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Abstract

Intuitive and effective physical assistance is an essential requirement for robots sharing their workspace

with humans. Application domains reach from manufacturing and service robotics via rehabilitation and

mobility aids to education and training. In this context, assistance based on human behavior anticipation

have shown superior performance in terms of human effort minimization. However, when robot’s

expectations mismatch human intentions undesired interaction forces appear incurring safety risks and

discomfort. Human behavior prediction is therefore a crucial issue: it enables effective anticipation but

potentially produces disagreements when prediction errors occur. In this article we present a novel

control scheme for anticipatory haptic assistance where robot behavior adapts to prediction uncertainty.

Following a data-driven stochastic modeling approach, robot assistance is synthesized solving a risk-

sensitive optimal control problem, where the cost function and plant dynamics are affected by model

uncertainty. The proposed approach is objectively and subjectively evaluated in an experiment with

human users. Results indicate that our method outperforms other assistive control approaches in terms

of perceived helpfulness and human effort minimization. 1
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I. INTRODUCTION

Physical human-robot interaction (pHRI) has wide and relevant applications covering, among

other areas, manufacturing, service and care robotics, rehabilitation, medical robotics, education

and training. In tasks such as object transport or movement aids where the interaction involves

physical coupling in direct contact or through an object, a robotic assistant is expected to behave

in an intuitive manner while minimizing the human workload. Traditional interaction control

schemes mainly focus on the generation of compliant robot behavior, which is indispensable for

human safety [3]. In addition, cognitive robots are expected to exhibit also goal-oriented behavior.

By anticipating human actions, these proactive control schemes outperform purely reactive

ones for tasks such as movement assistance [4] and in many cases are even necessary when

environmental constraints are involved [5]. However, due to the continuous physical coupling

between agents, when robot’s expectations mismatch human intentions undesired interaction

forces appear incurring safety risks and discomfort. Human behavior prediction is therefore

a crucial issue: it enables effective anticipation but potentially produces disagreements when

prediction errors occur.

In order to predict human actions proactive anticipatory control schemes rely on feed-forward

human behavior models of motion, force or both of them. Due to the complexity of human

decision-making, analytical models of human behavior in arbitrary tasks are rarely available. In

this context, learning is an effective alternative. By means of probabilistic techniques, generalized

human task-solving behavior is acquired in a data-driven manner. However, learned models (as

well as potential analytical models) are usually far from perfect: prediction errors frequently

occur, inducing counteracting forces during haptic interaction thereby significantly diminishing

assistive performance. Therefore, an a priori estimation of potential errors or, equivalently,

the expected prediction accuracy enriches the prospective capabilities of the robot’s assistance

and potentially enhances interaction. This estimation is given by the prediction uncertainty in

probabilistic models or similarly, by the expected prediction variance considering statistical

models. Although usually neglected in control design for pHRI, model uncertainty plays a key

role in a decision-making process in cooperative tasks when an interacting partner is involved [6].

The contribution of this article is a novel anticipatory model-based haptic assistance scheme

that considers model uncertainty in the robot interaction control. Formulated as an optimal control
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problem, the robotic assistant adapts its control depending on two sources of uncertainty encoded

in a previously learned human behavior model. First, predicted motion uncertainty is included in

the optimization criterion by considering the Mahalanobis distance to the expected human-desired

trajectory. Second, an estimation of the expected and observed human force variability caused by

disagreements with the robot affects the robot dynamics as an additive stochastic input. In order

to explicitly take this variability into account, we propose a risk-sensitive control approach.

The solutions for this optimal control problem depend on a risk-sensitivity parameter, which

defines the attitude towards the partner in case of disagreement. The assistive performance of

the proposed interaction control scheme is evaluated in a psychological experiment with naive

human users. Not only objective measures such as human effort, power or disagreement are

evaluated but also a subjective evaluation of the perceived helpfulness. Results indicate better

performance in terms of human effort minimization and perceived helpfulness when uncertainty

is considered.

A. Related Work

The design of physical assistants using proactive control schemes is a very recent topic

and only a limited body of work is found in the literature. Concerning the acquisition of

human behavior models for proactive assistance, the application of learning techniques in pHRI

tasks by applying the PbD paradigm [7] have recently gained remarkable attention. Acquiring

demonstrations through teleoperation, human-like interactive behavior is reproduced considering

learned motions and interaction forces [8]–[10]. Interpreting the interaction as a continuous

teaching process, the robot may evolve from a passive follower into an active contributor

using incremental learning techniques [11], [12]. As an alternative to learned models, planning

approaches also provide suitable task solving behavior when both the common goal and the

environment are known. Especially compelling are feedback motion planning methods [13], [14],

which continuously adapt their plans when human deviations occur [15]. Analytical behavior

models have also been explored in simple point to point settings, such as the well-known

minimum jerk principle [16]. During cooperative manipulation tasks, a polynomial extrapo-

lation becomes more suitable [17]. However, all the aforementioned methods neglect prediction

uncertainty or interaction force variability due to disagreements in their assistive control schemes.

Works implementing a proactive assistant considering uncertainty are limited to [18], where
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the robotic role is adapted depending on prediction confidence following the framework presented

in [19]. A deeper insight in uncertainty-dependent decision-making is found in other application

domains, especially in the stochastic optimal control literature [20], [21]. Following this idea hu-

man sensorimotor control have been successfully modeled considering uncertainty as an additive

term of the optimization criteria [22] or by means of a risk-sensitive optimization [23], [24].

