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Abstract
Hardware developments in the recent past have facilitated in-memory database
systems. In addition to the performance advantage this technology entails, it
also allows for novel types of database systems. In particular, the once sepa-
rated areas of Online Transactional Processing (OLTP) and Online Analytical
Processing (OLAP) can be reconciled in a single hybrid OLTP and OLAP sys-
tem.

Dedicated OLTP systems as well as specialized OLAP engines often optimize
the physical representation of the database for typical access patterns of their
respective workloads. However, both workloads usually employ contradict-
ing optimization techniques, which constitutes a challenge for hybrid systems.
Compression, for instance, is frequently used in analytical database systems as
it reduces memory consumption and can improve query performance. High-
performance transactional systems on the other hand refrain from using com-
pression in order to retain high OLTP throughput.

This thesis investigates how physical optimization techniques, such as com-
pression, can be integrated into the emerging class of hybrid OLTP and OLAP
systems. After proposing a mixed-workload benchmark to assess the perfor-
mance of these systems, we present a lightweight method to cluster the data-
base into two parts: a hot part containing the transactional working set and
a cold part that is primarily accessed by analytical queries. Then, we present
the integration of physical optimizations to improve OLAP performance, sup-
port databases larger than the available memory and allow for the fast creation
of transaction-consistent snapshots, without jeopardizing the mission-critical
transaction processing.
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Zusammenfassung
In den letzten Jahren haben Weiterentwicklungen in der Hardware Hauptspei-
cherdatenbanksysteme möglich gemacht. Neben den Leistungsvorteilen, die
diese Technologie mit sich bringt, hat sie ebenfalls neue Arten von Datenbank-
systemen ermöglicht. Insbesondere die vormals getrennten Bereiche Online
Transactional Processing (OLTP) und Online Analytical Processing (OLAP)
können in einem hybriden OLTP- und OLAP-System vereint werden.

Dedizierte OLTP- sowie OLAP-Systeme optimieren häufig die physische Re-
präsentation der Datenbank für typische Zugriffsmuster ihrer jeweiligen An-
wendungen. Jedoch sind die Optimierungstechniken für transaktionsverarbei-
tende und analytische Anwendungen meist gegensätzlich, was hybride OLTP-
und OLAP-Systeme vor eine Herausforderung stellt. Kompression wird bei-
spielsweise oft in analytischen Datenbanksystemen eingesetzt, da sie den Spei-
cherplatzverbrauch verringern und die Leistungsfähigkeit der Anfrageverar-
beitung steigern kann. Andererseits verzichten hochperformante Systeme der
Transaktionsverarbeitung auf den Einsatz von Kompression um hohe OLTP
Durchsatzraten nicht zu gefährden.

Diese Arbeit untersucht, wie sich physische Optimierungstechniken, wie
Kompression, in die neuartige Klasse hybrider OLTP- und OLAP-Systeme in-
tegrieren lassen. Zunächst schlagen wir eine Möglichkeit zur Leistungsbewer-
tung dieser Systeme vor. Dann präsentieren wir eine leichtgewichtige Tech-
nik, um die Datenbank in zwei Bereiche aufzuteilen: Einen heißen Bereich,
der aus den von Transaktionen genutzten Daten besteht, sowie einen kalten
Bereich, auf den vornehmlich von analytischen Anfragen zugegriffen wird.
Anschließend beschreiben wir, wie physische Optimierungen integriert wer-
den können, welche die analytische Leistungsfähigkeit steigern, die Erstellung
von Snapshots beschleunigen und Datenbankgrößen jenseits des verfügbaren
Hauptspeichers möglich machen, ohne die betriebsnotwendige Transaktions-
verarbeitung zu gefährden.
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Introduction

CHAPTER 1

In the last decade, main-memory prices have dropped and capacities have
grown to a point where it became possible to fit even the business data of large
enterprises into the memory of a single server. This trend in hardware has
triggered a development in database research to rethink the entire database ar-
chitecture in order to account for the characteristics of the new storage medium.

Numerous commercial systems and research prototypes have emerged from
this line of research which take advantage of in-memory data management and
processing. The research presented in this thesis is centered around and evalu-
ated with the HyPer system, a novel DBMS designed from scratch to avoid the
burdens of classical, disk-based systems. HyPer was invented by Alfons Kem-
per and Thomas Neumann [63, 64, 62] and is designed and implemented to
achieve the best performance in the two areas of online transactional processing
(OLTP) and online analytical processing (OLAP). Unlike other systems, HyPer
is able to process both workloads at the same time on the same data and thus
allows for real-time business intelligence as the very latest transactional data
can be analyzed by OLAP queries. HyPer does not sacrifice isolation or perfor-
mance when processing OLTP and OLAP workloads simultaneously thanks to
its efficient snapshot mechanism. This chapter describes HyPer, its OLTP and
OLAP engines and snapshot mechanism.

Hybrid OLTP and OLAP processing brings new challenges to database archi-
tecture, design and implementation. This results from the fact that traditional
systems are used for either OLTP or OLAP, but not both concurrently. Addi-
tionally, substantial advances have been made to build specialized systems for
either OLTP or OLAP. This thesis focuses on the question how optimizations
in the storage layer of specialized systems can be integrated into a hybrid OLTP
and OLAP system. The main challenge arises from the fact that storage opti-
mizations for OLAP systems are often counter-productive in OLTP systems.

In this chapter, we characterize OLTP and OLAP workloads and give an
overview of HyPer. We introduce how HyPer processes transactions and an-
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1. Introduction

alytical queries and describe its snapshot mechanism that facilitates efficient
mixed workload processing. Finally, we motivate the need for adaptive physi-
cal optimization and outline the contributions of this thesis.

1.1. Database Workloads

Traditionally corporations and other organizations use database systems for
two purposes [61]: Online Transaction Processing (OLTP) applications handle
the daily business transactions such as order entry, money transfers or flight
booking. The second use case is Online Analytical Processing (OLAP) in which
applications support operational or strategic decisions by analyzing transac-
tional (and other) data. Not only do OLTP and OLAP applications serve very
different purposes, but they challenge database systems in very different ways.
The following describes the two workloads, their access patterns and the DBMS
components they strain.

1.1.1. OLTP

Online Transaction Processing refers to the ad-hoc processing (as opposed to
batch processing) of transactions. A transaction is a sequence of database oper-
ations (and potentially additional program logic) that are being executed as a
single unit with strong semantic guarantees (cf. [61]). The Transaction Process-
ing Council (TPC) uses the term “business transaction” [103] for this concept.

The semantic guarantees are often characterized by the acronym “ACID” that
stands for the four properties database systems guarantee when executing a
transaction [110]:

Atomicity A transaction may consist of multiple database operations, but to
the issuing entity, it appears as one indivisible (“atomic”) unit that is
either executed entirely or not at all. If a database system signals the
successful processing of a transaction to the outside world, we refer to
the transaction as “committed.” If, on the other hand, a transaction was
aborted, all of the modifications to the dataset are annulled.

Consistency If executed on a database that fulfills all of its consistency con-
straints (e.g., primary and foreign keys), a transaction leaves the database
in a consistent state upon its commit.

2



1.1. Database Workloads

Isolation A database system may choose to process multiple transactions con-
currently for performance reasons. It must however shield each transac-
tion from the side effects of other transactions that execute concurrently.

Durability Once a database system indicates to the outside world that a trans-
action has committed, it guarantees that all modifications made by this
transaction to the database state are persistent.

Transactions have proven to be very beneficial for the development of busi-
ness applications as database systems guarantee the ACID properties and si-
multaneously promise high throughput. Scenarios in which OLTP systems are
employed include traditional use cases such as order processing, banking and
stock trading as well as emerging fields like telecommunications and online
gaming.

The primary challenge for OLTP database systems is to ensure high trans-
actional throughput. This is traditionally achieved through a high degree of
concurrency, so that efficient concurrency control, latching and logging are im-
portant design goals.

While transactions can technically contain arbitrary SQL queries, in many
cases they are comprised of (multiple) simple-structured “point queries”. This
refers to select, update, insert or delete statements that target a single or very
few database records. Therefore, a large fraction of the execution time is usually
devoted to locating the requested entries via index structures as depicted in
Figure 1.1(a).

A second observation that holds for common use cases is that transactions
are often comprised of a reasonably small number of database operations, typ-
ically ranging from a single to a few dozen statements. Finally, today’s appli-
cations often do not interact with human users or external systems. Section 1.2
describes some of the design choices architects of modern database systems
make to exploit these observations.

1.1.2. OLAP

OLTP systems are used in the operational daily business of companies and
other organizations. However, the data generated through OLTP applications
has a value beyond the daily business: Analyzing transactional data in bulk can
give insights useful for operational or strategic decision making in the context
of business intelligence. Codd [21] refers to these analyses as Online Analytical
Processing (OLAP).

3



1. Introduction

(a) OLTP Access Patterns (b) OLAP Access Patterns

Figure 1.1.: Typical OLTP and OLAP access patterns: Transactions operate on
individual records, analytical queries scan large parts of the dataset

While the SQL statements in transactions operate on individual entries that
store the information of, e.g., a specific order, analytical queries often aggregate
substantial parts (see Figure 1.1(b)) of one or more relations to answer busi-
ness questions and provide decision support. Unlike transactions, which often
modify the dataset, analytical processing is typically read-only.

1.1.3. Combining OLTP and OLAP

IBM’s DB2, Oracle Database and Microsoft’s SQL Server are examples of disk-
based, universal relation database management systems that are frequently de-
ployed either as OLTP or as OLAP systems. Processing both workloads on a
single universal database system, however, often yields poor performance [88,
62] as the two different access patterns impede each other, primarily in terms
of concurrency control.

This has led to a data staging architecture with separate systems for the
two workloads and an extract-transform-load (ETL) process to connect them:
Transactional data is periodically extracted from operational OLTP systems.
The data is transformed in a data staging area and loaded into a “data ware-
house” [54]. The data warehouse serves both as a data integration point as well
as a platform for analytical processing.

The strict separation between OLTP and OLAP has bestowed new competi-
tors on the universal database systems. Specialized transaction processing sys-
tems, such as Volt DB [109], and dedicated OLAP systems, like MonetDB [11,
10] or Vectorwise [118], are specifically designed for the characteristics of their
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1.1. Database Workloads

(a) Data Staging Architecture (b) Hybrid OLTP and OLAP

Figure 1.2.: Data staging architecture with separate OLTP and OLAP process-
ing versus hybrid OLTP and OLAP processing

respective workloads. These systems can outperform universal database sys-
tems in their domain. However, they cannot solve the problems resulting from
the separation between transaction and analytical query processing: First, ad-
ditional cost results from the necessity to purchase, license and operate multi-
ple systems. Second, the data in the data warehouse is outdated quickly as the
resource-intensive ETL process can only periodically funnel fresh transactional
data into the data warehouse.

Recently, SAP’s co-founder Hasso Plattner has made the case for real-time
business intelligence [86]. He criticizes the separation of OLTP and OLAP as
well as the shift of priorities towards OLTP. Plattner emphasizes the neces-
sity of OLAP for strategic management and compares the expected impact of
real-time analytics on management with the impact of Internet search engines.
Stonebraker et al. [101] state that “there is an increasing push toward real-time
warehouses, where the delay to data visibility shrinks toward zero” and “the
ultimate desire is on-line update to data warehouses.”

The challenge of hybrid OLTP and OLAP processing has been addressed by
SAP’s HANA system [32] as well as the HyPer system [62]. Both attempt to
facilitate real-time business intelligence by allowing to run analytical queries
on the latest transactional data thus solving the problems of the data staging
architecture. They do so using different approaches as depicted in Figure 1.3.
While HyPer separates the two workloads using a hardware-assisted virtual
memory snapshot mechanism (see Section 1.2) to create a “shadow copy” of
the database quickly, SAP’s HANA system is built upon a delta approach: In
addition to a read-optimized “main”-database, a write-optimized “delta”-store
buffers all modifications [66]. The current database state consists of both the
information from the main as well as the delta-store. While this architecture
allows to physically optimize both stores separately, it requires frequent merg-
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Figure 1.3.: Two architectures for hybrid OLTP and OLAP processing: HyPer
and SAP HANA.

ing of delta-store into the main-store to maintain performance and reduce the
memory footprint. This causes a dilemma as the runtime of this merge process
is linear in the table sizes [67]. HyPer devises a different architecture to effi-
ciently handle OLTP and OLAP workloads concurrently and avoid the delta
merge dilemma.

1.2. The HyPer System

HyPer is an in-memory, hybrid OLTP and OLAP DBMS with outstanding per-
formance. We integrate prototypical implementations of the ideas and ap-
proaches proposed in this thesis into HyPer and briefly present the system here.

HyPer belongs to the emerging class of database systems that have – in ad-
dition to an OLTP engine – capabilities to run OLAP queries directly on the
transactional data and thus enable real-time business intelligence. HyPer al-
lows to run queries in parallel to transactions with extremely low overhead.
This is achieved by executing analytical queries on a snapshot of the database.
Unlike similar approaches, such as Lorie’s shadow paging [72], HyPer’s snap-
shots are hardware-supported and therefore very efficient. The snapshot is a
separate process created using the fork system call and contains a transaction-
consistent shadow copy of the OLTP process’ database.

1.2.1. Virtual Memory Snapshots

HyPer creates virtual memory snapshots using the fork system call provided
by Unix and Linux operating systems to spawn new processes. It does so by
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Figure 1.4.: Pages are shared between parent and child process using copy-on-
write.

replicating the calling process, including its address space. The address space
of a process is comprised of all its valid virtual memory areas. Each virtual
memory area consists of virtual memory pages which are mapped to physical
memory pages by the operating system’s virtual memory manager using a page
table.

In order to avoid copying the parent’s physical memory for the child process,
the physical memory pages are initially shared between parent and child pro-
cess. A page is shared until a process attempts to modify it. Modifications are
detected by the processor’s memory management unit (MMU) before the write
to a shared page is performed. It creates a trap into the operating system’s page
fault handling routine which copies the page for the modifying process [40].
This is depicted in Figure 1.4 where parent and child share most of the physi-
cal pages. These shared pages (blue) are flagged as copy-on-write (CoW) and
writing to them (by either process) triggers the creation of a private copy. In
the example, the parent process has changed value C to C ′ and value K to K ′

after the child process was created.
HyPer uses this mechanism to create database snapshots: The OLTP process

owns the database and spawns one or more OLAP processes (children). OLTP
and OLAP processes each have their own address spaces, but (initially) these
map the same physical memory pages. Thus, directly after forking an OLAP
process, the database itself has not been replicated, but rather a shadow copy
has been created for the OLAP process. The OLTP process continues to execute
transactions and thereby modifies the database which is now shared between
OLTP and OLAP processes. But before the OLTP process modifies a page, the
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Figure 1.5.: HyPer’s VM snapshot mechanism. Only those memory pages get
replicated that are modified during the lifetime of a snapshot.

page is replicated to maintain the state the database had at the time of snapshot
creation. This ensures the consistency of the shadow copy. Figure 1.5 shows
an example where one page has been replicated as a transaction has changed
the value C to C ′. Note that for illustrative purposes, the depiction suggest
that the new page belongs to the OLAP process while it actually belongs to
the modifying process (OLTP process) and the OLAP process is now the sole
owner of the original page.

Queries read data from the shadow copy of the database and the page table
redirects these read instructions to either a private or a shared page, depending
on whether or not the page has been modified since the snapshot was created.
It is important to note that no extra level of indirection is introduced by HyPer
as this is the same mechanism used for all processes. Whether an accessed page
is shared or not is completely opaque to the processes.

Forking virtual snapshots is a cornerstone of HyPer’s performance, allowing
it to compete with the best dedicated OLTP systems and the fasted specialized
analytical system – even when both workloads are executed in parallel on the
same data in HyPer. This results from the fact that neither transactions nor
OLAP queries need to perform any concurrency control in order to maintain
the isolation with respect to the other workload1. The snapshot is kept consis-
tent by the operating system with the assistance of the memory management
unit (MMU) and efficiently separates the two workloads providing snapshot
isolation [7] for the analytical queries.

1Cf. Section 1.2.2 about concurrency control within the OLTP engine.
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Note that there can be multiple snapshots at the same time and multiple
queries executing on one snapshot. Multiple OLAP processes can share mem-
ory pages and can be terminated in arbitrary order. Transaction-consistent
snapshots can be created even when one or multiple transactions are active at
the time of the fork, by “cleaning up” inconsistencies induced by active trans-
actions on the snapshot after it was created (see [62] for details). In addition
to query processing, snapshots can also be used to write the current database
state periodically to disk in order to speed up the recovery process.

These features make HyPer snapshots a very robust foundation for hybrid
OLTP and OLAP processing. Mühe et al. [79] found the performance of this
hardware-based approach to snapshots superior to software-based solutions.

1.2.2. Transaction Engine

HyPer’s approach to transaction processing is similar to the model pioneered
by H-Store [60] and VoltDB [109]. Harizopoulos et al. [46] found that when
the database fits into main-memory, traditional OLTP systems only spend less
than 7% of their instructions doing useful work. Concurrency control accounts
for over 30% of the overhead. As in-memory database systems do not need
to mask disk I/O by processing many transactions concurrently, processing
transactions serially becomes worthwhile as serial execution does not require
costly latching and locking.

This simple approach can be refined to better utilize multi-core CPUs. The
database is (manually) split into p logical partitions, so that most transactions
only need to access one of these partitions as depicted in Figure 1.6. Thus,
one OLTP thread can be assigned to each partition and can operate within the
partition without having to acquire any locks or latches. Only for the rare case
of partition-crossing transactions, lightweight synchronization in the form of
admission control between OLTP threads is necessary.

Transactions in HyPer are written as stored procedures and are compiled
to native code [81] by leveraging the LLVM [69] compiler back-end. Trans-
actions are written in HyPer Script, a language distantly related to PL/SQL
which extends SQL and offers, e.g., control flow constructs such as for and
if. Listing 1.1 shows a simplified version of TPC-C’s Payment transaction2 in
HyPer Script. The entire transaction, including its SQL statements, is compiled
to the LLVM assembly language, a lightweight abstraction over real assembly
languages (such as x86) that can be efficiently lowered to target-dependent

2TPC-C is a standardized OLTP benchmark, cf. Chapter 2
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Figure 1.6.: HyPer OLTP model: Serial execution on private partitions

machine instructions. A fragment of the resulting LLVM code is shown in
Listing 1.2 which includes the allocation of stack variables (alloca), load and
store instructions and the call to the index-lookup function of the Warehouse-
relation’s primary index (line 15).

As all data is in main-memory and precompiled transactions execute very
quickly, the simple serial execution model outperforms traditional models such
as 2PL for many workloads. HyPer’s OLTP engine can process 100 000s of TPC-
C transactions per second [62].

In addition to the transaction model for one-shot transactions presented
above, new models have recently been incorporated: HyPer now has capa-
bilities to process long running transactions using “tentative execution” [78] as
well as interactive transactions.

1.2.3. Query Engine

When a query enters the system, it can either be executed on a fresh snapshot
or an existing snapshot can be re-used. HyPer first parses and semantically
analyzes the query. The semantic analysis returns an initial query plan which
is then enhanced by a cost-based optimizer that uses dynamic programming
for join ordering.

The query execution is built upon a novel query compilation technique by
Neumann [81]: It avoids the performance overhead of classic, iterator-style
(“Volcano”) processing techniques [41] that suffer from excessive virtual func-
tion calls and frequent mispredictions by translating queries into LLVM as-
sembler. This high-level assembler is compiled to native machine code using
LLVM’s optimizing compiler back-end. The resulting code is very different
from the code executed by both Volcano-style and column-at-a-time [11] or
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create procedure payment(w_id int not null, /*..*/) {
select w_name,w_ytd from warehouse w where w.w_id=w_id;
update warehouse set w_ytd=w_ytd+h_amount
where warehouse.w_id=w_id;
/* ... */
select c_data,c_credit,c_balance from customer c
where c.c_w_id=c_w_id and c.c_d_id=c_d_id
and c.c_id=c_id;

var n_bal=c_balance+h_amount;
if (c_credit=’BC’) {
var n_data varchar(500) not null;
sprintf (n_data,’%s|%4d %2d ...’,c_data,/*..*/);
update customer set c_balance=n_bal,c_data=n_data
where customer.c_w_id=c_w_id and customer.c_d_id=c_d_id
and customer.c_id=c_id;

}
/* ... */
commit;

}

Listing 1.1: TPC-C Payment transaction (simplified) in HyPer Script

vectorized [115] execution engines. It rather resembles a hand-coded query
execution plan in which the boundaries of operators within the same pipeline
are dissolved and a tuple’s data items often remain in the CPU’s registers for
more than one operator. Figure 1.2.3 contains a simple example (based on [81])
to illustrate the structure of the produced code. The code does not contain any
next virtual function calls, yet processes one tuple at a time: A tuple is pushed
through all operators in the pipeline (color-coded in the figure) before the next
tuple is processed.

Together with its sophisticated query optimizer, this enables HyPer to achieve
sub-second query response times on typical business intelligence queries that
can compete with the fastest dedicated OLAP systems.

1.2.4. Physical Optimization

HyPer’s compilation-based processing approaches for transactions and analyt-
ical queries allow it to compete with the fastest dedicated OLTP systems as well
as the best OLAP engines. Its hardware-supported snapshot approach allows
to separate the two workloads from each other.

Nevertheless, dedicated OLTP systems and specialized OLAP systems have
a fundamental advantage. They can optimize the physical representation of
the database to achieve optimal performance or resource consumption for their
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1 define void @_36_payment(%”hyper::Transaction”* %t, i32 %w_id,
2 ; more parameters...
3 ) {
4 body:
5 %state = alloca {}
6 ; ...
7 %h_n_dataPtr128 = alloca [24 x i8]
8 %matchPtr = alloca i1
9 store i1 false, i1* %matchPtr

10 %0 = getelementptr %”hyper::Transaction”* %t,;...
11 %1 = load %”hyper::Database”** %0
12 ; ...
13 %19 = load i64** %18
14 %iterator = alloca i64
15 %20 = call i1 @_1_warehouse_Index0_lookupUnique(;...
16 ; ... 789 more lines

Listing 1.2: Fragment of the Payment transaction compiled to LLVM

respective workload. For instance, this includes the use of compression tech-
niques which not only reduce the memory consumption, but can also speed
up query processing. A second common optimization is the choice of an ad-
vantageous storage layout, such as row-stores for OLTP or columnar storage
for analytical systems. Finally, the choice of physical page properties can im-
pact the workload performance directly, but also facilitate snapshots that can
be efficiently created and maintained.

HyPer’s snapshot mechanism entails that both workloads share the same
physical data structures. Thus, physical optimizations benefiting one work-
load may simultaneously impair the other. In the following chapters we inves-
tigate how physical optimizations can be performed in such a hybrid OLTP and
OLAP database system.

1.3. Contributions

This thesis contributes to the research area of high-performance in-memory
database architectures. The emphasis is on systems like HyPer that can effi-
ciently process transactions and analytical queries concurrently. We focus on
the storage manager of such systems, albeit the work extends into query pro-
cessing. In the context of hybrid OLTP and OLAP database systems, this thesis
contains the following contributions:
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1 // Black pipeline
2 for (r1 : R1)
3 if (σ1(r1))
4 hashTable1.insert(r1)
5

6 // Blue pipeline
7 for (r2 : R2)
8 if (σ2(r2))
9 hashTable2.insert(r2)

10

11 // Orange pipeline
12 for (r3 : R3)
13 for (t : hashTable2.matches(r3))
14 for (t′ : hashTable1.matches(t))
15 . . .
16

Figure 1.7.: Query plan and generated pseudo-code

We propose a mixed workload benchmark for both OLTP and OLAP. Stan-
dardized and widely accepted benchmarks exist to assess the transactional per-
formance of database systems. Other benchmarks evaluate the performance for
OLAP workloads. We propose a new benchmark, the CH-benCHmark, that
challenges the database system with a mixed workload to simulate real-time
business intelligence, i.e., analytical processing that includes the most recent
transactional data. Both workloads operate concurrently on the same data. The
CH-benCHmark builds on existing, widely used benchmarks to streamline its
acceptance.

We present a technique to physically cluster databases according to work-
load access patterns into a hot and a cold part. Accesses in operational data-
bases are often skewed. Some tuples are accessed frequently while others, in
particular older tuples, are rarely or even never accessed. We refer to those
data items that constitute the transactional working set as “hot” and the re-
mainder as “cold”. We exploit any existing hot/cold clustering in the database
and purge stray hot data items from cold regions. To avoid a negative impact
on the mission-critical OLTP, we devise a lightweight, hardware-assisted tech-
nique to detect accesses to the database. Cold regions can be frozen, i.e., made
immutable and physically optimized for analytical queries.

