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Abstract—Recent research has revealed that using improper
(noncircular) transmit signals can be beneficial in multiple-input
multiple-output broadcast channels if highly complex nonlinear
interference cancellation schemes such as dirty paper coding
are avoided. However, finding the optimal improper transmit
strategy in such a scenario is a nonconvex optimization problem
for which no globally optimal solution is known in general. In
this paper, we study whether suboptimal solution approaches that
are known from linear transceiver design with proper (circularly
symmetric) transmit signals can be transferred to the case with
improper signals via a composite real representation. It turns
out that such optimization methods may get stuck in a proper
solution even if an improper strategy would be better, but an
adequate initialization can prevent this behavior. The theoretical
analysis is based on the recently proposed framework of block-
skew-circulant matrices in complex-valued signal processing.

Index Terms—Block-skew-circulant matrices, broadcast chan-
nels, composite real representation, improper signals, multiuser
MIMO systems, noncircular, widely linear transceivers.

I. INTRODUCTION

The capacity-achieving transmit strategy in Gaussian
multiple-input multiple-output (MIMO) broadcast channels is
based on an interference precancellation scheme called dirty
paper coding (DPC) [1], [2] which is prohibitively complex
for practical implementation [3]. Therefore, researchers have
also studied so-called linear transceivers where nonlinear op-
erations such as encoding and decoding are applied only on a
per-stream basis while all operations involving multiple data
streams have to be linear (cf., e.g., [4], [5]). This notion can
be extended to widely linear transceivers (e.g., [5], [6]), where
the operations are linear functions of complex signals and
their conjugates (see [7], [8]), or, equivalently, linear functions
of the real and imaginary parts [8]. The system model with
widely linear transceivers is introduced in Section III.

When using DPC, proper [9] (circularly symmetric) Gaus-
sian transmit signals are the optimal input distribution for
the MIMO broadcast channel [1]. However, it was recently
shown that proper Gaussian per-user transmit signals are no
longer optimal in MIMO broadcast channels if a restriction
to (widely) linear transceivers is imposed [5], [10], [11].
Performance gains by using improper signals were observed
both with time-sharing [10] and without time-sharing [5], [11].
Moreover, it was shown that improper signaling can enlarge
the quality of service (QoS) feasibility region, i.e., data rates
that cannot be achieved with proper per-user transmit signals
even when spending arbitrarily high transmit power might be
achievable with improper signals [5]. To benefit from these

potential gains, we need appropriate optimization algorithms
to find good improper transmit strategies.

The authors of [11] used the characterization of improper
signals by means of their covariance matrices and their pseu-
docovariance matrices (cf., e.g., [8]), and they developed a
specialized algorithm for multiple-input single-output (MISO)
broadcast channels. Unfortunately, this approach cannot be
easily extended to MIMO systems, which use multiple an-
tennas at the transmitter and at the receivers.

In the numerical simulations in [5], it was instead ex-
ploited that improper signals can also be characterized by
the covariance matrix of their composite real representation
where real and imaginary parts of the signals are stacked
onto each other in vectors (cf. Section II and, e.g., [8]). The
important advantage of this composite real formulation is that
optimization algorithms that have originally been developed
for proper complex signals can be reused. Such algorithms can
be transferred to real-valued scenarios, and via the composite
real representation, they can then be applied to optimize
improper transmit signals. That way, we can avoid having to
develop completely new algorithms, which is necessary when
using the complex representation of widely linear transceivers.

Composite real representations have also been used to study
single-user MIMO systems [12], systems with space-time cod-
ing [13], broadcast channels with dirty paper coding [2], [14],
interference channels [15], [16], and relaying scenarios [17],
[18]. However, there are only few publications on improper
signaling in MIMO broadcast channels with widely linear
transceivers [5], [10], [11], and to the best of our knowledge, a
systematic study of transceiver optimization via the composite
real representation has not yet been performed.

In the main part of this paper in Section IV, we consider
various iterative optimization algorithms known from the lit-
erature on MIMO broadcast channels with proper signals, and
we study whether they are suitable for optimizing strategies
involving improper signals. It turns out that these heuristic
methods have to be applied and/or adapted carefully since
they tend to produce solutions with proper signals even in
cases where improper signals would be beneficial.

