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Resource cost results for one-way entanglement distillation
and state merging of compound and arbitrarily varying
quantum sources
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80290 Miinchen, Germany
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We consider one-way quantum state merging and entanglement distillation under
compound and arbitrarily varying source models. Regarding quantum compound
sources, where the source is memoryless, but the source state an unknown member
of a certain set of density matrices, we continue investigations begun in the work
of Bjelakovi¢ et al. [“Universal quantum state merging,” J. Math. Phys. 54, 032204
(2013)] and determine the classical as well as entanglement cost of state merging. We
further investigate quantum state merging and entanglement distillation protocols for
arbitrarily varying quantum sources (AVQS). In the AVQS model, the source state is
assumed to vary in an arbitrary manner for each source output due to environmental
fluctuations or adversarial manipulation. We determine the one-way entanglement
distillation capacity for AVQS, where we invoke the famous robustification and
elimination techniques introduced by Ahlswede. Regarding quantum state merging
for AVQS we show by example that the robustification and elimination based approach
generally leads to suboptimal entanglement as well as classical communication rates.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4893635]

. INTRODUCTION

Investigations on communication tasks involving bipartite (or multipartite) sources within the
local operations and classical communications (LOCC) paradigm made a substantial contribution to
the progress in quantum Shannon theory which took place over the past two decades.

Especially the role of shared pure entanglement as a communication resource was clarified
and substantiated by establishment of LOCC protocols inter-converting shared entanglement with
optimal rates.

Two prominent tasks, entanglement distillation and quantum state merging are considered in
this work. Quantum state merging was introduced by Horodecki, Oppenheim, and Winter.'* In this
setting a bipartite quantum source described by a quantum state psp shared by communication
parties A (sender) and B (receiver) is required to be merged at the receivers site by local operations
and classical communication together with shared pure entanglement as resource, such that in the
limit of large blocklengths, the source is approximately restored on B’s site. The optimal asymptotic
net entanglement cost was determined in Ref. 14 to be S(A|B) ebits of shared entanglement per copy
of the state, which was shown to be achievable with optimal classical cost I(A; E) bits of A — B
classical side communication per copy (/(A; E) is the quantum mutual information of A with an
environment E purifying p4p). This result allows interpretation of the negative values of S(A|B).
For states with S(A|B) being negative, quantum state merging is possible with net production of
shared maximal entanglement which may serve as a credit for future quantum communication.
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Entanglement distillation is in some sense a task subaltern to quantum state merging, since
entanglement distillation protocols are readily derived from quantum state merging protocols.'* In
this task, a given bipartite quantum source has to be transformed into shared maximal entanglement
by LOCC in the limit of large number of outputs. The optimal entanglement gain was determined in
Ref. 12, where a connection to secret key distillation from bipartite quantum states was exhausted.

However, these results were shown under strong idealizations of the sources. It was assumed
that the sources, where tasks are performed on, are memoryless and perfectly known. Since source
uncertainties, may they be present due to hardware imperfections of the preparation devices and/or
manipulation by adversarial communication parties, are inherent to all real-life communication
settings, this assumption seems rather restrictive.

The contribution of this work is to partly drop these conditions. We consider entanglement distil-
lation and quantum state merging in presence of compound and arbitrarily varying quantum sources.
A compound memoryless source models a preparation device which emits systems, uncorrelated
from output to output, all described by the same given density matrix, which in turn is not perfectly
known to the communication parties, but identified as a member of a certain set X’ of quantum states.
Consequently, the communication parties have to use protocols which are of sufficient fidelity for
each member of the set of states generating the compound source.

In the arbitrarily varying source (AVQS) model, the source state can vary from output to output
over a generating set of states. This variation can be understood as a natural fluctuation as well as a
manipulation of an adversarial communication party changing the source state from output to output
in an arbitrary manner. Consequently, the parties are forced to accomplish the tasks with protocols,
which are robust in the sense, that work with sufficient fidelity for each possible state sequence. In
this work, we contribute the following. Regarding one-way quantum state merging for compound
sources, we answer a question left open in the preceding work.” We derive protocols which beside
being optimal regarding their entanglement cost also approximate the lowest classical one-way
communication requirements allowed by corresponding converse theorems’'# which lower bound
the resource requirements for asymptotically faithful merging schemes.

We use the results on one-way entanglement distillation for compound sources estab-
lished earlier’ together with the famous elimination and robustification techniques introduced by
Ahlswede'-? to determine the capacity for one-way entanglement distillation from AVQS generated
by a set X of states. We show that the one-way entanglement distillation capacity in this case can be
expressed by the capacity function of the compound source generated by the convex hull of the set
generating the AVQS.

Considering quantum state merging under the AVQS model, we encounter unexpected behavior.
Opposite to the intuition gathered by previous results from classical as well as quantum Shannon
theory, the entanglement as well as classical communication resource costs for one-way merging of
an AVQS do not match the costs known for the corresponding compound source generated by the
convex hull of A" in general. We demonstrate this fact giving a simple example.

A. Related work

The task of entanglement distillation was subject to several investigations in case of perfectly
known memoryless quantum sources over the past 15 years. In this work, we generalize a result
from Ref. 12, where the entanglement distillation capacity with one-way LOCC for perfectly known
memoryless bipartite quantum sources was determined. Quantum state merging was first considered
in Ref. 14, where the authors determined the entanglement as well as classical cost of quantum state
merging for the scenario with perfectly known density matrix. Both results were partly generalized
to the case of compound memoryless sources in Ref. 7 within the one-way LOCC scenario. In this
work we continue and complete considerations made therein by determining the optimal classical
cost of one-way merging for compound quantum sources.

Communication tasks involving arbitrarily varying channels and sources were considered in
classical information theory from the late 1960s. Here we especially mention the robustification®3
and elimination! techniques developed by Ahlswede in the 1970s, which are crucial ingredients of
our proof of the one-way entanglement distillation capacity for AVQS. Arbitrarily varying channels
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were also considered in quantum Shannon theory. The first result was by Ahlswede and Blinovsky,?
who determined the capacity for transmission of classical messages over an arbitrarily varying
channel with classical input and quantum output. A treatment of arbitrarily varying quantum chan-
nels was done by Ahlswede, Bjelakovié, the first author, and Notzel published in 2013.* There,
they determined the quantum capacity of an arbitrarily varying quantum channel for entanglement
transmission, entanglement generation as well as strong subspace transmission.

B. Outline

We set up the notation used in this paper in Sec. II, where we also state some conventions and
preliminary facts we use freely in our considerations. The basic concepts relevant for this paper are
concisely stated and explained in Sec. III.

In Sec. IV, we conclude the investigations on quantum state merging for compound sources
begun in Ref. 7. Explicitly, we show existence of universal one-way LOCCs which are asymptotically
optimal regarding the entanglement as well as classical A — B communication cost. For the proof,
we use protocols derived in Ref. 7, which are optimal regarding their entanglement cost but require
overmuch classical side communication in some cases. These are refined in a sufficient way by
combination with an entropy estimating instrument used by the sender, where we utilize methods
from representation theory of the symmetric groups from Refs. 15 and 10. Section V is devoted
to determination of the capacity for entanglement distillation from an AVQS under restriction to
one-way LOCC. We first prove an achievability result in case that the AVQS is generated by a finite
set X of bipartite states. Here we use entanglement distillation schemes with fidelity going to one
exponentially fast for the compound source generated by the convex hull of A" from Ref. 7, together
with Ahlswede’s robustification and elimination techniques. Afterwards, we extend this result to
the general case approximating the AVQS generating set by suitable finite AVQS. We also consider
the issue of quantum state merging for AVQS and discover a strange feature of the quantum state
merging task in this scenario. We show in Sec. VI that, in general, the entanglement as well as
classical cost of merging an AVQS generated by a set X’ of bipartite state are strictly lower than the
costs of merging the corresponding compound source generated by conv(X). In Sec. VII, we discuss
the results obtained.

Il. NOTATION AND CONVENTIONS

All Hilbert spaces appearing in this work are considered to be finite dimensional complex vector
spaces. L(H) is the set of linear maps and S(H) the set of states (density matrices) on a Hilbert
space ‘H in our notation. We denote the set of quantum channels, i.e., completely positive and trace
preserving (c.p.t.p.) maps from L(H) to L(K) by C(H, K) and the set of trace-nonincreasing c.p.
maps by C¥(H, K) for two Hilbert spaces H, K.

