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Abstract
Graph data management has received a lot of attention in the last decade, fueled

by rapid development of two vertical domains, Linked Data and Social Media.

The former is centered around graphs represented as RDF data and queried

with SPARQL, while the latter features small-world graphs that fit into the

emerging Property Graph model.

This thesis deals with the database aspects of graph processing problems in

these two domains. We start with incorporating path and reachability query

processing into the state-of-the-art RDF query processing engine, RDF-3X. We

then devise a new technique for join ordering and cardinality estimation for

general graph pattern matching queries expressed in SPARQL over large RDF

datasets. We also present an efficient algorithm for shortest path estimation

in small-world graphs and its application to the keyword search on graphs

(the Steiner tree problem). In the Property Graph data model, we design the

query optimizer’s architecture for the popular graph database Neo4j and its

query language. Finally, we solve the problem of selecting parameters for query

templates as part of our benchmark for the broad class of graph-processing

systems.
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Zusammenfassung

Graphdatenbanksysteme haben im vergangenen Jahrzehnt viel Aufmerksamkeit

erfahren, insbesondere durch die rasante Entwicklung von Linked Data und

sozialen Medien. Ersteres basiert auf Graphen, die als RDF-Daten dargestellt

und mit SPARQL abgefragt werden. Letzteres beschäftigt sich mit small-world

Graphen, die in das aufkommende Property Graph Modell passen.

Diese Arbeit behandelt die Datenbankaspekte von Fragestellungen der Graph-

analyse dieser beiden Gebiete. Wir beginnen damit die Bearbeitung von

Pfad- und Erreichbarkeitsanfragen in ein aktuelles System, RDF-3X, zu in-

tegrieren. Wir entwickeln eine neue Technik zur Join-Ordnung und Kardi-

nalitätsabschätzung für allgemeine Pattern Matching-Anfragen in SPARQL für

große RDF-Datenbanken. Zudem präsentieren wir einen effizienten Algorithmus

zum Abschätzen kürzester Pfade und ihrer Anwendung für die Schlüsselwort-

Suche in Graphen (Steinerbaumproblem).

Im Property Graph-Datenmodell entwerfen wir die Architektur des Anfrageopti-

mierers für die populäre Graphdatenbank Neo4j und ihre Anfragesprache.

Schließlich lösen wir das Problem der Parameterselektion für Anfragemuster als

Teil unseres Benchmarks für Graphdatenbanken.
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Introduction

CHAPTER 1

A data management problem becomes a graph problem when it concerns not only

analysis of the values, but also discovering and exploiting connections between

them. The last decade has seen the rise of interest in graph data management

problems, both in academia and in industry. The interest was caused by the

rapid spread of graph-shaped data coming from multiple domains with the two

main examples being (i) the Linked Data initiative, which exploits cross-domain

techniques from data mining, natural language processing and machine learning

to construct web-scale knowledge bases, and (ii) Social Media, where the users

and their generated content form a quickly growing graph; the availability of

large-scale social networks has motivated numerous Social Network Analysis

projects. The information needs in the two domains are best expressed in terms

of graph problems.

Graph problems can be roughly divided into two large classes. First, there is

the class of database problems: how to store and index graphs efficiently, how

to support declarative query languages and transactions, as well as the issues of

data cleaning, data integration, exploiting modern hardware trends etc. The

second class is graph analytics, where the goal is to support a specific graph

algorithm over a very large graph. The algorithms include PageRank, shortest

paths, centrality computation, graph partitioning; in addition, there is a large

number of graph mining and graph modeling problems like predicting links,

mining communities and frequent subgraphs, counting triangles and motifs,

tracing graph evolution over time etc.

As an indicator of growing importance of graph data management, quite a few

graph database systems and graph programming frameworks have been built in

academia and industry. The advantage of a specialized database solution lies

both in usability and performance. Expressing, understanding and debugging

queries for graphs is typically easier in a specialized graph query language (like

SPARQL or Cypher). On the other hand, although it is possible to express

many graph queries in SQL, the relational query optimizer is likely to fail in

producing a good execution plan, since such SQL queries are typically large,

contain recursion and expensive self-joins. The specialized query optimizer of

11



1. Introduction

a graph database, on the other hand, may take into account typical graph

access patterns and types of queries and develop specialized techniques for their

support. Graph databases also usually provide a low-level API access to the

data, so that any use case-specific graph algorithm can be implemented on top

of the database.

In this thesis we study both the database and graph analytical problems from

the Linked Data and Social Media domains. We structure our discussion around

the specific problem types, and cover the following topics:

• Shortest path and reachability queries over Linked Data and Social Media

datasets. We look at the issues of supporting path queries (expressed in a

declarative query language) inside the graph database systems.