Compression and other physical optimizations can exploit hot/cold clus-
tering. Physical optimizations, such as compression or row/columnar storage,
can improve the performance of typical database workloads, but are often ei-
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ther suitable for transactional or for analytic workloads. We discuss how hot/-
cold clustering can be exploited to facilitate their integration into hybrid OLTP
and OLAP database systems and quantify the impact on performance.

Finally, we unify multiple optimization techniques in Data Blocks – com-
pressed, self-contained chunks of data items. Data Blocks are optimized for
OLAP, but nevertheless guarantee efficient point access performed by transac-
tions. They are optimized for in-memory processing and even improve query
performance for most queries. This results from the fact that the amount of
data that has to be processed is reduced due to compression and lightweight
indexes. Furthermore, predicates pushed down to the scan operators can be
efficiently evaluated on the compressed representation. Hash joins and hash
group joins can further reduce the amount of data that has to be extracted.
Data Blocks combine vectorized processing with HyPer’s tuple-at-a-time pro-
cessing approach. When memory is scarce, Data Blocks can be evicted to disk
as they are self-contained. Compression reduces the amount of I/O necessary
to load evicted blocks back into memory during query processing.
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Hybrid OLTP & OLAP
Benchmarking

CHAPTER 2

Parts of this chapter have previously been published in [35, 22, 34]
and are based on the work of Kemper and Neumann [62, 64].

2.1. Introduction

The two areas of online transaction processing (OLTP) and online analytical
processing (OLAP) constitute different challenges for database architectures.
While transactions are typically short-running and perform very selective data
access, analytical queries are generally longer-running and often scan signifi-
cant portions of the data. As a consequence, running OLTP and OLAP work-
loads in the same system can cause performance problems. Therefore, organi-
zations with high rates of mission-critical transactions are currently forced to
operate two separate systems: operational databases processing transactions
and data warehouses dedicated to analytical queries.

Real-time business intelligence postulates novel types of database architec-
tures, often based on in-memory technology, such as SAP HANA [32] (and the
associated research prototype SanssouciDB [87]) or HyPer [62]. They address
both workloads with a single system to eliminate the problems caused by the
separation of transaction and query processing.

Different strategies seem feasible to reconcile frequent inserts and updates
with longer running BI queries: Modifications triggered by transactions could
be collected in a delta and periodically merged with the main dataset that
serves as a basis for queries as proposed by Krüger et al. [66]. Alternatively,
the DBMS can devise versioning [110] to separate transaction processing on
the latest version from queries operating on a snapshot of the versionized data.
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Figure 2.1.: Classification of DBMSs and benchmarks

Virtual memory snapshots as introduced by HyPer [62] promise superior per-
formance since they are supported by the operating system and hardware.

This novel class of DBMSs necessitates means to analyze their performance.
Hybrid systems need to be compared against each other to evaluate the dif-
ferent approaches. Additionally, they must also be juxtaposed to traditional,
universal DBMSs and specialized single-workload systems to prove their com-
petitiveness in terms of performance and resource consumption. We present
the CH-benCHmark (originally dubbed “TPC-CH” [62, 64]), a benchmark that
seeks to produce highly comparable results for all types of systems (cf. Figure
2.1). The following section evaluates related benchmarks. Section 2.3 describes
the design of the CH-benCHmark. Section 2.4 shows setups and results pro-
duced with different types of DBMSs and Section 2.4 concludes this chapter.

2.2. Related Work

The Transaction Processing Performance Council (TPC) specifies benchmarks
that are widely used in industry and academia to measure performance char-
acteristics of database systems. TPC-C and its successor TPC-E simulate OLTP
workloads. The TPC-C schema consists of nine relations and five transactions
that are centered around the management, sale and distribution of products or
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services. The database is initially populated with random data and then up-
dated as new orders are processed by the system. TPC-E simulates the work-
load of a brokerage firm. It features a more complex schema and pseudo-real
content that seeks to match actual customer data better. However, TPC-C is far
more pervasive compared to TPC-E [105, 106] and thus offers better compara-
bility.

TPC-H is currently the only active decision support benchmark of the TPC. It
simulates an analytical workload in a business scenario similar to TPC-C’s. The
benchmark specifies 22 queries on the 8 relations that answer business ques-
tions. TPC-DS, its dedicated successor, will feature a star schema, around 100
decision support queries and a description of the ETL process that populates
the database.

Note that composing a benchmark for hybrid DBMSs by simply using two
TPC schemas, one for OLTP and one for OLAP, does not produce meaningful
results. Such a benchmark would not give insight into how a system handles its
most challenging task: The concurrent processing of transactions and queries
on the same data.

The composite benchmark for online transaction processing (CBTR) [9] is
proposed to measure the impact of a workload that comprises both OLTP and
operational reporting. CBTR is not a combination of existing standardized
benchmarks, but operates on a subset of the real data of an enterprise. The
authors mention the idea of a data generator as future work since this dataset
cannot be shared publicly. Thus, CBTR appears to be primarily designed for
internal use.

2.3. Benchmark Design

Our premier goals in the design of CH-benCHmark are comparability as well as
benefiting from the expertise, maturity and existing implementations of stan-
dardized industry benchmarks. Therefore, we create a combination of TPC-C
and TPC-H. Both benchmarks are widely used and accepted, relatively fast to
implement and have enough similarity in their design to make a combination
possible.

CH-benCHmark is comprised of the unmodified TPC-C schema (cf. Fig-
ure 2.2(a)) and transactions as well as an adapted version of the TPC-H queries.
Since the schemas of both benchmarks (cf. Figure 2.2) model businesses which
“must manage, sell, or distribute a product or service” [103, 104], they have
some similarities between them. The relations Order(s) and Customer exist
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Warehouse
W

Stock
W · 100k

District
W · 10

Item
100k

Customer
W · 30k

Order
W · 30k+

Orderline
W · 300k+

Neworder
W · 9k+

History
W · 30k+

(a) TPC-C

Part
SF · 200k

Partsupp
SF · 800k

Supplier
SF · 10k

Nation
25

Customer
SF · 150k

Orders
SF · 1, 500k

Lineitem
SF · 6, 000k

Region
5

(b) TPC-H

Figure 2.2.: TPC-C and TPC-H schemas

in both schemas. Moreover, both Orderline (TPC-C) and Lineitem (TPC-H)
model entities that are sub-entities of Order(s) and thus resemble each other.

CH-benCHmark keeps all TPC-C entities and relationships completely un-
modified and integrates the likewise unchanged relations Supplier, Region and
Nation from TPC-H as depicted in Figure 2.3. These relations are frequently
used in TPC-H queries and allow a non-intrusive integration into the TPC-C
schema. The relation Supplier is populated with a fixed number (10 000) of
entries. Thereby, an entry in Stock can be uniquely associated with its Sup-
plier through the relationship Stock.s_i_id × Stock.s_w_id mod 10 000 = Sup-
plier.su_suppkey.

A Customer’s Nation is identified by the first character of the field c_state.
TPC-C specifies that this first character can have 62 different values (upper-
case letters, lower-case letters and numbers), therefore we chose 62 nations to
populate Nation. The primary key n_nationkey is an identifier according to
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Warehouse
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Stock
W · 100k
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W · 10

Item
100k

Customer
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Order
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Neworder
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5
History

W · 30k+

Figure 2.3.: CH-benCHmark schema. The three entities originating from TPC-
H are highlighted.

the TPC-H specification. Its values are chosen in such a way that their associ-
ated ASCII value is a letter or number (i.e., n_nationkey ∈ [48, 57] ∪ [65, 90] ∪
[97, 122]). Therefore, no additional calculations are required to skip over the
gaps in the ASCII code between numbers, upper-case letters and lower-case let-
ters. Region contains the five regions of these nations. Relationships between
the new relations are modeled with simple foreign key fields (n_regionkey and
su_nationkey).

2.3.1. Transactions and Queries

As illustrated in Figure 2.4, the workload consists of the five TPC-C transactions
and 22 queries adapted from TPC-H. Since the TPC-C schema is an unmodified
subset of the CH-benCHmark schema, the original transactions can be executed
without any modification:

New-Order This transaction enters an order with multiple orderlines into the
database. For each order-line, 99% of the time the supplying warehouse
is the home warehouse. The home warehouse is a fixed warehouse ID
associated with a terminal. To simulate user data entry errors, 1% of the
transactions fail and trigger a roll-back.

Payment A payment updates the balance information of a customer. 15% of
the time, a customer is selected from a random remote warehouse, in
the remaining 85%, the customer is associated with the home warehouse.
The customer is selected by last name in 60% of the cases and else by her
three-component key.
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Figure 2.4.: Benchmark overview: OLTP and OLAP on the same data

Order-Status This read-only transaction is reporting the status of a customer’s
last order. The customer is selected by last name 60% of the time. If not
selected by last name, she is selected by her ID. The selected customer is
always associated with the home warehouse.

Delivery This transaction delivers 10 orders in one batch. All orders are asso-
ciated with the home warehouse.

Stock-Level This read-only transaction operates on the home warehouse only
and returns the number of those stock items that were recently sold and
have a stock level lower than a threshold value.

Comparison with TPC-C

The distribution over the five transaction types conforms to the TPC-C speci-
fication (cf. Figure 2.4), resulting in frequent execution of the New-Order and
Payment transactions. CH-benCHmark deviates from the underlying TPC-
C benchmark by not simulating the terminals and by generating client re-
quests without any think-time as proposed for VoltDB [108]. Since the trans-
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action logic remains the same as in TPC-C, CH-benCHmark results are di-
rectly comparable to existing TPC-C results with the same modifications, e.g.,
VoltDB [108]. Moreover, these changes can be easily applied to existing TPC-C
implementations in order to produce CH-benCHmark-compatible results.

Comparison with TPC-H

For the OLAP portion of the workload we adapt the 22 queries from TPC-H to
the CH-benCHmark schema (cf. Appendix A). In reformulating the queries to
match the slightly different schema, we attempted to preserve their business
semantics and syntactical structure. E.g., query Q5 lists the revenue achieved
through local suppliers (cf. Listing 2.1). Both queries perform joins on similar
relations, have similar selection criteria, perform aggregation and sorting.

In general, both query sets resemble each other with respect to joins, aggre-
gations, selections and sorting. Both have correlated subqueries, perform string
matching and operate on relations with and without physical clustering. They
share many of the “choke points” [12], technological challenges greatly impact-
ing query performance that have been identified in TPC-H. However, as List-
ing 2.1 shows, there are differences in the two query sets, e.g., CH-benCHmark
performs one additional join for query Q5. Hence, TPC-H results should not be
directly compared with CH-benCHmark results. Nevertheless, we expect that
systems which excel in processing one query set to have excellent performance
results in the other, too.

CH-benCHmark does not require refresh functions as specified in TPC-H,
since the TPC-C transactions are continuously updating the database. The fol-
lowing section describes when queries have to incorporate these updates.

2.3.2. Benchmark Parameters

CH-benCHmark has four scales: First, the database size is variable. As in TPC-
C, the size of the database is specified through the number of warehouses. Most
relations grow with the number of warehouses, with Item, Supplier, Nation
and Region being the only ones of constant size.

The second scale is the composition of the workload. It can be comprised
of analytical queries only, transactions only or any combination of the two.
The workload mix is specified as the number of parallel OLTP and OLAP ses-
sions (streams) that are connected to the database system. An OLTP session
dispatches random TPC-C transactions sequentially with the distribution de-
scribed in the official specification [103]. An analytical session performs con-
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-- CH-benCHmark
select n_name, sum(ol_amount) as revenue
from customer, ”order”, orderline, stock, supplier, nation, region
where c_id=o_c_id and c_w_id=o_w_id and c_d_id=o_d_id
and ol_o_id=o_id and ol_w_id=o_w_id and ol_d_id=o_d_id
and ol_w_id=s_w_id and ol_i_id=s_i_id
and mod((s_w_id * s_i_id),10000)=su_suppkey
and ascii(substring(c_state, 1, 1))=su_nationkey
and su_nationkey=n_nationkey and n_regionkey=r_regionkey
and r_name=’[REGION]’ and o_entry_d>=’[DATE]’

group by n_name order by revenue desc

-- TPC-H
select n_name, sum(l_extendedprice * (1 - l_discount)) as revenue
from customer, orders, lineitem, supplier, nation, region
where c_custkey = o_custkey and l_orderkey = o_orderkey
and l_suppkey = s_suppkey and c_nationkey = s_nationkey
and s_nationkey = n_nationkey and n_regionkey = r_regionkey
and r_name = ’[REGION]’ and o_orderdate >= date ’[DATE]’
and o_orderdate < date ’[DATE]’ + interval ’1’ year

group by n_name order by revenue desc

Listing 2.1: CH-benCHmark and TPC-H query Q5

tinuous iterations over the query set which is comprised of all 22 queries. Each
session starts with a different query to avoid caching effects between sessions
as depicted in Figure 2.4.

The third input parameter is the isolation level. Lower isolation levels like
read committed allow for faster processing, while higher isolation levels guaran-
tee higher quality results for both transactions and queries.

Finally, the freshness of the data that is used as a basis for the analyses is a
parameter of the benchmark. It only applies if the workload mix contains both,
OLTP and OLAP components. Data freshness is specified as the time or the
number of transactions after which newly issued query sets have to incorpo-
rate the most recent data. This allows for both database architectures that have
a single dataset for both workloads and those that devise snapshots to run the
benchmark. It is even possible to execute the benchmark on database installa-
tions that consist of separate systems for OLTP and OLAP which are connected
via ETL jobs.

24



2.4. Evaluation

2.4. Evaluation

2.4.1. Systems under Test

In this section, we present example evaluation results of the CH-benCHmark
with our in-memory hybrid OLTP and OLAP DBMS HyPer. We compare these
with results of one representative system from each of the remaining three
quadrants depicted in Figure 2.1.

2.4.2. OLAP-focused Database Systems

MonetDB [11] is the most influential database research project on column-store
storage schemes for in-memory OLAP databases. An overview of the system
can be found in the summary paper [10] presented on the occasion of receiv-
ing the 10 year test of time award of the VLDB conference. Therefore, we use
MonetDB as a representative of the “strong in OLAP”-category. Other systems
in this category are Actian Vectorwise1, SAP Business Warehouse Accelerator,
IBM Smart Analytics Optimizer and Vertica Analytic Database.

2.4.3. OLTP-focused Database Systems

The H-Store prototype [60], created by researchers led by Michael Stonebraker
was recently commercialized by a start-up company named VoltDB. VoltDB is a
high-performance, in-memory OLTP system that pursues a lock-free approach
to transaction processing [46]. Pre-compiled transactions operate on private
partitions and are executed in serial [109]. VoltDB represents the “strong in
OLTP”-category in our evaluation. This category also includes P*Time [16],
IBM solidDB, Oracle TimesTen and new startup developments such as Electron
DB, Clustrix, Akiban, dbShards, NimbusDB, ScaleDB and Lightwolf.

2.4.4. Universal Database Systems

This category contains the disk-based, universal database systems, such as
PostgreSQL, IBM DB2, Oracle Database and Microsoft SQL Server. We picked a
popular, commercially available representative that we will refer to as “System
X” (due to licensing restrictions) as a representative of this category.

1Recently renamed to Actian Vector
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2.4.5. Hybrid Database Systems

In addition to the HyPer system [63, 62] that we will use in this example evalu-
ation2, this category also includes the new database SAP HANA as well as the
associated research prototype [86]. Another special-purpose system for hybrid
workloads is Crescando [37].

2.4.6. Basic Observations

Our experiments are performed on a machine with two quad-core Intel Xeon
X5570 processors and 64 GB of memory running Red Hat Enterprise Linux 5.4.
All databases are scaled to 12 warehouses.

For MonetDB, we evaluate an instance of the benchmark that performs an
OLAP-only workload. We excluded OLTP because the absence of indexes in
MonetDB prevents efficient transaction processing. We present results of se-
tups with three parallel OLAP sessions in Table 2.2. Since there are no updates
to the database in this scenario, the freshness and the isolation level parameter
are lapsed. Increasing the number of query streams to 5 hardly changes the
throughput, but almost doubles the query execution times. Running a single
query session improves the execution times between 10% and 45% but through-
put deteriorates to 0.55 queries per second.

For VoltDB, the workload-mix includes transactions only. One “site” per
warehouse/partition (i.e., 12 sites) yields best results on our server. Differ-
ing from the CH-benCHmark specification, we allow VoltDB to execute only
single-partition transactions (as suggested in [108]) and skip those instances of
New-Order and Payment that involve more than one warehouse. The isolation
level in VoltDB is serializable.

For System X we use 25 OLTP sessions and three OLAP sessions. The con-
figured isolation level is read committed for both OLTP and OLAP and we use
group committing with groups of five transactions. Since the system operates
on a single dataset, every query works on the latest data. Table 2.1 shows the
results of this setup. Increasing the OLAP sessions from 3 to 12 enhances the
query throughput from 0.38 to 1.20 queries per second, but causes the query
execution times to go up by 20% to 30% and OLTP throughput to decline by
14%. Adding more OLTP sessions drastically increases query execution time
as well.

2Note that this evaluation was performed with an early version of HyPer. Its OLTP and OLAP
engines are very different from more recent versions. Throughout the thesis we use different
HyPer versions, hence HyPer performance between experiments can differ significantly.
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For HyPer, we use a transaction mix of 5 OLTP sessions and 3 parallel OLAP
sessions executing queries. We do not make the simplification of running
single-partition transactions only, as for VoltDB, but challenge HyPer with
warehouse-crossing transactions. The OLAP sessions operate on a snapshot
created after loading the database and queries are snapshot-isolated from trans-
actions. On the OLTP side the isolation level is serializable.

These initial results, obtained with an early version of HyPer, suggest that its
approach to hybrid OLTP and OLAP processing is indeed viable. Psaroudakis
et al. [90] present a detailed performance evaluation of HyPer and SAP HANA
and the authors also provide an open source ODBC-implementation of the
CH-benCHmark. The benchmark has also been included in the popular OLTP-
Bench benchmark suit [29].

2.5. Metrics

The CH-benCHmark measures both transactional and analytical database per-
formance using metrics similar to those of TPC-C and TPC-H. While, e.g., OLTP
and OLAP throughput could be merged into a single, combined metric, we do
not propose to do this. Separate values are more expressive since systems and
users may prioritize the two workloads differently.

In contrast to TPC-H, where the database size is fixed, the CH-benCHmark
database grows over time, just like the TPC-C database. The database size af-
fects the transactional performance of the system, primarily because index op-
erations become more costly. The effect on analytical queries, however, is by far
more drastic as it forces queries to scan more Order and Orderline tuples3, de-
pending on the number of completed transactions. Effectively, this means that
a system is “punished” for good transactional performance, in particular since
the CH-benCHmark does not have a rate limitation: The faster a system pro-
cesses transactions, the more data has to be incorporated by analytical queries.

Database systems should therefore be compared using results that were ob-
tained with the same database size. All contestants run for a (possibly) different
amount of time until they have processed the same number of transactions and
the relation sizes are equal. Consequently, only certain points in time could be
used for comparisons. Minor inaccuracy could, however, still result from the
fact that relation sizes are only equal at the beginning of a query set.

3Note that the History relation is also growing over time, but not read by the benchmark’s
query set. Despite serving as a FIFO queue, Neworder may also grow depending on the
benchmark driver implementation.
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To enhance comparability, query performance could also be “normalized” in
order to account for differing database sizes. Normalization has to consider the
properties of a workload. First, query processing on smaller database sizes can
benefit disproportionally from caching effects as e.g., hash tables may fit into
cache. Second, the scalability with respect to the database size is query-specific
as it depends on the scanned relations as well as the query plan.

Queries Q1 and Q6 only scan the Orderline relation. Therefore, their exe-
cution times depend linearly on the number of Orderline tuples. Query Q2

joins the relations Item, Supplier, Stock, Nation and Region. None of these
relations grow or (shrink over) time and thus constant query run times can be
expected. Making robust predictions about the scalability of other queries is
more difficult. Query Q3, for example, joins the fixed-size Customer relation
with variable size relations. Thus precise predictions would need to incorpo-
rate the fraction of time spent in each part of the query, the algorithmic com-
plexity of the operators involved, available indexes, clustering and so forth.

While predicting query performance is difficult in general, it is – to some
degree – possible for the CH-benCHmark. Since Orderline and Order grow
steadily and proportionally, their effect on the total runtime of the queries in-
creases and becomes dominating. Thus, a linear function can be used to nor-
malize the query execution times. For each query that performs a scan of these
two relations, normalizing the time using their current cardinalities can allow
for approximate comparisons between results obtained with different database
sizes. Queries Q2, Q11 and Q16 only include constant size relations, therefore
normalization is not required. Query Q22 includes Order, but does not have
to scan it as a (constant) number of index probes can be used to check the not
exists condition, making normalization unnecessary. For all other queries, we
normalize the result by computing the execution time per Orderline tuple.

We tested this normalization model with HyPer. Figure 2.5 shows that the
prediction is reasonably accurate: The plot shows the normalized query re-
sults (in milliseconds per million Orderline tuples, ms

#OL·106 ) as a function of
the number of processed transactions. While some queries show slight vari-
ations for smaller database sizes, after three or four million transactions have
been processed, the normalized results stabilize. The sole exception is query Q7

which jumps from a normalized execution time of 15 ms
#OL·106 after five million

transactions have been processed to 50 ms
#OL·106 after six million transactions.

This phenomenon is reproducible and results from the fact that HyPer chooses
different join orders. At 9 million processed transactions the normalized ex-
ecution time is back to 12.5 ms

#OL·106 as HyPer’s query optimizer has switched
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Figure 2.5.: Normalized query execution times for databases containing 1 to 10
million processed TPC-C transactions. Note that Q15 has been nor-
malized additionally by a factor 1/3 for presentation purposes.

back to the original join order. Thus, the variance that can be observed in the
performance of query Q7 is not a shortcoming of our normalization approach.

2.6. Conclusion

The CH-benCHmark presented here fills a gap in the benchmark landscape.
While various benchmarks assess either OLTP or OLAP performance, a com-
bined benchmark helps to evaluate the performance of existing systems and
new architectures with a real-time business intelligence workload. By building
on the established and standardized benchmarks TPC-C and TPC-H we strive
to streamline its acceptance. TPC-C implementations tend to be very complex
and can largely be reused for the transactional part of the CH-benCHmark. The
query workload is comprised of an adaption of the TPC-H queries to the new
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schema. The queries differ from the TPC-H queries, but are structurally very
similar. While we expect that systems with good TPC-H performance also ex-
cel in the analytic part of the CH-benCHmark, the minor differences can have
the added benefit of making TPC-H overfitting futile.

The benchmark reports separate metrics for OLTP and OLAP performance to
provide comparable performance information without assuming any prioriti-
zation between the two workloads. Thus, it can be used to compare a wide va-
riety of database architectures in different scenarios – from pure transactional
workloads over mixed workloads with a varying focus on analytics to OLAP-
only workloads.