Regarding states on multiparty systems, we freely make use of the following convention for a
system consisting of some parties X, Y, Z, for instance, we denote Hyyz := Hx ® Hy ® Hz, and
denote the marginals by the letters assigned to subsystems, i.e., oxz := try, (o) for 0 € S(Hxyz)
and so on. For a bipartite pure state |¢) (1| on a Hilbert space Hyy, we denote its Schmidt rank
(i.e., number of nonzero coefficients in the Schmidt representation of ) by sr(yr). We define

Fla.b) = H\/a\/EH? (1)

for any two positive semidefinite operators a, b on H (this is the quantum fidelity in case that a and
b are density matrices). If one of the arguments is a pure state, the fidelity is linear in the remaining
argument, explicitly F takes the form of an inner product,

E(p, [¥) (¥ ) = (¥, o) . 2

Relations between F and the trace distance are well known, we will use the inequalities

F(a,0) = tr(a) — lla — plh 3)
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for a matrix 0 < a < 1 and state p, and

lo—olli =2y1—F(p,0) “)

for states p, 0. The von Neumann entropy of a quantum state p is defined

S(p) := —tr(plog p), ®)

where we denote by log(-) and exp(-) the base two logarithms and exponentials throughout this
paper. Given a quantum state p on Hxy, we denote the conditional von Neumann entropy of p given
Y by

SX1Y, p) := S(p) = S(py), (6)
the quantum mutual information by
I(X: Y, p) := S(px) + S(py) — S(p), )
and the coherent information by
1.(X)Y, p) == S(py) — S(p) = =S(XI|Y, p). ®)

A special class of channels mapping bipartite systems, which is of crucial importance for our
considerations, are one-way LOCC channels, for which we give a concise definition in the following.
For more detailed information, the reader is referred to the Appendix on one-way LOCCs given
in Ref. 7 and references therein. A quantum instrument 7" on a Hilbert space H is given by a
set {Tx}X_, C CY(H, K) of trace non-increasing cp maps, such that Zf:l 7Ty is a channel. In this
paper, we will only admit instruments with |K| < oo. With bipartite Hilbert spaces Hp and Cy3,
a channel N € C(Hap, Kap) is an A — B (one-way) LOCC channel, if it is a combination of an
instrument {7;}X_, C CY(Ha, K4) and a family {Ry}X_, € C(Hp, Kp) of channels in the sense that
it can be written in the form

K
N(@) =) (T ® Ri)(a) (a € L(Hap))- ©)

k=1

The cardinality of the message set for classical transmission from A to B within the application of
N is K (the number of measurement outcomes of the instrument).

We denote the set of classical probability distributions on a set S by 3(S). The /-fold Cartesian
product of S will be denoted S’ and s’ := (sy, ..., s;) will be a notation for elements of S’. For
positive integer n, the shortcut [n] is used to abbreviate the set {1, ..., n}. For two probability
distributions p, g € P(S) on a finite set S, the relative entropy of p with respect to g is defined

ses P()1log 29 if p <«
D(p||q>:={zesp Saw TP (10)

oo else

where p < gmeans Vs € S : g(s) = 0 = p(s) = 0. We denote the Shannon entropy of a probability
distribution p by H(p). For a set A we denote the convex hull of A by conv(A). If X' := {p;}ses is
a finite set of states on a Hilbert space H, it holds

conv(X) = {pp €S(H): pp =) p() ps. q e%(&]. (11)
seS
By &,, we denote the group of permutations on [ elements, in this way o(sh) = (So(1)s - - - » So(ry) for
each s’ = (s1,...,s) €S and permutation o € ;.

For any two nonempty sets X', X’ of states on a Hilbert space H, the Hausdorff distance between
X and X’ (induced by the trace norm || - ||;) is defined by

’

ceXx 0'€X oleX O€

dy(X, X') ;= max {sup inf |lo —o'[|1, sup inf( lo — a/||1} ) (12)
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lll. BASIC DEFINITIONS

In this section, we define the underlying scenarios, considered in the rest of this paper. Given
any set X := {py}5es C S(H) of states on a Hilbert space H, the compound source generated by
X (or the compound source X, for short) is given by the family {{ ,ofz’l }ses Lien of states. The above
definition models a memoryless quantum source under uncertainty of the statistical parameters. The
source outputs each system according to a constant density matrix, while the density matrix itself
is not known perfectly by the communication parties. It only can be identified as a member of X.
The AVQS generated by X (or the AVQS X)) is given by the family {{o, }s s }ieN, Where we use the
definition

Psi = ps, @ ... &Q Py (13)

for each member s/ = (s, ...,s) of S'. In the AVQS model, the source density matrix can be
chosen from the set X' independently for each output. The variation in the source state models
hardware imperfections, where the source is subject to fluctuations in the state on one hand. On the
other hand, this definition also can be understood as a powerful communication attack, where the
statistical parameters of the source are, to some extend, perpetually manipulated by an adversarial
communication party.

A. Quantum state merging

We first give a concise notion of the protocols we admit for quantum state merging. We are
interested in the entanglement as well as classical resource costs of quantum state merging. A
quantum channel M is an (I, k;, D;) A — B merging for bipartite sources on Hup := Ha ® Hp, if
itisan A — B LOCC channel (according to the definition from (9))

M LK 45 @ HEp) = LIC 45 ® Hiplg), (14)
with k; := dim K} o/ dim K, |, where we assume K4 ; >~ Kp; (i = 1,2), and
D,
M) = A ® Bu(x). (x € LKG 45 © HGp), (15)
k=1

where {Ag, C CHK) , ® HS', K ,) constitutes an instrument and {Bi};; C C(K), ®
H%Z, ICIB'I ® H%,Z g) 1s a set of channels depending on the parameter k € [D;]. The spaces
KL B.0° K. .1 are understood to represent bipartite systems shared by A and B, which carry the
input and output entanglement resources used in the process. As a convention, we will incorporate
the maximally entangled states ¢f es$ (IC{L‘ .1)» 1 = 0, 1 into the definition of the protocol, it holds

. dim /C(l),A _ dim IC{),B _ sr((p(l))

= - - . 16
YT dimKL,  dimK,  si@)) (16)

We define the merging fidelity of M, given a state p! € S (H%) by
Fulol, Mi) i= F (M @ id 8} © ¥, 6} © ") a7

Here, v/ is a purification of p! with an environmental system described on an additional Hilbert
space H'. (usually H’. = H%Z with some space Hj), and " is a state identical to ¥ but defined on
H%,Z 5 completely under control of B. It was shown in Ref. 7 (Lemma 1) that the r.h.s. of (17) does
not depend on the chosen purification (which justifies the definition of F},;), and that the function
F,, is convex in the first and linear in the second argument. For the rest of this section, we assume
X := {ps}ses to be any set of bipartite states on H4p.

Definition 1. A number R, € R is called an achievable entanglement cost for A — B merging
of the compound source X’ with classical communication rate R., if there exists a sequence { M;};eN
of (I, k;, D;) A — B mergings, such that the conditions
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1. lim inf F,(p®, M) =1,
peX

=00
2. limsup %log ki < Ry,
=00
3. limsup }log D; <R,

[—o0

are satisfied.

In the following definition, priority lies on the optimal entanglement consumption (or gain)
of merging processes, while the classical communication requirements are of subordinate priority.
However, the classical communication is required to be rate bounded in the asymptotic limit. Since
the classical communication requirements are of interest as well, we also determine the optimal
classical communication cost in Sec. IV.

Definition 2. The A — B merging cost C ;}Q (X) of the compound source X is defined by

R, is an achievable entanglement cost for A — B
Cp,—(X) :=inf { R, € R : merging of the compound source X with . (18)
some classical communication rate R,

We recall the following theorem proven in Ref. 7

Theorem 3 (cf. Ref. 7).

Cn,—(X) = sup S(A|B, p). (19)
peX

Definition 4. A number R, € R is called an achievable entanglement cost for A — B merging
of the AVQS X with classical communication rate R, if there exists a sequence {M;};eN of (I, k;, D;)
A — B mergings satisfying
1. lim inf F,(pg, M;) =1,
l—>00 sleS!

2. limsup %log ki < Ry,
[—o00

3. limsup %log D; < R..

[—o00
Definition 5. The A — B merging cost C,ﬁ,v_) (X) of the AVQS X is defined by

R, is an achievable entanglement cost for A — B merging

AV R .
(&) := inf {Rq eR: of the AVQS X with some classical communication rate R,

}. (20)
B. Entanglement distillation

Concerning entanglement distillation, we are interested in the asymptotically entanglement gain
of one-way LOCC distillation procedures. We use the following definitions.