The theoretical analysis in this paper is based on the
recently proposed framework of block-skew-circulant matri-
ces in complex-valued signal processing from [19], which
is briefly summarized in Section II. The main idea is to
decompose composite real covariance matrices as well as
composite real representations of widely linear filters into



block-skew-circulant (3SC) and block-Hankel-skew-circulant
(BHSC) matrices. For our analysis, we also derive some new
properties of BSC matrices which are not included in [19].
We conclude the paper with exemplary simulation results
(Section V), and with a comparison to another situation where
algorithms for MIMO transceiver design have been applied to
a new setting (Section VI), namely to the equivalent single-
carrier representation of multicarrier broadcast channels [20].
Notation: We write 0 for the zero matrix or vector, I, for
the identity matrix of size L, oT for the transpose, and e'! for
the conjugate transpose. The vector e; is the ith canonical
unit vector of appropriate dimension. To easily distinguish
real quantities from complex quantities, we use a tilde e
below complex quantities. We use R, J, and e* for real
part, imaginary part, and complex conjugate, respectively. The

shorthand notation & is used for a vector [R(z)", S(z)T]T.

II. BLOCK-SKEW-CIRCULANT MATRICES

In [19], it was proposed to study systems involving improper
signals by means of real-valued block-skew-circulant (BSC)
and block-Hankel-skew-circulant (BHSC) matrices. For the
special case of 2 x 2 blocks, which is the relevant one for this
application, the BSCy and BHSC, structures are given by

A1 —A2:| B2 :|
A2 A1 _Bl

- B;
A= B (1)

and B= {

respectively [19], where the subscripts in BSCs and BHSCo
refer to the number of blocks. Note that we use e and é
to indicate the block-Toeplitz and block-Hankel structures of
BSC and BHSC, matrices, respectively. Where necessary, we
indicate the block size as a superscript of the sets BSCX *L ¢
R2K><2L and BHSCKXL C RQKXZL

The real-valued equivalent of a complex matrix given by

R(4) —3(4)
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is a BSCy matrix. For the real-valued equivalents A, C, and
D of complex matrices A, C, and D, we have that A=CD
< A=CD, A= C+D<:>A C+D,and gy = Ai =
y = Az [21, Lemma 1], where & = Rz)T, 3(z)T]".

It can be shown that the subspace BSCEX*L is the
orthogonal complement of BHSCE*L in R2Kx2L []9,
Lemma 5]. Using projections onto these linear spaces (see
[19, Lemma 6]), any matrix C' can be uniquely decomposed
into a BSCs and a BHSC, component, i.e., C = C +C.
Now consider a complex widely linear mapping

f(z) =

where the subscripts of the constant factors A; and A, stand
for linear and conjugate linear, respectively. We can rewrite
this in the composite real representation as
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where the BSC, matrices AL and ACL are the real-valued
equivalents (2) of A, and A, respectively [19, Theorem 2].
Only if Ay vanishes, the matrix A corresponds to a linear
operator in the complex representation [19, Corollary 1].
Similarly, the covariance matrix of the composite real rep-

resentation & = [R(z)T, S(x)T]T given by
C§Rm
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can be uniquely decomposed [19, Lemma 9] into
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(see [19, Theorem 3]), where C = E[za"] — E[z] E[z"]
is the complex covariance matrix, which determines the power
shaping of , and C_ = E[zz"] — E[z] E[z"] is the
pseudocovariance matrix, which determines the impropriety
(noncircularity) of . In particular, & is proper only if N,=0
[19, Corollary 2], i.e., if Cg is a BSCo matrix. -

The BSCo structure is preserved by linear combinations,
transposition, matrix products, and matrix inversion if all
involved matrices are BSC, matrices [19]. Moreover, the
eigenvalue decomposition of a symmetric BSC2 matrix can
be written as A = Q/iQT where Q is an orthogonal BSC,
matrix and A is a diagonal BSC, matrix [19, Lemma 11]. Such
a decomposition was called standard eigenvalue decomposition
n [19]. Similarly, a standard singular value decomposition

A=UX VT of general BSCs matrices, which consists only
of BSCo factors, was derived in [19, Lemma 15].

III. SYSTEM MODEL AND DUAL UPLINK

We consider a MIMO broadcast channel with M transmit
antennas, K users, and IV, receive antennas for user k, where
the channel of user k is described by a channel matrix H, €
CNexM and an additive proper Gaussian noise component
n, ~CN(0,C ) Transmission and estimation with widely

hnear transceivers can be described by

kaﬂkz B, ,z,+ By ;) + 1, 7

T, = QL WY, T GCL ky ®)

where S, = min{Ny, M} streams of i.i.d. proper Gaussian
data symbols are intended for user k, i.e., z, ~ CN(0,Is,).