Limited amount of work is found in the literature concerning disagreements with the human

partner and their effects in robot control. A haptic negotiation adaptation between two possible

roles is proposed in [25]. Depending on human force, the role of the robot switches between

dominant and recessive, achieving better performance than equally shared control, as indicated

in a human user study [26]. Another option smoothly adapts the role of the robot depending on

the human force magnitude while following a predefined trajectory [27]. A large-scale human

user study shows the advantages of the dynamic role allocation scheme. Approaching the design

of a robotic assistant from an optimality point of view, a suitable and general approach, together

with a taxonomy of interactive motor behaviors, is presented in [28]. The optimal controller

minimizes a cost function penalizing the euclidean distance to the human desired trajectory, the

robot desired trajectory in addition to quadratic norms of both partners’ force.

B. Notation

By convention, bold characters are used for vectors and capital letters denote matrices. The

expression N (µ,Σ) describes a normal distribution with mean µ and covariance Σ. ‖·‖ denotes

the Euclidean norm. E[x] and Var[x] denote the expected value and the variance of x respectively.

The remainder of this article is structured as follows. Section II describes the interaction

control scheme. The proposed anticipatory assistive control is explained in Section III. An

implementation of the 2-dimensional translational case is detailed in Section IV. Results of

simulations and of the experimental user study are presented in Section V.

II. MODELING PHYSICAL HUMAN-ROBOT INTERACTION

In this work we consider the class of physical human-robot interaction tasks where the robot

is physically coupled to a human partner. The goal is to reach a goal configuration starting

from an initial configuration. This prototypical setting is representative for many different tasks

such as mobility assistance to humans or joint object transport/manipulation. Depending on
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the application, the interaction can be through an external object, as in cooperative manipulation

tasks, or at the end-effector as in movement assistance for elderly or disabled or in exoskeletons.

In case of the interaction through an object, its geometry together with the grasping points lead

to a decomposition into redundant and non-redundant forces [27]. Redundant components can be

exerted by either the robot or the human and are instrumental for the haptic negotiation process. In

this work, we focus our attention into interaction forces which only appear in redundant degrees

of freedom. As a representative case for this setting, we consider a common interaction contact

point between the robot and its human partner at the end-effector. For simplicity of exposition

we assume that the nonlinear robot dynamics is feedback-linearized and an impedance control

law renders the robot reactive behavior [29] to

Mrẍ(t) +Drẋ(t) = u(t) = uh(t) + ur(t) (1)

where x ∈ R
6 is the pose of the end-effector, uh ∈ R

6 is the applied wrench by the human,

ur ∈ R
6 is the assistive control input of the robot, and Mr, Dr ∈ R

6×6 are positive definite

matrices representing the rendered inertia and viscous friction respectively. For later convenience,

we discretize the system from (1) with a sampling time interval ∆, yielding impedance controlled

dynamics

ξk+1 = f(ξk,uh,k + ur,k) , (2)

where k is the time index such that t = k∆ and ξk = [ xk ẋk ]T the state of the system 2.

Dynamics (1) compensates for small deviations between the human and robot intended mo-

tions. In addition to this reactive behavior represented by the compliance control, the robot

implements an anticipatory proactive behavior given by ur. To this end, the robot relies on a

behavior model λ, which provides predictions of the next human desired state and human wrench

in terms of normal distributions ξ̂d,k ∼ N (µ̂ξ,k, Σ̂ξ,k) and ûh,k ∼ N (µ̂uh,k
, Σ̂uh,k). The

behavior model represents expected trajectories based on multiple previously performed trials.

The resulting normally distributed state space predictions represent the trial to trial statistical

mean and variance of human desired motion. In addition, the predicted human wrench variability

also captures counteracting forces when the human and the robot disagree. This effect is not

observable in state space trajectories. Consider as an example a binary decision problem while

2The time-discretized system dynamics will be specified in Section IV for a two-dimensional example.
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approaching an obstacle, where both agents disagree on which way to go, either left or right.

We further assume that both partners have a common goal and deviations from the predicted

trajectory induced by the human are small and do not express a divergence or a tendency towards

a different goal. Given this problem setting, the focus of this work lies on the design of a possibly

time-varying assistive control law synthesizing ur taking uncertainties into account.

III. ANTICIPATORY CONTROL

In this work, the objective governing haptic assistance is human force minimization. From an

optimality point of view, this concept is expressed by the minimization of a cost function in the

form

J =
T−1∑

k=0

‖uh,k‖
2 (3)

where T is the time horizon for the optimization 3. The human has an urge towards a goal

as predicted by the task model λ but relying on a human force estimation of T steps poten-

tially accumulates high tracking errors in task space. A more suitable alternative considers the

minimization problem in task space based on the tracking error between task model predic-

tions ξ̂d = {ξ̂d,0 · · · ξ̂d,T} and the current state ξ, i.e.

J =
T∑

k=0

‖(ξ̂d,k − ξk)‖
2 .

The solution to this optimization problem leads to controller which does not consider any energy

expenditure of the robot nor any torque constraints of the robot actuators. In addition, disturbances

to the tracking may result in rather abrupt behavior of the robot, which might not be desirable

when targeting intuitive assistance. In order to keep the computational complexity low to achieve

real-time computation, we add a soft penalty on the energy expenditure in terms of a quadratic

term. As a result the cost function takes the form as in the classical linear quadratic optimal

control problem

J = ‖(ξ̂d,T − ξT )‖
2
QT

+
T−1∑

k=0

‖(ξ̂d,k − ξk)‖
2
Qk

+ ‖uh,k‖
2
Rk

(4)

3Note that we will later employ a receding horizon control scheme, i.e. without fixed final time T. For simplicity of presentation

we consider for now the finite horizon control problem (3)
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where ‖x‖2Q stands for the quadratic form xTQx, QT the final cost weight and Qk and Rk are

weighting factors that define the trade-off between tracking performance and robot contribution.