Definition 6. A non-negative number R is an achievable A — B entanglement distillation rate
for the AVQS generated by a set X' with classical rate R, if there exists a sequence {D;};cN of
A — B LOCC channels,

M,
Dy= Ani®Bu, (leN) 1)

m=1

such that the conditions

1. lim inf F(Dy(py), 1) = 1,
=00 sleS!
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2. liminf %log sr(¢;) > R,
l—o00
3. lim sup% log M; < R,

[—o0
are fulfilled, where ¢; is a maximally entangled state shared by A and B for each | € N.

In this paper, we will be primarily interested in the entanglement gain of one-way entanglement
distillation. Regarding the classical communication cost of entanglement distillation, no general cost
results are known even in case that the source is memoryless with perfectly known source state.'?

Definition 7. The A — B entanglement distillation capacity for the AVQS generated by X is
defined

. Risan achievable A — B entanglement distillation rate for

AV —
D) = sup {R " the AVQS Xwith some classical communication rate R,

} . (22

The corresponding definitions for achievable rates and entanglement distillation capacity of
compound sources can be easily guessed (see Ref. 7). To introduce some notation we use in this
paper, we state a theorem from Ref. 12, where the A — B entanglement distillation capacity D_, (p)
of a memoryless bipartite quantum source with perfectly known density matrix p was considered.

Theorem 8 (Ref. 12, Theorem 3.4). Let p be a state on Hp. It holds

1
D_.(p) = lim — sup DV(p®, T) (23)
k— o0 k TE@k
with
Do, T):= Y  1j(0) I(A)B, o)), (24)
jelJl:
2j(@)#0

where Oy is the set of finite-valued quantum instruments on A’s site, i.e.,

J
O := T}, CCHHTE . Ka): Y T € C(HS  Ka), J <00, dimKy <oop.  (25)

j=1

For each state o and quantum instrument T := {7}}11:1 on A’s site and definitions
1 .
1(0) = W(Tj(o), and o = —(0)(T; @ ids, (o) (26)
J

foreach j with A (o) # 0.

Remark 9. It is known'? that the limit in (23) exists for each state, and maximization over
instruments in this formula is always realized by an instrument T = {’Tj}jj.:1 with J < dim Hik and
the operation T; described by only one Kraus operator for 1 < j < J.

In order to obtain a compact notation for the capacity functions arising in the entanglement
distillation scenarios we consider in this paper, we introduce a one-way LOCC 7 := Zf:, T ®

le;) (e;| for each instrument {Tj}JJ.=1 with domain H, and an orthonormal system {e j}jj'=1 in a
suitable space H/, ~ C” assigned to B, it holds

DW(o,T)=I.(A)BB', T(0)) 27)

in (24) for each given state o.
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IV. QUANTUM STATE MERGING FOR COMPOUND QUANTUM SOURCES

In this section, we derive, for any given bipartite compound source X', asymptotically faithful
state merging protocols, which are approximately optimal regarding their entanglement as well
as classical A — B communication cost given the corresponding converse statement.” While the
merging cost was determined in Ref. 7 before (see Theorem 3 above also), the protocols used there
are suboptimal, in general, regarding their classical A — B communication requirements. However,
it was shown there (see Sec. V in Ref. 7) that

R. =sup I(A;E, p) (28)
peX

(supremum of the quantum mutual information between A and a purifying environment E) is a
lower bound on the A — B classical communication cost for merging a compound source X by
protocols which have fidelity one in the limit of large blocklengths.

Proposition 13 below states that this bound actually is achievable, and thus together with results
from Ref. 7 provides a full solution of the quantum state merging problem for compound quantum
sources. The assertions proved in this section will be utilized in Sec. VI, where we compare the
A — B merging as well as the classical communication cost of a certain AVQS merging protocol
for a set X with the optimal costs of state merging protocols for the compound source generated by
conv(X).

The preliminary Proposition 10 below is a slight generalization of Theorem 6 in Ref. 7. It
states existence of protocols achieving the optimal entanglement cost, but with generally suboptimal
classical communication rates. However, these protocols will be utilized to derive protocols suitable
for the proof of Proposition 13.

Proposition 10 (cf. Ref. 7, Theorem 6). Let X C S(H ap). For each § > 0, there is a number
lp € N, such that for each blocklength | > I there is an (I, k;, D;) A — B merging M, such that

inf F(p®, M;)>1—27" (29)
peX

with a constant ¢ = ¢1(X, §) > 0,

1
—logk; < sup S(A|B, p)+§ 30)
l peX
and
1
—log D; < sup S(pa) + sup S(A|B, p) + 6. a3
l peX peX

Proof. The assertion to prove includes both a strengthening of the fidelity convergence rates
in Ref. 7, Theorem 4 to exponentially decreasing trade-offs, and a generalization of Theorem 6 in
Ref. 7 to arbitrary (not necessary finite or countable) sets of states. Approximating X by a 7;-net
Xy = {pi }j\i’l C S(H 4 ® Hp) for each blocklength [ (see Ref. 7 for details) and using the result for
finite sets, we infer by careful observation of the merging fidelities in Ref. 7 (see Egs. (36), (37), and
(58) therein) that for given § > 0 and large enough blocklength /, there exists a (I, k;, D;) A — B
merging M, where

inf, Fu(p® M) >1-N;-27" -4/l ¢ (32)
pe
is valid for the merging fidelities with a constant 8 = 6(§) > 0, and

1 1)
—logk; < sup S(A|B, p) + = (33)
l peX 2
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(see (57) in Ref. 7). Moreover, we can bound the number of messages for the classical A — B-
communication (see (101) in Ref. 7) by

1 s 1
7 log D; = 1?32%,, S(pai) + 12‘125@,1 SAIB.p)+ 5+ 7 log Ny, (34)
_ § 1
< sup S(pa) + sup S(A|B, p) + ¥(r)) + = + - log Ny, (35)
peX peX 2 l

where the summand V(7)) := 37 log —dim:,% Al

inequality,? i.e.,

follows from threefold application of Fannes’

max S(pa,;)+ max S(A|B, p;) — sup S(pa) + sup S(A[B, p)| < V(7). (36)
lSlSNTl ISISNTI peX peX

Due to the bound given in Ref. 7, Lemma 9, it is known that the nets can be chosen with cardinality

bounded by

3 2(dim Hap)?

N, < <—) (37)
T

for each I € N. Choosing net parameter 7; = 27" with 0’ := min{6/8(dim Hap)?, 6/4} for each [,
we infer

inf F(p®, M) >1—27% —27% > | e (38)
peX
with a constant ¢; = ¢;(6) > 0, and

1
—log D; < sup S(pa) + sup S(A|B, p)+ 6 39
l peX peX

from (35) if [ is large enough to satisfy v(7;) < %. Collecting the bounds in (33), (38), and (39), we
are done. O

Before we state and prove Proposition 13, we collect some results from representation theory
of the symmetric groups, which we utilize in the proof.

We denote by Y F;; the set of young frames with at most d rows and / boxes for d,/ € N. A
young frame A € Y Fy; is determined by a tuple (Aj, ..., A;) of nonnegative integers summing to
1. The box-lengths Ay, ..., Ay of A define a probability distribution A on [d] in a natural way via
the definition A(i) := %A,- foreach 1 <i < d. To each Young frame A € Y Fy, there is an invariant
subspace of (C4)®!, and we denote by P, ; the projector onto the subspace belonging to A.

Theorem 11 below allows to asymptotically estimate the spectrum of a density operator p
by projection valued measurements on i.i.d. (independent and identically distributed) sequences of
the form p®, and is an important ingredient of our proof of Proposition 13. A variant of the first
statement of the theorem was first proven in by Keyl and Werner.'> The actual bounds stated below
are from Ref. 10, while the remaining statements of the theorem are well-known facts in group
representation theory (Ref. 10 and references therein are recommended for further information).

Theorem 11 (cf. Refs. 15 and 10). The following assertions are valid for each d,l € N.
1. For) e YF;, and p € S(CY), it holds
w(Prip®) < L+ D™V exp(—ID(R|Ir)), (40)

where & € B([d)) is the probability distribution given by the normalized box-lengths of A, and
r is the probability distribution on [d] induced by the decreasingly ordered spectrum of p (with
multiplicities of eigenvalues counted).