MxS,
The matrices BLE’BCLZ e C ¢ and GLk,QCLk €

CSx* Nk describe the widely linear transmit filters (beamform-
ing matrices) and receive filters (equalizers), respectively. If
QCL’ 0= 0, the per-user transmit signal for user £ in (9) is a
linear function of &, and thus proper (cf. [8]). Otherwise, it

is a widely linear function of z, and can become improper.!

if x, is improper, ECL,Z # 0 is not neefied for improper.sigljaling, but
we assume proper &, without loss of generality (only the distributions of the
per-user transmit signals matter, not the distribution of ).



A MIMO broadcast channel with widely linear transceivers
can be described using the composite real representation

K

Uy = Hy Y By + 1y ©)
=1

&), = Gy, (10)

where By and G, are defined just like the matrix A in (4). We
assume C}y, = Ion, without loss of generality (the channel
matrices describe the effective channels after noise whitening).
With information lossless receive filters, the rate of user & is

1 1 T
i = 5 log, det (Im n ZDL{,CH,CB,CBEH,C) (11
N T
ZpLk = lon, + Z H.B,B/H,.
£k

According to [10, Lemma 1], we can use a composite
real representation to extend the uplink-downlink duality with
linear transceivers from [22] to widely linear transceivers. With

(12)

. . T . . .
the uplink channel matrices H , the uplink noise covariance
matrix Iy, and the uplink transmit filters T}, we obtain the
uplink rates (with information lossless receive filters)

1 \ \
Ry, = 5 log, det (IW + Z7 H, T, TT Hk) (13)

T N
Zy, = Iopr + ZHK TZTEHZ-
=k

The same rates rp, = Rj are achievable in the downlink and
in the dual uplink if the same sum transmit power is spent.

(14)

IV. ANALYSIS OF ITERATIVE ALGORITHMS

When applying an optimization algorithm to the composite
real representation of a communication system, we have to
keep in mind the particular structure of the composite real
channel matrices: they are BSC, matrices. Therefore, the
question arises, how existing optimization algorithms behave
when applied to a setting with this channel structure. In
particular, we have to ask whether the obtained solutions can
indeed correspond to improper signaling or if they correspond
to strategies with linear filters and proper signals.

This question was first asked in [19] for a gradient-based
method. After briefly sketching this existing result, we extend
it to methods based on alternating filter updates, whose anal-
ysis is more involved. Finally, we study scaling of individual
beamforming vectors, which is often done in combination with
other iterative techniques, we analyze typical initializations,
and we comment on effects caused by numerical inaccuracies.

A. Gradient-Based Filter Updates

In [23], [24], a gradient-projection algorithm was applied to
the uplink transmit filters T}, to maximize the weighted sum
rate in a MIMO broadcast channel with linear transceivers.
Transferred to the composite real representation, we have

0 25:1 we Ry

— AT
Ty Rk

15)

where the scalars w, are constant weighting factors, and

1 .
Akiin

K
T
= > wiZ7 =Y weZ N | H o (16)
{=1

0k
with Zj, from (14) and
Kop
Z =Ty + Y H,T.T{ Hy.
k=1

a7

The gradient-projection step is Ty <+ (axIn,c + brAr)Tk
where ay and by are chosen according to a step size rule and
subject to a sum power constraint [23], [24].

Since transposition, addition, multiplication, and matrix
inversion preserve the BSC5 structure (see [19] and Section II),
the filter matrices after the update are BSCs if all filter matri-
ces T}, have been BSC, before the update. Thus, the gradient-
projection algorithm converges to a solution that corresponds
to proper signaling (i.e., a solution with BSC» structure) if it is
initialized with a strategy that corresponds to proper signaling
(i.e., an initialization with BSCs structure) [19]. On the other
hand, a solution that corresponds to improper signaling can
be obtained by using an initialization that corresponds to
improper signaling (i.e., that does not have BSC, structure).

B. Alternating Filter Updates

Another popular iterative optimization method consists of
alternating updates of the transmit and receive filters in the
downlink and the dual uplink [22] as proposed e.g., in [25],
[26] for weighted sum rate maximization, in [25] for sum MSE
minimization and SINR balancing, in [26] for rate balancing,
and in [25]-[27] for power minimization. We study the appli-
cation of the approach to the composite real representation.