Observe that two factors challenge the equivalence between (3) and human intentions: i) the

prediction error of ξ̂d; ii) the weighting factors Qk and Rk may differ from human preferences.

As perfect predictions and weighting factors design is usually not feasible when dealing with

humans, corrections/disagreements from the human partner are expected. This source of vari-

ability, together with the normally distributed nature of predictions define the uncertainty that

the robotic assistance needs to cope with. In the following we analyze the consequences of

uncertainty in the robot behavior and synthesize their effect as variations in the cost function to

optimize (4) and in the predicted dyad dynamics.

A. Considering motion prediction uncertainty

Cost function (4) depends on the sequence of multivariate normal distributions ξ̂d. A classical

realization of the cost function for optimal tracking control measures the Euclidean distance to

the reference’s mean, i.e.

J = ‖(µ̂ξ,T − ξT )‖
2
QT

+
T−1∑

k=0

‖(µ̂ξ,k − ξk)‖
2
Qk

+ ‖uh,k‖
2
Rk

. (5)

However, in order to accordingly measure the distance to a multivariate Gaussian, the weighted

Mahalanobis distance is a suitable option as it includes the covariance of the prediction into the

distance metric. In this case, the cost function becomes

J = ‖(µ̂ξ,T − ξT )‖
2
Q̂T

+
T−1∑

k=0

‖(µ̂ξ,k − ξk)‖
2
Q̂k

+ ‖uh,k‖
2
Rk

, (6)

where Q̂k = Σ̂
− 1

2

ξ,kQkΣ̂
− 1

2

ξ,k and Q̂T = Σ̂
− 1

2

ξ,TQT Σ̂
− 1

2

ξ,T and Σ̂ξ,i is per definition a symmetric positive-

definite matrix ∀i 0 ≤ i ≤ T . This formulation diminishes the cost of tracking errors in direc-

tions with high prediction variance while it increases the penalty of deviations in regions with

low variance. This is a desirable behavior in most applications where a a low variance of the

learned desired trajectory over repeated trials indicates some importance to keep track of it. As

an example consider the situation depicted in Fig. 1. Low variance directions might be caused

for example by environmental constraints while high variance regions imply unconstrained areas.

This suggests flexibility in unconstrained directions and strict tracking through narrow passages,
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Constrained

region

Obstacle

Unconstrained

region Obstacle

Fig. 1. Exemplary representation of the predicted state mean and variance ξ̂d ∼ {µ̂ξ, Σ̂ξ}. Low variance directions suggest

the possibility of constrained passages, while high variances areas imply unconstrained areas.

a behavior in accordance with the minimization of the Mahalanobis distance as in (6). Note that

the opposite effect is achieved using the inverse of the covariance matrix, i.e. Q̂k = Σ̂

1

2

ξ,kQkΣ̂

1

2

ξ,k

and Q̂T = Σ̂

1

2

ξ,TQT Σ̂

1

2

ξ,T . In this case the cost increases inversely with the variance: directions

with low predicted variance diminish their cost with respect to high variance regions, which

increase their penalty. The idea of employing the measure of variance as a way to inform the

system on how systematically it should follow a reference trajectory was also applied in [30]

for an impedance control scheme and in [31] for kinematic control.

B. Considering disagreement

In addition to motion prediction, the task model λ may also provide human wrench predic-

tions ûh. We assume that there exists a human desired nominal motion trajectory. In consequence,

if the task model λ contains sufficiently many trials, the mean of the predicted trajectory ξ̂d

approaches the human desired nominal motion trajectory. If the robot exerts the necessary

wrench to track this trajectory, we expect the human wrench’s statistical mean tending to 0,

i.e. E[uh] = 0. However, the human wrench’s covariance encodes valuable information: regions
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with high variance are caused by significant or recurrent inter-trial corrections, meaning a

conflictive area, see Fig. 2 for an illustration. To model this unbiased variability, we denote

the expected disagreement with the human partner εe ∼ N (0, Σ̂uh
). Applying the same idea

to current observations of uh, the current disagreement is denoted as εc ∼ N (0,Σuh
). An

estimate of the current disagreement is computed empirically at time k as the sample covariance

over a window of W samples

Σuh
=

1

W

k∑

i=k−W+1

uh,iu
T

h,i . (7)

To consider both estimations, see Fig. 2 for visualization, the maximum of both disagreements

ε = max (εe, εc) , (8)

is considered a reasonable solution. Note that keeping the zero mean assumption for the current

disagreement is a conservative approach. In fact, the intra-trial mean of the human wrench

along a window of W samples may differ from zero. Interpreting human wrench corrections as

unbiased results in higher uncertainty compared to an interpretation as a biased variable. The

consequences of this design will be more apparent in the analysis of the optimal control solution.