Normalization can help to compare the execution times of CH-benCHmark
queries obtained with different database sizes. While the accuracy is satisfac-
tory, normalization should not be used to decide a “photo finish.”
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System X HyPer

OLTP OLAP OLTP OLAP
25 sessions 3 sessions 5 sessions 3 sessions
RC RC serializable snapshot

New-Order:
222 tps

Total:
493 tps

Q1: 4 221 ms

New-Order:
112 217 tps

Total:
249 237 tps

Q1: 70 ms
Q2: 6 555 ms Q2: 156 ms
Q3: 16 410 ms Q3: 72 ms
Q4: 3 830 ms Q4: 227 ms
Q5: 15 212 ms Q5: 1 871 ms
Q6: 3 895 ms Q6: 15 ms
Q7: 8 285 ms Q7: 1 559 ms
Q8: 1 655 ms Q8: 614 ms
Q9: 3 520 ms Q9: 241 ms

Q10: 15 309 ms Q10: 2 408 ms
Q11: 6 006 ms Q11: 32 ms
Q12: 5 689 ms Q12: 182 ms
Q13: 918 ms Q13: 243 ms
Q14: 6 096 ms Q14: 174 ms
Q15: 6 768 ms Q15: 822 ms
Q16: 6 088 ms Q16: 1 523 ms
Q17: 5 195 ms Q17: 174 ms
Q18: 14 530 ms Q18: 123 ms
Q19: 4 417 ms Q19: 134 ms
Q20: 3 751 ms Q20: 144 ms
Q21: 9 382 ms Q21: 47 ms
Q22: 8 821 ms Q22: 9 ms

Duration per query set: 157 s Duration per query set: 11 s
Geometric mean: 5 799 ms Geometric mean: 191 ms

QphCH: 505 × 3 QphCH: 7 306 × 3
max. snapshot age: current max. snapshot age: initial

Table 2.1.: System X and HyPer
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MonetDB VoltDB

OLTP OLAP OLTP OLAP
0 sessions 3 sessions 12 sessions 0 sessions

serializable

No OLTP

Q1: 72 ms

New-Order:
16 274 tps

Total:
36 159 tps

No OLAP

Q2: 218 ms
Q3: 112 ms
Q4: 8 168 ms
Q5: 12 028 ms
Q6: 163 ms
Q7: 2 400 ms
Q8: 306 ms
Q9: 214 ms

Q10: 9 239 ms
Q11: 42 ms
Q12: 214 ms
Q13: 521 ms
Q14: 919 ms
Q15: 587 ms
Q16: 7 703 ms
Q17: 335 ms
Q18: 2 917 ms
Q19: 4 049 ms
Q20: 937 ms
Q21: 332 ms
Q22: 167 ms

Duration per query set: 52 s
Geometric mean: 573 ms

QphCH: 1 533 × 3
max. snapshot age: initial

Table 2.2.: MonetDB and VoltDB
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Hot/Cold Clustering

CHAPTER 3

Parts of this chapter have previously been published in [36].

In this chapter, we describe an architecture that facilitates workload-specific
physical optimizations by clustering data items into two categories. Hot data
comprises all data items that belong to the transactional working set. Cold data
refers to the remaining parts of the database that are not accessed by OLTP, but
are still analyzed by OLAP queries.

3.1. Introduction

Optimizations in the storage layer require knowledge about the access patterns
of database applications. Transactional workloads often operate on a small
number of individual tuples. The physical representation should support ef-
ficient random access, frequent updates, fast inserts and deletes. Analytical
workloads on the other hand often scan entire relations, but only read certain
attributes of each tuple. A storage format for relations should support fast scans
as well as the efficient evaluation of selection predicates.

The demands of both workloads with respect to the storage format differ and
storage optimizations are often conflicting. This is a problem for hybrid OLTP
an OLAP systems such as HyPer, but even OLTP-only high-performance data-
base systems face a dilemma: On the one hand, memory is a scarce resource
and these systems would therefore benefit from compressing their data. On
the other hand, their fast and lean transaction models penalize additional pro-
cessing severely which often prevents them from compressing data in favor of
transaction throughput. A good example is the lock-free transaction processing
model pioneered by H-Store/VoltDB [60, 109] that executes transactions seri-
ally on private partitions without any overhead from buffer management or
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locking. This model allows for record-breaking transaction throughput in in-
memory database systems, but necessitates that all transactions execute quickly
to prevent congestion in the serial execution pipeline.

As a result of this dilemma, OLTP engines often refrain from compressing
their data and thus waste memory space. The lack of a compact data rep-
resentation becomes even more impeding when the database system is capa-
ble of running OLAP-style queries on the transactional data since compression
does not only reduce memory consumption, but can also improve query per-
formance [112, 1, 13, 42]. Likewise, OLAP queries could benefit from other
physical optimizations that would, however, slow down transaction process-
ing.

In addition to increasing the transactional throughput and reducing query
execution times, physical optimizations can also help to improve snapshotting:
Different snapshotting mechanisms exist that facilitate efficient query process-
ing directly on the transactional data and depending on the technique memory
consumption and snapshot generation time can be substantial [79]. Therefore,
we extend compression to snapshotting and introduce the notion of compaction,
a concept that embraces two mechanisms that serve a similar purpose:

• Compression of the dataset to reduce the memory footprint and speed-up
query execution.

• Physical reorganization of the dataset to facilitate efficient and memory-
consumption friendly snapshotting.

We demonstrate that even though it is more difficult to compact transactional
data due to its volatile nature, it is feasible to do so efficiently. In this chapter
we focus on the clustering of transactional data into hot and cold areas. Cold
areas can be optimized for analytical workloads. Possible optimizations are dis-
cussed in Chapter 4 and Chapter 5, but we will use compaction as an example
within this chapter.

Hot/cold clustering is based on the observation that while OLTP workloads
frequently modify the dataset, they often follow the working set assumption [27]:
Only a small subset of the data is accessed and an even smaller subset is be-
ing modified (cf. Figure 3.4). In business applications (and benchmarks [103])
this working set is often primarily comprised of tuples that were added to the
database in the recent past [88].

Our system uses a lightweight, hardware-assisted monitoring component to
observe accesses to the dataset and identify opportunities to reorganize data
in such a way that it is clustered into physically separated hot and cold parts.
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These reorganizations are performed at runtime with very little overhead for
transaction processing. The complex physical optimization tasks can then be
executed asynchronously to transaction processing.

In the remainder of this chapter, we give an overview of related work on
hot/cold clustering as well as compression for transaction processing systems
and discuss typical access patterns found in transactional workloads. After pre-
senting our transaction model and physical data representation, we introduce
a lightweight method to identify the hot and cold parts of the database and
describe how we purge stray hot tuples from cooling parts.

3.2. Related Work

Identifying hot and cold data is beneficial for different purposes, but is primar-
ily studied in the context of buffer management [59, 82, 75]. As disk I/O is
the dominating cost driver for disk-based database systems, sophisticated re-
placement strategies have been invented to increase the hit-rate. In the context
of high-performance in-memory database systems, however, these techniques
are too costly: Harizopoulos et al. [46] found that buffer management is the
primary cause of overhead and accounts for over one third of the instructions
when operating an OLTP system in main-memory. Levandoski et al. [71] im-
plemented a simple Least Recently Used (LRU) queue for Microsoft Hekaton and
measured a 25% overhead, even though the queue was not thread safe.

Succeeding our hot/cold clustering approach [36], H-Store [26] as well as
the Siberia project of Microsoft Hekaton [71, 30] have presented hot/cold clus-
tering techniques to evict cold data from in-memory OLTP systems. H-Store’s
“anti-caching” feature [26] uses LRU lists and tries to mitigate the maintenance
costs through sampling: Only 1% of the transactions update the LRU list. Ta-
bles have to be (manually) marked as “evictable” to qualify for monitoring.
This is necessary to alleviate the primary downside of the approach — mem-
ory consumption. H-Store employs a doubly-linked list, i.e., a previous and
a next field for each tuple. The authors chose this design due to the unaccept-
ably high overhead experienced with a singly linked list, in spite of the doubled
memory consumption. When monitoring accesses for each attribute of a tuple
separately, the additional memory required becomes infeasible and would de-
feat the purpose of compaction. But even for tuple-wise access monitoring, two
pointers can constitute a significant memory overhead, in particular for nar-
row relations. Eldawy et al. [30] conclude that this is “too high a price.” They
propose to create an access log (in addition to the log required for ACID) that
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can be used for offline analysis. Sampling is used to mitigate the overhead of
logging with reasonable accuracy losses. This allows them to run the analysis
“once per hour or more.” The offline analysis is also used by Stoica et al. [100]
to reorganize data structures for more efficient OS-level paging.

Like H-Store’s LRU lists, the classification system of Hekaton serves a dif-
ferent purpose than ours: We attempt to identify cold data items that are not
accessed anymore while H-Store and Hekaton try to find tuples that are likely
to be among the k coldest tuples. We believe that in-memory database sys-
tems should assume that the working set always fits into main-memory. This
assumption distinguishes in-memory database systems from their disk-based
counterparts and is the foundation of their superior performance. Therefore,
our hot/cold clustering feature does not attempt to rank all data items by their
temperature, but rather to identify cold data items and store them physically
separated from the others. The result is that our approach is more lightweight,
more precise and can run more frequently.

Mühe at al. [79] avoid updates-in-place to create a simple hot/cold clustering
in HyPer. The intention is to mitigate the number of page replications during
snapshots and thus similar to one of the goals of compaction. The implementa-
tion is, however, more similar to SAP’s approach with separate delta and main
stores (discussed below) than to ours.

C-Store [101] is heavily optimized for OLAP (compression, sorted attribute
columns) and contains a small writable store to buffer updates. While updates
have transactional semantics, the system architecture is not designed for OLTP-
style updates but rather to “correct errors” in the data warehouse and insert
fresh data. Other techniques tackling the same problem in analytical databases
include Positional Delta Trees [48] and updates in cracked databases [53].

SAP HANA as well as the associated research prototype SanssouciDB [87,
86] have two similar concepts to hot/cold clustering. First, they operate two
different data stores (similar to C-Store), a “delta” store (or “differential” store)
to buffer freshly inserted data and updates and a read-optimized “main” store.
The main store is read-only, i.e., updates are never executed in place, but cause
the invalidation of a tuple in the main store and its re-insertion into the delta.
While the delta store is optimized for frequent changes, the main store is read-
optimized. This architecture requires a costly merge operation that periodi-
cally moves data to the main store in a bulk operation [66, 67]. Merging in-
volves exclusively locking tables and re-encoding the entire, compressed main
store. Moreover, this approach does not create a stable hot/cold clustering. Fre-
quently updated tuples will quickly return to the delta store after every merge.
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The second concept similar to hot/cold clustering is the distinction between
active and passive data. Together with the indexes, main and delta store con-
stitute the active data of the database. In addition, there is a store for passive
data (or the “history”) [88, 87]. Manually specified rules, derived from the busi-
ness processes involved, govern the Data Aging process, i.e., the retirement of
data into the passive area. Such a rule could be, e.g., to move a tuple once an
attribute assumes a certain value that indicates the completion of the associ-
ated business process. This approach requires domain knowledge and mixes
application logic with storage management. In accordance with Stonebraker’s
demand to build “no knobs” database systems [102], we focus on automatic
approaches and dismiss techniques that require application knowledge, such
as SanssouciDB’s Aging Process [88] or H-Store’s anti-caching feature that uses
“evictable” annotations [26].

3.3. Transactional Workloads

Enterprises typically only use a small part of the data stored in their operational
database systems actively. An analysis of business applications revealed that
while ten years worth of data are stored in operational database systems on
average, OLTP applications are “only actively using about 20%” [88] of this
data. Moreover, they found a strong correlation between the age of a business
object and the level of activity of the tuples representing it. A study of SAP
customer-data revealed that “less than 1% of sales orders are updated after the
year of their creation” [88]. This results from the fact that even though the
business process associated with a tuple has reached a terminal state, the tuple
is kept in the database for legal reasons [43].

In addition to time-correlated skew described above, “natural skew” can of-
ten be found in real world databases. Here, the access frequency of data items
often follows Zipf’s law. Examples include the databases of online retailers in
which some products are significantly more popular than others [71] as well as
the databases of applications that track the location of items [100].

These patterns, caused by typical business processes, are also reflected in
TPC-C, the industry’s de facto standard benchmark for transaction processing.
It mimics the order processing of a wholesale supplier. Figure 3.1 shows the
write-activity level, or write “temperature”, of TPC-C’s largest relation Order-
line whose tuples represent part of an order. The lifetime of an Orderline tuple
begins with the placement of a new order by TPC-C’s New-Order transaction.
The last modification to this tuple is made when the order is being delivered
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o_id d_id w_id number i_id supply_w_id delivery_d quantity amount dist_info
orderline

Figure 3.1.: Temperature (writes only) of Orderline data measured with HyPer

(a) Ideal (b) Reality (c) Frozen

Figure 3.2.: Physical distribution of hot transactional data

and the delivery_d timestamp is set. Hence, the inserts cause the last chunk of
every attribute to be “hot” and the update of delivery_d upon delivery cause
the penultimate chunk of the the delivery_d attribute to be hot as well. While
recently delivered orders are still read by transactions, they are not modified
anymore.

It should be emphasized that not all TPC-C relations follow the same access
patterns. TPC-C features relations with uniform access patterns as well as read-
only, append-only and FIFO relations. Many transactional databases exhibit
some natural clustering, but this clustering is neither ideal (cf. Figure 3.2(a)
and Figure 3.2(b)), nor can it be exploited if the database system is not aware of
it. We therefore attempt to relocate stray hot tuples to produce an ideal cluster-
ing and “freeze” the cold data. Freezing physically optimizes cold data which
includes compacting the data (as indicated by the compacted cold area in Fig-
ure 3.2(c)).
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Figure 3.3.: (a) Example relation. (b) Physical representation of example rela-
tion (without compression).

3.4. Design

3.4.1. Data representation

We added a storage back-end to HyPer that combines horizontal partitioning
and columnar storage: A relation is represented as a hierarchy of partitions,
chunks and vectors (see Figure 3.3). Partitions split relations into p disjoint sub-
sets and are the basis of the transaction model described in Chapter 1. Within
one partition, tuples are stored using a decomposed storage model [23]. Unlike
designs where each attribute is stored in one continuous block of memory, we
split a column in multiple blocks (“vectors”), similar to MonetDB/X100 [13]. In
contrast to X100, our main rationale for doing so is that each vector that stores a
certain attribute can represent it differently, e.g., compressed or uncompressed.
In addition, they can reside on different types of memory pages, i.e., regular or
huge pages as discussed in Section 3.4.2. Each chunk constitutes a horizon-
tal partition of the relation, i.e., it holds one vector for each of the relation’s
attributes and thus stores a subset of the partition’s tuples as depicted in Fig-
ure 3.3. An additional benefit of chunked stores is smoother growth as adding
a new chunk is less resource-intensive than allocating a new, larger memory
area, copying the data over and freeing the old memory area.
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3.4.2. Hot/Cold Clustering

Hot/cold clustering aims at partitioning the data into frequently accessed data
items and those that are accessed rarely (or not at all). This allows for phys-
ical optimizations depending on the access characteristics of data: Working
set data, i.e., data used by OLTP transactions, is volatile and thus uses storage
that supports fast inserts, updates and point-access. Data only read by OLAP
queries is stored optimized for fast scans, instant snapshotting and low mem-
ory consumption. Even though OLAP queries often read entire relations, i.e.,
both the hot and the cold part, we expect the cold part to be substantially bigger
so that scans benefit considerably from optimizations in the cold area.

We measure the “temperature” of data on virtual memory page granularity.
When storing attributes column-wise, this allows to maintain a separate tem-
perature value for each attribute of a chunk, i.e., for each vector. Both read and
write accesses to the vectors can be monitored by the Access Observer component
using a lightweight, hardware-assisted approach described in Section 3.5.2. We
distinguish four states a vector can have:

Hot Entries in a hot vector are frequently read, updated or deleted. New tuples
are inserted into hot chunks.

Cooling Most entries remain untouched by transactions, very few are being
accessed or tuples are being deleted in this chunk.

Cold Entries in a cold vector are not accessed by transactions, i.e., the Access
Observer has repeatedly found no reads or writes in this vector.

Frozen Entries in frozen vectors are neither read nor written by transactions
and have been compressed and physically optimized for OLAP as de-
scribed below.

“Access” refers only to reads and writes performed by OLTP threads – OLAP
queries potentially executing in parallel do not affect the temperature of a vector
as described in Section 3.5.2.

Cold chunks of the data can be “frozen”, i.e., made immutable and converted
into a compact, OLAP-friendly representation as they are likely to be almost ex-
clusively accessed by analytical queries in the future. We discuss these physical
optimizations in detail in Chapter 4 and only give an overview of potential op-
timizations here:

Huge Pages Storing frozen data on huge pages. Huge pages have multiple ad-
vantages over the use of regular pages. First, scanning data on huge pages
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Figure 3.4.: Hot/cold clustering for compaction. Data items are in different
states: hot (volatile), cold and frozen/compacted.

is faster. Huge pages also speed up snapshotting as fewer pages result in
a smaller page table that has to be copied when creating a snapshot. Reg-
ular pages, on the other hand, are more suitable for the hot and cooling
parts of the database as their replication (to maintain a snapshot’s state)
is faster. Thus the use of huge pages helps to compact the database.

Compression Compressing frozen data reduces the memory consumption and
can speed up query processing. As it slows down point accesses and is
expensive to update, we only use compression for frozen data.

Storage Model A row-based storage layout is optimal for OLTP workloads and
can be used for the hot part of the database. The frozen data can be stored
using a column-store to speed up query processing.

In our hot/cold clustering approach, inserts are never made into cooling,
cold or frozen chunks. If no hot chunk with available capacity exists, a new
one is created. Updates and read operations targeting hot chunks are simply
executed in-place, just like before. When the accessed data is stored in cooling
chunks, we trigger the relocation of the tuples into a hot chunk, i.e., we purge
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(a) (b)

Figure 3.5.: Updates to frozen data: (a) Before an update of TIDs 1, 2 and 3. (b)
After the update. Frozen chunks (residing on huge pages) are not
modified, but invalidated out-of-place. Indexes (used by OLTP) are
updated. Table scans “skip” over invalid ranges.

hot tuples from the cooling chunk. Deletes are carried out in-place in both hot
and cooling chunks.

Updates and deletes in cold and frozen chunks are only expected in excep-
tional cases. If they do occur, they are not executed in-place, but lead to the
invalidation of the tuple and in case of an update also to its relocation to a hot
chunk and an update in the index(es) that are used for point-accesses in OLTP
transactions. This is depicted in Figure 3.5. An invalidation status data struc-
ture is maintained to prevent table scans from passing the invalidated tuple
to the parent operator. The invalidation status is managed similar to the idea
of Positional Delta Trees [48]: The data structure records ranges of tuple IDs
(TIDs) that are invalid and thus can be skipped when scanning a partition. We
choose to record ranges of TIDs and not individual TIDs, because we expect
that if updates or deletes happen to affect frozen chunks, they often occur in
the following patterns:

• Very few updates or deletes affect a frozen chunk. In this case, the over-
head of storing two values (range begin and range end) instead of a single
value is very small.
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Figure 3.6.: Writing snapshots to disk. At t1, the frozen chunks [C0, C5] already
transferred at t0 do not need to be written again.

• A large portion of the frozen data is being invalidated due to a change
in the workload or administrative tasks. In this case, the data structure
holds very few entries that specify to skip a very large portion of the data.
In this case, storing the individual TIDs of invalidated tuples would cause
overhead for scans and for memory consumption.

In addition to the aforementioned benefits of hot/cold clustering, separating
the mutable from the immutable data items is advantageous for other compo-
nents of the DBMS as well. As a frozen chunk is never modified in place, the
recovery component can skip over all frozen chunks that have been persisted
already, when it periodically writes a snapshot to disk (see [62] for details on
HyPer’s recovery component). Thus, for these chunks only the invalidation
status has to be included when writing further snapshots to disk. This can
significantly reduce the amount of disk I/O the recovery component has to
perform.

Figure 3.6 shows two snapshots that are written to disk. The snapshot at
point in time t1 does not need to copy the frozen chunks [C0, C5] again as they
are immutable. Thus, it only transfers new frozen chunks, non-frozen chunks
as well as the deleted markers.
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As described in Chapter 5, evicting frozen data to secondary storage such
as hard disk or SSD is possible. However, HyPer’s approach differs from page
frame reclamation techniques of buffer managers. We only freeze those data
items that are not being accessed and always keep all hot data items in mem-
ory. Thereby HyPer remains a true in-memory database system that avoids the
burdens of classical architectures [46]. This difference in design is also reflected
in HyPer’s access monitoring approach which we describe in the following sec-
tions.

3.5. Access Monitoring

Access monitoring is the task of gaining insight into the read and write accesses
transactions perform at runtime. As HyPer is a high-performance in-memory
database system, its access monitoring technique also differs from approaches
found in the buffer manager of disk-based systems. Our goal is to perform
access monitoring without sacrificing performance.

While buffer managers found in disk-based database systems and operating
systems [40] need to be able to identify page frame eviction candidates on de-
mand, HyPer’s hot/cold clustering feature works differently. As an in-memory
database system and in contrast to disk-based database systems, HyPer always
assumes that the entire working set fits into main-memory. HyPer periodically
checks the database for those items that do not belong to the transactional work-
ing set and freezes them. As data items only need to be categorized into hot,
cooling, cold and frozen, and not ordered by their temperature, costly LRU lists
can be avoided. In the following, we present lightweight techniques to deter-
mine the temperature.

3.5.1. Monitoring in Software

As maintaining a sequence in which evictions should be performed is not nec-
essary in HyPer’s hot/cold clustering approach, access counters could be em-
ployed instead of a list. To reduce the memory overhead, a single counter can be
maintained for each memory page instead of each tuple. This counter summa-
rizes the accesses to all data items of the associated page. For typical enterprise
workloads, this tradeoff between precision and resource consumption works
very well as it significantly reduces the memory footprint of the bookkeeping
data structures and the number of cache misses that result from counter up-
dates. Note that in HyPer counters should not be stored on the same page as
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the data in order to avoid page replication in the presence of snapshots. Con-
sequently, updating a counter may cause an additional cache miss for large
databases.

The extent of runtime overhead caused by counters depends on schema,
database size, hardware and workload. While the overhead for TPC-C is only
4.2%, the performance penalty for other workloads can be significantly higher,
in particular if they involve many random accesses. The next section explores
how we can exploit CPU and operating system features to achieve low-overhead
access monitoring for all workloads.

3.5.2. Hardware-Assisted Monitoring

We present two monitoring approaches that embrace HyPer’s design princi-
ple to leverage hardware support to improve performance. The first approach
uses a technique often employed for live migration in virtual machine moni-
tors like Linux’s Kernel-based Virtual Machine (KVM) [65] and the Xen Virtual
Machine Monitor [20]. The mprotect system call is used to prevent accesses
to a range of virtual memory pages. When a read or write to this region oc-
curs, the CPU’s memory management unit (MMU) detects the illegal access
using the information in the page table (or TLB). The operating system kernel
determines that this region is protected and sends a segmentation fault sig-
nal (SIGSEGV) to the calling process. By protecting the pages that store the at-
tribute vectors and installing a signal handler, the database system can detect
accesses to attributes. When an access occurs, the signal handler catches the
SIGSEGV, extracts and records the faulting address and removes the protection
from the page. This process is depicted in Figure 3.7. When the signal han-
dler terminates, the thread’s execution continues with the faulting instruction.
Subsequent access to this page execute regularly as the page’s protection was
removed.

This technique uses hardware support, but still has drawbacks: For each
page, the first access in an observation cycle causes a trap into the operating
system as well as a system call to unprotect the faulting page. While subsequent
accesses are free, accessing a page for the first time is costly. Hence, databases
that already exhibit a natural hot/cold clustering experience little slowdown
as there is no additional cost once the working set has been unprotected. Scat-
tered accesses, however, are the worst case for this technique as they will trap
on every page. When reading one data item per page, we found that a setup
using this technique is over 100 times slower than a setup without.
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Figure 3.7.: Access monitoring using mprotect

In random access patterns, fault handling has additional costs. The Linux
kernel manages all memory belonging to a process in virtual memory areas
(VMAs) [40], also referred to as “regions” [14]. Each region consists of a range
of pages and stores protection information about these pages (additionally, pro-
tection information is stored in the page table). Removing the protection of a
page in the middle of a VMA forces the kernel to break up the VMA into three
areas. Thereby, the number of VMAs can quickly exceed the default maximum
number of mappings and the red-black tree index in the kernel grows substan-
tially. This results in more costly index lookups which need to be performed
when handling a page fault. To avoid pathological cases, monitoring could be
aborted once a certain amount of random access has been detected, but this
requires additional processing and results in a brittle monitoring implementa-
tion.

The second approach also uses hardware assistance, but has no overhead
when monitoring the database. Here, the Access Observer component runs
asynchronously to the OLTP (and OLAP) threads and uses information col-
lected by the hardware.

Virtual memory management is a task modern operating systems master effi-
ciently thanks to the support of the MMU. In addition to providing each process
with its own address space, a second significant feature of the virtual memory
system is that the amount of virtual memory used by a process can be larger
than the amount of physical memory. Similar to a database system’s buffer
manager, the operating system will evict (“swap out”) pages if more virtual
memory is required than the system has physically available [14, 40]. It sets a
flag in the page table to indicate that the associated page is currently not present
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in main-memory and also stores information where in the swap area on disk
the page can be found.

To identify candidates suitable for eviction, the page frame reclamation re-
lies on hardware assistance: The memory management unit sets flags for each
physical memory page indicating if addresses within this page have been ac-
cessed (young) or modified (dirty). The Linux virtual memory manager uses
this information during page frame reclamation to assess if a page is in frequent
use and whether it needs to be written to the swap area before a different virtual
page can be mapped to it [40].