For given uplink beamforming matrices T}, the optimal up-
link receive filters in the MMSE sense V,I = T' H;, Z~" with
Z from (17) are computed. Then, the downlink beamforming
matrices are chosen according to

By + ViW, diag?* {ay..;} (18)

where the orthogonal matrix W} contains the eigenvectors
T \

of T,CTHk Z,;lHka with Zj from (14) (see [22]), and the

scalars ay, ; € R are chosen such that (based on [22])

M[Oé171, ceey aK,QSk}T =
ITiWhellls, ..., [Tk Wiess, [3]" (19)
with
M, M,
M = : : (20)
My Mg

where M, ¢ is defined via the Hadamard product
My = —(W/T' HViW,) © (WI'T H,V,W,) 2D

for k # ¢ and
2S5,

(M. )i = | ViWies )5 — Z Z[Mé,k}j,i-
£k j=1

(22)



Now assume that all uplink beamformers T} = Tk are
BSCo matrices. Then, TkTIEI;fZglI\{ka is BSC5 since mul-
tiplication, inversion, summation, and transposition preserve
the BSC, structure. Thus, we can use the standard eigenvalue
decomposition (cf. Section II) so that W, = Wk is a BSCo
matrix. We explain later why this is without loss of generality.

In general, an individual rescaling of columns of a BSC,
matrix destroys the BSC, structure, which can be easily
seen from (1). However, this is not true for scaling with the
coefficients o, ; in (18). To show this, we need the following
lemma on the Hadamard (element-wise) product of block-
skew-circulant matrices.

Lemma 1: The Hadamard product of two BSC, matrices is
block-circulant (BCs).

Proof: Let A € BSCE*L and A e BSCE*F with the
block structure as in (1). Then,

5 NY o A1 ® All A2 ® AIQ
AGA = A, 0 A, A0 AL (23)
where © is the Hadamard product. [ |

Due to Lemma 1, M, ¢ is block-circulant (3Cz) for all k, ¢
if all uplink beamformers T}, = Tk. are BSC» matrices. More-
over, |T;Wieill3 = [[TiWieirs, |3 and [[ViWiei|5 =
|[ViWieirs,||3 in this case. Therefore, it can be easily
verified, that we obtain pairs of equal scalars oy, ;t5, = i,
i.e., the diagonal matrix diag?ﬁ’{{akvi} is BSC,.

Finally, since By, is the product of three BSCs matrices, it
is a BSCo matrix.

Similar observations hold when computing the optimal
downlink receivers and performing the downlink-to-uplink
transformation from [22].

In fact, the eigenvalue decomposition used to compute W
is ambiguous with respect to permutations of the eigenvalues
and eigenvectors, and to the choice of the bases of eigenspaces
corresponding to eigenvalues with multiplicity larger than one
(see the discussion in [19]). To account for these ambiguities,
we can replace Wy, by Wka ¢ BSCs, where Wk is BSCo
and Q) is orthogonal. It is easy to verify that the matrices
By, Vi, Ty, etc. are no longer BSC, in this case, but their
Gramians still are since @y, cancels out when computing the
Gramians. Moreover, this property is then preserved from one
iteration to the next. Since the downlink transmit covariance
matrix is equal to the Gramian BkBg, the matrix Q) does
not have an influence on the distribution of the transmit signal,
and we can assume W, = W, without loss of generality.

We have established that alternating filter updates preserve
the BSCs structure. The implications are the same as for
gradient-based methods, namely that an initialization with
BSC5 matrices leads to a solution consisting of BSC, matrices
while a non-BSCj, initialization allows for general solutions.

C. Individual Scaling of Beamforming Vectors

Alternating filter updates are often combined with additional
scaling steps that adapt the individual powers of the data
streams, for instance, in order to fulfill rate targets (e.g.,
[26], [27]). This corresponds to scaling individual columns of

transmit filter matrices. Since scaling the columns individually
can destroy a BSCs structure, we have to include such scaling
steps in the analysis when studying whether or not an iterative
algorithm preserves the BSCy structure.

As an example, we consider the algorithm from [27], which
introduces per-stream rate targets p,(:) as auxiliary variables,
applies a gradient-projection update to the targets p,(cs) in each
iteration, and then scales the filter vectors such that the per-
stream rate targets are achieved. Due to space constraints, we
cannot reproduce the details here and refer the reader to [27].