Disagreements result in variability of the dyad’s motion due to conflicts with the human

partner. Expressing this idea in mathematical terms, dynamics (2) contains an additional additive

disagreement vector ε, yielding the stochastic dyad dynamics

ξk+1 = f(ξk,ur,k + εk) . (9)

Given initial state ξ0, the optimal robotic assistance results from minimizing cost function (6),

i.e.

min
ur,0···ur,T−1

J(ξ0,ur,0 · · ·ur,T−1) , (10)

constrained to the dyad dynamics (9). As the dynamics are constantly updated with the current

disagreement from (7), a recalculation of the solution is necessary. To this end, we adopt a

Model Predictive Control (MPC) scheme [32], where the dynamics (9) are considered stationary

for the optimization horizon T and the optimal control problem is solved at every time step.

Cost function (6) at time step k formulated in a receding horizon fashion becomes

Jk = ‖(µ̂ξ,k+T − ξk+T )‖
2
Q̂T

+
k+T−1∑

i=k

‖(µ̂ξ,i − ξi)‖
2
Q̂i

+ ‖ur,i‖
2
Rk

. (11)
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High expected

disagreement

Obstacle

Low expected

disagreementEXPECTED

DISAGREEMENT

CURRENT

DISAGREEMENT

Fig. 2. Schematic representation of the expected disagreement εe and the current disagreement εc.

Although the optimization is solved for a horizon of T steps, only the solution for the first step

is applied as assistive robot control.

C. Risk-sensitive optimization

Problem (10) is a stochastic optimization problem due to the stochastic nature of the dynam-

ics (9). Traditionally it is solved by minimizing the expected cost, E[J ]. However, the uncertainty

induced by the human behavior represented in ε is not characterized by its expected value but

its higher order moments. In order to capture the uncertain human influence in the dynamics

here we propose to employ a risk-sensitive optimization [33], [34]. The risk-sensitive solution

considers all infinite cumulants of the cost distribution [35]. The risk-sensitive optimization

criterion considers a cost function in the form

γk(θ) = −2θ−1 lnE[exp− 1

2
θJk ] , (12)

where θ ∈ R is the risk-sensitivity parameter and Jk is given in (11). The Taylor series expansion

of γ(θ) around θ = 0,

γ(θ) = E[J ]−
1

4
θVar[J ] + ... ,
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shows the influence of higher order moments in the solution, parameterized by θ. If θ = 0

the controller is risk-neutral and corresponds to the classical optimization of the expected cost.

For θ < 0 and θ > 0 the controller becomes risk-averse and risk-seeking, respectively. In our

robot assistance scenario, the variance of the cost is determined by previously experienced and

current disagreements with the human partner (8), and θ determines its assessment. In the risk-

seeking case, disagreement is considered beneficial and decreases the resulting cost. In contrast,

a risk-averse controller considers disagreements as a detrimental influence and the cost increases.

IV. THE 2-DIMENSIONAL TRANSLATIONAL CASE

The risk-sensitive optimization problem can be solved efficiently through the Riccatti equation

for linear dynamics. Realtime computations are fundamental for intuitive haptic assistance; the

physical coupling between human and robot requires immediate adaptation. To satisfy this

prerequisite, we limit our study to a linear implementation. We consider now dynamics (1)

in the plane, i.e. x ∈ R
2. In this case, the discrete-time dynamics from (9), written in the

form ξk+1 = Aξk + Buk are given by

xk+1

ẋk+1


 =


1 ∆

0 1−M−1
r Dr∆




xk

ẋk


+


0 0

0 M−1
r ∆


 (urk + εk) . (13)

where Mr, Dr ∈ R
2×2.

The disagreement εk from (8), given by the maximum of the expected and current disagree-

ment is approximated by N (0, Σ̃u,k), Σ̃u,k being the Löwner-John hyperellipsoid [36]. This

Gaussian approximation calculates the minimum volume hyperellipsoid around the set defined

by εe,k ∼ N (0, Σ̂uh,k) and εc,k ∼ N (0,Σuh,k).

For this particular problem setting and for comparison purposes we present two different

solutions: a classical linear quadratic regulator (LQR), which considers the reference prediction

uncertainty (6) but discards the variability of the disagreement in its optimal solution and,

in contrast, a linear exponential quadratic regulator (LEQR) which considers both uncertainty

sources in its risk-sensitive optimization (12).
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A. Linear Quadratic Regulator Solution

The minimization of the expected cost E[Jk] with Jk as in (11) and dynamics (13) considering

only the regulation of the desired trajectory is an instance of an LQR problem. The solution to

this problem at sample time k for a receding horizon of T steps yields a feedback control law

given by

ur,i = −Ki(µ̂ξ,i − ξi) , (14)

where Ki is the feedback matrix of the Ricatti recursion

Ki = −R−1
i BT(BR−1

i BT +Π−1
i+1)

−1A (15)

and the cost-to-go is given by

Πi = Q̂i + AT(BR−1
i BT +Π−1

i+1)
−1A , (16)

being ΠT = Q̂T .

Due to the receding horizon nature, only the feedback matrix for time step i = k, Kk, is

applied in the system. It is in the form

Kk =


 0 0

Kx,k Kv,k


 , (17)

where Kx,k and Kv,k are the position and velocity gains respectively.

The resulting assistive tracking control law synthesizes a variable impedance control law with

its gains depending on prediction uncertainty. This becomes more obvious when applying the

control law for the limit ∆ → 0 in the system dynamics (1)

Mrẍ+Drẋ = uh − (Kx(t)(xd − x) +Kv(t)(ẋd − ẋ)) , (18)

where xd, ẋd, Kx(t) and Kv(t) are the position and velocity components of µ̂ξ and the feedback

gains Kx,k and Kv,k in the limit ∆ → 0 respectively.