In HyPer, we prevent memory pages from getting paged out to the swap area
by using the mlock system call. Thus, we can reuse this information to gather
temperature statistics. An asynchronous monitoring component periodically
gathers information about accesses. It reads and resets the young and dirty
flags in each observation cycle and computes new temperature values based
on this information. This method allows to monitor accesses to the database
with virtually no overhead as it only uses information gathered in any case by
the hardware.

Figure 3.9 shows the interaction of different components of HyPer. We have
implemented this type of Access Observer as a kernel module for an (unmodi-
fied) Linux kernel for the x86 architecture. On other architectures, Linux even
provides a dirty bit that can be used exclusively by user space programs [33].
While the component is certainly platform-dependent, Linux is not the only
system where this approach is conceivable.

This implementation of the Access Observer does not impose any overhead
on the OLTP threads. Moreover, it is very scalable. The access bits of one mil-
lion regular pages can be gathered single-threaded in only 10 ms. This means
that a single Access Observer thread operating on a 1 TB database can visit
each page’s access information approximately every 2.5 seconds. If parts of the
database are already frozen, the frequency increases as frozen data does not
need to be monitored.

The performance of the kernel module results from the fact that the pag-
ing data structure is a radix tree as depicted in Figure 3.8. Since attribute vec-
tors consist of continuous (virtual) pages, walking the page table is an in-order
traversal of a dense radix tree and hence very cache-efficient. To minimize the
overhead of performing the system call to invoke the kernel module, we scan
the page table entries of multiple vectors in a single system call.

Since the kernel module can distinguish between read-only and write ac-
cesses, it is possible to refine the hot/cold model from Section 3.4.2. Optimiza-
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Figure 3.8.: Paging radix tree in x86_64 Linux mapping a virtual page to its
physical page’s page table entry. The PTE contains the dirty (D)
and young (Y) flags. Depiction following [14].

tion techniques that are suitable for data in the transactional read working set
(but not write working set) can be applied to chunks that are still read, but not
written. Storage on huge pages is one feasible optimization. Further optimiza-
tions, for which point-accesses are more expensive, can be applied once the
data is neither read nor written to.

For hot/cold clustering, solely accesses from OLTP threads should be taken
into account. While OLAP queries never perform writes, they frequently scan
over entire relations. However, we can track the access information separately
for OLTP and OLAP: The dirty and referenced flags reside in the page table
and not in the metadata associated with the physical page (struct page). Each
process has its own page table and thus its own access flags. This allows us to
gather access information even in the presence of snapshots.

3.5.3. Deriving Temperature using Access Frequencies

Our Access Observer component provides a periodically refreshed mapping
from virtual memory pages to a pair of boolean flags that indicate one or more
reads and one or more writes, respectively. The Access Observer keeps addi-
tional metadata about past accesses as well as past attempts to cool a vector
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D
YY

Figure 3.9.: Access Observer architecture of the third approach (simplified
illustration).

down. We now describe how the temperature of a vector is determined from
this information.

If the Access Observer finds that all pages of a vector are not accessed for a
certain amount of time or a certain number of transactions being executed, we
consider it very likely that the vector will not be accessed in the future as well
and the Access Observer will therefore set the page’s status to “cold”.

If a small subset of a vector’s pages is repeatedly accessed, we assume that
these pages contain a small number of hot data items (h data items per vector)
and try to purge them by marking the vector “cooling”. This pattern is often
caused by naturally skewed tuples. Hot tuples are being relocated from the
cooling vector on access. When this happens, a counter is incremented and
once the threshold h of relocations is reached, the attempt to cool down the
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vector has failed and is aborted as the conjecture that the chunk only stores h

hot data items was disproved.
It may be favorable to mark vectors cooling that appear hot: If an access is

indicated in every iteration, for all pages of a vector, the Access Observer cannot
distinguish between cases in which one data item per page is hot and cases in
which all data items are hot. In the former case, the data items should be purged
from the vector setting its state to “cooling”, in the latter case, this would be
harmful. To strike a balance, the Access Observer can select these seemingly
hot vectors for a cool-down attempt with a low probability.

3.6. Evaluation

In this section, we substantiate our claims that cold transactional data can be
physically optimized with very little overhead. Basis for the experiments is the
CH-benCHmark [22] presented in Chapter 2. Since TPC-C generates strings
with high entropy that exhibit little potential for compression and is unrealis-
tic in business applications, we replaced the strings with US Census 2010 data.
E.g., for the attribute ol_dist_info we do not use a random string (like the TPC-
C data generator), but a US family name (e.g., the last name of the person re-
sponsible for this orderline). The last name is selected from the list of the most
common 88 799 family names with a probability according to the frequency of
the name.

We conduct our experiments on a server with two quad-core Intel Xeon CPUs
clocked at 2.93GHz and with 64 GB of main-memory running Red Hat Enter-
prise Linux 5.4. The benchmark is scaled to 12 warehouses.

3.6.1. Transactional Performance

We designed our hot/cold clustering method to retain transactional perfor-
mance. Hence, here we quantify the impact on transaction throughput using
the transactional part of the CH-benCHmark. In the following experiment, we
compare benchmark runs with and without compaction (huge page storage
and dictionary compression for string data). In both runs, we configured HyPer
to use five OLTP threads.

The CH-benCHmark schema has 32 attributes of type char or varchar that
have length 20 or more and exhibit compression-potential. The most interesting
relations, however, are the three constantly growing relations out of which two,
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Figure 3.10.: Transactional performance with and without compaction.

Orderline and History, have a varchar attribute of length 24 and thus require
recurring compaction of freshly inserted tuples.

Figure 3.10 shows the result of the CH-benCHmark runs in which we sim-
ulate one week of transaction processing of the world’s largest online retailer:
Amazon generated a yearly revenue of around 30 billion US$ in 2010, i.e., as-
suming an average item price of $30, Amazon adds nearly 20 million orderlines
to its database each week. We configured HyPer to compact the Orderline and
History relations’ cold chunks containing approximately the same amount of
transactional data Amazon generates in one week (according to our back-of-
the-envelope calculation) all at once, in order to show the impact of compaction
as clearly as possible.

In the transaction processing phase before the compaction interval, the im-
pact on transactional performance incurred by hot/cold clustering is minimal.
The slowdown compared to vanilla HyPer is only between 1 and 2% and pri-
marily results from the chunk temperature check performed before accessing
a tuple.

In the compaction interval, HyPer compacts 18.3 million Orderline tuples
and 0.9 million History tuples. The total time required for compaction is 3.8
seconds. The transaction throughput during these 3.8 seconds was 12.9% lower
in the setup that performed compaction than in the setup without compaction.
Since there are no synchronization points for the compaction thread and the
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OLTP threads while a chunk is being compressed, the slowdown solely results
from competing memory accesses.

3.6.2. Updating Cooling and Frozen Data

Hot/cold clustering works conservatively and thus OLTP accesses to cool and
frozen chunks should be minimal. However, individual accesses to these tuples
cannot be ruled out in general, so we quantify their costs here.

Cooling chunks are diagnosed by the Access Observer to only contain a few
tuples that change. Thus, HyPer chooses to relocate these tuples to a hot chunk
in order to be able to compress the cooling chunk. We mark hot chunks “cool-
ing” in order to quantify the costs of these relocations. In a relation (27 byte per
tuple) with 50 million tuples, we forcefully mark all chunks “cooling” and then
update them, to trigger their relocation to a newly created hot chunk. With
3 595ms, the run time is over twice as long as the updates take when all chunks
are (correctly) marked “hot” (1 605ms) and thus require no relocation of tu-
ples. This result indicates that while it requires extra processing to access a
cooling tuple, the amortized cost over all accesses is negligible, given the fact
that accesses to cooling chunks are rare compared to accesses to hot chunks. If
a cooling chunk is accessed more than expected, the Access Observer detects
the warming up of the chunk and switches its temperature back to hot which
prevents further relocations.

Frozen chunks are compressed and reside on huge memory pages and their
tuples are therefore not modified in place, but invalidated. In addition to relo-
cating the tuple as for cooling chunks, it also requires an update in the parti-
tion’s invalidation status. Unlike cooling chunks, frozen chunks must perform
this procedure. We first perform a run where we update all 50 million tuples
in sequence which requires about the same time as the updates in the cooling
chunks. I.e., the cost of invalidating the tuples is completely dominated by the
costs of relocating them as only one invalidation entry per chunk is created and
resides in the cache. When updating random tuples, inserts into the validation
status are more costly: We update 10 000 random orders in the Orderline re-
lation. Each order consists of 10 consecutively located Orderline tuples, i.e.,
100 000 orderlines are updated. Performing these updates in frozen chunks
takes 46 ms, while it takes 18 ms in hot chunks. As we expect such patterns to
occur very infrequently, the cost seems acceptable.
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3.7. Conclusion

Clustering a database into hot and cold parts is beneficial as we can optimize
cold data for OLAP and use OLTP-friendly storage for the working set. Chap-
ter 4 and Chapter 5 show the benefits resulting from such physical optimiza-
tions.

In this chapter, we have demonstrated our approach to hot/cold cluster-
ing. Related work often resembles buffer managers that maintain sequences
of pages to determine the eviction order. Our approach is rigorously tailored
to the requirements of high-performance in-memory database systems. In con-
trast to traditional database systems, in-memory systems assume that the work-
ing set will fit into main-memory.

Due to our conservative approach, we can freeze large parts of a memory-
resident database with almost no impact on transactional throughput. It is in
line with HyPer’s fundamental design principle to leverage hardware support
in order to achieve unprecedented performance and allows to monitor database
access with virtually no overhead. This knowledge about access frequencies
can be exploited for hot/cold clustering as database workloads often have a
working set of limited size and databases frequently exhibit natural clustering.
Our hot/cold mechanism makes existing clustering explicit and can create a
clustering where it does not already exist, but can be generated economically,
i.e., without impacting transactional performance.

Separating hot and cold data items has various benefits. Writing snapshots
to disk requires less I/O and it is possible to selectively apply the physical op-
timizations described in the next chapters. Moreover, we conclude that obtain-
ing access the operating systems data structures, in particular the page table,
can help data-intensive high-performance systems to operate more efficiently.
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CHAPTER 4

Parts of this chapter have previously been published in [36, 85].

4.1. Introduction

Analytic database systems frequently employ physical optimizations such as
columnar storage and compression. By clustering the database into a hot and a
cold part, hybrid OLTP and OLAP systems can also benefit from some of these
optimizations without impacting transactional performance.

First, we discuss the impact of the storage model as well as possible com-
binations. Then, we examine how the properties of physical memory pages
change database performance. Finally, we describe the integration of compres-
sion schemes and compare our approach to SAP HANA which is – like HyPer –
optimized for mixed workloads and leverages compression as well.

4.2. Storage Model

One common optimization in analytic database systems is the storage model
(cf. Figure 4.1): While transactional workloads typically benefit from row-
based (or “n-ary”) storage, the performance of analytical queries is better when
operating on columnar storage.

We study the effect of the physical layout on performance in HyPer which
generates optimal code for row- and column-based storage as well as for hybrid
layouts.
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Figure 4.1.: Example memory layout of a row-store and column-store

4.2.1. Related Work

Copeland et al. [23] give an overview of the use of the fully transposed stor-
age model, i.e., one where “all values of the same attribute of a conceptual
schema relation ” are stored together, and propose the Decomposition Storage
Model [23] (DSM). The DSM extends the idea of transposed storage by adding
surrogate keys to each column, transforming a relation with n attributes and
one surrogate key into n binary key-value relations. Furthermore, the DSM
keeps two representations of each binary relation, one clustered on the key,
the other on the value.

MonetDB [11] was the first modern database system to use the DSM. Mon-
etDB’s binary relations are called Binary Association Tables (BAT) and it avoids
storing the surrogate key (or “object identifier”) explicitly when it can be de-
rived from the position. Today, many analytic systems employ columnar stor-
age, including Vectorwise [118], SAP HANA [32], IBM DB2 with BLU Accelera-
tion [92], C-Store [101] and Vertica [107] as well as Microsoft SQL Server [68] (as
column-store indexes) and Oracle Database [84] (for in-memory tables). Abadi
et al. [2] give an overview of modern column-store architectures, features and
query processing techniques. Zukowski et al. [117] present a performance eval-
uation of row- and column-stores in block-oriented query engines.

Several combinations of these two storage models have been proposed. SAP
HANA can store relations either row- or column-oriented [32]. The format is
specified manually when a table is created and a single SQL query can combine
data from tables of both layouts. Subsequent work presents a storage advi-
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sor [96] that suggests a format for a certain table using a cost model. It incorpo-
rates the table’s data as well as the workload. In addition to a decision per table,
tables can be partitioned horizontally and vertically. Horizontal partitions al-
low to store historical data in columns (for efficient analyses) and current data
in rows (for fast modifications). The authors mention moving tuples to the his-
torical partition, but do not describe the process. The related research project
SanssouciDB describes a Data Aging process which is not adaptive, but based
on manually specified rules derived from the business processes [88]. Vertical
partitions divide the non-key attributes into disjoint sets, but replicate the key
attributes into each set, creating partial tables that must be joined back together
via the primary key when a query addresses more than one partition.

Vertical partitioning (or partial decomposition) and its automatic design has
been extensively studied, primarily in the context of disk-based systems [50,
80, 3]. Partition Attributes Across (PAX) is a related approach that combines the
n-ary storage model and the decomposition storage model to increase cache
efficiency in page-based storage [4]. Data Morphing [44] extends this work by
optimizing the layout based on an analysis of the workload. Manegold [73]
presents a generic cost model for in-memory database systems suitable for
query optimization. The HYRISE main-memory database system [43] builds
upon this research and ideas from Data Morphing to compute the optimal ver-
tical partitioning for a given workload and database. However, due to its query
processing model, wider layouts get strongly penalized and row-based storage
performs worst, even when entire tuples are selected in point-queries.

4.2.2. A Comparison of Row- and Columnar-Based Storage

In this section, we will compare columnar and row-based storage in HyPer for
transactions and analytical queries.

Experiments with HyPer

Table 4.1 shows the results of a CH-benCHmark run using HyPer with a row-
store back-end and a column-store back-end. We used a database with 100
warehouses (initially approximately 10 GB) and processed queries and trans-
actions single-threaded on a Intel Xeon E7-4870 CPU. The database was not
partitioned and we repeated each analytical query five times and processed
2.5 million transactions. Albeit we report OLTP and OLAP results in the same
table, they were obtained in separate experiments to avoid interference effects.
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Row Column

OLTP OLAP OLTP OLAP

54 543 tps
336M misses

Q1: 726 ms

45 291 tps
431M misses

Q1: 198 ms
Q2: 1 068 ms Q2: 161 ms
Q3: 1 241 ms Q3: 372 ms
Q4: 1 226 ms Q4: 873 ms
Q5: 7 013 ms Q5: 4 384 ms
Q6: 575 ms Q6: 104 ms
Q7: 1 038 ms Q7: 269 ms
Q8: 950 ms Q8: 272 ms
Q9: 1 015 ms Q9: 307 ms

Q10: 820 ms Q10: 164 ms
Q11: 753 ms Q11: 185 ms
Q12: 1 689 ms Q12: 845 ms
Q13: 1 148 ms Q13: 508 ms
Q14: 1 930 ms Q14: 703 ms
Q15: 16 686 ms Q15: 10 248 ms
Q16: 12 253 ms Q16: 8 993 ms
Q17: 1 520 ms Q17: 488 ms
Q18: 3 939 ms Q18: 2 131 ms
Q19: 2 987 ms Q19: 1 257 ms
Q20: 1 068 ms Q20: 247 ms
Q21: 2 768 ms Q21: 1 043 ms
Q22: 530 ms Q22: 135 ms

Geometric Mean: 1 652 ms Geometric Mean: 568 ms
OLAP Cache Misses: 4 873M OLAP Cache Misses: 2 217M

Table 4.1.: Comparison of row- and columnar-stores

We can observe that the storage layout has an effect on both transaction and
query processing. A layout where all relations are stored row-based performs
about 20% better than a columnar database when processing TPC-C transac-
tions. The row-store also has only 77% of the cache misses of the column-store
in the OLTP experiment.

The impact of the storage layout on performance is even bigger when pro-
cessing analytical queries. This results from the fact that most queries spend
a large fraction of their time reading selected attributes from a table. Transac-
tions, on the contrary, spend most cycles traversing indexes. Thus, we see a
bigger performance difference for analytical queries than for the transactional
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workload. The geometric mean of the row-store is approximately three times
as slow as the column-store’s geometric mean.

Performance Impact of Layout

The findings of the experiment with transactional and analytical workloads on
row- and column-stores in Table 4.1 shows the impact of the layout on cache be-
havior. The row-store primarily benefits from point queries accessing multiple
attributes. If these are physically stored in proximity, such an operation may
cause fewer cache lines to be fetched from memory because multiple attributes
are stored in the same cache line as the results in Table 4.1 indicate. In addition
to better data cache behavior, accessing multiple attributes from randomly se-
lected tuples causes fewer misses to the translation lookaside buffer (TLB). In
the transactional workload, the column-store produces 13% more on-load and
over 30% more on-store misses in the TLB than the row-store. In the analyti-
cal workload, on the other hand, the row-store produces almost 60% more TLB
misses than the column-store. For vectorized processing engines, similar ob-
servations have been made [117].

Appending new tuples to a relation, e.g., in the insert-heavy NewOrder
transaction in TPC-C, does not necessarily cause more cache misses in colum-
nar layouts. This results from the fact that the “end” of a relation, i.e., the
memory region where new tuples are being inserted, is frequently accessed
and the access pattern is easy to predict for the prefetcher. Hence, performing
a database load with both stores takes the same amount of time. Column-stores
only cause more cache misses here if the number of partitions (see Figure 3.3)
is so high that the cache cannot accommodate the ends of all columns.

A second advantage columnar layouts may have is the use of Single Instruc-
tion Multiple Data (SIMD) instructions [117]. SIMD instructions exploit data
level parallelism by applying the same operation to multiple data items in par-
allel [49], e.g., applying selection predicates during a scan. Examples include
the instruction set extensions SSE and AVX for the x86 architecture as well as in-
structions for Graphics Processing Units (GPUs). In general, it is more difficult
or even impossible [117] to gain performance benefits using SIMD instructions
for non-columnar layouts, but in special cases, e.g., for heavily compressed
storage [93, 58], the use of SIMD instructions can be beneficial. While the use
of SIMD instructions can be very beneficial for vectorized table scans [118], it
is minuscule in HyPer’s tuple-at-a-time processing model, where the code of
multiple operators is executed on a the same tuple, before the next tuple is pro-
cessed.
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Figure 4.2.: Example memory layout of a hybrid-store

Compression is often more effective as well as more efficient to operate on
when using column-stores [1]. We cover compression schemes for column-
stores in Section 4.4 as well as Chapter 5.

4.2.3. Hybrid Row/Column Layouts in HyPer

HyPer’s code generation approach can optimally leverage the underlying stor-
age model. We present a hybrid (or partially decomposed) storage layout that
combines row and columnar storage within one relation. The attributes of a
relation are clustered into disjoint sets. These clusters, sometimes called “sub-
tables” [3] or “sub-relations” [4], are then stored in a row-based format. If each
cluster only contains a single attribute, the storage layout equals the one of
a column-store. If there is only one cluster which contains all attributes, the
resulting layout is identical to a row-store. Thus, each cluster stores a single
attribute, an entire tuple, or a fragment of a tuple (“tuplet”). Figure 4.2 shows
examples for the three different storage layouts. In the example the attributes
A and C are clustered together, while the remaining attribute, B, is stored in a
column by itself.

All tuplets of a tuple can be accessed with the same index offset which sim-
plifies tuple reconstruction. To access an attribute a of tuple tid, first the asso-
ciated sub-relation is determined. A pointer to the tuplet is computed using
the tid and then the offset of attribute a into the tuplet is added. As everything
but the tid is a compile-time constant, this address computation is not more
CPU intensive than in a column- or row-store and only requires a single lea in-
struction. Unlike systems with interpretation overhead, such as HYRISE [43],
HyPer is therefore perfectly suited for hybrid layouts as accesses are both CPU
and cache efficient.
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Figure 4.3 gives a high-level overview of how HyPer processes table defini-
tions and queries (the Storage Advisor component is discussed below in Sec-
tion 4.2.4). After a create table statement annotated with partial decomposi-
tion instructions is parsed and added to the database’s schema, a layout is gen-
erated. The layout describes where each of its entries is stored (relative to the
beginning) and how many bytes it consumes. This layout is used as a basis for
the generation of a partition type (HyPer uses horizontal partitioning by default
as described in Section 3.4.1) and a set of methods and templates. These meth-
ods, F R0

0 , F R0
1 , . . . are the functions for relation R0 in the example, are specific

to the partition and its layout, but query- and transaction-independent. Exam-
ples include functions for growing the partition, inserting a tuple and writing
it to disk. In addition, a partition has code templates associated with it. The
templates, FR0

0 ,FR0
1 , . . . in the example, are used during query compilation.

A query first passes through the parser. Then, it is analyzed semantically and
an initial query plan is created and subsequently optimized. Afterwards a set
of translators generates an executable function (cf. [81]). The table scan trans-
lator generates partition-specific code. It does not rely on the pre-generated
functions but on function templates in order to generate code that is specific to
both the partition and the query. Note that templates do not introduce function
call boundaries into the query plan. One such template contains the logic to it-
erate a partition’s tuples, a second example is template code to update certain
transaction-specific attributes.

To analyze the effect of the storage layout on performance, we examine the
performance of query Q1. It scans the Orderline relation and aggregates quan-
tity and amount grouped by the orderline’s number for entries with a recent
delivery_d. The row-store is 3.6 times as slow as the column-store for this query
(cf. Table 4.1). If we cluster the four attributes read by the query into a sub-
relation and the remaining attributes into a second sub-relation, the resulting
hybrid layout can achieve the same query performance as the column-store.

We can extend this approach to the entire CH-benCHmark to be able to quan-
tify the effect for both workloads: We configure the storage layout advisor to
generate an OLAP-optimized schema in which all attributes accessed by analyt-
ical CH-benCHmark queries are stored in individual clusters, i.e., in columns.
The remaining attributes, which are not accessed by queries (approximately
half of the schema’s attributes), are clustered together in one sub-relation per
relation. Using this approach, HyPer was able to retain the analytical perfor-
mance of a column-store while achieving the same performance in the OLTP
workload as a row-store.
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Figure 4.3.: Code generation in HyPer (schematic)

While this approach yields a layout suitable for both workloads of the CH-
benCHmark, this is not the case in general. Transactional and analytical work-
loads can have opposing preferences with respect to the storage model so that
any change to the layout that benefits one workload hurts the performance of
the other.

4.2.4. Layout Optimization

The findings of the previous section suggest that choosing the optimal stor-
age layout for a given workload can bring substantial performance advantages.
Analytic workloads that scan substantial parts of a selected subset of attributes
benefit from columnar storage, while typical transactional workloads that read
several attributes of a single tuple perform best when operating on row-stores.
Depending on the schema and workload, hybrid layouts can be used to boost
the performance of one workload while retaining most of the execution speed
of the other one. In this section, we discuss how we can optimize the layout to
improve performance.

Cost models can be used to predict the performance of a set of database oper-
ations. The generic database cost model for hierarchical memory systems [73]
is a hardware-conscious model designed to accurately predict the performance
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of database operations in main-memory. It introduces two abstractions that
help to manage the complexity of such a model. Data Regions can be used to
model data structures and are in particular suitable to model relations as well
as sub-relations. Basic Access Patterns are an abstraction used to model mem-
ory access behavior like sequential or random-order traversals of a data region.
Basic patterns are composable and therefore powerful enough to describe the
accesses performed by database operators. When combining the model with
hardware parameters, a cost function can be derived that helps to predict query
performance. While the original model was tailored to bulk processing, it can
be extended to support the compilation-based tuple-at-a-time processing en-
gine of HyPer [85].

The cost model can also be used to find the layout with the minimal cost
for a given workload. Figure 4.3 depicts how a storage advisor component can
be seamlessly integrated into HyPer: It statically analyzes the workload con-
sisting of queries and transactions, computes an optimal layout and annotates
the schema accordingly. The optimization problem grows exponentially with
the number of attributes, but fast algorithms and heuristics exist for practical
purposes [19].