2. |YFyl<d+D%

3. Fori, ) e YFd'[, it holds P,\'ZP)L/J =0 l'f)» #* A
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Lemma 12 (Refs. 19 and 17). Let t, X be matrices with t > 0, tr(t) <1, and 0 < X <1,

€ €(0,1). Iftr(pX) > 1 — ¢, it holds
IVXpvVX = pll <2Ve. (41)

The following proposition is the main result of this section.

Proposition 13. Let X C S(Hap) be a set of states on Hap. For each § > 0, there exists a
number ly = 1y(8), such that for each | > Iy there is an (I, k;, D;) A — B merging M, with

inf F,(p® M) =1-27"% (42)
peX
with a constant ¢, = c3(X, 8) > 0,
1
—logk; < sup S(A|B, p)+ 6 43)
l peX
and
1
—logD, <supI(A;E, p)+ 38, (44)
l peX

where the quantum mutual information in (44) is evaluated on the AE marginal state of any pu-
rification W of p (notice that the above abuse of notation does not lead to ambiguities, since
I(A; E, ttap(¥r)) = S(pa) + S(A|B, p) holds for any purification  of p).

Remark 14. Regarding the classical communication cost a quite restrictive converse statement
was shown to be valid.” Asymptotically faithful one-way state merging schemes demand classical
communication at rate

R. > sup I(A; E, p) (45)
peX
regardless of the entanglement rate achieved, i.e., even investing more entanglement resources

(choosing protocols with suboptimal merging rates) does not lead to a reduction of the classical
communication cost in a significant way.

Proof of Proposition 13. One half of the above assertion was already proven (see Ref. 7 and
Proposition 10 at the beginning of this section). Explicitly, it was shown there that A — B LOCC
channels exist for each set of bipartite states, which for sufficiently large blocklengths fulfill the
conditions formulated in (42) and (43). We complete the proof by demonstrating that also the
constraint (44) on the classical A — B communication rate can be met simultaneously with (42)
and (43) by certain protocols. The strategy of our proof will be as follows. We decompose X’ into
disjoint subsets &, ..., Xy, each containing only states with approximately equal entropy on the
A-marginal system and combine an entropy estimating instrument on the A-system with a suitable
merging scheme for each set &; according to Proposition 10. We fix § > 0, and assume, to simplify
the argument, that

§:=sup S(A|B,p) <0 (46)

peX
holds (i.e., merging is possible without input entanglement resources for large enough blocklengths).
Otherwise the argument below can be carried out using further input entanglement and wasting it

before action of the protocol. We define d := dimH 4 and fix n € (0, 1] to be determined later.
Consider the sequence

so:=0<s1 <...<sy:=logd, s :=s;_1+nforeachl <i < N. A7
Define intervals I} := [so, s;] and I; := (s;_1, s;] fori = 2, ..., N, which generate a decomposition
of X into disjoint sets &, ..., Xy by definitions

X :={p € X : S(pa) € I} (i € [ND), (48)
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and set
X = | X e VD, (49)
Jjen()

where n(i) is defined n(i) :={j € [N]:|j —i| < 1} for all i. In order to construct an entropy
estimating instrument in the A marginal systems, we define an operation 731(') € CH(HS,, HEY,) by

PC) = pis ® Lys(Oply @ Ly with — pyyi= Y Py (50)
reYFy
HOel;
for each i € [N] using the notation from Theorem 11. Notice that py, ..., py form a projection

valued measure on Hf’l due to Theorem 11.3. By construction, we have for each state i € [N],
pE X,

Yo owPPe®N =Y wpipih (51)
JENT\n(i) JEIN\n(i)
= Y w(Pupd) (52)
AEY Fyy:

[H)—=S(pa)l=n

<|YFyl-(+1)y1@-be2 (53)

x exp | —/| min min D) | |, (54)
r:H(r)el; reY Fyt
[HQM)—H(r)|=n

where (51) and (52) are valid due to construction and (54) follows from Theorem 11.1. Since the
relative entropy term in the exponent on the r.h.s. of (54) is bounded away from zero for each fixed
number n > 0 (consult the Appendix of this paper for a proof of this fact), i.e.,

min min D(A||r) = 2¢3 @i €[N)] (55)

r:H(r)el; AEY Fyy:
[HG)—H(r)|=n

with a constant c3 = c3(n) > 0, and the functions outside the exponential term are growing polyno-
mially for [ — oo (see Theorem 11.2), we deduce

> wP ) =27 (i € [N]) (56)
JEINN\n(i)
provided that [ is large enough. Define index sets J := {i : X; % ¢} and J ={i: X, +# 0). We know
from Proposition 10 that for each sufficiently large [, we find an (I, &;, Dl(l)) A — B merging M;’)
for each i € J such that

inf F,(p®, M) >1-27a (57)
peXi
holds with a constant ¢; > 0,
1 )
——logk; < sup S(A|B, p) + = (58)
! peX; 2
and
1 B 8
TlogD, =< sup S(pa) + sup S(AIB,p)—i—z (59)

pEX; PEX;
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for the classical A — B communication rate. By construction of the sets X;, i € J, it also holds

I(ASE, p) = S(pa)+ S(A|B, p) = sup S(pa) — 31+ S(A|B, p) (60)

peX;

for each p € X;. Taking suprema over the set X; on both sides of the above inequality in combination
with (59) leads us to the estimate

1 i ) )

—log D" < sup I(A;E,p)+ = +3n < sup I(A;E, p)+ = + 31 (61)
! ped; 2 peX 2

for each i € [J]. Combining the entropy estimating instrument {P,(j )}II-V

merging protocols, we define

, with the corresponding

N
M) =Y M o PG, (62)

i=1
The maps Mﬁ” are yet undefined for all numbers i € [N]\ 7. Since they will not be relevant for the
fidelity, they may be defined by any trivial local operations, with DZ(’) = lfori € [N]\ J.Moreover,

we assume that the merging rate of M;i) for each i is stuck to the worst and each ./\/l;i) outputs
approximately the same maximally entangled resource output state ¢;. We can always achieve this
by partial tracing and local unitaries, which do not further affect the classical communication rates.
By inspection of the definition in (62) one readily verifies that M, is, in fact, an (I, k;, D;) A — B
merging, with

D =) D" +|N -], (63)
ieJ

and therefore, classical communication rate bounded by

1 1 , ~
7log D = 7 log > D+ N -7 (64)
ieJ

1 .

< 21 . D(l)
< s (s oF ) )

) log N

< sup (A E. p)+ 5 +3n+ ——. (66)

peX

It remains to show that we achieve merging fidelity one with {M,},cn for each p € X with expo-
nentially decreasing trade-offs for large enough blocklengths. Assume p is a member of &; for any
index i € J. Then, it holds

Fu(p® M) = > Fu(p® M o P (67)
jen()
=Y F® . M oP) =" > F(p®. M oP). (68)
Jen(i) jen(i) ken(i)
k#j

The inequality above holds because the merging fidelity is linear in the operation and all summands
are nonnegative together with the definition of M;. The equality is by some zero-adding of terms
and using the definition Nl(l) =) jen() 73,(/ ) together with linearity of the merging fidelity in the
operation again. We bound the terms in (68) separately. Beginning with the second term, we notice

that the fidelity is homogeneous in its inputs and bounded by one for states, it holds

FOMP 0 PP @ idyer (1), 61 ® ¥) < (PP (08")). 69)
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Summing up the bounds in (69), rearranging the summands and using the definition of P, we
obtain the bound

YooY Ea® Mo < Y T w(PP (o) (70)
Jjen(i) ken(i) jen(i) ken(i
K j ke j

= (In()| — D (PP (p®)) (71)

< |n()| — 1. (72)

To bound the first terms in (68), we use the relation between fidelity and trace norm in (3). It then
holds for each j € n(i),

Fu(p®, M 0o P") = w(P(p®) = IM” o P @ idya (W) =1 @ Ylh. (73)

For the second term in (73) it holds by zero adding, triangle inequality, and monotonicity of the trace
norm under action of partial traces

1M 0 P @ idyger (1) — 1 @ i < MY @ idyger (91). 1 ® WO 11 + 1B (0% — 1.