This control strategy tracks the predicted trajectory considering its variance by means of the

Mahalanobis distance present in Q̂i and Q̂T . As a result, the robot gets stiffer in the directions

where the motion prediction has low variance and becomes more compliant for high variance.

However, the variability induced by disagreements with the human partner is neglected.
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B. Linear-Exponential Quadratic Regulator

The optimization problem considers now cost function (12) with Jk as in (11). In this case,

the resulting feedback law as in (14) given by a modified form of the Ricatti recursion [37]

Ki = −R−1
i BT(BR−1

i BT + θBΣ̃u,iB
T +Π−1

i+1)
−1A , (19)

and

Πi = Q̂i + AT(BR−1
i BT + θBΣ̃u,iB

T +Π−1
i+1)

−1A , (20)

with ΠT = Q̂T .

As in the LQR case, motion prediction uncertainty is equivalently taken into account by

means of the Mahalanobis considered in Q̂i and Q̂T . However, the additive term θBΣ̃u,iB
′

present in the risk-sensitive solution leads to different results. The risk-neutral case θ = 0

yields the same solution as for the LQR canceling the additional term. For a risk-seeking

optimization θ > 0 the expected variability Σ̃u,i is assumed to be collaborating as if it was

doing part of the work towards fulfilling the task. Accordingly, the resulting gain from (19)

decreases adopting a more compliant behavior. Understanding the risk-sensitivity parameter as the

robot’s attitude, a recessive attitude is achieved implementing a risk-seeking controller: the robot

becomes compliant under disagreement with its partner. In contrast, the risk-averse solution θ < 0

increases the overall cost as if variability were directing the system towards an undesired state. As

a result, gains are increased and the robot becomes stiffer. This case corresponds to a dominant

attitude by generating an aggressive response to disagreements.

V. EXPERIMENTS

In order to illustrate the peculiarities and advantages of the proposed controller, we first observe

the influence of both prediction uncertainty and negotiation variability on a one-dimensional

simulation. For evaluation purposes, we further study human preferences performing a user

study where 19 participants interact with 7 different assistive controllers in a virtual scenario

using a haptic interface.

A. One-dimensional simulation

As an exemplary scenario, we study a one-dimensional mass-damper system with dynamics

equivalent to (13), M = 1 kg and D = 1 Ns/m. We first analyze the influence of motion pre-

diction uncertainty using the Mahalanobis distance on the robot assistive behavior following
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Fig. 3. Infinite horizon position gains w.r.t position prediction variance for several precision parameters Q with R = I .

the control scheme proposed in Section IV-A. We assume constant weighting matrices Q = Qk

and R = Rk. The optimal position tracking gains for an LQR control optimizing the cost (6) for

the infinite horizon T → ∞ w.r.t. prediction variance σ2
x are depicted in Fig. 3. The infinite hori-

zon solution provides a stationary feedback gain [38]. The optimal gains decrease with increasing

prediction variances, i.e. low prediction variance produces a stiffer robot assistive behavior while

high uncertainty leads to a more compliant assistive behavior. Note that, when variances tend

to zero, gains tend to infinity. This degenerate case is easily avoided adding a regularization

quantity, ensuring positive definiteness. For the case of the identity matrix, the weighting matrices

of (6) become Q̂k = (I + Σ̂ξ,k)
− 1

2Q(I + Σ̂ξ,k)
− 1

2 and Q̂T = (I + Σ̂ξ,T )
− 1

2QT (I + Σ̂ξ,T )
− 1

2 . As

a result, when variances tend to 0, the cost generalizes to (5).

The influence of disagreement σ2
u on the optimal gains of a risk-sensitive controller from

Section IV-B is shown in Fig. 4 for several values of θ. While the risk-neutral solution θ = 0

ignores disagreement, risk-seeking solutions θ > 0 decrease gains as the disagreement increases.

In contrast, risk-averse solutions θ < 0 increase tracking gains with increasing disagreement.

An intuitive explanation in our scenario follows. A risk-seeking assistant assumes disagreement

accounts for part of the tracking task and reduces its gains adopting a recessive attitude. In

contrast, a risk-averse assistant understands disagreement as counter-productive and increases its

gains in order to perform the tracking task while correcting expected deviations.

In order to illustrate how disagreement affects the dyad behavior during negotiation, we
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Fig. 4. Infinite horizon position gains w.r.t disagreement variance for several risk-sensitivities in an optimization

with Q = R = I .

simulate a coupled dyad consisting of agents a and b, with control inputs ua and ub respectively.

Consider agent b behaves as a PD-controller with constant gain, i.e.

ub,k = Kb(ξb − ξk) . (21)

