainttrace: Efficient flow tracing with dynamic binary
rewriting. In ISCC, pages 749-754, 2006.

[6] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding Data Lifetime via
Whole System Simulation. In SSYM, pages 321-336,
2004.

[7] D. Clark, S. Hunt, and P. Malacaria. Quantitative
Analysis of the Leakage of Confidential Data. ENTCS,
59:238-251, 2002.

[8] M. Clarkson, A. Myers, and F. Schneider. Belief in
information flow. In CSFW, pages 31-45, 2005.

[9] J. A. Clause, W. Li, and A. Orso. Dytan: a generic
dynamic taint analysis framework. In ISSTA, pages
196-206, 2007.

[10] M. Costa, J. Crowcroft, M. Castro, A. Rowstron,

L. Zhou, L. Zhang, and P. Barham. Vigilante:
End-to-end containment of internet worm epidemics.
TOCS, pages 1-68, 2008.

[11] J. R. Crandall and F. T. Chong. Minos: Control Data
Attack Prevention Orthogonal to Memory Model. In
MICRO-87, pages 221-232. IEEE, 2004.

[12] B. Demsky. Cross-application data provenance and
policy enforcement. TISSEC, pages 1-22, 2011.

[13] D. E. Denning. A lattice model of secure information
flow. Commun. ACM, pages 236—243, May 1976.

[14] R. Denning and D. Elizabeth. Cryptography and data
security. Addison-Wesley, 1982.

[15] P. Efstathopoulos and E. Kohler. Manageable
fine-grained information flow. In SIGOPS, pages
301-313, 2008.

[16] J. S. Fenton. Memoryless subsystems. The Computer
Journal, 17(2):143-147, Feb. 1974.

[17] B. Fishbain, D. S. Hochbaum, and S. Mueller.
Competitive analysis of min-cut max-flow algorithms
in vision problems. Technical report, UC Berkeley,
2010.

[18] J. W. Gray. Toward a mathematical foundation for
information flow security. In SP, pages 21-34, 1991.

[19] M. Harvan and A. Pretschner. State-based Usage
Control Enforcement with Data Flow Tracking using
System Call Interposition. In NSS, pages 373-380,
20009.

[20] A. Ho, M. Fetterman, C. Clark, A. Warfield, and
S. Hand. Practical taint-based protection using
demand emulation. EuroSys 06, 40(4):29, 2006.

[21] M. G. Kang, S. McCamant, P. Poosankam, and
D. Song. DTA+4+: Dynamic taint analysis with
targeted control-flow propagation. In NDSS, 2011.

[22] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F.
Kaashoek, E. Kohler, and R. Morris. Information flow
control for standard OS abstractions. In SOSP, pages
321-334, 2007.

[23] S. McCamant and M. D. Ernst. Quantitative
information flow as network flow capacity. In PLDI,
pages 193-205, 2008.

[24] J. Mccullough, M. Vrable, A. C. Snoeren, G. M.
Voelker, and S. Savage. Neon: system support for
derived data management. VEFE, pages 63-74, 2010.

[25] J. K. Millen. Covert channel capacity. In SP, pages
60-66, 1987.

[26] R. Neisse, A. Pretschner, and V. D. Giacomo. A
trustworthy usage control enforcement framework. In
ARES, pages 230-235. IEEE, 2011.

[27] N. Nethercote and J. Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation.
ACM Sigplan Notices, 42(6):89-100, 2007.

[28] J. Park and R. Sandhu. The ucon abc usage control
model. TISSEC, pages 128174, 2004.

[29] A. Pretschner, E. Lovat, and M. Biichler.
Representation-independent data usage control. In
Proc. SETOP/DPM, pages 122-140, 2011.

[30] N. Provos. Improving host security with system call
policies. In Proc. SSYM, pages 257-272, 2003.

[31] E. Rissanen. Extensible access control markup
language v3.0, 2010.

[32] A. Sabelfeld and A. C. Myers. Language-based
information-flow security. IEEE Journal on Selected
Areas in Communications, 21(1):5-19, 2003.