(74)
We further yield the bound
1M ® idyger (1) — &1 ® /I (75)
=2(1- FRY @ity tr @) (76)
<2.271% 77

by (4) together with (57), and

1P = ¥l = 21 —uBP (oo < 2273, (78)

where the first inequality is by Lemma 12, and the second inequality is valid due to the bound in

(56) along with the fact that (because pi,,...., py is a resolution of the identity into pairwise
orthogonal projections)
1=u(PO™) = tr((idngy —P) ™) = 3 wP(o®) (79)
JEINT\n(i)

holds. We define the constant ¢4 by ¢4 := min{éy, ..., €y, c3}. Combining (73) with (74)—(78) leads
us to the estimate

Fu(p® M o P) = (P (p®)) — 4277 (80)

>1-5.2717 81)

for each j € n(i), where the last of the above inequalities, again is by the bound in (56). By inserting
the bounds given in (72) and (81) into (68), we yield

Fu(p®, Mp) = [n()|(1 = 5-27%) = (In(i)| — 1) (82)

> 1 —5n@)|- 277 (83)

>1-15.27'7. (84)
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If we now choose 1 small enough and assume /, large enough, to suffice
log N
0
(58), (66), and (84) show that M, has the desired properties for each [ > .
The assertion can be proven for the remaining case § > 0 by considering a compound set
{p ® ¢o: p € X} with a maximally entangled state ¢p having Schmidt rank large enough to en-

sure sup .y S(A|B, p ® ¢p) < 0 and repeat the argument given above for the first case (note that
I(A E, p ® ¢o) = I(A; E, p) holds for each state p € X). O

3n+ <é

: (85)

Corollary 15. Asymptotically faithful A — B-one-way quantum state merging of a compound
source X is possible with (quantum) merging cost

Cin,—(X) = sup S(A|B, p) (86)
peX
and classical cost
R(X) =sup I(A; E, p) (87)
peX

(again with the quantum mutual information evaluated on the AE marginal system of a purification
¥ € S(Hape) of p for each p € X).

Especially, the above lines show that the merging cost as well as the classical A — B com-
munication cost exhibit regular behavior: If two nonempty sets X, X' are near in the Hausdorff
distance (see Sec. Il for a definition), the costs will be nearly equal as well.

V. ENTANGLEMENT DISTILLATION FOR ARBITRARILY VARYING QUANTUM SOURCES

In this section, we prove a regularized formula for the one-way entanglement distillation capacity
where the source is an AVQS generated by a set ¥ C S(H 4 ® Hp). We first prove the achievability
part in case that X is finite, where we derive suitable one-way entanglement distillation protocols
for the AVQS & from entanglement distillation protocols which are universal for the compound
source conv(AX’) with fidelity approaching one exponentially fast. In a second step, we generalize this
result allowing X to be any (not necessarily finite or countable) set on H4 ® Hp. To this end, we
approximate X’ by a polytope (which is known to be the convex hull of a finite set of states), where
we utilize methods we borrow from Ref. 4. First we state some facts concerning the continuity of
the one-way entanglement distillation capacity functions.

A. Continuity of entanglement distillation capacities

Continuity was shown for the capacity functions appearing in coding theorems of several
quantum channel coding scenarios,'® here we state and prove uniform continuity for the entanglement
distillation capacity functions.

Lemma 16. Let Y, Y’ C S(Hx ® Hy) be two nonempty sets of bipartite states with Hausdorff

distance 0 < dy (Y, V) <€ < % It holds for each k € N and c.p.t.p. map N with domain E(H??)

inf L.OOY, N(@®) = inf 1.(X)Y, N (@) = kv(e), (88)

where the function v is defined by v(x) := 4xlogdim Hx + 2h(x) for x € (O%) and h being the
binary entropy h(x) ;== —xlogx — (1 — x)log(1 — x).

Proof. We show this assertion with sets containing only one state defined ) := {t}, )’ := {o}.
The general assertion in (88) follows directly by definition of the Hausdorff distance. The argument
parallels the one given in Ref. 16, Theorem 6 for continuity of the entropy exchange for channels.
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Introduce a state ;. , := t®" ® o®k=n foreach 0 < n < k. By assumption, it holds

1Vin—1 — Vinlh <€ (89)

foreachO < n < k, whichimplies via the Alicki-Fannes inequality® for the conditional von Neumann
entropy

[ LX)V, N(Yen-1) = 1(X)Y, N(yi )| < v(€) (90)

for each 0 < n < k by (89) and monotonicity of the trace distance under action of . Further, it
holds

[1(X)Y, N(t%) — I(X)Y, N (a®"))| o1
= [L(X)Y. N(yei) — L(X)Y. N (v1.0))| (92)
k
= D (L)Y, NGin-1) = L(X)Y, N (i) (93)
n=1

k
< D )Y, Nia1) = L)Y, N (94)

n=1

where the first equality above is by definition, and the second by adding some zeros. Estimating
each summand in (94) by (90) concludes the proof. O

Corollary 17. The one-way entanglement distillation capacity D_, for memoryless sources
with perfectly known source state in (23) is a uniformly continuous function (considering the trace

distance). Explicitly, it holds for p, o0 € S(Ha @ Hp) with ||p — o} < € < %, it holds

|D-(p) — D-.(0)] < v(e). (95)

B. AVQS generated by finite sets

In this section, we assume X to be a finite set of bipartite states. We show that sequences of
one-way entanglement distillation protocols for the compound source conv(X’) with fidelity going
to one exponentially fast can be modified to faithful entanglement distillation schemes for the AVQS
X. We apply Ahlswede’s robustification® and elimination' techniques. This method of proof is well-
known in classical information theory, and found application also in the quantum setting where it
was shown to be a useful approach to determine the entanglement transmission capacity of arbitrarily
varying quantum channels (AVQC).* Proposition 18 below is a generalization and sharpening of
Lemma 12 in Ref. 7 required for our considerations. It asserts achievability of each rate below the
one-way entanglement capacity for a compound source generated by a set ), where we drop the
condition of finiteness imposed on ) in Ref. 7, Lemma 12. Moreover, we show, that each of these
rates is achievable by protocols with fidelity approaching one exponentially fast.

Proposition 18. Let Y C S(Ha @ Hp) be a set of bipartite states. For eachk € N, § > 0, there
exist a number ly = ly(k, §) and a constant c¢s = c5(k, 8, X) > 0, such that for each | > I, there
exists an A — B LOCC D, fulfilling

inf F(D(p®), ) = 1 -271, (96)
peX
where ¢; is a maximally entangled state shared by A and B with
1 1
— logsr(¢) > lim — sup inf Dg)(p‘@k, T)— 6. 97)
l k—oo k Te@, X

The function D is defined in (24), and ®y is defined as in (25) for each k € N.
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Proof. The line of proof is similar to that of the proofs given for Lemma 12 and Theorem 8 in
Ref. 7 where we replace usage of Theorem 4 therein by the sharper and more general result
Proposition 10 proven in Sec. IV above. We only briefly indicate the line of proof and restrict
ourselves to the case k = 1. For other k, the argument is nearly the same. For given instrument 7°
on A’s systems, and § > 0, we apply Proposition 10 to the set {’]A'(p)} pex (remember the notation
introduced in (27)). In this way, we find for each large enough / an A — B LOCC D; (incorporating
7)), such that

inf F(Dy(p®), ¢y) > 1 — 27 (98)
peX

holds with a maximally entangled state ¢; with

1 )
710g sr(¢y) = — sup S(AIBB', T(p)) — = (99)
pPE
= inf I.(A)BB’, 7 (p) é (100)
—;gX (A) , p)—z.

Since this can be done for each instrument 7 on A’s site. Maximization over instruments on A’s site
shows the assertion. O

Proposition 18 allows to drop the finiteness condition on the compound generating set in
Ref. 7, Theorem 8. We obtain the following corollary.

Corollary 19 (cf. Refs. 7 and 8). Let Y C S(Ha ® Hp).

1. It holds

1
D_.(¥) = lim - sup inf DD (p®* T, (101)

k=00 K Te@, PEY

where the set O is defined as in (25) for each k € N.
2. The function in (101) behaves regular for compound sources in the following sense. If Y, Y’ C
S(H ap) are two nonempty sets of bipartite states with dy (Y, )') < 8 < %, it holds

|D_.(Y) = D (V)] < v(3). (102)

Proof. Achievability of the r.h.s. in (101) directly follows from Proposition 18. For the converse
statement, we refer to the proof of Theorem 8 in Ref. 7 for finite sets of states. The argument given
there directly carries over to the general case. It remains to show validity of the inequality in (102).
Assume dy(),)) <6 < % Let T > 0 be an arbitrary but fixed number, and Q be an instrument

with domain ﬁ(Hfl), such that

inf 1 “(A)BB', O(0®)) > sup inf I.(A)BB', T(p®)) — (103)
TEOk ,06

holds, where we used our notation from (27). Lemma 16 implies

inf I.(A)BB', Q(p®)) > inf I.(A)BB', Q(p®") — kv(5), (104)
PE peY’

which, together with (103), implies

sup inf I.(A)BB', T (p®)) > sup § 1nf I(A)BB', T(p®)) — T — kv(é). (105)
TEOA pey
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Since the above line of reasoning also holds with ), )’ interchanged and 7 can be chosen arbitrarily
small, we obtain

sup inf DV (p®* T) — sup inf DV (p®* T)| < kv(s). (106)
Teo, PEY Tet, PEY
The above inequality together with the first assertion of the corollary proves the second one. m|

The following theorem is the core of the robustification technique. It was first proven in Ref. 2.
The version below (with a better constant) is from Ref. 3.