Analyzing the scaling procedure step by step, it turns out
that a set of filters where all filter vectors occur in pairs of

tp; and ip445, = ijtk,i (24)
with 0 ;
s —In
Jy = {IN 0 } (25)

leads to a set of scaling factors where all factors form pairs of
Bri,i = Bk,i+s, (similar as for the factors oy, ; in the previous
section). The formal proof of this statement again relies on
the framework of BSC matrices—in particular on the fact that
transposition, addition, multiplication, and inversion preserve
the BSCs structure, on the properties of the matrix Jy given
in [19, Lemma 10], and on the exploitation of a similar block-
circulant structure as in Lemma 1. The result 3;; = Bk i+s,
implies that this scaling preserves the BSCs structure.

A particularity in the scaling steps in [27] is that the
algorithm allows that inactive streams with zero power can
become active again. Therefore, filters of inactive streams are
updated in [27] using a special update procedure. Due to
space constraints, we cannot reproduce this procedure here
and have to refer the reader to [27]. To show that the updated
inactive filters form BSC5 structures if all matrices have BSC»
structure in the previous step, we have to analyze the procedure
step by step and apply similar arguments as above. However,
since one of the steps (see [27]) is a generalized eigenvalue
decomposition, we additionally need the following new lemma
on BSC, matrices to complete the analysis.

Lemma 2: The generalized eigenvectors of a pair of sym-
metric matrices A, C € BSCY M can be arranged in a BSC
matrix. . C T .

Proof: With J s from (25), we have J s AJ,, = A for
symmetric A € BSCY>*M and qTJ 5;q = 0 for any ¢ € R2M
[19, Lemma 10]. Thus, for any generalized eigenvalue ¢ and

S ST -1
generalized eigenvector g of (A, C'), we have (J,; = J,,)

N N N s AT s N AT s
Aq:Cq¢ =4 JMAJMJMq: JMCJMJMq¢
= Aqu = C\'jjuqqﬁ (26)

i.e., for each ¢, we have a pair of orthogonal generalized
eigenvectors q and J ;q. Properly arranging them in a matrix
of generalized eigenvectors, we obtain a BSCy matrix. [ ]

D. Commonly Used Initializations

Above, we have seen that in order to obtain an algorithm
that is capable of finding solutions that correspond to improper



signaling, we have to make sure to initialize the iterative
procedure with such an improper strategy.

This is an important observation, since commonly used
initialization indeed have the BSC, structure. For instance,
(scaled) identity matrices (e.g., [23], [24], [27]) are obviously
block-skew-circulant. Moreover, an initialization based on a
singular value decomposition (e.g., [26]) of the composite real
channel matrices is equivalent to a BSC- initialization since
the standard singular value decomposition (cf. Section II) can
be used without loss of generality.

However, it is easy to break the BSCs structures of these ini-
tializations by rescaling their columns with individual factors.
A special case of this is setting a beamforming vector to zero,
i.e., switching a real-valued data streams off. This corresponds
to switching either the inphase or the quadrature component
of a complex data stream off and obviously corresponds to
improper signaling. Even if the algorithm might reactivate
the real-valued data stream in the course of its execution, the
solution after convergence can then be an improper strategy
since we have avoided a BSCs initialization. In fact, this is
what the initialization with truncated identity matrices from
[24] and the initialization with single data streams from [27]
do when they are applied to the composite real representation.

Another possibility would be to use a random initialization
as in [25], [27]. For instance, the entries of the beamforming
matrices can be chosen to be i.i.d. Gaussian or, if it is desired
that the 25 columns of each initial beamforming matrix are
orthogonal to each other, we can use a (possibly truncated)
eigenbasis of YYH where Y is a square random matrix with
i.i.d. Gaussian elements [28]. In both cases, the initial filter
matrices have a nonzero BHSC, component almost surely.

E. Effects Caused by Numerical Inaccuracies

So far, we have assumed that all operations are performed
with infinite precision. However, in an implementation, a
function that theoretically delivers a BSCo matrix might yield
a result with a very small, but nonzero BHSCs component.
Then, we can no longer assume that all inputs for the next
step are BSC, matrices, and the line of argumentation is
interrupted, i.e., the final result no longer needs to have BSCs
structure. Finding out how strong such numerical inaccuracies
have to be in order to leave the neighborhood of the set of
BSC- solutions is an interesting question for future research.
In the next section, we see that this effect can indeed happen
in numerical simulations.