[33] A. Slowinska and H. Bos. Pointless tainting?:
evaluating the practicality of pointer tainting. In Proc.
EuroSys ’09, pages 61-74. ACM, 2009.

[34] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas.
Secure program execution via dynamic information

flow tracking. In ASPLOS, pages 85-96, 2004.

[35] K. Twidle, N. Dulay, E. Lupu, and M. Sloman.
Ponder2: A Policy System for Autonomous Pervasive
Environments. In ICAS, ICAS, pages 330-335, 2009.

[36] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan,
G. Ottoni, J. A. Blome, G. Reis, M. Vachharajani,
and D. August. Rifle: An architectural framework for
user-centric information-flow security. MICRO 37,
2004.

[37] T. Wang, M. Srivatsa, D. Agrawal, and L. Liu.
Modeling data flow in socio-information networks: a
risk estimation approach. In SACMAT, pages 113-122,
2011.

[38] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: capturing system-wide information flow for
malware detection and analysis. ACM CCS, 2007.

[39] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazi. Making Information Flow Explicit in HiStar.
In OSDI, pages 263-278, 2006.

[40] X. Zhang, J. Park, F. Parisi-Presicce, and R. S.
Sandhu. A logical specification for usage control. In
SACMAT, pages 1-10, 2004.

APPENDIX

The two correctness proofs assume that the label of edges
corresponding to C2 steps are oo rather than x((cz,t')) for
the source container ¢, and a time t' € N. Since r((c2,t")) <
o0, this does not impact correctness. Precision also is not
impacted because the edge can, in any case, not transfer
more than x((c2,t')) units. The reason for not using oo in
the definition of the C2 step is that, throughout the paper,
this would have obscured the dual nature of edge labels as
capacities and actual flows — actual flows are never infinite.

A. CORRECTNESS OF TRACKING

To show correctness of the model in the sense of we
need to prove Vi € NVc e C : ¢(c,t) < k((c, t)).

The proof is by induction. It is trivial for the empty
provenance graph (PG) of the base case. In terms of the
inductive step, we assume that correctness has been estab-
lished for all G;» with ¢’ < ¢: The induction hypothesis (*)
isVee OVH eN:t' <t = p(c,t') < r((c,t)).

I step: The only edge from (Sq,0) to (¢;,t) is the newly
created one with label m. Consequently, «((c;,t)) = m.
There are exactly m different units in ¢; by assumption,
and hence (¢, t) = m < k((ci, t))-

T step: A container ¢ (most recent node with time stamp
t' < t) is reduced to size m. If m > x((c, t')), the PG is not
modified, thus G; = G;_1. This implies x((c, t)) = k((c, t"))
which, by induction hypothesis (x) was a correct estimation
for ¢(c,t’). Since truncating actions remove data from a
container, the amount of sensitive data in ¢ can be either
the same of or less than before. Therefore, k((c, t')) is still
a correct estimation, and we have ¢(c,t) < k((c, t)) .

If, instead, m < k((c,t’)), then node (c,t) is added as a
successor of (¢, t') with an edge labeled m. Because (c, t') is
the only predecessor of (¢, t), the min cut will now contain
exactly this edge, hence x((c,t)) = m. This estimation is
also correct, because if the new size of ¢ is m, then ¢ cannot
contain more than m different units of sensitive data. We
have ¢(c,t) < k((c, t)).

C1 step: /¢ units of data are to be copied from c4 to
a cp that does not exist at time ¢ — 1. We introduce a

new edge e, with label £ from (ca,t’) to the newly created
(cB,t) where t’ is the most recent timestamp for cs. Be-
cause cp cannot contain more different units of sensitive
data than ca, we know ¢(cp,t) < min(4,p(ca,t’)). Let
a = k((ca, t')). By induction hypothesis (x), p(ca,t’) < a.
Hence ¢(cp,t) < min(4,a). If £ < o, {es} is the only edge
crossing the minimal cut, and we have x((¢p,t)) = €. If
£ > a, then x((cg,t)) = s((ca,t')) = a. In both cases
w(em 1) < wl(cn, 1),