In contrast, agent a implements a risk-sensitive control strategy and tracks a constantly conflicting

reference ξa = −ξb. We focus now on the effects that the current disagreement, computed

according to (7) with W = 1, produces on agent a. For simplicity of illustration we neglect

the expected disagreement. Note that the expected disagreement or the maximum of both dis-

agreements produce equivalent effects on the control gains. The simulation results for a risk-

neutral, risk-seeking and risk-averse implementation are depicted in Fig. 5. As shown in Fig. 5(a),

the risk-seeking control remains almost inactive in comparison with the risk-neutral controller

depicted in Fig. 5(b). In contrast, the risk-averse controller reacts more aggressively, as shown

in Fig. 5(c). These three different attitudes yield different disagreement levels, depicted as gray

regions. As the risk-seeking controller ceases tracking its conflicting reference, the disagreement

is significantly reduced, while the risk-averse implementation provokes even higher disagreement

levels than the risk-neutral solution. This behavior is clearly explained by the resulting gains and

positions for all three controllers, as depicted in Fig. 6. While the risk-neutral solution ignores

disagreement producing constant gains, the risk-seeking controller’s almost cancels its feedback
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Fig. 5. Simulation results for the one-dimensional linear mass-damper system example with initial state ξ0 = [0 0]T,

references ξb = −ξa = [−1 0]T, mass m = 1 kg, damping d = 1 Ns/m with two agents, agent b following the control

law (21) with gain Ka = 1 N/m and agent a applying the proposed control scheme in three variants. All three controllers are

calculated with parameters Q = I and R = 5 · 10−4 · I and sample time of 1 kHz . Fig. 5(b) shows the simulation result for the

risk-neutral control, Fig. 5(a) for a risk-seeking control with θ = 106 and Fig. 5(c) a risk-averse control with θ = −4.5 · 102.

Grey regions represents the variance of disagreement considered by agent a..

gain due to the initial conflicts, adopting a recessive attitude. In contrast, the risk-averse controller

increases its gain substantially reacting in a dominant fashion.

B. User Study

To evaluate the proposed assistive control schemes and the preferences of humans interacting

with it, we designed an experiment in which a human subject together with a virtual assistive

robot transport a virtual object from an initial position towards a defined goal position.

1) Human Behavior Model Acquisition: A model representing the pHRI task must reflect

both the human task execution preferences and the interaction with the robotic partner. These

requirements suggest the use of learning by demonstration techniques. In our setting, a prelim-

inary model of the task was acquired by initially letting the human lead, i.e., ur = 0. With this
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Fig. 6. Resulting tracking gains (a) and trajectories (b) for agent a in the simulated example from Fig. 5.

first rough representation, the robot actively assists and additionally observes interaction patterns

during further task trials. Observed motion and human wrench trajectories are the training set for

the model learning method yielding λ. Aiming for a safe and conservative interaction, we use

a time-based left-to-right Hidden Markov Model applying regression on time domain instead of

state space domain, as explained in [39]. As a result, the model provides a generalized trajectory

of normal distributions of human-desired motion ξ̂d and applied wrenches ûh. Although re-

stricted to this trajectory, predictions always belong to the same homotopy class as demonstrated

trajectories. Considering a window over last observations, we use the Viterbi algorithm as a

filter that estimates the human state as a time index of the generalized trajectory. See [11] for a

detailed explanation of the applied method.

2) Experimental Setup: The human subject applies forces to a haptic interface in order to

move the virtual object, as shown in Fig. 7. It consists of a two degrees-of-freedom linear-actuated

device (ThrustTube) which has a free-spinning handle at the grasping point, i.e. x ∈ R
2. Attached

to the handle, a force/torque sensor (JR3) measures the human force input. The control scheme

running at 1 kHz and implemented in MATLAB/Simulink is executed on a personal computer with

Linux PREEMPT Real-Time kernel using Matlab’s Real-Time Workshop. The shared object from

dynamics (13) is physically rendered with a mass of Mr = diag{m,m} with m = 90 kg and

damped by a viscous friction of Dr = diag{d, d} with d = 200 Ns/m, emulating a heavy object.

All virtual obstacles and walls are haptically rendered in order to provide a haptic feedback of

February 2, 2015 DRAFT



18

2 Dof
haptic

interface

force-torque
sensor

virtual
environment

Fig. 7. Experimental setup.

the environment to the user. The HMM used to encode observations has 40 states and predictions

are updated with a rate of 50Hz.

On top of the interface, a virtual maze is presented on a screen, see Fig. 8. On the right side the

maze includes two obstacles moving horizontally in order to potentially provoke disagreements

between the human and the robot. Note that the human behavior model does not consider the

obstacle’s state, which results in an increased predicted variance in the region perturbed by the

obstacle’s motion. This condition aims for evaluating the assistive performance when the model

is not accurate enough and variability becomes more relevant. On the left side, a navigation task

requires high movement precision caused by a narrow and curved path.

3) Task and Procedure: In total 19 persons (5 female) participated in the experiment. They

were between 23 and 31 years old (M = 26.84 years). The experimental task was to move the

virtual object represented by a red dot from the upper right corner (start position) to the upper

left corner of the maze (green dot at target position) without hitting any object or wall, see

Fig. 8. Participants were instructed to move at their comfortable speed and to finish the task

even if they might hit the wall or an object.

Overall the experiment was divided into 7 parts corresponding to 7 different control laws of

3 trials each. In the first trial, the human lead together with a passive robot, i.e. ur = 0, and

the resulting observations were encoded into the task model. This model was used during the

second trial, where the robot actively assisted its human partner. This second task execution

already captures negotiation forces between the human and the robot. Observations of the first
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and second trials were used to train the task model for the third trial, providing already an

estimation of the expected trajectory, both in state and force space,
{
ξ̂d, ûh

}
. The third trial

was the only one considered for further evaluations. We tested 7 different control laws for each

participant:

(a) No active assistance: ur = 0.

(b) LQR control using cost function (5).

(c) Risk-neutral control with Mahalanobis distance: θ = 0 using cost function (12).

(d) Risk-averse control with Mahalanobis distance and expected disagreement: θ = −α, using

cost function (12) and ε = εe.