Theorem 20 (Robustification technique, cf. Theorem 6 in Ref. 3).
Let S be a set with |S| < oo and | € N. If a function f : S' — [0, 1] satisfies

D fGhats)) g =1—y (107)
steS!
for each type q of sequences in S' for some y € [0, 1], then

ll, D flesh=1-+DS .y vs'es. (108)

: (TEG[
The following theorem is the main result of this section.

Theorem 21. Let X := {p;}ses C S(Ha ® Hp), |S| < 0o. For the AVQS generated by X, it
holds

DAY(X) > D_, (conv(X)) = lim sup inf D(T, p®), (109)
k=00 1c@, PEBES) r

where we use the definition
ppi= Py (110)
seS
for each p € P(S).

Remark 22. The above statement actually holds with equality in (109) which we show in the
proof of Corollary 25 below.

Proof. We show that each rate R, which is achievable for A — B entanglement distillation for
the compound source generated by conv(X), is also an achievable rate for A — B entanglement
distillation for the AVQS generated by X. We indicate the elements of conv(X’) by probability
distributions on S, since

conv(X) = 1pp: pp =) ps)ps, p € P(S) (11)

seS

holds. We know from Proposition 18 that for an achievable A — B entanglement distillation rate
R for the compound source generated by conv(X), § > 0 and each sufficiently large blocklength /,
there exists a one-way LOCC channel D;, such that the condition

in F(D,(p2), ¢p)=1-27"> 112
min (Dipy,"), o) = (112)
is fulfilled with a maximally entangled state ¢; shared by A and B, such that

;log sr(¢)) > R — 8 (113)
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holds. Note that ~the minimization in (112) is because of (111). We define a function f : S’ — [0, 1]
by f(s') :== F(Dy(py)., ¢) for each s’ € S/, and infer from (112) that

D P pls) fsh) =127 (114)

steSt

holds for each p € P(S) with a constant ¢s > 0. Let
Us(:) = Us6 ®Up (YU}, ® Up,, (115)

for each permutation o € &;, be the unitary channel, which permutes the tensor factors in H%
according to o (with unitary matrices Uy », Up » permuting the tensor bases on Hfz resp. H%’l). It
holds

Po(sh)y = Ua(ﬂsl), (116)
and consequently
f(o(sh) = F(DioUy(py). ¢1) (117)

for each s' € §', 0 € &,. The functions in (117) fulfill the conditions of Theorem 20, which in turn
implies that

. 1 -
(1= @+ D) 275 < = 3 7 F(Dy o Uy (po), 1) (118)
UEG]
= F(Di(py), ¢1) (119)

is valid with the definition f)l = Zl, Zaee, D, oU,. Notice that 75, is an A — B LOCC channel
either. However, D, is not a reasonable protocol for entanglement distillation regarding the clas-
sical communication cost. Implementation of D; demands A — B communication of a number
of classical messages increased by a factor /! compared to the requirements of D;, which leads
to super-exponential growth of required classical messages and consequently unbounded classical
communication rates. We remark here that for a coordination of the permutations in @1, common
randomness accessible to A and B, which is known to be a weaker resource than A — B com-
munication, would suffice. Nonetheless, the asymptotic common randomness consumption of the
protocol would be above any rate either. We will apply the well-known derandomization technique
which first appeared in Ref. 1 to construct A — B LOCC channel with reasonable classical commu-
nication requirements (actually, we will show that we can approximate the classical cost of A — B
distillation of the compound source conv(X’).

Let X1, ..., Xk, be a sequence of i.i.d. random variables, each distributed uniformly on &,. We
define a function g : &; x S' — [0, 1] by

g(o,s") =1—F(D; oUs(ps), $1) (c €65 8. (120)
One readily verifies that
E[¢X1,sH] =1 - FDupy). ¢) < (+ D275 = ¢ (121)
holds for each s’ € S'. Thus, for each s’ € 8/, and v; € (0, 1), we yield

K; K
Pr (Z §(Xi, s > Klvl) = Pr (1_[ exp(g(Xx, s1)) > 2’“”’) (122)

k=1 k=1

< 27K [exp(g(Xx, sH]" (123)
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<27 K (14+E [exp(g(Xk, sl)])K’ (124)
< 27K,v1 X 2K1 log(1+¢€) (125)
< o~Kitu=2a), (126)

Equation (123) above is by Markov’s inequality, (124) follows from the fact that exp(x) < 1+ x
holds for x € [0, 1], (125) is by (121), and (126) follows from the inequality log(1 + x) < 2x being
valid for x € (0, 1). From (122)—(126) and application of de Morgan’s laws, it follows

K;

1
Pr (VS] eS: ra Zg(Xk, sh < v,) >1—|S|'. 27 Ki=2e) (127)
L=

I(li—x)

>1—2717", (128)

for large enough /, where the last line results from the choosing v; = 27/ and K; = 2'? with 6, k > 0.
If we choose « and € in a way that they fulfill 0 < k < 6 < c, the r.h.s. of (128) is strictly positive

and we find a realization o7, . .., ok, of X1, ..., Xk,, such that for each s’ € §
1 &
27 > — N " g(oy, sH (129)
K ; ¢
1 &
= 1= > FDroly(os). 1) (130)
I =1
=1—F(Di(ps), P1), (131)

where we defined D, := KL, Z,{il Do Uy, . With (113) and (131), itis shown that for each sufficiently
large blocklength /, we find a one-way entanglement distillation protocol with

1
min F(Di(py) ¢1) = 1 = 27 and 7 logsr(¢) = R — 4. (132)
ste

Notice that the number of different classical messages to be communicated by A within application
of D is increased by a factor 2/ compared to the message transmission demanded by D, i.e., the
communication rate is increased by 8 (which we can choose to be an arbitrarily small fixed number).

O

C. General AVQS

In this section, we generalize the results of Sec. V B, admitting the AVQS to be generated by
any not necessarily finite or countable set X of states on H4 ® Hp. We approximate the closed
convex hull of X’ by a polytope, which is known as the convex hull of a finite set of points and
apply Theorem 21, together with continuity properties of the capacity function. The proof strategy
has some similarities with the argument given in Ref. 4 for entanglement transmission over general
arbitrarily varying quantum channels. To prepare ourselves for the approximation, we need some
notation and results from convex geometry which we state first. For a subset A of a normed space
(V, |l - |I), A is the closure and affA is the affine hull of A. If A is a convex set, the relative interior
riA is the interior and the relative boundary rebd A of A are the interior and boundary of A regarding
the topology on aff A induced by || - ||

Lemma 23 (Ref. 4, Lemma 34). Let A, B be compact sets in C" with A C B and
dy(rebdB, A) =1t > 0, (133)
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where || - || denotes any norm on C". Let P a polytope with A C P and dy(A, P) < 8, where
8 € (0, t] and dy is the Hausdorf{f distance induced by || - ||. Then P’ := P N aff A is also a polytope
and P C B.

With the above statement and the assertions Sec. V B, we are prepared to prove the following
theorem which is the main result of this section.

Theorem 24. Let X := {p;}scs be a set of states on Ha ® Hp. Foreach§ > 0andk € N, there
exists a number ly € N, such that for each |l > ly, there isan A — B LOCC channel D; fulfilling

inf F(Dy(py), ¢p) = 1—271 (134)
seS
with a maximally entangled state ¢; shared by A and B and a constant cg > 0, such that

1 1
—logsr(¢y) > — sup  inf D@ T)—34 (135)
l k Te®y Teconv(X)

holds, where the function DY is defined in (24).