C1 step immediately followed by a C2 step: Assume
we copy ¢ units of data from container c4 to the existing
container cg. By construction of the PG, there are t' < ¢
and t" < t and nodes (ca,t'), (cg,t"”) € Ni;—1, a new node
(cp,t) € Ny, and two edges ex = ((ca,t’'),4, (cp,t)) and
Cr = ((CB7 t”)7007 (CB7 t)) €&

We note that by construction in every & (7 < t), all
labels corresponding to I, C1, and T steps measure actual
flows of data (sensitive and non-sensitive units) in-between
containers and are determined by the action corresponding
to the step. We can interpret these edge labels as upper
bounds for the flow of sensitive units: For each edge (action),
it is impossible that more sensitive than overall units flow.

We then observe that all edges ((c,t"),00, (¢, 7)) € &
for all T < ¢ corresponding to C2 steps also provide (triv-
ial) upper bounds for the flow of sensitive units. By induc-
tion hypothesis (%), ¢(ca,t’) < k((ca,t’)) and p(cp,t") <
k((cp, t")). The same argumentation as for the edge labels
in &, applies to the newly created labels in £;: The label ¢
of eg is an upper bound for the flow of sensitive units from
(ca,t') because it is impossible that more sensitive units flow
than overall units flow. The label co is an upper bound for
the number of sensitive units in (cg,t"”), ¢(cg, t""), which by
induction hypothesis is bounded from above by k((cg, t")).

In sum, all edge labels in &£ are upper bounds for the
flow of sensitive units for all kinds of steps. Edge labels can
hence be seen as capacities for flows of sensitive data units.

Then, every cut of the PG between (S4,0) and (cg,t)
partitions the nodes in two sets: the source set containing
(S4,0) and the destination set containing (cp,t). Since la-
bels are capacities for flows of different sensitive units, the
size of every cut between (Sq,0) and (cp,t) is an upper
bound for the amount of different sensitive units that flowed
to any node in the destination set. Specifically, for every cut
between (S4,0) and (cz, t), ¢(ca, t) can’t exceed the size of
this cut.

Finally, by definition, x((¢g, t)) is the maximum flow be-
tween (S4,0) and (cp,t). By the max-flow/min-cut theo-
rem, this is equivalent to the value of a minimal cut that
separates (cg, t) from (Sq,0). x((cB, t)) hence necessarily is
an upper bound for ¢(cp,t). [

Note that the proof’s structure also shows that the max-
flow must be computed explicitly for combined C1&C2 steps
only—for the others, x values can directly be determined.

B. CORRECTNESS OF OPTIMIZATIONS

We prove equivalence ~ of a graph G; with its optimized
version G; according to the rules presented in

Let I(a, q) denote actions that initialize a container a with
q units of sensitive data, C(a1, qi, az, g2, ..., b) actions that
transfer ¢; units and ¢z units from container a; and a2 to
b, respectively, and T'(a, ¢) truncations of container a to ¢
units. C' is the set of containers. While function mazflow
returns a number, let mincut returns the cut.

Removal of Truncation. For a sequence of events tr =
(€0y---,€ky.-.,€¢) such that 3k € NV¢,, cp,c € C,q,z €
Nt € [k+1.t—1],j € [0.k —1] : ex = C(ca,q,c) A
ee = T(ew,m) N gj # I(co,z) N egj # Cle,z,¢) N ei #

T(ey,z) AN ei # Cle,z,e) A (e, k) > m A sy +m <
q where sy = Zs,:c(cb sy Ty We construct a new se-
quence ¢r' = (go,...,e5-1, C(ca, M, Cb), Epp1 - - -,€4_1) With

e; = C(ca,qi,ci) if & = C(cp, gi,ci) or € = g; other-
wise, for every ¢ € [k + 1..t — 1]. ir' results in a sim-
pler (i.e. smaller), yet equivalent graph. Let (cq,u) be
the source node of the copy action at time k£ and, because
there is no truncation or transfer to ¢, in between times
k 4+ 1 and ¢t — 1, (¢, k) the source node of the trunca-
tion action at time t. We define N = Ny \ {(e,t)} and

gtl = (gt \ ({((va k)? m, (Cb7 t))? ((C'lv u)7 q, (Cb7 k))} U

ng;c(cb,q“cl){((cbv k)v qi, (Ci7 Z))}))U({((Cﬂv U), m, (Cb7 k‘))}U
Ue,=c(epas,en1((cas v), @i, (ci,4))}). Let X C C be a set of
containers. r¢,x(d) # r; x(d) = ((¢ca, u), ¢, (cs, k)) €
mincutg, ((S5,0),d) because any other edge has the same
value in both graphs, but this is impossible (i.e. it is not a
minimum cut) since ¢ > m + sy. Hence Gi ~ Gs.