(e) Risk-averse control with Mahalanobis distance considering both expected and current dis-

agreement : θ = −α, using cost function (12) and ε = max(εe, εc).

(f) Risk-seeking control with Mahalanobis distance and expected disagreement: θ = β, using

cost function (12) and ε = εe.

(g) Risk-seeking control with Mahalanobis distance considering both expected and current

disagreement: θ = β, using cost function (12) and ε = max(εe, εc).

All implementations rely on the solutions presented in Section IV. In our experiments β = 8.1 · 104

and α = 8.1 · 102, R = I and Qk = QT = diag{ωp, ωv}, being ωp and ωv the position and

velocity weightings. For (b), we chose ωp = 1010 and ωv = 107. For (c)-(g) we set ωp = 105

and ωv = 10, due to the low variance values, in the order of 10−5. The receding horizon for the

optimization was T = 0.2s and to estimate the current noise we used a window W corresponding

to 0.05s.

The experimental procedure was as follows: participants were asked to face the haptic device

and grasp the handle, as shown in Fig. 7. Next, the experimenter initialized the control algorithm

and told the participant to start moving. After reaching the green target, participants were asked

to free the handle which was moved back to the initial position automatically. Before every third

trial participants were verbally informed that this was going to be the trial they had to rate.

Subsequently they had to rate the perceived helpfulness when

• passing a moving obstacle (subtask MO).

• navigating through a narrow channel (subtask NC).

Ratings were done on a 6-point scale from 1 (counter productive) to 6 (helpful) and resulted
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Fig. 8. Virtual environment (maze). With the handle of the 2-DoF haptic interface participants were able to move the virtual

object (red dot) to the goal position (green dot).

Cont. Mh MPh
[W] M‖uD‖[N] M‖uh‖[N] M‖uc‖[s]

(a) 3.90 0.61 - 12.92 1.32

(b) 3.42 0.58 3.15 12.73 2.42

(c) 3.58 0.52 2.91 12.30 2.02

(d) 3.47 0.55 2.28 11.85 2.29

(e) 3.92 0.39 2.72 10.46 1.38

(f) 3.76 0.47 2.17 11.19 1.03

(g) 4.11 0.54 1.29 11.50 1.12
TABLE I

AVERAGE VALUES FOR PERCEIVED HELPFULNESS Mh , HUMAN POWER MPh
, DISAGREEMENT M‖uD‖ , HUMAN FORCE

M‖uh‖ AND COLLISION FORCESM‖uc‖

in the explicit measure perceived helpfulness. Every participant performed 3 x 7 = 21 trials of

which 7 trials were rated.

Regarding implicit measures we evaluated:

• the mean power exerted by the human MPh
, defined as 1

t

∫ t

0
uh

Tẋdτ .

• the mean disagreement M‖uD‖ between both agents, defined as 1
t

∫ t

0
‖uD‖dτ where

uD =





−uh

‖uh‖
· ur, if − uh · ur > 0

∧ uh 6= 0

0, otherwise.

• the mean human applied force M‖uh‖, defined as 1
t

∫ t

0
‖uh‖dτ .
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Fig. 9. Experimental results. Each of the figures shows the mean and the standard error of the different evaluated measures

for the seven control laws (a)-(g). Fig. 9(i) shows the mean perceived helpfulness Mh, Fig. 9(ii) depicts the human exerted

force M‖uh‖, Fig. 9(iii) reflects the disagreement M‖uD‖, Fig. 9(iv) shows the execution times Mt, Fig. 9(v) depicts the human

power MPh
and Fig. 9(vi) shows the collision forces M‖uc‖.

• the mean contact forces during collisions with the virtual environment M‖uc‖, defined as

1
t

∫ t

0
‖uc‖dτ , where uc is the force applied on virtual obstacles.

• the mean execution time Mt.

Means were taken over all participants for the respective controller. To gain knowledge on the

human perception and response during different kind of tasks the presented maze was divided into

two subtasks. For measures passing the moving obstacle, data was calculated until the participant

was passing the turning point indicated by the dashed line shown in Fig. 8, placed at 0.04 m to

the left of the origin. The rest of the task execution corresponded to subtask narrow channel.

Data analysis was done Matlab and statistical analysis was carried out with SPSS (Statistical

Package for the Social Sciences).

4) Results and Discussion: To access the rating of perceived helpfulness, see Fig. 9(i), a 2 x 7

repeated measures ANOVA was performed with the between-subject factors subtask (MO vs. NC)
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Perceived Helpfulness Mh Power MPh
[W] Disagreement M‖uD‖[N]

Comparison F (1, 18) p Comparison F (1, 18) p Comparison F (1, 18) p

(a)>(b) 7.15 < .05 (a)>(e) 11.35 < .01 - - -

(e)>(b) 5.90 < .05 (b)>(e) 4.54 < .05 (b)>(g) 32.47 < .001

(g)>(b) 7.08 < .05 (c)>(e) 2.58 n.s. (c)>(g) 16.86 < .01

(a)>(d) 5.00 < .05 (d)>(e) 2.91 n.s. (d)>(g) 11.37 < .01

(e)>(d) 5.50 < .05 (f)>(e) 2.23 n.s. (e)>(g) 10.26 < .01

(g)>(d) 7.21 < .05 (g)>(e) 4.46 < .05 (f)>(g) 6.08 < .05

TABLE II

OVERVIEW OF RESULTS ON PLANNED COMPARISONS FOR PERCEIVED HELPFULNESS, HUMAN POWER AND DISAGREEMENT

and control method (a)-(g). Marginal differences were observed between subtasks, F (1, 18) = 3.95 , p = .062,

which shows equally perceived helpfulness of the systems response on both sides. Numerically

higher ratings for NC(M = 3.96) compared to MO(M = 3.51) reflect the fact that the task model

is not aware of the moving obstacle and is not as accurate as for NC. Regarding control schemes

there was a significant main effect, F (6, 108) = 2.46, p < .05. Comparisons show that control

laws (a), (e) and (g) resulted in significantly higher ratings compared to controllers (b) and (d), see