V. SIMULATION RESULTS

As an example, we consider the power minimization algo-
rithm for MIMO broadcast channels with linear transceivers
proposed in [27]. On the one hand, we apply this algorithm
directly to the complex-valued formulation, which is the
application it has originally been developed for. On the other
hand, we apply it to the composite real representation in order
to optimize widely linear transceivers. Note that this algorithm
was also used in [5] to optimize widely linear transceivers, but
only in a MISO setting.

proper complex

- - - eq. real non-BSC> init | |
X eq. real random init
+--eq. real BSC2 init

| I I
0.2 0.4 0.6 0.8 1

p (bits per channel use)

Fig. 1. Transmit power needed to serve K users with data rate 7, = p
in a MIMO broadcast channel with M = 2 transmit antennas and Ny = 2
receive antennas per user. Powers are averaged (in the dB domain) over 1000
realization of i.i.d. circularly symmetric Gaussian channel coefficients.

In the equivalent real representation, we use three different
initializations. The first one, which does not correspond to a
BSC4 structure, starts with only one real-valued data stream
for which the transmit filter is a canonical unit vector. It can be
seen in Fig. 1 that this initialization, which allows for solutions
that correspond to improper transmit strategies, leads to lower
sum transmit power than the complex-valued implementation,
which applies proper transmit signals. Nearly the same average
performance is obtained with random vectors as initial filters.

As an initialization that has the BSC, structure, we use
a pair of canonical unit vectors e; and e;;g, for user k
and initialize both real-valued data streams with the same
powers and data rates. As predicted by the theoretical analysis,
this BSCs initialization leads to solutions that also have
the BSC, structure and have the same performance as the
optimization with proper complex signals, i.e., cannot achieve
the performance gains of improper signaling.

In the plot, we can also observe the effects caused by nu-
merical inaccuracies described in Section I'V-E. To understand
this, we first have to note that the optimization can become
infeasible for high numbers of users and high data rates (see
[5]), which corresponds to diverging curves in the plot. Note
that the feasibility region with improper signaling is larger than
with proper signaling [5]. If the rate requirements are close to
the feasibility boundary, intermediate results with very large
powers can occur before the algorithm converges. Apparently,
the precision is impaired by these large values strong enough
to push the algorithm away from the set of BSCs solutions,
i.e., it no longer yields the same result as the complex version.

Even though this might seem counterintuitive at the first
glance, the simulation results show that the numerical inac-
curacies can be helpful instead of harmful in this context.
However, since we cannot expect that such an effect always
happens, it is preferable to break the BSC» structure explicitly,



e.g., by using an appropriate initialization.
VI. DISCUSSION

While it is straightforward that iterative heuristic algorithm
for optimizing proper signaling in MIMO broadcast channels
with linear transceivers can be applied to the composite real
representation in order to optimize settings with widely linear
transceivers, the interesting question is whether the obtained
solutions indeed correspond to improper signaling. In this
paper, we have shown that this can be the case only if we
use an initialization that corresponds to improper signaling.
The reason for this is that the existing iterative optimization
algorithms tend to preserve the so-called BSC, structure,
which is the characterizing structure of the composite real
equivalents of proper complex transmit strategies.

A question similar to the one considered here was studied
in [20] for multicarrier MIMO broadcast channels with proper
signaling. It was investigated whether existing algorithms
can be applied to an equivalent single-carrier formulation
of multicarrier communication systems to optimize carrier-
cooperative transmission (coding across carriers, for a formal
definition of this concept see [20]). In that case, the matter of
interest was not the BSC, structure. Instead, the particularity
was that the channel matrices had a block-diagonal structure.
However, a similar result was obtained: it turned out that
existing algorithm tend to yield solutions that match the block
structure of the channel matrices. In particular, it was shown
that gradient methods and alternating filter updates converge to
block-diagonal solutions if the initialization is block-diagonal.

An important difference between these two applications is
that individual scaling of the columns of the filter matrices can
destroy the BSC, structure, but preserves block-diagonality.
Therefore, while rescaling is a simple way to construct ade-
quate initializations for the optimization of improper transmit
strategies, more thought has to be put into finding a sensible
initialization when trying to optimize carrier-cooperative trans-
mission via an equivalent block-diagonal formulation. On the
other hand, the sensitivity of the BSCs structure to rescaling of
individual columns made the theoretical analysis in this paper
more involved than the one in [20].
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