Remowval of Copy (case 1). For a sequence of events tr =
(e0y---,€ky.-.,&¢) such that 3k € NV e, ¢ € C,q € Nyi €
[k+1..t—1],2 € N: ey = C(ca, s1,¢) Aer = C(cey 82, 1) A
€i # T(ev,z) Nei # Cle,z,cp) Nei # Clep,z,¢) Neg #
T(ca,z) N €i # C(c,z,c,), we construct a new sequence
tr' = (g0,...,€k-1, C(Ca, 81, Cc, 82, Cp), - - . ,E¢—1) that results
in a simpler, yet equivalent graph. Let (ca,u) be the source
node of the copy action at time k, (¢, v) the current node
for ¢ (if any) at time k — 1, and (c., w) the source node
of the copy action at time t. We define Ny = N \ {(cb, t)}
and 52 = (gf \ {((Chv k)? 00, (va t))v ((Ccv w)a 52, (va t))}) U
{((ce,w), s2,(cv,k))}. Let X C C be a set of contain-
ers. If ¢y ¢ X, then ki x(d) = K} x(d) because no flow
would go through the modified part. If ¢, € X, ke, x(d) #
li;yx(d) = (((cc,w),sz,(cb,k)) IS mincutg/tyx((S,O),d) A
((ce,w), s2, (cb, t)) & mincutg, ,((S,0),d)). This is impos-
sible since the node (¢, ¢t) must be separated from (S, 0) by
the cut and s; < co. Therefore, having ((c., w), sz, (¢, k))
in the cut in G; implies that ((c., w), s2, (¢, t)) is in the cut
in G;. Hence G; ~ G;.

Remowal of Copy (case 2). For a sequence of events tr =
(e0y---,€k,.-.,€¢) such that 3k € NVc,,¢c € C,q,z €
Nt € [k+1.t—1],j € [0.k —1] : ex = C(ca,s1,) A
er = C(ca,s2,0) N gj # I(eo,z) N gj # Cle,z,¢) A
i # T(cv,z) Nei # Cle,z,e) N ei # T(cayx) N €5 #
Cle,m,ca) NSt > 3 (e, 0,0 T We construct a new se-
quence tr’ = (go,...,6x-1, C(Ca, 81 + 82,Cp),...,6¢—1) that
results in a simpler, yet equivalent graph. Let (cq,u) be
the source node of the copy action at time k and Y =
{((cv, k), @iy (ciyi)) | i € [k+ 1.t —1],¢ € Cyqs € Nyg; =
C(cb, giy ci) € tr} the destination nodes of the copy steps
from ¢, between time k + 1 and time ¢t — 1, and sy the sum
of those edges’ capacities. We define N} = N;\ {(cs,)} and
5; = (5t \ {((va k)7 o0, (va t))7 ((Ca, u)7 S1, (Cb7 k))7
((ca,u), s2, (cp, t))}) U{((ca, u), s1+s2, (cs, k))}. Let X C C
be a set of containers. k¢ x (d) # K} x(d) =
Y N mincutg, ,((S,0),d) # @. Let sx be the sum of those
edges’ capacities. Since sy x(d) # ki x(d), it means s1 <
sx. This is impossible since sx < sy < s1. Hence G; ~ G;.

	Introduction
	Measuring Data Quantities
	QDFT model
	Quantitative Policies
	Experimental results
	Implementation and methodology
	Precision
	Simplification
	Performance
	Discussion

	Related work
	Discussion
	Conclusion
	References
	Correctness of Tracking
	Correctness of Optimizations