However, cost-based layout optimization is not always possible. To leverage
its full potential, detailed a priori information about the workload is required.
In addition to the set of transactions and analytical queries, knowledge about
the priority and frequency of each transaction and query is required to find the
best layout. While the set of transactions is often known, ad hoc queries are
not uncommon. In cases where ad hoc queries play an important role in the
workload, cost-based layout optimization should not be used.

Additionally, automatic approaches relying on static analysis do not take the
temperature of data items into account. As transactions often operate on a rel-
atively small working set, the cold part of a relation can be stored in a column-
store while the hot part resides in a row-store. Instead of creating vertical par-
titions for entire relations a priori, we propose to move cold data to columnar
storage at runtime. Using our hot/cold clustering approach the best layout can
be used for each tuple without the need to provide application-level knowledge
to the DBMS as proposed for SanssouciDB [88]. In Chapter 5, we present an
implementation of hybrid row- and column-based storage within one relation:
The working set can be stored in a chunked row-store, while the remaining data
is stored in Data Blocks that use compressed columnar storage. The Data Block
approach integrates seamlessly with HyPer’s code generator without compro-
mising performance.
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4.3. Physical Pages

The choice of physical memory pages can affect the performance of in-memory
database systems. This specifically applies to HyPer due to its fork-based snap-
shotting mechanism.

4.3.1. Page Size

Hardware support for virtual memory allows operating systems to efficiently
equip each process with its own address space. In Linux, this address space
contains multiple virtual memory areas (VMAs) each consisting of multiple
virtual memory pages [40].

Modern architectures support different page sizes:

x86_64 supports regular 4 KB pages and 2 MB huge pages. Alternatively,
some CPUs can also be configured to support 1 GB “large” pages via the
page size bit of the page directory’s offset entry [28].

IBM’s Power architecture supports various page sizes from 4 KB up to 16 GB
since the release of the POWER5+ processor [95].

Intel’s IA-64 architecture supports several huge page sizes with up to 4 GB in
addition to 4 KB pages [56].

Linux provides different ways of allocating huge pages and different inter-
faces [39]: Huge pages can be statically pre-allocated at boot-time, via sysctl
or sysfs. Static allocation guarantees the availability of huge pages to applica-
tions. Additional nr_overcommit_hugepages can be configured to be added to
the pool of huge pages on demand via sysfs.

Applications can request huge pages when acquiring System V Shared Mem-
ory via shmget, requesting mappings via mmap or by using the in-memory file
system hugetlbfs.

In addition, the transparent huge pages feature, introduced in kernel 2.6.38,
allows the kernel to use huge pages transparently and to mix huge and regu-
lar pages within on virtual memory area [24]. This feature can be controlled
system-wide via the sysfs: It can be enabled, disabled or enabled only when
advised to do so for a given memory region via the madvise system call.

To have full control over the page size (and resulting performance), we ex-
plicitly advise the kernel to use either regular or huge pages for each memory
region. This allows to put hot and cold chunks into separate VMAs with opti-
mal properties.
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Using huge pages in database systems can be advantageous in various ways.
First, OLTP workloads often benefit from higher TLB hit rates. If many differ-
ent memory locations are accessed, the probability of finding the pages in the
translation lookaside buffer increases with the page size. Intel’s Haswell micro
architecture [55] has 64 entries in the first level data TLB for regular pages, 32
entries for huge pages and 4 for 1 GB pages. Additionally, it has a second level
TLB shared by regular and huge pages with 1024 slots. Thus, TLB entries for
huge pages cover a much larger part of the address space than regular pages.
Furthermore, as regular and huge pages have separate first level buffers the
TLB coverage can be increased if both types of pages are used.

Second, scanning data stored on huge pages can be faster. This depends on
the micro architecture, but some CPUs benefit from huge pages as we show
below.

Finally, systems that use hardware- or software-based shadow paging, like
HyPer, can create snapshots faster if the page table is smaller. As larger pages
require fewer entries in the page table, they result in smaller page tables and
faster snapshots.

However, using huge pages for the entire database also has drawbacks in
such a snapshot-based system. While snapshotting a database on huge pages
is faster, the snapshot size can be significantly bigger as replication takes place
per page. So a single write can trigger the replication of a page, i.e., either 4 KB
or 2 MB of memory, depending on the type of the page. Executing the page
replication also requires more time for huge pages in many cases. Replicating
a huge page takes about 310 times longer than replicating a regular page on
our Intel Xeon E7-4870 server. As huge pages are 500 times bigger, replicating
a database on huge pages is slightly more efficient if all pages are copied. This
is caused by the overhead of trapping into the operating system.

However, the use of regular pages is superior in other situations: Scattered
accesses to hot or cooling regions can result in a situation where all pages would
have to be replicated if huge pages were used, but only a small fraction of the
pages would be copied if regular pages were uses. In the worst case, storing hot
and cooling data on huge pages leads to 500 times more memory consumption
overhead and 310 times higher replication cost.

Thus, using huge pages for the entire database can result in a higher memory
consumption and lower OLTP performance. Therefore, we use regular pages
as the preferred choice for mutable data like index structures and working set
data items to minimize the performance and memory overhead caused by copy-
on-write page replication. Thus, we leverage the hot/cold clustering in the
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Figure 4.4.: Huge page benefits on Intel Xeon X5570: Faster scans, faster forks.

database and only use huge pages for frozen, immutable data. In addition,
it makes sense to use huge pages for hash tables in large hash joins. Doing
so also makes good use of the TLBs: OLAP queries (mostly) operate on huge
pages, transaction primarily on small pages. Both use different TLBs and hence
no workload thrashes the other’s TLB.

The benefits of using huge pages for snapshot creation and scans can be ob-
served in Figure 4.4 where a 32 GB relation residing on regular or huge pages is
forked and scanned. The experiment is conducted on an Intel Xeon X5570 and
demonstrates faster scans (median of 15 scans) for huge pages as well as faster
fork execution. Note that the benefit of using huge pages heavily depends on
the microarchitecture. On an Intel Xeon E7-4870 the difference in scan perfor-
mance is negligible.

4.3.2. Shared Pages

Like most modern operating systems, Linux allows processes to map shared
memory into their address space. The shared memory mapping in two or more
processes is backed by the same physical pages. This is similar to the situation
after a fork in HyPer where the same physical pages are shared between par-
ent and child process as depicted in Figure 1.4. The difference is that shared
mappings do not perform a copy-on-write – in contrast to private mappings,
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where modifying a page causes a page replication. Using shared memory can
therefore save physical memory and can be used to perform inter-process com-
munication as each process sees the modifications other processes make.

In addition to the original System V shared memory and the standardized
POSIX Shared Memory, shared mappings for processes with a parent/child rela-
tionship can be created using Linux’s mmap system call. Thus, shared mappings
can have additional properties, e.g., they can be backed by a file.

If a HyPer OLTP process (parent process) uses a shared mapping to store the
database, each OLAP snapshot (forked child process) would see all changes
OLTP transactions apply to the database. Thus, the purpose of HyPer’s vir-
tual memory snapshots, to preserve the state of the database at a given point in
time, would be defeated. By freezing parts of the database using the hot/cold
clustering approach presented in Chapter 3, HyPer guarantees the immutabil-
ity of these parts. This permits the use of shared memory for the frozen parts
of the database which can enhance HyPer’s performance.

When a virtual memory snapshot is created, the OLTP process’s page table,
which is implemented as a radix tree, is copied for the snapshot process. Cre-
ating a shadow copy of the page table and using a copy-on-write mechanism
(similar to the one used for memory pages) to copy nodes of the tree on demand
(as opposed to in advance) has been proposed by McCracken [74]. However,
this feature is not (yet) integrated into the Linux kernel.

Linux does, however, skip the replication of those parts of the page table that
refer to shared mappings. This allows for much faster forks. Thus, HyPer can
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benefit by storing frozen data on shared pages. As frozen data is immutable and
all mutable data (including the deleted data structures) continues to be stored
on private (copy-on-write) mappings, the snapshot mechanism retains correct
semantics, but significantly improves its performance as Figure 4.5 shows.

To prevent OLAP snapshots from accidentally writing to the frozen, shared
part of data and thus illegally changing the database owned by the OLTP pro-
cess, the mprotect system call can be used. After cold data has been frozen, the
mapping’s permissions can be set to read-only to prevent writes to this part of
the database.

Note that depending on the kernel, there may be limitations of using (trans-
parent) huge pages in combination with mprotect or shared memory. E.g., the
transparent huge page feature “only works with anonymous pages” in current
kernels [24]. This may change in the future, but non-transparent huge pages
can already be used in combination with shared memory today. While regular-
sized shared pages already allow for instant snapshotting, using larger pages
can speed up table scans as Figure 4.4 shows.

4.4. Compression

Our research focuses on the integration of existing compression schemes to
high-performance OLTP systems with query capabilities. We do not propose
new compression algorithms, but use well-known algorithms and apply them
adaptively to parts of the data depending on the access patterns that are dy-
namically detected at runtime. It is our main goal to impact transaction pro-
cessing as little as possible. Thus, we relieve the transaction processing threads
of all compression tasks.

We propose to compress only cold data as opposed to compressing data
items when they are inserted. First and foremost, compressing tuples on insert
is more costly. When inserting into TPC-C’s Orderline relation, we measured
a decline of the insert-rate by 50% if the string attribute ol_dist_info is im-
mediately compressed using dictionary encoding (see Section 4.5 for details).
Second, compressing only cold data allows to use a single dictionary for all p

partitions of a relation (cf. Figure 3.3), without causing lock contention for the
OLTP threads.

In this chapter, we present the integration of lightweight compression meth-
ods such as dictionary compression and run-length encoding into the HyPer
database system. We compare our approach to the integration of compression
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in the competing OLTP and OLAP system SanssouciDB, the research prototype
of SAP HANA.

4.4.1. Related Work

Compression techniques for database systems is a topic extensively studied,
primarily in the context of analytical systems [42, 112, 1, 51, 116, 94]. However,
the proposed techniques are not directly applicable to OLTP systems which are
optimized for high-frequency write accesses.

For efficient update handling in compressed OLAP databases, Héman et al.
proposed Positional Delta Trees [48]. They allow for updates in ordered, com-
pressed relations and yet maintain good scan performance. Binnig et al. pro-
pose ordered dictionary compression that can be bulk-updated efficiently [8].
Both techniques are not designed for OLTP-style updates, but rather for up-
dates in data warehouses.

Oracle 11g [83] has an “OLTP Table Compression” feature. Newly inserted
data is left uncompressed at first. When insertions reach a threshold, the un-
compressed tuples are being compressed. Algorithm details or performance
numbers are not published, but the focus appears to be on disk-based sys-
tems with traditional transaction processing models, not high-performance in-
memory systems. Also, the feature appears to be designed for pure OLTP work-
loads and does not promise efficient scans.

SanssouciDB uses order-preserving dictionary compression for most of the
database: Its main-store uses an ordered dictionary while the delta-store’s dic-
tionary is unordered [87]. Data is periodically merged from the delta- into the
main-store. We compare our approach to SanssouciDB in this chapter.

4.4.2. Query Processing

There is a substantial amount of research on query processing and optimization
of compressed data [112, 1, 42, 18]. Many of the insights from this work are also
applicable to our approach. Therefore, in this section, we focus on questions
arising from the integration into a high-performance hybrid OLTP and OLAP
system.

Order-preserving dictionary compression can often be found in analytical
database systems [5, 8], but is not feasible in scenarios where new keys may be
added to the dictionary frequently. In ordered dictionaries, keyi < keyj implies
that valuei < valuej . This property can be utilized to do query processing
directly on the compressed representation of the data. While it can speed up
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[         ]

[         ]

Figure 4.6.: Execution of the range query ... BETWEEN ’BBB’ AND ’DDD’ using
(a) a secondary index and (b) an order-preserving dictionary.

execution, it makes a single ordered dictionary very difficult to maintain even
in data warehouses, where data is inserted in bulk operations.

Hybrid OLTP and OLAP systems have to handle high-frequency updates
and inserts. Therefore, maintaining an ordered dictionary in this scenario is
virtually impossible. If a single, order-preserving dictionary is used for an at-
tribute, like in SanssouciDB, inserting a single tuple into the relation can ne-
cessitate the re-encoding of the entire relation: If the dictionary contains the
entries (keyi, valuei) and (keyj , valuej) and keyi + 1 = keyj , inserting a new
value valuex with valuei < valuex < valuej requires the entire relation to be
re-encoded. This results from the fact that there is no key between keyi and
keyj that could be assigned to valuex. Hence, the dictionary values, including
valuex, need to be sorted, assigned new keys and the relation needs to be re-
encoded using the new keys. Krüger et al. [66] describe an algorithm for this
procedure that is linear in the size of the relation.

As an alternative, we present a novel variant of a secondary index. Using
this index on the compressed attribute instead of order-preserving dictionary
compression is feasible, outperforms an ordered dictionary for selective queries
and consumes significantly less memory than traditional indexes on string at-
tributes.

Ordered dictionaries demonstrate their strength when executing queries
with range and prefix filter conditions (e.g., attribute LIKE ’prefix%’). State
of the art algorithms [8] first determine the range of qualifying keys through bi-
nary search in the dictionary. Then, the relation’s attribute column is scanned
and each key is tested for inclusion in the range. This algorithm is very efficient
for unselective range queries. For more selective queries, however, a secondary

72



4.4. Compression

Figure 4.7.: Secondary tree index (red-black tree). The gray information is not
materialized.
E.g., entry 1 compares less than entry 0, because the key at TID
1 (0key) refers to a smaller value (BBB) as the key at TID 0 (2key)
which refers to CCC.

tree index is dominant (as we show in Section 4.5.3) because it does not require
a full table scan, but directly accesses the selected tuples. Figure 4.6 contrasts
the two different processing techniques. A search tree index can be constructed
with very moderate memory consumption overhead: Instead of storing the val-
ues (e.g., strings) in the index and thus reverting the benefit of compression,
we propose to only store the 8 byte TID of each tuple. We have implemented
both a red-black tree as well as a B+ tree index using this approach.

The sort order of the TIDs in the search tree is determined by the order of the
values they point to as depicted for a red-black tree in Figure 4.7. I.e., the index
entry (TID) tidi compares less than entry tidj if the two keys ki and kj these
TIDs point to refer to dictionary values vi and vj with vi < vj . If two values
are equal the TID serves as a tie-breaker in order to maintain a strict order. A
strict order allows for efficient deletes in the index as index entries of a given
TID are quickly found. It is important to point out that, in contrast to pure
OLAP systems, sorting or cracking [52] the compressed vector is not a viable
alternative to the use of a secondary index in a hybrid database system. These
techniques would require massive updates in the regular indexes (which cover
all vectors, regardless of their temperature) that are required for the mission-
critical transaction processing.

Navigating the tree index performs many random accesses. While this access
pattern causes a performance problem for disk-based systems, in-memory sys-
tems can efficiently use this compact secondary index as an accelerator where
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prefix queries would benefit from order-preserving dictionary compression.
We demonstrate the efficiency of this index in Section 4.5.3.

As adding new tuples to the index would slow down OLTP threads, the sec-
ondary index should only be maintained for frozen data. When a vector of an
index attribute is being frozen, the tuples are bulk-inserted into the index.

For equality filter conditions (e.g., attribute = ’value’), the scan operator
first performs a lookup of the value in the dictionary (regardless of whether it
is ordered or not) to determine the associated key and a subsequent scan of the
compressed column passing only those tuples to the upstream operator that
match the key. If a secondary index on the compressed attribute exists, the
scan operator directly uses this index to determine the qualifying tuples and
thus obviates a full table scan.

Filter conditions other than prefixes or equality comparisons cannot be effi-
ciently processed with any of the techniques presented here. We evaluate them
by first scanning the dictionary and selecting the qualifying keys into a hash ta-
ble. This hash table is then used for a hash join with the relation, i.e., it is probed
with the keys of the compressed chunks. This join is very efficient as a bitmap
with one bit per dictionary entry can be used instead of a regular hash table
and therefore often fits into the CPU cache.

All algorithms presented in this section are performed by the scan operator.
The scan operator thus decompresses encoded chunks and unites tuples from
compressed and from uncompressed chunks. Thereby, compression is trans-
parent for all upstream operators and does not require their adaption.

4.4.3. Dictionary Compression

Our dictionaries consist of two columns: A reference counter indicating the
number of tuples that reference the value and the actual value. The key is not
stored explicitly, but is the offset into the dictionary as shown in Figure 4.8. A
reference count of zero indicates that this slot in the dictionary can be reused.
In order to avoid duplicate entries, a value-to-key hash-index is used to lookup
existing values when a new tuple is inserted or a compressed value is being
updated.

We maintain one dictionary per attribute. Following the transaction model
described in Section 1.2.2, this means that multiple OLTP threads access the dic-
tionary concurrently. Since only cold data is dictionary-compressed, we expect
very little updates in the dictionary by OLTP threads. Yet, an OLTP thread may
make modifications in a vector that is currently being compressed. Therefore,
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...

Figure 4.8.: Dictionary data structure for strings

during the compression of a chunk, the reorganization thread uses the Access
Observer to track write accesses while a new (and smaller) vector is filled with
the dictionary keys equivalent to the original values. If a memory page was
modified during compression and processing a value within this page has al-
ready caused changes in the dictionary, it is re-worked: The modified page is
scanned and every value is compared to the value the new key-vector points
to: If the values do not match, the dictionary’s reference counter for the value
pointed to by the current key is decremented (i.e., the insert into the dictionary
is undone) and the new value is being compressed. This optimistic concurrency
control is facilitated by the Access Observer’s ability to detect writes retrospec-
tively.

As OLTP and reorganization threads access the dictionary concurrently, they
need to synchronize dictionary access with a lock. However, since the hot
part of the data is uncompressed, transactions inserting new tuples or updat-
ing/deleting hot tuples never have to acquire the dictionary lock. Therefore,
lock contention is not a problem here. OLAP queries never have to acquire dic-
tionary locks as they operate on a copy-on-write-protected snapshot and are
thus not susceptible to race conditions.

4.4.4. Run-Length Encoding

Run-length encoding shrinks the data size by condensing sequences of iden-
tical values (“runs”). Runs can often be found in date fields due to time-of-
creation clustering or when applications frequently use default values for an
attribute.

While frozen chunks are designed for efficient scan access and not point ac-
cesses, point accesses made by transactions must still be possible with accept-
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Figure 4.9.: RLE representation: (a) Uncompressed chunk (b) Regular RLE im-
plementation (run-length RLE) (c) Position-based RLE

able performance – even if they are expected to occur rarely in frozen chunks.
To make this possible, instead of representing a RLE-encoded vector as a se-
quence of (runlength, value) pairs, we choose a representation based on pre-
fix sums and store a sequence of (position, value)pairs (cf. Figure 4.9 (b) and
(c)). In the position-based format, entry[i].value is the attributes’ value of all
tuples between entry[i-1].position and entry[i].position-1 (for i = 0 the
range is 0 to positions[0]-1). Positions are offsets into the current chunk. This
layout consumes the same space (assuming that the same data type is used for
run-lengths as for positions) and allows for scans almost as fast as the regular
representation. The advantage, however, is that point accesses that would re-
quire a scan in the other representation, can be sped up significantly through
binary searches. In Section 4.5.3 we show a performance comparison.

Other common compression techniques are also suitable for hybrid work-
loads, e.g., the reduction of the number of bytes used for a data type to what
is actually required for the values in a chunk. This is discussed in Chapter 5
in the context of a refined approach to compression that facilitates disk-based
storage.

4.5. Evaluation

We present performance results to justify our design decision to only compress
cold data. Then we discuss the effectiveness of the integration of compression
and quantify the performance impact.
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Scale Instant Compression No Compression

10M orderlines
215 unique values

4 249 ms 2 790 ms

10M orderlines
218 unique values

5 589 ms 2 791 ms

50M orderlines
215 unique values

19 664 ms 12 555 ms

50M orderlines
218 unique values

26 254 ms 12 614 ms

Table 4.2.: The cost of instant compression: Time required to insert 10 million
and 50 million orderlines.

4.5.1. Instant Compression versus Cold Compression

We conduct experiments to substantiate the claim that compressing tuples on
insert is too expensive. For run-length encoding, the disadvantages of com-
pressing hot tuples are obvious: Updates of RLE values can split a run and
generate up to two additional entries that may not fit in the vector and cause the
relocation of all following entries if they do. In addition, locating an attribute’s
value associated with a certain TID is often necessary in OLTP workloads. This
is possible in our design, but still compromises performance.

As the disadvantages of instant RLE compression are obvious, we limit the
experiment to dictionary compression. Table 4.2 shows the time required to
insert TPC-C orderlines when compressing instantly and when performing no
compression of the char(24) not null attribute ol_dist_info. The additional
lookup and insert in the dictionary can slow down the insert rate to 50%. This
results from the fact that inserting an Orderline tuple without compression
only requires an insert into the primary key index and appending 10 attributes
to the relation.

4.5.2. Compression Effectiveness

As the CH-benCHmark’s string attributes are filled with random values and
thus do not exhibit any compression potential, we evaluate the effectiveness of
our dictionary compression with US census data from 2010. We compress a
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column populated with 100 million last names using the real distribution. In
the uncompressed representation, hardly any names are longer than our string
representation stores inline. Thus the uncompressed size is approximately 16
byte per name. Our dictionary compression scheme reduces the total memory
consumption to 50% of the original size. The size of the dictionary is negligibly
small as it only contains 88 799 (distinct) values. The dictionary keys require 8
byte in our implementation. The key width could be reduced if each dictionary
compressed vector would indicate the number of bytes used for keys in this
vector. This could reduce the memory consumption of our example to 25% (or
further if bit packing is used), but efficient scans would require the generation
of different code paths for each key type.

Activating run-length encoding on the Orderline’s ol_o_id attribute re-
duces the memory consumption by a factor of 3.3 as each order has an average
of 10 orderlines that are stored consecutively and thus produce runs with an
average length of 10. The timestamp attributes o_entry_d and h_date are natu-
rally sorted in the database as they are set to the current date and time on insert.
Thus, they contain runs of several thousand entries, resulting in extreme com-
pression factors for these attributes.

For the three growing relations, History, Orderline and Order, the Access
Observer indicates that all chunks but the one or two last ones could be frozen
at any time during the benchmark run. This means that most of the data in
a CH-benCHmark database can be compressed. The compression ratio of our
approach is therefore primarily limited by our decision to only support one
compression scheme per attribute type (i.e., dictionary compression with 8 byte
keys for string types and RLE for all other types). We do this to reduce the num-
ber of code paths our code generator has to emit, but therefore do not leverage
the full compression potential. This issue is addressed in Chapter 5.

4.5.3. Query Performance

Query performance in hybrid OLTP and OLAP systems depends on two fac-
tors: Snapshot performance and query execution time. Compression and the
usage of huge pages for frozen chunks improve snapshot performance. Query
execution time can benefit from huge pages and compression, too.

Run-Length Encoding

In Section 4.4, we described the layout of a RLE vector that uses positions in-
stead of run-lengths. We did so to bridge the gap between scan-based OLAP
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Figure 4.10.: Comparison of RLE schemes

accesses and occasional point-wise OLTP accesses. Figure 4.10 shows the exe-
cution time of a scan query that aggregates the relation and a point query per-
forming random lookups. The relation contains 1 billion decimal values with a
run-length of 10 stored in chunks of size n = 216. The position-based encoding
is hardly slower than the regular run-length encoding.

The benefits of this trade-off in scan performance are more efficient point-
accesses: The position-based RLE’s O(log(n)) point-access algorithm is prefer-
able to the regular RLE’s O(n) algorithm as it results in more than five times
better performance. While the cost of point access can be reduced by splitting a
chunk into multiple (logical) parts, we believe the position-based RLE scheme
is superior to regular RLE.

Prefix Scan Performance

To compare SanssouciDB’s ordered dictionary with our unordered dictionary
and the secondary index, we measured the performance of a prefix scan query
performing an aggregation and modified the prefix to obtain different selectiv-
ities (e.g., WHERE lastName LIKE ’A%’ selects 3.7% of the tuples). The relation
contains 100 million tuples and the lastName attribute is populated with data
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Figure 4.11.: Comparison of range scan algorithms with different prefixes (J, A,
B and S).

from the US census dataset. Figure 4.11 shows the performance of different
prefix scan algorithms.