Table I and Table II. This shows that control laws (e) and (g), both risk-sensitive and considering

the current disagreement, were perceived as more helpful than method (b), the classical LQR

control. It is also remarkable, that numerically all control methods considering the Mahalanobis

distance (c)-(g) were rated higher than the classical LQR control (b). Furthermore, only control

laws considering the current disagreement in the dynamics, (e) and (g), were numerically rated

higher than the pure passive follower (a).

For all implicit measures 2x7 repeated measures ANOVAs were carried out with the between-

subject factors subtask(NC vs. MO) and control method (a-g). If the sphericity criterion was not

met, Greenhouse-Geisser correction was applied.

Regarding subtasks there was a higher human power applied on NC(M = 0.58W) compared to

MO(M = 0.46W), F (1, 18) = 15.59, p < .01, see Fig. 9(v). After correction, the differences be-

tween applied power for the control methods only marginally reached significance, F (3.0, 54.8) = 2.44, p = .074.

Concerning control schemes, a tendency towards higher human power applied in control laws (a), (b)

and (g) is identified compared to control law (e), see Table II. The risk-averse control law (e)
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becomes stiffer under the presence of disagreement and, as it also considers the current dis-

agreements with its partner, it is the most agressive partner. The observed differences suggest

that this control method reduces the power applied by the human as the robot constantly takes

a leading role.

Disagreement, see Fig. 9(iii), was marginally higher on MO(M = 2.77 N) than on NC(M = 1.86 N),

F (1, 18) = 4.22, p = .055, in accordance with the results from perceived helpfulness. The behav-

ior models lacks obstacle awareness and provides low prediction performance for MO thereby

yielding disagreements. Looking at the results for control law (g), a highly significant main effect

was observed, F (5, 90) = 5.97, p < .001. Planned comparisons show that all control methods

cause a higher disagreement than (g), see Table II. As (g) is risk-seeking, it consequently tends

to avoid disagreements adopting a more passive role. The fact that it also considers the current

disagreement boosts this effect.

Applied forces, Fig. 9(ii), were higher on NC(M = 12.97N) than on MO(M = 10.74N), F (1, 18) = 15.76, p <

Although differences between control methods were not significant after correction, p > .1, the

risk-averse with current disagreement, control law (e), numerically required the lowest applied

force.

On NC, the contact force from collisions, see Fig. 9(vi), was smaller (M = 0.65 N) compared

to MO(M = 2.67 N), F (1, 18) = 28.73, p < .001.

No significant differences were found between movement times of the different control meth-

ods, see Fig. 9(iv), F (6, 108) = 0.46, p > .8.

In summary, the consideration of uncertainty in the optimization is shown beneficial for

haptic assistance, as exhibited by the superior performance of all proposed control schemes

w.r.t a naive LQR control ignoring any variability. The inclusion of the Mahalanobis distance

in the optimization criterion leads to higher perceived helpfulness as it considers the learned

trajectory’s uncertainty. The benefits of a risk-sensitive optimization are only significant when

an estimation of current disagreement is additionally considered. The risk-seeking control law

achieves minimal disagreement as it adopts a recessive attitude during negotiation with its partner.

This is especially noticeable passing through the obstacle: as the behavior model lacks any

obstacle awareness, counteracting forces arise frequently due to poor prediction performance. In

terms of human power, the risk-averse policy is more effective. However, the risk-seeking variant

is preferred by human users, favoring disagreement avoidance to effort minimization. If the
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behavior model is accurate risk-aversion effectively minimizes human effort but the complexity

of human behavior makes fulfilling this prerequisite highly improbable. Nevertheless, other

pHRI application domains may take advantage of risk-averse policies. For instance, consider

a kinesthetic teaching scenario where the robot has the role of the teacher. In this case the

robot aims for minimizing variations in human performance, a condition in accordance with a

risk-averse control scheme.

VI. CONCLUSION

In this article we present a novel stochastic optimal control scheme for the synthesis of

anticipatory haptic assistants. We explicitly consider human behavior uncertainty in terms of

uncertain motion predictions and force variability due to disagreements. On the one hand, the

Mahalanobis distance increases robot compliance under high motion prediction uncertainty. On

the other hand, the risk-sensitive optimization governing the robot’s behavior synthesizes a

spectrum of attitudes towards disagreements, from recessive to dominant. A psychological study

with human subjects highlights the advantages of the proposed approach: the consideration of

motion prediction uncertainties and disagreement variability leads to higher performance in terms

of perceived helpfulness and human effort minimization respectively.

The application of the proposed approach in non-linear systems is the matter of our future

work. Further issues to explore are, as suggested by our results, the design of physical assistants

with dynamic attitude in order to exploit the advantages of the different policies together with

the addition of human-related constraints in the control design.
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José Ramón Medina received his degree on Ingeniero Superior en Informática from the University of
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