Proof. Let T := {7}};:1 be any instrument with domain £(H§k), 6 > 0. Dealing only with the
nontrivial case, we show that

; 1 N P

peclonv(X) %IC(A)BB ,T(®) =8 >0 (136)
is an achievable rate (remember our notation from (27)). Since the Hausdorff distance between
conv(X) and conv(X) is zero, it makes no difference if we consider the set conv(X) instead. We
briefly describe the strategy of our proof. We approximate the set conv(X’) from the outside by a
polytope P,. Since P,, as a polytope, is the convex hull of a finite set of points, Theorem 21 can be
applied. A technical issue (cf. Ref. 4) is to ensure that the approximating polytope completely consists
of density matrices, i.e., P, C S(H4p). We achieve this by a slight depolarization of the states in
conv(X’), such that the resulting set does not touch the boundary of S(H 45). Define, for y € [0, 1],
the channel \V,, € C(Ha ® Hp) by N, := Ny, ® Ng,,, where Ny, is the y-depolarizing channel
on the subsystem X, X = A, B, i.e.,

N, @) ==yt +y(l —y)ta @np + 74 ® 1) + ¥ (14 ® 7p) (137)

for each 7 € S(H4 ® Hp), where 74, w5 are maximally mixed states and 74, 7p are the marginals
of 7 on H 4, Hp. Notice that V,, is defined in terms of local depolarizing channels on the subsystems.
This is required, since we are restricted to one-way LOCC channels. It holds

N (D) = 2l < (L=t — Tl + 01 — n)llTa ® 75 + 74 @ T3]3 (138)
+nllma @ sl (139)
<67 (140)

for each state T on H 4 ® Hp. Moreover, it holds AV, (conv(X)) = N, (conv(X)) C riS(Ha ® Hp),
which implies

inf {llp — p'lli = p € Ny(conv(X)), p" € rebd(S(H4 ® Hp))} > 0. (141)

Therefore, due to of Lemma 23 and Theorem 3.1.6 in Ref. 18, there exists, for each small enough
number 1 > 0, a polytope P, := conv({t}ecg,) C S(H4 ® Hp) such that /\/,](conv()()) C P, and

dy (N, (conv(X)), P)) < 1. (142)

Applying Theorem 21 to the finite AVQS generated by the extremal set {,}.cr of the polytope P,,
we know that for each sufficiently large blocklength /, there exists an A — B LOCC channel D,



082208-21 H. Boche and G. JanBen J. Math. Phys. 55, 082208 (2014)

such that
F(Dy(za), ¢y) > 1 — 271 (143)

holds with a maximally entangled state ¢; shared by A and B for each ¢/ € E! with Schmidt rank
fulfilling

1 1 A 1)
—logsr(¢y) > — inf I.(A)BB’, T(‘L’®k)) - —. (144)
) k tep, 2

Since N, (conv(X)) C P, holds, the depolarized version V, (po;) of each state p;, s € S can be written
as a convex combination of elements from {7, }.ck,, i.€.,

Nolp) = qlels) (145)

eck,

with a probability distribution g(-|s) on E, for each s € S. We define a one-way LOCC channel D,
by D;:=D; 0 ./\/,f’l and deduce

F(Di(ps). 1) = F(DIN (051)). 1) (146)

!
=F <251 (® N,(p, )) ,¢l> (147)

i=1

I

=F[D | QD gtelsnr., | . & (148)

i=1 ¢;€E

!
_ Z . Z l_[p(eilsi)F (Di(z.), ¢1) (149)

ejeE e/eE i=1

=Y q'(Is"h FDi(za). ¢1) (150)
e’eE‘n

>1-27% (151)

for each s = (sq, ..., s;) € S' where we used (145) in (148) and (151) is by (143). To complete the
proof, we show that for small enough 7,

peciorrllg(x) I.(A)BB', T(p®")) > tigg) I.(A)BB', T(z®)) — % (152)
holds. For each p € conv(X), T € P,, we have
o =zl < llp = Ny(o)lli + Ny () — <l (153)
< 6 + [N, (0) — 7l (154)
where the last estimation is by (140). From (154), we can conclude that
dp(conv(X), P)) < dy(N,(conv(X), P,) + 6n < Tn (155)

holds, which implies, via Lemma 16,

inf  I.(AYBB', T (p®)) — inf I.(A)BB’, T(z®))| < kv(7n). (156)
peconv(X) TeP,
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If now 7 is chosen small enough to ensure v(771) < $ (152), and we conclude, collecting inequalities,
that the entanglement rate of D is

1 1 A 8
- logsr(¢y) > — inf I.(A)BB’, T(r®k)) - = (157)
[ k tep, 2
1 A
- ) / ®kyy _
z pecggm I.(A)BB', T(p*")) — 4, (158)
where (157) is (144), (158) is by (152). O

Corollary 25. Let X be a set of states on H @ Hp. For the AVQS generated by X, it holds

1
DAY(X) = D_ (conv(X)) = llim —sup inf DDE®, T) (159)

—00 K Te@, Teconv(X)
with D) being the function defined in (24), and maximization over instruments on A’s systems.

Proof. The rightmost equality in (159) is Corollary 19.1. We prove the first equality. Achievability
directly follows from Theorem 24. For the converse statement, let X := {p,},cs and o € conv(X).
By Carathéordory’s theorem (see, e.g., Ref. 18, Theorem 2.2.4.), o can be written as a finite convex
combination of elements of X, say

o= pl)ps. (160)
seS’

with |S'| < co. Thus, for an A — B LOCC channel D; for blocklength ! with suitable maximally
entangled state ¢y, it holds

inf F(Di(py), ¢1) < min F(Di(py), 1) (161)
< Y P HFDipa), d) (162)

sleS!
= F(Dic®), ¢). (163)

Since (163) holds for each element of conv(X'), each rate R which is an A — B achievable entan-
glement distillation rate for the AVQS generated by X is also achievable for the compound quantum
source generated by conv(X’), thus the converse statement in Corollary 19.1 applies. O

Having determined the one-way entanglement distillation capacity DAY, the continuity proper-
ties of the capacity function on the r.h.s. of (156) imply the following corollary.

Corollary 26. Identifying each set of states with its closure, DAY is uniformly continuous
in the metric defined by the Hausdorff distance on compact sets of density matrices. If X, X’ C
S(Ha ® Hp) are two compact sets with dg (X', X) < € < % it holds

|DAY(X") — DAY (X)] < v(e). (164)

Remark 27. Corollary 26 classifies the AVQS one-way entanglement distillation task as well-
behaved in the following sense. Two different AVQS with generating sets being near in the Hausdorff
sense will have approximately equal capacities.

An example for a situation where “capacity” is a more fragile quantity is transmission of
classical messages over an arbitrarily varying quantum channel. The capacity C,angom for classical
message transmission using correlated random codes is continuous, while it can be shown that in
some cases, the capacity using deterministic codes, Cg;, is discontinuous on certain points.®
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VI. ON QUANTUM STATE MERGING FOR AVQS

In this section, we consider quantum state merging in case that the bipartite sources A and B
have to merge is an AVQS. In Ref. 7 and Sec. IV of this paper, we have determined the optimal
entanglement as well as classical communication cost in case of a compound quantum source, and
achieved these rates by protocols with merging fidelity going to one exponentially fast (see Sec. [V).
Therefore, one would expect that we can proceed as we did for one-way entanglement distillation
for AVQS in Sec. V and build state merging protocols for the AVQS generated by a set X' from
suitable protocols for the compound source generated by conv(X’). One would expect to be able to
prove the equalities,

Cnl o (X) = Cp s (conv(X)) = sup  S(A|B, p), (165)

’ peconv(X)
to hold, where again, no difference has to be made between conv(X) and its closure, because of
continuity of the conditional von Neumann entropy. Actually, it seems possible to prove the relation
CpY (X)) < C - (conv(X)) (166)

m,—

using Ahlswede’s elimination and derandomization techniques (at least if the AVQS is generated by a
finite set of states). We do not carry out the argument here. Instead, we give a simple counterexample
to the relation in (165).

Consider a finite set X' := { s}, of bipartite states on a Hilbert space H, ® Hp, which is gen-
erated by unitaries in the following sense. Let p; € S(H4 ® Hp), where we assume S(A|B, p1) < 0
and dim’H 4 > N - dimsupp(pa.1), Uy = 13, and U,, ..., Uy unitaries on H 4 such that with the
definitions

IOS = U5 ® l'HB(,Ol)UJ* ® IHB (S € [N])3 (167)

the supports of the A-marginals are pairwise orthogonal, i.e.,

supp(pa,s) L supp(pa,s) (s,s" € [N],s" # ). (168)
Note, that our definitions also imply the relations pp ; = pp.1 (s € [N]) and
supp(ps) L supp(py) (s.s" € [N],s #5"). (169)

In the following we show that sets constructed in the above described manner are counterexamples
to (165)if N > 1.