The baseline for the experiment is a scan of an uncompressed relation. The
unordered dictionary algorithm first scans the dictionary and collects matches
into a bitmap. Then the relation is scanned and each dictionary key is probed
into the bitmap. The ordered dictionary first performs a binary search in the
dictionary. The result is a range of matching keys. Then the relation is scanned
and each dictionary key is tested for inclusion in the range. As dictionaries are
typically significantly smaller than their associated relations, the second phase
usually dominates the first. On our Intel Xeon E7-4870 server, the bitmap of the
dictionary filled with US last names fits completely in the L1 cache.

This experiment suggests that employing a single ordered dictionary (per
attribute) does not pay off: The performance advantage over an unordered dic-
tionary is too small to justify the extremely high maintenance costs that result
from the necessity to re-encode the compressed attribute.
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We compare these algorithms with a lookup in our secondary B+ tree in-
dex (cf. Section 4.4.2). This “indirect” index does not store the values of the
indexed attribute, but only the TIDs referencing the dictionary keys of these
values. Figure 4.11 shows that for selectivities under 10%, the direct lookup in
the secondary index outperforms the ordered dictionary.

4.6. Conclusion

We have discussed different optimizations commonly found in analytic data-
base systems in this chapter. We have demonstrated that using columnar stor-
age instead of row-based storage can significantly improve the performance of
OLAP queries. While it does have a negative impact on transactional perfor-
mance, the effect is weaker than for analytical workloads. We believe the results
obtained with HyPer show the impact of the storage layout more precisely than
related work as the query compilation approach is free from implementation-
specific overhead found in other systems. A compromise between OLTP and
OLAP performance could be to choose the layout per relation or even to pick
a hybrid row/column layout to retain most of the transactional performance
while improving OLAP performance. In particular if the workload is known
in advance, the optimal trade-off between OLTP and OLAP performance can
be determined using an analytic model. In the general case, we believe it is
more robust to exploit the hot/cold clustering by choosing a row-store for the
working set and a column-store for the rest. The next chapter pursues this idea.

Physical page properties can affect the system performance as well. Huge
pages lead to smaller page tables and can increase scan performance. Shared
pages can further shrink the time required to fork a new snapshot, but only
guarantee correct semantics if the shared part of the database is immutable.

Finally, we have presented our approach for the integration of compression.
Our integration of dictionary compression avoids the pathological cases of
SanssouciDB’s ordered dictionaries and can achieve the same compression rate
and similar performance. To speed up selective queries, we have presented a
secondary tree index that can outperform a table scan with an ordered dictio-
nary and has a reduced memory footprint. Our RLE encoding scheme allows
for fast scans and reasonable performance for occasional point accesses.

The next chapter addresses the limitations of our approach of integrating
compression. More compression schemes need to be supported to shrink the
memory footprint further and improve query processing performance. The
challenge is to integrate these additional compression types efficiently with-
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out significantly increasing the amount of generated code and the engineer-
ing complexity. Moreover, it should be possible to evict a subset of the frozen
chunks do disk if memory is getting scarce. Dictionary and secondary index,
however, couple different frozen chunks together.
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Data Blocks

CHAPTER 5

5.1. Introduction

Chapters 3 and 4 have outlined how hot/cold clustering can be leveraged to in-
tegrate compression techniques into a hybrid in-memory OLTP an OLAP sys-
tem. In this chapter we will discuss issues of the previous approach and how
it can be refined to support more efficient processing as well as evicting cold
data to secondary storage, like hard disk drives and solid state drives.

Section 4.4 describes how compression techniques can be employed in frozen
chunks to reduce the memory consumption, facilitate efficient query process-
ing and still allow for point accesses with reasonable cost. Choosing the com-
pression method for an attribute by its type, however, cannot leverage the full
potential of compression as it does not incorporate the distribution of values.
Thus, multiple compression schemes should be available for the same attribute
so that the optimal method can be picked for each vector’s data. Combinations
of compression methods may also be useful, e.g., dictionary encoding with bit-
width reduction on the dictionary keys. We allow this in the Data Block ap-
proach presented in this chapter. The idea is depicted in Figure 5.1: The cold
chunks are frozen into Data Blocks. Depending on the data in the current vec-
tor, the optimal compression method is selected and a Data Block is created. In
this example different compression methods are used for attributes A and C in
the two chunks.

The second distinctive feature of Data Blocks are their lightweight positional
indexes that restrict scans to those areas of a Data Block that contain potential
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Figure 5.1.: Data Block layout

Figure 5.2.: Data Blocks positional indexes. The scan of attribute B is restricted
by the predicates on A and C.

matches. Their functionality is sketched in Figure 5.2 and discussed in detail
in Section 5.4.

The variety of physical representations of attributes in Data Blocks improves
the compression ratio, but constitutes a challenge for HyPer’s tuple-at-a-time
code generation approach: Different physical representation and extraction
routines require either the generation of multiple code paths or to accept run-
time overhead incurred by branches for each tuple. This problem can be ob-
served in the following example.

Listing 5.1 shows generated pseudo-code for an example query that scans
three attributes. All chunks are compressed and use the same compression
scheme in this example. Hence, there is only a single physical representation
for each attribute and the scan code is both simple and performant.

In order to perform the same scan over different physical representations
depending on the chunk and attribute, the DBMS must either employ a gener-
alized scan (cf. Listing 5.2) or a specialized scan for each possible combination
of physical representations (cf. Listing 5.3).
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1 // Iterate over chunks of a relation
2 for (const Chunk& c:chunks) {
3 auto a0Iter=getCompressedIter(c,AttrId(0));
4 auto a1Iter=getCompressedIter(c,AttrId(1));
5 auto a2Iter=getCompressedIter(c,AttrId(2));
6 // Iterate over the tuples of this chunk
7 for (TID tid=c.first;tid!=c.limit;++tid,++a0Iter,++a1Iter,++a2Iter) {
8 auto a0=*a0Iter;
9 auto a1=*a1Iter;

10 auto a2=*a2Iter;
11 // check restrictions and push a0,a1,a2 into parent operator
12 }
13 }

Listing 5.1: Simplified example scan of Relation R(A0, A1, A2)

Listing 5.2 shows the generalized scan approach in which the physical repre-
sentation of an attribute may differ from chunk to chunk. In this example, only
two different physical representations exist: compressed and uncompressed.
To leverage the full potential of compression, each vector should be compressed
using the compression method best suited for the data in this vector. Therefore,
we strive to support multiple different encodings.

Lines 15–17 in the example show the pitfall of the generalized scan approach:
A conditional branch is required to decide whether the next value should be
read from an uncompressed vector or a compressed vector. For the general case
with p different physical representations a single branch is not enough, but a
jump table is necessary. Note that branches in the example are required for each
attribute and each tuple, i.e., the branches are in the innermost loop. Since the
result of the branches is the same within one chunk, the branch predictor will
correctly anticipate the result of the branch. Yet, it is desirable to remove excess
instructions from this hot loop. We found that both scans produce a small num-
ber of branch misses, but the generalized scan can be significantly slower. For
a scan-intensive single-relation query which aggregates ten attributes stored in
five different physical representations, the generalized scan was almost a factor
three slower.

Using specialized scans, however, requires the compilation system to gen-
erate a code path for each combination of physical representations. Listing 5.3
sketches the generated pseudo-code for this case for the example with three
attributes and two physical representations (compressed and uncompressed).

The number of cases grows exponentially with the number of attributes n.
In the example, the number of attributes is n = 3, resulting in 23 = 8 differ-
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1 // Iterate over chunks of a relation
2 for (const Chunk& c:chunks) {
3 // Get iterators for uncompressed representation
4 auto a0_u=getUncompressedIter(c,AttrId(0));
5 auto a1_u=getUncompressedIter(c,AttrId(1));
6 auto a2_u=getUncompressedIter(c,AttrId(2));
7 // Get iterators for compressed representation
8 auto a0_c=getCompressedIter(c,AttrId(0));
9 auto a1_c=getCompressedIter(c,AttrId(1));

10 auto a2_c=getCompressedIter(c,AttrId(2));
11 // Variables for uncompressed values
12 A0 a0; A1 a1; A2 a2;
13 // Iterate over the tuples of this chunk
14 for (TID tid=c.first;tid!=c.limit;++tid) {
15 if (isCompr(c,AttrId(0))) a0=*a0_c++; else a0=*a0_u++;
16 if (isCompr(c,AttrId(1))) a1=*a1_c++; else a1=*a1_u++;
17 if (isCompr(c,AttrId(2))) a2=*a2_c++; else a2=*a2_u++;
18 // check restrictions and push a0,a1,a2 into parent operator
19 }
20 }

Listing 5.2: Simplified example scan (generalized).
Note that either the compressed-representation iterator or the
uncompressed-representation iterator are invalid.

ent code paths, one for each combination of physical representations. If each
attribute may be represented in p different ways, the resulting number of code
paths is pn. In many cases only a small number of combinations will actually
occur in a relation and if the relation keeps track of all existing combinations,
the number of code paths to be generated is limited. However, less favorable
situations require to either limit the number of combinations (sacrificing com-
pression potential and thus space consumption and scan performance), use the
generalized scan (sacrificing scan performance) or generate all occurring code
paths (sacrificing code size and compilation time) if possible at all.

A second deficiency of the previous approach is the inability to evict frozen
chunks from main-memory to disk in order to reduce the memory consump-
tion of the database further. This results from the fact that the vectors are
not self-contained as dictionary values are stored outside of the chunk. While
HyPer is an in-memory system and attempts to keep all data in main-memory,
the ability to evict parts of the database to disk can extend its use. Conse-
quently, where trade-offs between in-memory performance and disk-based
performance are required in the design, we favor the further.

88



5.1. Introduction

1 // Iterate over chunks of a relation
2 for (const Chunk& c:chunks) {
3 // Determine combination of representations
4 // for current chunk
5 uint64_t comb=0;
6 for (auto attrId : {0,1,2})
7 comb|=isCompr(c,attrId)<<attrId;
8

9 // Switch over all 2^3 combinations
10 switch(comb) {
11 // ...
12 case 4: { // 0 and 1 uncompressed, 2 compressed
13 auto a0=getUncompressedIter(c,AttrId(0));
14 auto a1=getUncompressedIter(c,AttrId(1));
15 auto a2=getCompressedIter(c,AttrId(2));
16 for (TID tid=c.first;tid!=c.limit;++tid)
17 // check restrictions & push *a0,*a1,*a2 into parent
18 break;
19 }
20 // ...
21 case 6: { // 0 uncompressed, 1 and 2 compressed
22 auto a0=getUncompressedIter(c,AttrId(0));
23 auto a1=getCompressedIter(c,AttrId(1));
24 auto a2=getCompressedIter(c,AttrId(2));
25 for (TID tid=c.first;tid!=c.limit;++tid)
26 // check restrictions & push *a0,*a1,*a2 into parent
27 }
28 // ...
29 }
30 }

Listing 5.3: Simplified example scan (specialized)

We introduce Data Blocks, a self-contained, compressed, frozen representa-
tion of relational data that is suitable for both in-memory and disk-based pro-
cessing. Data Blocks are designed to support the efficient evaluation of scan
restrictions on the compressed representation. We refer to predicates that can
be applied inside the Data Block scan as SARGable predicates [97].

While the presented approach attempts to shrink the storage size of data, it
does not go as far as heavy-weight compression schemes [93, 111] in order to
allow for efficient query processing. In addition, fast extractions of individual
tuples should be possible as occasionally required by OLTP-style point accesses
to frozen data.

Another design choice is to minimize the additional system complexity in-
duced by the integration of Data Blocks. In our implementation, Data Blocks in-
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Restriction Types

False
Equal
Is
Less
Less or equal
Greater
Greater or equal
Inclusive between
Exclusive between
Left inclusive, right exclusive between
Left exclusive, right inclusive between

Table 5.1.: Supported Restrictions

troduce vectorized processing into HyPer’s tuple-at-a-time processing model,
but this only requires modest changes to the code generation engine.

A single Data Block can store multiple attributes. To leverage their full po-
tential, we propose to always pack all attributes into a Data Block, i.e., entire
chunks instead of only a subset of a chunk’s vectors. While this may sometimes
give away the opportunity to freeze data, because not all attributes of the chunk
are cold yet, it simplifies code complexity and allows to efficiently process scans
with restrictions as described in Section 5.5.

In addition to the data itself, Data Blocks contain Small Materialized Aggre-
gates (SMAs) [76] that include a minimum and a maximum value and an ad-
ditional positional index structure. The following section describes how these
can be leveraged to find matching tuples in a scan with one or multiple restric-
tions. Table 5.1 lists those types of restrictions that can be evaluated during a
Data Block scan.

5.2. Related Work

The work most closely related to Data Blocks is the compression feature of Mon-
etDB/X100 [116] (which appears to be integrated into Vectorwise as well) and
SAP Business Warehouse Accelerator [113].

The compression scheme of MonetDB/X100 is built on the idea to decom-
press chunks of the data into the CPU cache and to process the decompressed
data while it is cached. Additionally, the authors propose new compression
algorithms of which Data Blocks use slightly modified versions.
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Despite these similarities, Data Blocks differ in various points from compres-
sion in MonetDB/X100. Data Blocks can compress attributes of all types. They
are self-contained, meaning that evicting one Data Block from main-memory
removes all data related to this chunk (including the dictionary), but no data
from other Data Blocks. As transactions may access individual tuples, random
accesses are fast and do not require to scan part of the data. We always choose
the optimal compression scheme when compressing a Data Block and thus do
not need exception values. The biggest difference of our approach, however,
is that it is designed to efficiently evaluate scan predicates (or SARGable predi-
cates [97]) on the compressed format.

SAP Business Warehouse Accelerator can apply scan predicates efficiently on
the compressed representation. Unlike the approach presented here, however,
it is not optimized for point-accesses and selective scans. Data Blocks, on the
other hand, allow to efficiently extract individual tuples (e.g. in point-queries
and index nested-loop joins) and to exclude those parts of a Data Block from a
scan that cannot contain matching tuples.

Data Blocks can store the data of multiple attributes in a single Data Block.
Each attribute is stored in a columnar format. The PAX [4] storage model (Parti-
tion Attributes Across) introduces this combination in the context of disk-based
database systems to improve their cache utilization, but does not discuss effi-
cient scans over compressed data.

Parquet [6] is a columnar storage format for the Hadoop ecosystem. It fea-
tures compression and storage of nested data structures, but is rather optimized
for interchangeability than for high performance.

Oracle Database [89] uses block-wise compression and employs dictionaries
to compress historic, immutable data in data warehouses, but uses fewer com-
pression schemes and is not designed for efficient processing on modern CPUs.
More general related work for compression is presented in Chapter 4.

Raman et al. [93, 51] propose a compression scheme with the goal to com-
press relations “close to their entropy” while retaining good query processing
speed. The primary differences from our approach are the preference of com-
pression ratio over processing speed, the explicit focus on row-stores and the
use of sorted projections derived from an analysis of the query workload. C-
Store [101] also uses multiple sorted projections per relation and join indexes.
Therefore, the reduction of the storage space savings achieved by compression
dwindle away and adding new data to the compressed store becomes costly.

A comparison [98] between compiled query plans and vectorized execution
based on microbenchmarks shows that both models have advantages. The au-
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thors do not discuss the integration of both strategies, but suggest that com-
binations are necessary for optimal performance. They highlight that runtime
adaptivity, branch mispredictions and parallel memory accesses are particu-
lar strengths of vectorized execution. We present an architecture that allows
to leverage these advantages by integrating vectorization with compiled query
plans.

5.3. Architecture

Before we describe the Data Block internals, we demonstrate how Data Blocks
are integrated into HyPer’s high-performance query engine. When scanning
Data Blocks, we deviate from HyPer’s signature tuple-at-a-time code genera-
tion approach to overcome the problems resulting from the multitude of phys-
ical representations and leverage vectorized execution.

When scanning a relation, HyPer checks for each chunk of the relation wheth-
er the “temperature” indicates that it is stored in a Data Block or not. For non-
frozen chunks, HyPer loads a tuple at a time, checks any restrictions of the scan
operator and then executes the code of the other operators in the pipeline until
it is materialized in a pipeline breaker. Then, the chunk’s next tuple will be
processed.

Chunks that are frozen and thus stored as a Data Block are processed dif-
ferently: They are processed block-wise and leverage vectorized processing.
Column-at-a-time [11] and vectorized [13] query processors avoid the inter-
pretation overhead of Volcano-style [41] tuple-at-a-time processing and allows
modern CPUs to exploit data-level parallelism.

First, matching tuples are searched within the block, then all matches are un-
packed into temporary storage. The target storage format of the unpacking op-
eration is HyPer’s “regular” representation, i.e., the same representation that is
used for non-frozen attributes. The extracted tuples stashed in temporary stor-
age are then processed using HyPer’s regular tuple-at-a-time approach. Fig-
ure 5.3 shows an example containing Data Block processing and regular pro-
cessing.

This architecture allows to integrate vectorized processing which is capable
of handling multiple physical representations efficiently, into HyPer’s tuple-at-
a-time approach. Section 5.7 demonstrates the performance advantage Data
Blocks can entail.

92



5.3. Architecture

Figure 5.3.: Integration of Data Blocks using the example of a hash-join R S.
The build side shows how matching parts of the required attributes
(A, B and C) are extracted from a Data Block into temporary stor-
age using vector processing. Then, each tuple from the temporary
storage area is processed tuple-at-a-time. The probe side shows reg-
ular tuple-at-a-time processing (after the hash table is built) of an
uncompressed row-store.

5.3.1. Storing Data Blocks

Data Blocks are stored using HyPer’s Object Store, the same mechanism used for
all other data including indexes, relations and schema information. The Object
Store is a key-value store that efficiently maps 128 bit keys to arbitrarily large
BLOBs. Like the Data Block, the Object Store data structures are suitable for
disk storage. Thus, both the Object Store itself and the BLOBs it stores (e.g.,
Data Blocks) can be mapped into memory.

The Object Store plays an integral part in HyPer’s ACID strategy. It forces
committed data to disk, keeps changes hidden until they are committed and
it ensures recoverability. The Object Store is designed to efficiently locate and
read BLOBs and is thus the optimal basis for Data Blocks. It is important to
highlight that the term “commit” in this context does not mean that Data Blocks
or the Object Store are used whenever individual transactions commit. Rather,
these two components are used for cold data or to persist the dataset when the
DBMS is shutting down.

Mapped Data Blocks are not pinned into memory using the mlock system call
like regular allocations for indexes and relations in HyPer. As they are frozen,
access monitoring is not required and our Access Observer does not repurpose
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the young and dirty bits in the associated page table entries. Thus, Data Block
pages may be evicted from memory by the operating system if memory is get-
ting low. This allows the database to grow beyond the size of the physical
memory.

Data Blocks do not contain invalidation markers, but these are stored outside
(since they are mutable) and passed into the Data Block scan. If less than 50%
of a Data Block’s tuples are valid, it is merged during a reorganization phase
with another underfilled block.

5.3.2. Loading Data Blocks

HyPer’s parallel query execution engine is able to efficiently work on large-scale
servers that have non-uniform memory access (NUMA) [70]. For maximum
performance, HyPer partitions relations, e.g., by primary key, and stores the
partitions round-robin on the system’s NUMA nodes.

When accessing a part of the database that has been evicted from main-
memory, Data Blocks are brought into memory on demand, i.e., upon first ac-
cess. If a table scan requests a Data Block from the Object Store, it returns a
pointer into the mmaped database file to the scan. For pages storing a Data Block
that are currently not residing in memory, an access triggers a page fault and
will allocate a page on the faulting thread’s NUMA node. Since the scheduler
attempts to assign NUMA-local “morsels” (chunks of data) to worker threads,
this process will automatically re-create the original distribution of partitions
to NUMA nodes. Those (few) pages that have been misplaced (due to work-
stealing, cf. [70]) can be migrated to their designated node periodically. Mis-
placed pages can efficiently be found via libnuma which can determine the as-
sociated node of one million pages in less than half a second.

We do not focus on disk-based processing in this chapter, but on efficient in-
memory processing of Data Blocks which are designed to support spilling to
disk. If a significant number of Data Blocks reside on disk, the system should
be extended to improve query processing performance. A memory-resident
“meta SMA” of all Data Blocks that is stored outside of the Data Blocks, should
be implemented as it allows to skip loading some blocks from disk. Prefaulting
disk-based Data Blocks that are required for a scan can further improve scan
performance. Such techniques are future work and are not discussed here.
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5.4. Data Block Storage Layout

Data Blocks are self-contained units that store one or more attribute vectors
in a compressed format. They are flat structures without pointers and are thus
suitable for disk-based storage. They contain all the data required to reconstruct
the attribute vectors and some lightweight index structures, but no metadata
such as schema information (which can be found in the main database file).

The first value in a Data Block is the number of tuples it contains. The tuple
count is a 32 bit integer, thus up to 232 tuples can be stored in a single Data
Block. However, in typical configurations the number of tuples in a Data Block
is much smaller, e.g., 216 or 217. The tuple count is followed by a sequence
of integers. The sequence contains five numbers per attribute: The offset into
the Data Block where the attribute’s SMA, dictionary, compressed data vector
and additional string data begins as well as information about the compression
method encoded into the last number. This sequence is followed by the actual
data, the offsets “point” to if such data exists. For example, if no dictionary
compression is used, the dictionary offset and the compressed data vector offset
are equal. If the attribute is of integer type, it has no additional string data.
Figure 5.4 shows an example layout of a Data Block in which attribute 0 is a
dictionary-compressed string attribute.

Since Data Blocks store data in a column-store layout, but can store all at-
tributes of a tuple in the same block, they resemble the PAX [4] storage format
in this regard. When combining a chunked row-store for hot data with the
columnar representation of Data Blocks for frozen data, both OLTP and OLAP
operate (most of the time) on their preferred layout.

An SMA consists of the minimum and maximum value of the attribute vector
and a lightweight positional index that helps to narrow the scan range for scans
with restrictions. We call this novel index the Lookup Table. As depicted in
Figure 5.5, the Lookup Table maps values to ranges in which these values may
occur. The colored arrows indicate the range that has to be scanned for each
entry in the Lookup Table data structure. For multiple restrictions, only the
intersection of these ranges has to be scanned as Figure 5.2 shows.

For fixed size data types with B bytes, the Lookup Table contains B · 28 en-
tries. Each entry holds an offset range that indicates the part of the compressed
vector that needs to be scanned to find matching values in the presence of a
predicate. When looking for values equal to v, the associated range points to the
first and one past the last element in the data vector where the most-significant
non-zero byte equals the most-significant non-zero byte of v. This design is
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Figure 5.4.: Example layout of a Data Block storing n attributes. The entries
referring to attribute 0 are highlighted in blue.

both very compact and very efficient in shrinking the search range if the data
exhibits appropriate potential. In order to improve the pruning power of the
Lookup Table, we do not use the value v itself, but its distance v∆ to the SMA’s
minimum value.

Table 5.2 contains information about a Lookup Table for a four byte type. It
contains 4 ·28 = 1024 entries. Each entry is a range of offsets into the associated
data vector of the Data Block. The range indicates which area a scan has to
cover when looking for a certain value. To keep the index concise, information
about multiple values can be stored in a single entry. If n values are mapped
to the same entry x and [b0, e0), . . . , [bn−1, en−1) are the ranges associated with
these n values, then the entry x stores the range

range[x] =
[

n−1
min
i=0

bi,
n−1max
i=0

ei

)
.
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Figure 5.5.: The Lookup Table maps values to ranges in which these value can
occur.

In Table 5.2, the first column contains the index x of an entry. The second col-
umn contains the v∆ values which are mapped to this entry, the third column
the number of these values and the last column the index of the most signifi-
cant non-zero byte of these values. I.e., entry number 256 contains the range
information of 28 different v∆ values. These values are equal in the three most
significant bytes: byte 3 and byte 2 are zero and byte 1 has the value 1. The
least significant byte, byte 0, can assume any of the possible 28 values a byte
can represent. Thus, all values whose range information can be found in entry
number 256 are in the interval [1 · 28, 2 · 28).

The number of v∆ values whose range information can be stored in the same
Lookup Table entry increases with v∆ from 1 for values fitting into a single byte,
over 28 for values fitting into two byte, 216 for entries fitting into three byte to
224 for large values that require the full four bytes.

The Lookup Table stores a range of positions for each entry, i.e., two 32 bit
integers. In this example the Lookup Table requires (4 · 28) · (4 + 4) byte, just
1/64 of the size of the original column when we assume a Data Block size of
217. Hence, it is significantly smaller than a hash or tree index and lookups are
considerably faster.

Since it only limits the range that is scanned and generates the same access
path as a full scan, the Lookup Table is also more robust than traditional index
lookups and does not incur a performance penalty in cases when the range
of potentially qualifying values is very large (or equals the entire vector). Its
precision depends on both the domain of the values as well as their order in
the vector. It works particularly well for values where v∆ is small as fewer v∆

values share one Lookup Table entry. Furthermore, range pruning is efficient
for orders where similar values are physically clustered so that values which

97



5. Data Blocks

Entry No v∆ Value Interval Values/Entry Relevant Byte

0 [0, 1) 1 0
1 [1, 2) 1 0
...

...
...

...
255 [255, 256) 1 0

256 [1 · 28, 2 · 28) 28 1
...

...
...

...
511 [255 · 28, 256 · 28) 28 1

512 [1 · 216, 2 · 216) 216 2
...

...
...

...
767 [255 · 216, 256 · 216) 216 2

768 [1 · 224, 2 · 224) 224 3
...

...
...

...
1023 [255 · 224, 256 · 224) 224 3

Table 5.2.: Lookup table data structure for 4 byte types

share an entry have similar ranges. In the best case, the Lookup Table can turn
a restricted scan of an entire Data Block with, e.g., 217 tuples, into a single point
access.

We have found the compression schemes listed in Table 5.3 to be both useful
and suitable (in terms of integration, cf. Section 5.5) for our approach. For each
attribute vector a compression scheme is chosen that is optimal with regard to
the resulting memory consumption and data is only stored uncompressed in
the rare case that no compression scheme is beneficial. All other compression
schemes exist in two versions: for attribute vectors that contain null values
and for those that do not. Note that the version is chosen based on the actual
presence of null values in the current attribute vector, not just the attribute
type. Single value compression, a special case of run-length encoding, is used
if all values in a vector are equal. This includes the case where all values are
null.

Dictionary compression was already discussed in Section 4.4, but the variant
used in Data Blocks differs from the previously described scheme in multi-
ple regards. This results from the fact that the Data Block dictionary does not
need to be capable of handling insertions of new dictionary values (or updates)
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Name Properties

Uncompressed
Single Value Supports null values
Ordered Dictionary Supports null values and 1, 2 or 4 byte keys
Truncation Supports null values and 1, 2 or 4 byte target types

Table 5.3.: Supported Data Block Compression Schemes

because it is only associated with a single (immutable) attribute vector which
is known entirely when the Data Block is created. This property allows to use
order-preserving dictionary compression, a scheme that is too expensive to use
for a growing dictionary. Thus, if k < k′ is true for two dictionary keys k and
k′, then the same holds for their dictionary values dk < dk′ . Dictionaries also
do not need reference counters and free space management. Finally, the bit-
width of the key type can be chosen optimally, i.e., the key type can be an 8, 16
or 32 bit unsigned integer, depending on the number of distinct values in the
attribute vector (potentially including null).

The truncation compression scheme (originally introduced as “Frame of Ref-
erence” compression [38]) reduces the memory consumption by computing
the difference between each value and the vector’s minimum value: Let A =
(a0, . . . , am) denote the uncompressed vector and min(A) be the smallest el-
ement in A, then A∆ = (a0 − min(A), . . . , am − min(A)) is the compressed
vector. Afterwards, truncation picks an optimal bit-width for the compressed
type from 8, 16 and 32 bit unsigned integer types, so that the chosen type is the
smallest that can store max(A∆). Note that truncation is not used for strings
and double types. An exception is the string type char(1) which is always rep-
resented as a 32 bit integer (so that it can store an arbitrary UTF-8 character).

Figure 5.12 (page 114) shows the memory consumption of a TPC-H database
with scale factor 10 and compares the compressed representation with the un-
compressed. Even for this randomly generated dataset, Data Blocks achieve a
compression ratio of 50%.

In Chapter 4, we present a different compression scheme for cold data. It
uses a single unordered dictionary for each attribute and code generation while
Data Blocks use multiple ordered dictionaries and vectorized processing. This
implies that the dictionary size is smaller than the sum of the dictionary sizes
of the Data Block approach. For the l_comment attribute, the single dictionary
is only 2/3 of the size of the dictionaries when using Data Blocks of size 216 on a
TPC-H scale factor 10 Lineitem relation. However, to limit the number of code
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paths that need to be generated by the code generation approach, 8 byte keys
are used for all dictionary encoded attributes, while Data Block storage only
requires 2 byte keys. This reduces the ratio of memory consumption to 85%
for l_comment. For the other two string attributes of Lineitem, l_shipmode and
l_shipinstruct, the 8 byte keys result in almost 8 times higher memory con-
sumption than the Data Block approach requires. Additionally, Data Blocks
determine the compression method by analyzing the actual data and picking
the optimal method, whereas the code generation approach only supports a
single compression method per attribute type. This results in higher compres-
sion rates for Data Blocks.

The run-length encoding scheme presented in Chapter 4 could also be sup-
ported in Data Blocks, but was not implemented in favor of point accesses.

5.5. Finding and Unpacking Matching Tuples

To maximize performance, extracting matching tuples from a Data Block is a
multi-stage process consisting of the following steps:

1. Prepare restrictions

2. Prepare block

3. Find matches

4. Unpack matches

The process consisting of these four steps is depicted in Figure 5.6 and used
when scanning a relation that contains Data Blocks. Note that point-accesses
only require the fourth step. We describe each of these four steps in the follow-
ing sections.

5.5.1. Prepare Restrictions

The first step is to prepare the scan restrictions which is comprised of the adap-
tion of restriction value types to attribute types. This includes, e.g., the han-
dling of null-valued restrictions and detecting cases where restrictions can
never yield matches due to their type or where all tuples match because of
the type. An example of the former case are restrictions of the form x=65536
where x is of type SmallInt, cannot represent the number 65 536 and thus can-
not yield a match or x=3.1415. An example of the latter case is the restriction
x<65536 where, again, x is of type SmallInt and therefore no value can exceed
65 535. This step is executed once per table scan.
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Figure 5.6.: Scanning a relation consisting of four Data Blocks. After each un-
pack step, the rest of the pipeline is executed tuple-at-a-time (TaaT).

5.5.2. Prepare Block

The second step is the preparation for the current Data Block and is therefore
executed once per Data Block. This step yields a Scan Data object that later
drives the search for matching tuples. The Scan Data object consists of a range
of potentially qualifying tuples as well as an adapted form of the restrictions.

For each restriction, this step performs adaptations to the Scan Data’s range
as well as to the restriction itself with information that is specific to the com-
pression type and restriction mode. The goal is to create shorter, faster scans
over the current block.

The range used to find matches, is the intersection of the ranges of all restric-
tions. Each restriction can limit the range using the block’s SMA (when the
block contains no matches) and the Lookup Table described in Section 5.4.

The process of adapting the restrictions depends on both the restriction type
(see Table 5.1) and the compression scheme (see Table 5.3) used. For equal-
ity restrictions (equal or is), first the SMA is checked to determine if finding
matches can be ruled out. Then, restriction constants are converted into their
compressed representation. In case of dictionary compression, finding matches
can be ruled out if the binary search in the dictionary does not find an entry
equal to the restriction constant.

For range-based restrictions, the range is adapted as well: If the SMA indi-
cates that no matches can be found, a scan is unnecessary. If it indicates that all
values qualify, the restriction can be removed. Additionally, exclusive bounds
are converted to inclusive bounds if possible and dictionary keys are computed
and checked for cases that cannot yield matches.
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5.5.3. Find Matches

The actual search for matches (if their existence cannot be ruled out), is per-
formed in the third step. This “find matches” step and the subsequent unpack-
ing is performed once or multiple times per Data Block. In each invocation, a
part of the Data Block is processed. The rationale for splitting these steps into
multiple invocations is cache efficiency: As the same data is accessed multi-
ple times when finding matches, unpacking matches and passing them to the
consumer, processing the Data Block in cache-friendly pieces minimizes the
number of cache misses. We refer to the number of matches that are requested
from the Data Block in one iteration as the block size.

If non-trivial restrictions exist for the current block, the first non-trivial re-
striction is applied to the compressed vector. Scanning the compressed vector
with this restriction allows for SIMD processing and yields a vector of those
tuple positions that satisfy the predicate. Then, additional restrictions are ap-
plied and the vector of matching positions is further shrunk. As string types
are always compressed, the search for matches is always an efficient scan over
integers with a simple comparison (which can be implemented branch-less).

A parameter of the findMatches function is the number of matching tuples
that should be found, the blockSize. A second parameter is the position pos

from which the search should start. The function returns a vector of blockSize

matching positions or a smaller number of matching positions if and only if
the current Data Block does not have blockSize matches after position pos. The
value of pos is updated to incorporate the tuples that have been searched. The
value of blockSize should be chosen to optimally leverage the CPU cache as
discussed in Section 5.5.5.

5.5.4. Unpack Matches

Unpacking the matches first compares the number of matches with the number
of scanned tuples and distinguishes two cases: If the numbers are equal, the
scan attributes of every tuple in the range that was scanned are unpacked. If
not, we iterate over the buffer containing the positions of the matching tuples
and extract those. Thus, in both cases only matching tuples are extracted.

Point-accesses to tuples residing in Data Blocks do not require any of the
previous steps. The function call to the unpack function is made with a single
position and the Data Block retrieves and unpacks the requested data with a
point-access.
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5.5.5. Cache Optimization

This process can benefit from the CPU cache if the number of tuples that are
found and unpacked are chosen correctly. We present a model to compute the
number of tuples a Data Block scan requests at a time to leverage the cache
optimally.

The search for matches and unpacking these matches follow the vectorized
processing approach. Data Block scans therefore access the same vector multi-
ple times and can benefit from the CPU cache if the vector size is not too large. A
compressed vector may first be scanned multiple times (with different restric-
tions) when looking for matches and then again when matches are unpacked
into temporary storage. Temporary storage is then scanned again when tuples
are pushed into the parent operator (potentially through the residual filters of
the table scan).

Let R be the set of attributes with non-trivial restrictions, S be the set of at-
tributes that are being extracted and sel be the estimated selectivity. Further,
let sizec(a) and sizeu(a) denote the compressed and uncompressed size of at-
tribute a in the current block. Then, we approximate the optimal block size
using the following equation:

cacheSize = blockSize

(
α +

∑
a∈R∪S

sizec(a)
sel

+
∑
a∈S

βa · sizeu(a)
)

Where α is a constant denoting the size of an entry in the vector that holds the
position of matching tuples and βa is a compression method specific constant
that is 2 if attribute a is compressed using dictionary compression (in this Data
Block) and 1 for the other compression types.

The first summand, α, accounts for the blockSize positions that indicate
which tuples match. The second includes the size of all compressed attributes
read. Compressed attributes are read either during the scan for matches (those
in R) or when unpacking matches (those in S), or both times. The factor 1

sel

accounts for the selectivity. The more selective the query is (i.e., the smaller sel

is), the more tuples have to be processed in order to find blockSize matches.

The last summand reflects the storing of matching values in the result buffer
in the uncompressed format. In case of dictionary encoding, the value is also
read from the dictionary, therefore βa = 2 in this case. The selectivity sel is
estimated by considering the actual observed selectivity of the previous invo-
cations of the findMatches function in the Data Block scanned.
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Figure 5.7.: Different working set sizes (in KB) for finding and unpacking Data
Block tuples when processing TPC-H queries (scale factor 10).

While this cache model is not precise, e.g., it cannot incorporate the distri-
bution of the location of matches and does not consider cache associativity,
its accuracy is good in practice. Figure 5.7 shows the result of using differ-
ent working set sizes when processing Data Blocks in TPC-H. Here, the term
“working set size” refers to the cache size each thread executing a Data Block
scan assumes to be available. The optimal performance can be achieved for
values between the L1 and L2 cache size. Smaller working set sizes suffer from
the overhead of calling the findMatches and unpackMatches functions, while
configurations with bigger sizes that extend into L3 do not result in better per-
formance.

The intensity of the effect naturally varies with the query: Query Q6 performs
very selective filtering inside the Data Block, hence the impact of the work-
ing set size on performance is minimal. Query Q9 on the other hand has no
SARGable predicates, but a residual predicate (p_name like ’%green%’) that
is evaluated after unpacking. Therefore, it benefits noticeably from caching.

5.5.6. Evaluation

Figure 5.8 shows a comparison of TPC-H scale factor 100 results obtained with
Data Block-based storage and a HyPer version without Data Blocks. We use a
server with 1 TB memory and 60 E7-4870 cores. Data Blocks can improve the
geometric mean by 18.5%. The strongest performance gain can be observed at
query Q6 which performs no joins, but scans the Lineitem relation. The three re-
stricted attributes quantity, discount and extendedprice are compressed down
to 15%, 15% and 53% of their original size and all predicates are SARGable
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Figure 5.8.: TPC-H comparison between Data Blocks and vanilla HyPer.

(turning two comparisons into one for range predicates). As the predicates are
very selective (only 2% of the tuples qualify), this query benefits substantially
from the use of Data Block.

Similar to Q6, Q1 also aggregates Lineitem and performs no joins. The query
has an unselective SARGable predicate and five of the six attributes used in
the aggregation and grouping are compressed down to a single byte per com-
pressed key. This results in a more than 50% faster execution time when using
Data Blocks.

While the benefit of Data Blocks shows most clearly in the two queries with-
out joins, because Data Blocks only affect table scans at this point (cf. Sec-
tion 5.6), others improve their performance as well, albeit the effect is diluted by
other operators. Queries Q9 and Q13 on the other hand are slower than vanilla
HyPer. This results from selective like predicates that are not SARGable and
hence necessitate unpacking the entire compressed vectors of the required at-
tributes from the relation Part and Orders, respectively. These attributes only
have modest compression rates and consequently the extra work of unpacking
does not pay off. Overall, however, Data Blocks improve the geometric mean
of TPC-H by 18.5% and reduce the memory footprint. The following section
describes how we can improve the performance even more.

105



5. Data Blocks

5.6. Early Probing

We have presented how various types of restrictions can be processed within
the Data Block in a vectorized fashion. We can derive additional benefits from
vectorized processing by considering other operators in the pipeline of a Data
Block’s scan.

Semi-join reducers are a technique originally developed to limit the number
of tuples sent over the network in distributed query processing (see [99] for an
overview). We employ a similar method to

1. reduce the amount of data that has to be extracted from a Data Block, and

2. mitigate the cost of cache misses incurred by hash table probes.

If a table scan’s parent operator in the same pipeline contains a hash table,
this hash table can be “early”-probed when searching for matches in the Data
Block. Such hash tables can be found in hash join and group join operators
(cf. [77]). Early probing these hash tables can be beneficial in multiple ways.
First, if the join is selective and multiple attributes have to be extracted from
the Data Block, data is extracted and immediately discarded afterwards by the
join. These wasteful extractions can be avoided when the join’s selective hash
table is early probed first.

Figure 5.9 shows HyPer’s query plan for TPC-H query 8 which contains an
example of such a join. Without our early probing optimization, the query
extracts five attributes of all tuples from Lineitem, but eliminates over 99% of
the tuples in the selective hash join with Part which is scanned with the predi-
cate p_type = ’ECONOMY ANODIZED STEEL’. This extraction overhead can be re-
duced by only extracting the single attribute required for the hash table probe
(l_partkey) and performing an early probe in Part’s hash table.

Early probes are executed within the Data Block after the vector of qualifying
positions is created by applying the scan’s restrictions (see Section 5.5) as de-
picted in Figure 5.10. The join attributes of the matching positions are extracted
and hashed. Then, early probing is performed to filter out tuples that would
be eliminated by the join. To allow for efficient probing in selective hash tables
Vectorwise uses Bloom filters [91]. Leis et al. [70] propose to embed tiny filters
in the pointer to the hash table’s bucket list. This “pointer tagging” is possible
as the x86_64 architecture only uses 48 of the 64 bits in a pointer [14]. Similar
to a Bloom filter, checking these filters can indicate that traversing the chain of
hash table buckets will not yield a match. When performing early probing in
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Figure 5.9.: TPC-H Q8 plan with the selective join Part Lineitem

the Data Block, we check only these filters to eliminate candidates. By doing
so, occasional false positives may occur but no false negatives.

The second advantage of early probing a hash table is to mitigate the cost of
cache misses. When a hash join is probing its hash table which does not fit into
the CPU’s cache, cache misses are likely to occur. These can stall the CPU’s ex-
ecution pipeline. However, modern CPUs can perform out-of-order execution
and leverage several load buffers. Designing query engines to leverage these is
worthwhile, in particular as the number of load buffers is constantly increas-
ing. Intel’s Haswell microarchitecture features 72 load buffers, eight more than
its predecessor, the Sandy Bridge microarchitecture [55].

In order to utilize these CPU features, a suitable code structure is required.
Modern CPUs can perform out-of-order execution to hide the latency of (mul-
tiple) outstanding cache misses only if there are data-independent instructions
following the stalled instruction [49]. A particularly beneficial form of this
instruction-level parallelism is loop-level parallelism, where the individual iter-
ations of a loop have no data-dependencies and can thus be executed overlap-
pingly.
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Figure 5.10.: Early probing within Data Blocks. The tagged pointers are
checked to filter out tuples (cf. [70]).

select max(ps_supplycost)
from lineitem,partsupp
where l_partkey=ps_partkey
and l_suppkey=ps_suppkey

Listing 5.4: Join between Partsupp and Lineitem

In query processing this favorable CPU behavior can be facilitated through
column-at-a-time [11] or vectorized execution [13]. HyPer’s tuple-at-a-time
processing model in contrast is optimized to keep values as long as possible
in the CPU registers and to push the tuple through all operators of the query
pipeline before proceeding with the next tuple (cf. [81]). Thus, there may be
cases where the execution is stalled because the next eligible, independent in-
struction is too far ahead in the pipeline for the CPU to execute it out-of-order
and thus hide the cost of the cache miss. Probing a hash table within the vec-
torized Data Block scan can thus have the additional benefit of pulling cache
misses from the compiled, tuple-at-a-time code to the vectorized code that fa-
cilitates out-of-order execution.

The join Partsupp Lineitem is a good example for a join that benefits from
preponing cache misses. Unlike Orders Lineitem, the join with Partsupp does
not benefit from any clustering, i.e., probing n subsequent Lineitem tuples into
the hash table is very likely to produce n cache misses. Preponing cache misses
from the generated hash join probe into the vectorized Data Block early probe,
can improve performance significantly. The speedup of the query in Listing 5.4
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is 18%. Since this foreign key join does not filter out any tuples, the effect solely
results from preponed cache misses.

To avoid the cost of unnecessarily unpacking attributes, checking only the fil-
ter residing in the tagged hash table entry pointer turns out to constitute a good
trade-off between precision and effort. But to leverage out-of-order execution
in the CPU, on the other hand, preponing more cache misses may reduce the
overall execution time.

Since the Data Block scan already determines (and loads) the pointers to the
hash table (blue pointers in Figure 5.10) to access the filter tag, the first hash
chain entry pointer (orange pointers in Figure 5.10) which is loaded together
with the tag, can be passed to the hash join’s probe code. Thus, during the
actual probe no offset computation into the hash table needs to be performed,
but the traversal of the hash chain can begin.

If an early probe was successful, it can be beneficial to perform a second (vec-
torized) pass over this array of hash chain entry pointers and issue a prefetch
instruction so that the first hash table entry (orange rectangle in Figure 5.10) is
already cache-resident when it is needed for the actual hash table probe per-
formed by the join operator.

Finally, instead of only prefetching the first entry, we can actually load them
in the second, vectorized pass. We found that traversing the hash chain further
than the first entry (if the first entry is not a match) within the Data Block scan
does not improve performance. Thus, in total, there are four possible imple-
mentations:

NoEP Not early probing the hash table

EP Early probing by checking the filter that is embedded in the hash table

EPP Early probing, checking the filter and prefetching the first entry in the
chaining list

EPL Early probing, checking the filter and loading the first entry in the chaining
list

We found that early probing a hash table can substantially improve query
runtime. Most joins in TPC-H benefit from one of the variants of early probing.
Query Q5 gains the most performance of all TPC-H queries with a speedup of
more than 35%.

For each flavor of early probing, however, examples can be found where they
excel: For the scan and join of Customer, EP is the best variant in Q10, EPP is
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optimal for Q5 and EPL is the fastest implementation for Q8. Hence, predicting
the performance and picking the optimal variant in advance is difficult.

5.7. Micro Adaptivity for Data Blocks

The query optimizer decides when early probing hash tables may be beneficial
and places them in the plan. This is done for most of the joins in the 22 TPC-H
queries, cf. Appendix B. However, predicting whether or not they are advanta-
geous for a certain Data Block scan is difficult. In some cases, it may be possible
to rule out that they speed up execution: One example is when selective resid-
ual scan predicates exist: Residual predicates are not SARGable and hence are
evaluated after matches have been extracted from the Data Block. While this
could be implemented, it would significantly increase the complexity of the
Data Block code. Since these residual predicates are selective, a large number
of tuples are early probed causing a cache miss which would never have oc-
curred in the actual probe of the hash table, because the tuple is eliminated by
the residual. In other cases, it is less obvious how early probing influences the
query runtime and in particular which of the flavors is optimal.

Therefore, we propose to make the decision, whether a hash table should be
early probed and which variant of early probing should be performed, to the
runtime system. In vectorized execution switching between code paths can be
seamlessly performed at vector granularity and each “flavor” can be tested and
evaluated at runtime to determine the optimal configuration. This process is
called Micro Adaptivity [91].

To integrate Micro Adaptivity in HyPer, additional code paths need to be
generated in the query code generation phase in order to avoid branches in hot
loops at runtime. While prefetching a pointer does not require changes in the
logic, the probe phase of the hash join must know whether or not it should use a
precomputed hash table entry pointer or compute hash values and pointers it-
self. Thus, we parameterize our code generation with a Micro Adaptivity flavor
object and generate two versions of the query pipeline: one for Micro Adaptiv-
ity flavors with precomputed pointers and one for the version that computes
the pointers at probe time. Other flavor-specific code can be generated like this
as well.

We utilize a lightweight performance evaluation framework for Micro Adap-
tivity in HyPer. Each query worker thread evaluates the performance of each
flavor for each hash table. Performance evaluation is performed using the rdtsc
instruction that returns the current cycle count. This is both fast and sufficiently
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accurate and comparing the cycle counts of different flavors has proven to be a
good indication of the total runtime difference.

We measure the cycle count of the entire relevant pipeline of each vector,
i.e., each batch of tuples that is extracted from the Data Block at a time. The
pipeline includes all the phases of the Data Block as well as the subsequent hash
table probe (and further operators in the same pipeline). Thereby, the entire
impact of a flavor on the overall query execution time can be measured. HyPer
processes queries in parallel [70] and typically multiple threads work on the
same pipeline. Each one operates on its own “morsel”, a fragment of the input
data, and executes the entire pipeline code on the morsel before requesting new
work. Each worker thread performs its own Micro Adaptivity measurements.
After a short warm-up phase, each flavor is tested a fixed amount of times and
the variant with the fastest median gets selected as the thread’s winning flavor.
While re-trying slower flavors after a certain amount of time was not necessary
in our experiments, it can help to make Micro Adaptivity more robust to skew
(as described in [91]).

Figure 5.11 shows the speedup that can be achieved with early probing hash
tables. The measurements were made using a TPC-H database with scale factor
100 on a 60 core Intel Xeon E7-4870 server with 60 worker threads. Using Micro
Adaptivity, we can ensure execution times essentially never get worse. This can
be observed in the result of Query Q6: It is among those queries with the biggest
negative speedup – even though it does not early probe any hash table and the
perceived slowdown only results from measuring inaccuracy.

Furthermore, the runtime system can perform additional optimizations at
query runtime. When preparing restrictions for a Data Block scan that is re-
stricted by a selective hash join R S, as described above, the build phase of
the hash table is already completed. Thus, the number of tuples in the hash
table is already determined. If the hash table contains a single tuple from R,
the “early probe” strategy can be inverted: Instead of extracting, hashing and
probing all candidate tuples from S, the single tuple of R can be converted into
an (additional) restriction for the scan of S. As the restriction can be efficiently
processed on the compressed representation, it can improve the scan perfor-
mance. While TPC-H has no case where this feature can be exploited, it can be
beneficial in star schemas when dimension tables are restricted.

Early probing hash tables can be very beneficial. It further speeds up query
processing on Data Blocks. The geometric mean of TPC-H scale factor 100 im-
proves by almost 30%. Micro Adaptivity ensures that early probing never leads
to deteriorated performance.
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Figure 5.11.: Speedup of early probing a hash table using Micro Adaptivity vs
a setup without early probes.