Example 28. For the AVQS generated by X = {os}Y_,, it holds

s=1°

CaY, (X)) = Cps (conv(X)) — log N. (170)
The classical A — B communication cost for merging of the AVQS X is upper bounded by

sup I(A;E,o0)—1logN, (171)

oeconv()\?)

where p), := Zf;l p(s)ps for each p € SP([N]).

Proof of Example 28. Before we prove the claims made in the example, we briefly sketch the
argument. Since the A marginals are supported on pairwise orthogonal subspaces, A can perfectly
detect, given a block of / outputs of the AVQS, which of the s € ! is actually realized. In this way,
A obtains state knowledge which helps to achieve the desired rates. We introduce unitary channels
Vai,-...Van and Vg 1, ..., Vp ny where we define Vj ,(-) := Us(-)U; with the unitaries from
(167) and consider Vp 5 to be the corresponding unitary channel on the space Hp for each s € [N].
For given blocklength /, we define unitary channels

VA,S’(') = VA,X] ®...8 VA,.Y/ and VB’,sl(') = VB’,sl ®...0 VB’,.V/ (172)



082208-24 H. Boche and G. JanBen J. Math. Phys. 55, 082208 (2014)

for each s' = (sy, ..., s;) € S' accordingly. Thus, the definitions in (167) imply
pi = Vs @ idyar(pf). (s' € INT). (173)
Using the projection P onto the support of p4 s for each s € [N], we define a quantum instrument
A= (AN, (174)

with A,(-) := Ua,s o Py(-) P} for each s € [N], which implies
Ay ® idy, (p5) = 855 p1 (s € [N]). (175)

It is known from Ref. 14 and Sec. IV that for each § > 0 and sufficiently large blocklength /, there
exists an (I, k;, D;) A — B merging M, such that

FM; ®@ idyer (W), @ Y1) = 1 - 27" (176)

holds with a constant ¢ > 0, where v, is a purification of p; and ¢; a maximally entangled state
shared by A and B with

1
—Tlogsr(@) < S(A|B, p1) + ¢ (177)
and where for the classical communication rate
1 -
710gDz <IAE, p)+38 (178)

holds. We combine the instrument A and the unitary channels from (172) with M; to build a merging
LOCC M; suitable for merging the AVQS generated by X" and define

M, = Z Vit @ idye) o My 0 (Ag ® idyyr). (179)

ste[N]

Clearly, M; is an A — B LOCC channel. Explicitly, inspection of the above definition shows that
M, isan (I, k;, D;) A — B merging where one of

D, =D;-N! (180)

different classical messages has to be communicated within action of M;. Moreover, for each
s' € [NT, it holds

FIM; @ idysr (¥50), ¢ ®@ ¥ry)) (181)

2 N FWpa ®idye) 0 My 0 (A ® idyer) @ idyge (). 1 @ Y1) (182)

m!e[N]
L FM @ idye (W), 1 ® (Vg ® idys )1 (183)
© FM @ idye (W), &1 @ (W)P) (184)
(i_) 1 —27F, (185)

where (a) is the definition of M, plus linearity of the fidelity in the first argument in the present
situation, (b) is because

At ® iyt (V) = Sy 7 (186)

holds implied by (175) together with the fact that the fidelity is invariant under action of unitary
channels applied simultaneously on both arguments. Equality (c) follows from (167), and (d) is by



082208-25 H. Boche and G. JanBen J. Math. Phys. 55, 082208 (2014)

(176). It remains to evaluate the rates. It is well known that for each ensemble {g(x), px}rex Of
quantum states having pairwise orthogonal supports, it holds

s <Z q(x)m) =" q()S(py) + H(g). (187)
xeX seX
where H(q) is the Shannon entropy of g. Thus, for each p € B(N]), p, := ZSG[N] p(s)ps we yield
S(AIB, pp) = S(pp) — S(ps,p) (188)
=Y p()S(ps) + H(p) — S(ps.1) (189)
se[N]
= S(A|B, p1) + H(p) (190)
and
I(AS E, pp) = S(pa.p) + S(AIB, pp) (191)
=" p)S(pas) + S(AIB. p1) + 2H(p) (192)
s€[N]
=I(A E, p1) +2H(p). (193)

Taking maxima over all p € B([N]) and rearranging equations, we arrive at

S(A|B, p1) = max S(A|B, p,) —log N (194)
PPN
and
I1(AE, = max I(A;E, —2logN. 195
( o1) jmax ( £p) g (195)
Note that
Cin.—(conv(X)) = max S(A|B, p,) (196)
PEPAND

by Proposition 13. Combining (194) with (177) and (196) together with (185) shows that
CAV(X) < Cp(conv(X)) —log N + 68 (197)

holds. The converse is valid by the merging cost converse for single states.'* Moreover, by (195),
our protocols have classical A — B classical communication rates with

1 1 .
lim sup 7 log D; = limsup 7 log(D; - N') (198)
[—o00 =00
<I(A;E, p))+ 3 +1logN (199)
= max I(A;E, —log N + 6, 200
jmax ( pp) — log (200)

where (198) follows from (180), (199) is by (178), and (200) is by (195). Since § > 0 was an arbitrary
positive number, we are done. O
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Vil. CONCLUSION

In this work, we have shown simultaneous achievability of the optimal entanglement as well as
classical communication cost of one-way quantum state merging in case, that the source to merge
is a compound quantum source. In this way, we completed our work on quantum state merging for
compound sources begun in Ref. 7.

We also determined the optimal entanglement rates for one-way entanglement distillation in
case that the source from which the entanglement is distilled is an AVQS. In this case, Ahlswede’s
robustification and elimination technique turned out to be appropriate tools, and we can in fact,
by the elimination technique, achieve each rate below the entanglement capacity with fidelity
going to one exponentially fast and simultaneously approximate the classical communication rate
of the utilized protocols for the compound source generated by the convex hull of the AVQS
generating set.

Imposing a simple example of a class of AVQS, we demonstrated that applying the robustification
and elimination technique to suitable protocols for the corresponding compound source (generated
by the convex hull of the AVQS generating set) is insufficient in general. Another situation, where the
above standard approach is not suitable, is the problem of proving achievability of the strong subspace
capacity of an AVQC. In this case, the problem is not immediately accessible for the robustification
technique, and this deficiency was overcome in Ref. 4 by first determining the capacity of the AVQC
for entanglement transmission, and then showing equality of the capacities utilizing fairly nontrivial
results from convex high-dimensional convex geometry.

The quantum state merging problem for AVQS, in contrast, seems accessible to robustification
and elimination. However, application leads to suboptimal rates in some cases, as Example 28 shows.

In fact, a closer look to Example 28 reveals that the achievability result asserted by the in-
equality in (166) is not only suboptimal, but also meaningless in a qualitative sense for some
AVQS.

Imagine a situation, in which the communication parties do not have any access to shared
pure entanglement resources and they want to merge the AVQS generated by a set X as in
Example 28 with C,, (conv(X )) > 0, where the number N of states in X is assumed to be
bounded

N > exp(C,,(conv(X)). (201)

Having only protocols according to the achievability result (166) at hand, they infer that merging is
impossible in their situation, while Example 28 shows that merging of the AVQS is, in fact, possible
without external entanglement resources.

Summarizing our considerations, we notice with some regret that in case of quantum state
merging, the merging cost of an AVQS generated by a set X' seems, at least not immediately, related
to the merging cost of the corresponding compound source generated by conv(X’). A merging
cost function presumably will involve LOCC pre- and post-processing maximization. Probably, the
merging cost for AVQS will require a multi-letter characterization.
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APPENDIX: PROOF OF THE BOUND IN EQ. (55)
1. Proof of (55)
Let n > 0 be fixed and p, g probability distributions on [d], such that
|H(p) — H(g)| = n (AL)

holds. It is well known that the Shannon entropy is uniformly continuous in the variation distance
(see, e.g., Ref. 11), it holds

[H(p)— H(@)l < flp—qll) (A2)
with a strictly monotonically increasing function f. Therefore, (A1) and (A2) lead to
0 <2¢:= ;ffl(n)z =< ;Ilp —qll; < D(pllg), (A3)
2In2 2In2

where the rightmost inequality is Pinsker’s inequality D(p||q) > ﬁ lp—q ||%. Since p and g were
arbitrary probability distributions on [d] with entropy distance bounded below by n, foreachi € [N],
the bound in (55) is valid for each i € [N].
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