5.8. Comparison with Vectorwise

Actian Vectorwise1 is the commercial version of MonetDB/X100 and shares
many of its compression techniques [118, 114, 25]. In addition, it contains “sim-
ple forms of compressed execution” [114].

Vectorwise’s compression appears to target installation where most of the
database does not reside in main-memory. Nevertheless, processing com-
pressed, memory-resident data is acceptably fast, but can be slower than pro-
cessing uncompressed data: “If the dataset is small and fits into memory, dis-
abling compression may slightly increase performance by eliminating the over-
head associated with decompression” [25]. We observed this in particular with
the two single-relation queries Q1 and Q6. When the entire dataset fits into the
buffer, Q1 was 18% slower when operating on compressed data and Q6 38%.
The experiment was conducted on a quad-core Haswell Core i7 CPU with scale
factor 10.

HyPer assumes that most of the data fits into main-memory and Data Blocks
are designed for efficient in-memory processing. Figure 5.3 shows that the use
of Data Blocks can improve HyPer’s performance. In particular, Q1 is two times

1recently renamed to Vector
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faster when using Data Blocks and the performance of Q6 is four times better
compared to uncompressed storage.

Vectorwise benefits from compression when the database does not fit into
the buffer. It compresses more aggressively than HyPer and a scale factor 10
Lineitem relation of 7.3 GB (textual representation) requires only 2.9 GB in Vec-
torwise’s compressed format and 3.7 GB when using HyPer’s Data Blocks.
Therefore, Vectorwise benefits significantly from compression when only a
fraction of the database fits into the buffer (cf. [116]). HyPer, on the other hand,
refrains from using some of the compression techniques described for Monet-
DB/X100 for performance reasons: HyPer does not use, e.g., delta-coding (to
facilitate fast point-accesses) and dismisses byte-unaligned encoded values.

While HyPer’s Data Blocks compress data slightly less aggressive compared
to Vectorwise, their use entails a substantial in-memory performance gain.

5.9. Conclusion

Data Blocks are an elegant way to reduce the memory footprint, facilitate the
eviction of frozen chunks to disk and improve query performance. For a frozen
TPC-H database, Data Blocks are able to shrink the memory consumption to
50% of the original size and speed up the queries from a geometric mean of 476
to 371 seconds on a scale factor 100 database. This results from compression
and the efficient evaluation of predicates on compressed data as well as from
early probing hash tables. The novel positional index structure helps to shrink
the range of tuples that table scans with predicates have to consider.

In addition to these quantifiable advantages, the integration of Data Blocks
is beneficial from an engineering perspective. Data Block code can be written
in C++ without compromising efficiency through the use of vectorized execu-
tion. A purely compiled query plan operating on a storage format that consists
of heterogeneous chunks would either have to generate a code path for each
distinct type of chunk or accept significant performance losses. Our architec-
ture circumvents this dilemma and nevertheless allows for an unintrusive in-
tegration of compression and vectorized execution into HyPer’s code genera-
tion approach. Early probing in combination with Micro Adaptivity requires a
slightly deeper integration, but pays off by further improving query processing
performance in a robust way.
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CHAPTER 6

In-memory database systems have great potential to change the data man-
agement landscape. It has not only become possible to process transactions and
analytical queries with unprecedented speed, but in-memory technology has
also made it possible to re-unite the areas of OLTP and OLAP in a single system.
HyPer’s architecture is radically different from traditional database systems to
leverage the potential of in-memory data management and to facilitate the effi-
cient processing of mixed workloads. This thesis contributes to HyPer’s hybrid
OLTP and OLAP capabilities primarily through adaptive physical optimization
techniques.

The CH-benCHmark allows to analyze the performance of database systems
belonging to the emerging class of hybrid OLTP and OLAP systems. It com-
bines a transaction processing workload with an OLAP workload, both operat-
ing on the same database. Thereby, the performance impact of running analyt-
ical queries in parallel to the mission-critical OLTP workload can be quantified.
The CH-benCHmark is based on the industry’s prevalent standardized bench-
marks TPC-C and TPC-H. This allows database vendors to quickly adapt exist-
ing benchmark installations to the mixed workload benchmark and streamlines
its acceptance. Query normalization improves the comparability of results. The
CH-benCHmark is therefore a valuable instrument to compare different data-
base architectures with each other.

HyPer’s approach to hybrid OLTP and OLAP processing is centered around
its hardware-assisted virtual memory snapshotting mechanism. This tech-
nique has proven to be very efficient at separating the two competing work-
loads from each other. All snapshotting implementations, however, inherently
entail that both the transactions and the analytical queries operate on the same
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physical data structures. While universal disk-based database systems tradi-
tionally use the same physical representation regardless of the workload as
well, modern systems dedicated to one workload often leverage physical opti-
mization techniques to optimally support typical access patterns.

We have presented a lightweight approach to reconcile the best of both worlds
in HyPer. By observing the workload’s access patterns, the DBMS can identify
those parts of the database that represent the transactional working set. With
our hardware-assisted mechanism, this monitoring can be done with virtually
no overhead. This distinguishes HyPer from other in-memory systems that rely
on techniques designed for disk-based database systems. By gradually creating
a physical clustering of the database, we facilitate the adaptive optimization of
the storage format: The benefits of OLTP-friendly storage are retained for the
transactional working set and the bulk of the database can be transformed into
a compressed, scan-friendly format. These optimizations include the storage
layout, the use of compression and physical page properties. In addition to
the benefits for the workloads themselves, our adaptive physical optimization
approach can ensure the streamlined creation and maintenance of snapshots.

We have presented a storage format for cold data that is suitable for both in-
memory and disk-based processing. Data Blocks are compressed, self-contained
chunks of relational data. They allow to transparently use a row-store for those
parts of a relation that belong to the transactional working set and a column
store for cold data. Data Blocks residing in main-memory not only reduce the
memory footprint, but also improve HyPer’s query performance. This results
from compression, SARGable predicates and the novel positional index data
structure.

We believe that the adaptive physical optimization techniques presented in
this thesis are very beneficial for modern in-memory database systems. Sepa-
rating the hot working set data from the bulk of the database physically creates
great optimization potential. This separation and the optimization it makes
possible helps HyPer to achieve its goal of being a high-performance “one size
fits all”-database system.

Furthermore, the operating system’s data structures, in particular those of
the virtual memory manager, contain valuable information. Access to this data
can help to build self-tuning systems with very little runtime overhead. Finally,
combining the advantages of query compilation and vectorized processing is
very beneficial. It can not only lead to better performance, but also to a reduc-
tion of the system complexity.
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CH-benCHmark Queries

APPENDIX A

select ol_number,
sum(ol_quantity) as sum_qty, sum(ol_amount) as sum_amount,
avg(ol_quantity) as avg_qty, avg(ol_amount) as avg_amount,
count(*) as count_order

from orderline
where ol_delivery_d > timestamp ’2007-01-02 00:00:00.000000’
group by ol_number order by ol_number

Listing A.1: CH-benCHmark Q1: Generate orderline overview

select su_suppkey, su_name, n_name, i_id, i_name,
su_address, su_phone, su_comment

from item, supplier, stock, nation, region,
(select s_i_id as m_i_id, min(s_quantity) as m_s_quantity
from stock, supplier, nation, region
where mod((s_w_id*s_i_id),10000)=su_suppkey

and su_nationkey=n_nationkey and n_regionkey=r_regionkey
and r_name like ’Europ%’

group by s_i_id) m
where i_id = s_i_id

and mod((s_w_id * s_i_id), 10000) = su_suppkey
and su_nationkey = n_nationkey and n_regionkey = r_regionkey
and i_data like ’%b’ and r_name like ’Europ%’
and i_id=m_i_id and s_quantity = m_s_quantity

order by n_name, su_name, i_id

Listing A.2: CH-benCHmark Q2: Most important supplier/item-combinations
(those that have the lowest stock level for certain parts in a certain
region)
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A. CH-benCHmark Queries

select top 100 ol_o_id, ol_w_id, ol_d_id,
sum(ol_amount) as revenue, o_entry_d

from customer, neworder, ”order”, orderline
where c_state like ’A%’ and c_id = o_c_id and c_w_id = o_w_id

and c_d_id = o_d_id and no_w_id = o_w_id and no_d_id = o_d_id
and no_o_id = o_id and ol_w_id = o_w_id and ol_d_id = o_d_id
and ol_o_id = o_id
and o_entry_d > timestamp ’2007-01-02 00:00:00.000000’

group by ol_o_id, ol_w_id, ol_d_id, o_entry_d
order by revenue desc, o_entry_d

Listing A.3: CH-benCHmark Q3: Unshipped orders with highest value for
customers within a certain state

select o_ol_cnt, count(*) as order_count from ”order”
where o_entry_d >= timestamp ’2007-01-02 00:00:00.000000’

and o_entry_d < timestamp ’2030-01-02 00:00:00.000000’
and exists (select * from orderline

where o_id = ol_o_id and o_w_id = ol_w_id
and o_d_id = ol_d_id and ol_delivery_d >= o_entry_d)

group by o_ol_cnt order by o_ol_cnt

Listing A.4: CH-benCHmark Q4: Orders that were partially shipped late
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select n_name, sum(ol_amount) as revenue
from customer, ”order”, orderline, stock, supplier, nation, region
where c_id = o_c_id and c_w_id = o_w_id and c_d_id = o_d_id

and ol_o_id = o_id and ol_w_id = o_w_id and ol_d_id=o_d_id
and ol_w_id = s_w_id and ol_i_id = s_i_id
and mod((s_w_id * s_i_id),10000) = su_suppkey
and ascii(substr(c_state,1,1)) = su_nationkey
and su_nationkey = n_nationkey and n_regionkey = r_regionkey
and r_name = ’Europe’
and o_entry_d >= timestamp ’2007-01-02 00:00:00.000000’

group by n_name order by revenue desc

Listing A.5: CH-benCHmark Q5: Revenue volume achieved through local
suppliers

select sum(ol_amount) as revenue
from orderline
where ol_delivery_d >= timestamp ’1999-01-01 00:00:00.000000’

and ol_delivery_d < timestamp ’2030-01-01 00:00:00.000000’
and ol_quantity between 1 and 100000

Listing A.6: CH-benCHmark Q6: Revenue generated by orderlines of a certain
quantity
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A. CH-benCHmark Queries

select supp_nation, cust_nation, l_year, sum(amount) as revenue
from (select su_nationkey as supp_nation,

substr(c_state,1,1) as cust_nation,
extract(year from o_entry_d) as l_year,
ol_amount as amount

from supplier, stock, orderline, ”order”,
customer, nation n1, nation n2

where ol_supply_w_id = s_w_id and ol_i_id = s_i_id
and mod((s_w_id * s_i_id), 10000) = su_suppkey
and ol_w_id = o_w_id and ol_d_id = o_d_id
and ol_o_id = o_id and c_id = o_c_id
and c_w_id = o_w_id and c_d_id = o_d_id
and su_nationkey = n1.n_nationkey
and ascii(substr(c_state,1,1)) = n2.n_nationkey
and ((n1.n_name = ’Germany’ and n2.n_name = ’Austria’)

or
(n1.n_name = ’Austria’ and n2.n_name = ’Germany’))

and ol_delivery_d between
timestamp ’2007-01-02 00:00:00.000000’
and
timestamp ’2030-01-02 00:00:00.000000’

) revenue
group by supp_nation, cust_nation, l_year
order by supp_nation, cust_nation, l_year

Listing A.7: CH-benCHmark Q7: Bi-directional trade volume between two
nations
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select l_year,
sum(amount_country) / sum(amount_all) as mkt_share

from
(select extract(year from o_entry_d) as l_year,

case when n2.n_name = ’Germany’
then ol_amount else 0 end as amount_country,

ol_amount as amount_all
from item, supplier, stock, orderline, ”order”,

customer, nation n1, nation n2, region
where i_id = s_i_id

and ol_i_id = s_i_id and ol_supply_w_id = s_w_id
and mod((s_w_id * s_i_id),10000) = su_suppkey
and ol_w_id = o_w_id and ol_d_id = o_d_id
and ol_o_id = o_id and c_id = o_c_id
and c_w_id = o_w_id and c_d_id = o_d_id
and n1.n_nationkey = ascii(substr(c_state,1,1))
and n1.n_regionkey = r_regionkey and ol_i_id < 1000
and r_name = ’Europe’ and su_nationkey = n2.n_nationkey
and o_entry_d between

timestamp ’2007-01-02 00:00:00.000000’
and
timestamp ’2030-01-02 00:00:00.000000’

and i_data like ’%b’ and i_id = ol_i_id) as year_amount
group by l_year order by l_year

Listing A.8: CH-benCHmark Q8: Market share of a given nation for customers
of a given region for a given part type

select n_name, l_year, sum(amount) as sum_profit
from (select n_name, extract(year from o_entry_d) as l_year,

ol_amount as amount
from item, stock, supplier, orderline, ”order”, nation
where ol_i_id = s_i_id and ol_supply_w_id = s_w_id

and mod((s_w_id * s_i_id), 10000) = su_suppkey
and ol_w_id = o_w_id and ol_d_id = o_d_id
and ol_o_id = o_id and ol_i_id = i_id
and su_nationkey = n_nationkey
and i_data like ’%BB’) as nation_year_amount

group by n_name, l_year order by n_name, l_year desc

Listing A.9: CH-benCHmark Q9: Profit made on a given line of parts,broken
out by supplier nation and year
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A. CH-benCHmark Queries

select top 100 c_id, c_last, sum(ol_amount) as revenue,
c_city, c_phone, n_name

from customer, ”order”, orderline, nation
where c_id = o_c_id and c_w_id = o_w_id and c_d_id = o_d_id

and ol_w_id = o_w_id and ol_d_id = o_d_id and ol_o_id = o_id
and o_entry_d >= timestamp ’1900-01-02 00:00:00.000000’
and o_entry_d <= ol_delivery_d
and n_nationkey = ascii(substr(c_state,1,1))

group by c_id, c_last, c_city, c_phone, n_name
order by revenue desc

Listing A.10: CH-benCHmark Q10: Customers who received their ordered
products late

select s_i_id, sum(s_order_cnt) as ordercount
from stock, supplier, nation
where mod((s_w_id*s_i_id),10000) = su_suppkey

and su_nationkey = n_nationkey and n_name = ’Germany’
group by s_i_id
having sum(s_order_cnt) > (select sum(s_order_cnt)*.005

from stock, supplier, nation
where mod((s_w_id*s_i_id),10000)=su_suppkey
and su_nationkey = n_nationkey
and n_name = ’Germany’)

order by ordercount desc

Listing A.11: CH-benCHmark
Q11: Most important (high order count compared to the sum of
all ordercounts) parts supplied by suppliers of a particular nation

select o_ol_cnt,
sum(case when o_carrier_id = 1 or o_carrier_id = 2 then 1

else 0 end) as high_line_count,
sum(case when o_carrier_id <> 1 and o_carrier_id <> 2 then 1

else 0 end) as low_line_count
from ”order”, orderline
where ol_w_id = o_w_id and ol_d_id = o_d_id and ol_o_id = o_id

and o_entry_d <= ol_delivery_d
and ol_delivery_d < timestamp ’2030-01-01 00:00:00.000000’

group by o_ol_cnt order by o_ol_cnt

Listing A.12: CH-benCHmark Q12: Determine whether selecting less expensive
modes of shipping is negatively affecting the critical-priority
orders by causing more parts to be received late by customers
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select c_count, count(*) as custdist
from (select c_id, count(o_id) as c_count

from customer left outer join ”order” on (
c_w_id = o_w_id and c_d_id = o_d_id
and c_id = o_c_id and o_carrier_id > 8)

group by c_id) as c_orders
group by c_count order by custdist desc, c_count desc

Listing A.13: CH-benCHmark Q13: Relationships between customers and the
size of their orders

select 100.00*sum(case when i_data like ’PR%’ then ol_amount else 0 end)
/

1+sum(ol_amount) as promo_revenue
from orderline, item
where ol_i_id = i_id

and ol_delivery_d >= timestamp ’2007-01-02 00:00:00.000000’
and ol_delivery_d < timestamp ’2030-01-02 00:00:00.000000’

Listing A.14: CH-benCHmark Q14: Market response to a promotion campaign

with revenue (supplier_no, total_revenue) as (
select supplier_no, sum(amount) as total_revenue
from

(select mod((s_w_id * s_i_id),10000) as supplier_no,
ol_amount as amount

from orderline, stock
where ol_i_id = s_i_id and ol_supply_w_id = s_w_id

and ol_delivery_d >=
timestamp ’2007-01-02 00:00:00.000000’) as revenue

group by supplier_no)
select su_suppkey, su_name, su_address, su_phone, total_revenue
from supplier, revenue
where su_suppkey = supplier_no

and total_revenue = (select max(total_revenue) from revenue)
order by su_suppkey

Listing A.15: CH-benCHmark Q15: Determines the top supplier
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A. CH-benCHmark Queries

select top 100 i_name, brand, i_price,
count(distinct (mod((s_w_id * s_i_id),10000))) as supplier_cnt

from (select i_name, substr(i_data, 1, 3) as brand,
i_price, s_w_id, s_i_id

from stock, item
where i_id = s_i_id and i_data not like ’zz%’

and (mod((s_w_id * s_i_id),10000)) not in
(select su_suppkey from supplier
where su_comment like ’%bad%’)) as good_items

group by i_name, brand, i_price order by supplier_cnt desc

Listing A.16: CH-benCHmark Q16: Number of suppliers that can supply parts
with given attributes

select sum(ol_amount) / 2.0 as avg_yearly
from orderline, (select i_id, avg(ol_quantity) as a

from item, orderline
where i_data like ’%b’ and ol_i_id = i_id
group by i_id) t

where ol_i_id = t.i_id and ol_quantity < t.a

Listing A.17: CH-benCHmark Q17: Average yearly revenue that would be lost
if orders were no longer filled for small quantities of certain parts

select top 100 c_last, c_id o_id, o_entry_d, o_ol_cnt,
sum(ol_amount) as sum_amount

from customer, ”order”, orderline
where c_id = o_c_id and c_w_id = o_w_id and c_d_id = o_d_id

and ol_w_id = o_w_id and ol_d_id = o_d_id and ol_o_id = o_id
group by o_id, o_w_id, o_d_id, c_id, c_last, o_entry_d, o_ol_cnt
having sum(ol_amount) > 200
order by sum_amount desc, o_entry_d

Listing A.18: CH-benCHmark Q18: Rank customers based on their placement
of a large quantity order
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select sum(ol_amount) as revenue
from orderline, item
where (

ol_i_id = i_id and i_data like ’%a’ and ol_quantity >= 1
and ol_quantity <= 10 and i_price between 1 and 400000
and ol_w_id in (1,2,3)

) or (
ol_i_id = i_id and i_data like ’%b’ and ol_quantity >= 1
and ol_quantity <= 10 and i_price between 1 and 400000
and ol_w_id in (1,2,4)

) or (
ol_i_id = i_id and i_data like ’%c’ and ol_quantity >= 1
and ol_quantity <= 10 and i_price between 1 and 400000
and ol_w_id in (1,5,3)

)

Listing A.19: CH-benCHmark Q19: Machine generated data mining (revenue
report for disjunctive predicate)

select su_name, su_address from supplier, nation
where su_suppkey in

(select mod(s_i_id * s_w_id, 10000)
from stock, orderline
where s_i_id in

(select i_id from item
where i_data like ’co%’)

and ol_i_id=s_i_id
and ol_delivery_d
>

timestamp ’1990-01-01 12:00:00’
group by s_i_id, s_w_id, s_quantity
having 4*s_quantity > sum(ol_quantity)
)

and su_nationkey = n_nationkey and n_name = ’Germany’
order by su_name

Listing A.20: CH-benCHmark Q20: Suppliers in a particular nation having
selected parts that may be candidates for a promotional offer
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A. CH-benCHmark Queries

select su_name, count(*) as numwait
from supplier, orderline l1, ”order”, stock, nation
where ol_o_id = o_id and ol_w_id = o_w_id and ol_d_id = o_d_id

and ol_w_id = s_w_id and ol_i_id = s_i_id
and mod((s_w_id * s_i_id),10000) = su_suppkey
and l1.ol_delivery_d > o_entry_d
and not exists (select *

from orderline l2
where l2.ol_o_id = l1.ol_o_id

and l2.ol_w_id = l1.ol_w_id
and l2.ol_d_id = l1.ol_d_id
and l2.ol_delivery_d > l1.ol_delivery_d)

and su_nationkey = n_nationkey and n_name = ’Germany’
group by su_name order by numwait desc, su_name

Listing A.21: CH-benCHmark Q21: Suppliers who were not able to ship
required parts in a timely manner

select country, count(*) as numcust, sum(balance) as totacctbal
from (select substr(c_state,1,1) as country,

c_balance as balance
from customer
where substr(c_phone,1,1) in (’1’,’2’,’3’,’4’,’5’,’6’,’7’)
and c_balance > (select avg(c_balance)

from customer
where c_balance > 0.00

and substr(c_phone,1,1)
in (’1’,’2’,’3’,’4’,’5’,’6’,’7’))

and not exists (select * from ”order”
where o_c_id = c_id and o_w_id = c_w_id

and o_d_id = c_d_id)
) as country_balance

group by country order by country

Listing A.22: CH-benCHmark Q22: Geographies with customers who may be
likely to make a purchase
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TPC-H Plans with Early Probes

APPENDIX B

The following figures show the TPC-H plans with early probes. A high-
lighted relation name indicates that when the table scan operator processes a
Data Block, the hash table of the next upstream hash join or group join operator
may be early probed.

Note that some of the plans contain an “earlyprobe” operator. This operator
refers to a different form of early probing used in HyPer.
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Figure B.1.: Q1
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B. TPC-H Plans with Early Probes
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Figure B.2.: Q2
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Figure B.4.: Q4
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Figure B.5.: Q5
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Figure B.7.: Q7

151



B. TPC-H Plans with Early Probes
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Figure B.8.: Q8
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Figure B.9.: Q9
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Figure B.10.: Q10
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B. TPC-H Plans with Early Probes
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Figure B.11.: Q11
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Figure B.14.: Q14
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Figure B.15.: Q15 Note that the plan for creating the temporary relation has been
omitted as it does not contain any joins and hence no restricting
hash tables.
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B. TPC-H Plans with Early Probes
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Figure B.17.: Q17
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Figure B.20.: Q20
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B. TPC-H Plans with Early Probes
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Figure B.22.: Q22 Note that the join between Customer and Customer is a
blockwise-nested-loop join, i.e., does not have a hash table.

158



159


	Abstract
	Zusammenfassung
	Contents
	Introduction
	Database Workloads
	OLTP
	OLAP
	Combining OLTP and OLAP

	The HyPer System
	Virtual Memory Snapshots
	Transaction Engine
	Query Engine
	Physical Optimization

	Contributions

	Hybrid OLTP & OLAP Benchmarking
	Introduction
	Related Work
	Benchmark Design
	Transactions and Queries
	Benchmark Parameters

	Evaluation
	Systems under Test
	OLAP-focused Database Systems
	OLTP-focused Database Systems
	Universal Database Systems
	Hybrid Database Systems
	Basic Observations

	Metrics
	Conclusion

	Hot/Cold Clustering
	Introduction
	Related Work
	Transactional Workloads
	Design
	Data representation
	Hot/Cold Clustering

	Access Monitoring
	Monitoring in Software
	Hardware-Assisted Monitoring
	Deriving Temperature using Access Frequencies

	Evaluation
	Transactional Performance
	Updating Cooling and Frozen Data

	Conclusion

	Physical Optimizations
	Introduction
	Storage Model
	Related Work
	A Comparison of Row- and Columnar-Based Storage
	Hybrid Row/Column Layouts in HyPer
	Layout Optimization

	Physical Pages
	Page Size
	Shared Pages

	Compression
	Related Work
	Query Processing
	Dictionary Compression
	Run-Length Encoding

	Evaluation
	Instant Compression versus Cold Compression
	Compression Effectiveness
	Query Performance

	Conclusion

	Data Blocks
	Introduction
	Related Work
	Architecture
	Storing Data Blocks
	Loading Data Blocks

	Data Block Storage Layout
	Finding and Unpacking Matching Tuples
	Prepare Restrictions
	Prepare Block
	Find Matches
	Unpack Matches
	Cache Optimization
	Evaluation

	Early Probing
	Micro Adaptivity for Data Blocks
	Comparison with Vectorwise
	Conclusion

	Conclusion
	References
	CH-benCHmark Queries
	TPC-H Plans with Early Probes