• Shortest path and Steiner tree approximation over large graphs. We devise

approximate algorithms to accurately estimate shortest paths in large

graphs, which can be used as building blocks in various graph analytical

problems. As an extension of these algorithms, we design methods for

approximate Steiner tree computation, the problem that arises in keyword

search over graphs.

• Query optimization for general graph queries, expressed in SPARQL query

language. Specifically, we present methods to estimate the cost of the

execution plan (cardinality estimation problem), as well as a novel technique

to explore the plan search space (join ordering problem); all of them are

tailored to graph databases and have not been considered in the traditional

relational database context.

• Query optimization for graph pattern matching queries, expressed in

Cypher query language. Here we describe the architecture and design

decisions made for the query optimizer of the Neo4j database system.

• Benchmarking graph databases. We address the problem of selecting

parameters for benchmark queries to enable fair comparison of the broad

class of emerging graph-supporting databases and frameworks.

In the rest of this chapter we provide the background information for the rest

of the thesis. We start with describing datasets from Linked Data and Social

Networking domains, and give some qualitative characteristics of graphs from

these two domains (Section 1.1). We then present two data models that are used

to represent and query graphs, namely RDF and Property Graph. We proceed

with a description of the RDF-3X query engine, which we use as a backend

for our graph query processing discussion throughout the thesis. We finish the

Introduction with an overview of the rest of the thesis.

12



1. Introduction

1.1. Graph Use Cases

In this section we present two vertical domains (Linked Data and Social Media)

which extensively rely on graph-shaped data, and describe how the data is used

there, i.e. what are the queries and database problems that occur in these

domains. We also provide some key characteristics of graphs in these two fields

that will shape later discussion.

Linked Data

The concept of Linked Data [44] refers to the graph of published entities on the

web, where both entities and links are identified with URIs. The entities are

often grouped in datasets (such as, for example, various life sciences datasets),

and the links connect entities within and across different datasets. Last years

have seen an impressive growth of Linked Data on the web, with over 31

billion links (triples in RDF notation) being published online, according to

the latest diagram of the Linked Open Data cloud. Large individual datasets

contain hundreds of millions of triples and span domains like biomedical research

(Uniprot, PubMed), knowledge bases (DBpedia, YAGO), open government data

(Data.gov), entertainment (MusicBrainz) and others.

Throughout this thesis we will use (among others) the two of these datasets, the

knowledge base YAGO2 and the biomedical dataset UniProt.

YAGO2 (Yet Another Great Ontology) [45, 96] is a knowledge repository popu-

lated by facts from Wikipedia. It is constructed using infoboxes and category

system of Wikipedia, and the Wordnet thesaurus. The knowledge base is

essentially an entity-relationship network: the entities of Wikipedia (people,

phenomena) are connected with different relationships. In addition to concrete

entities, there is a rich type system (e.g., French Scientist), and relationships

between the types (e.g., subclassOf) and between concrete entities and types

(one entity may belong to different types). These relationships are frequently

called facts, since the two nodes and an edge between them essentially form a

simple statement (e.g., Louis Pasteur isA French Scientist). As more sophis-

ticated knowledge harvesting techniques were invented over time, the knowledge

base has evolved from 5 million facts [96] to over 100 million facts [45].

Another part of the Linked Data cloud is Uniprot [102] — a catalog of information

on proteins, partially curated by experts. At the core of it there is a protein

sequence collection, where every protein is linked to disease, function, pattern

of expression, the proteins it interacts with, and other biological information.

Every entity is also annotated with related scientific publications. The crawl of

Uniprot used in this thesis contains 845,074,885 distinct facts about proteins.

13



1. Introduction

Once collected, knowledge bases serve as a backend for semantic search engines

like NAGA (Not Another Google Answer) [55], which enables precise question

formulation to extract entities and relations of interest. As reflected in the name

of this exemplary system, the queries that it addresses go beyond the capabilities

of modern search engines (i.e., beyond a keyword search on the corpora of web

documents). Ideally, the type of questions one should be able to ask a knowledge

base varies from What are the drugs inhibiting this disease? to Who was the

president of the United States in the year when Barack Obama was born?.

Such questions, translated to a query language, require a query engine and

specific query processing and query optimization techniques to answer them

efficiently. In terms of graph operations, these questions range from reachability

(How are Angela Merkel and Richard Wagner related to each other?) to complex

graph pattern matching (Find a German author whose book inspired an Italian

movie set in Venice).

In this thesis we deal with formal representations of these tasks (using declarative

query languages), leaving aside the problem of translating natural language

questions into database queries [104]. We address the problems of efficient exe-

cution for some graph operations (reachability and shortest paths) on knowledge

bases; we also study the problem of query optimization (that is, translation of a

declarative query into imperative execution plan) for graph pattern matching

queries.

Social Media Graphs

The second class of graph datasets and use cases considered in the thesis is the

Social Media graphs, including online social networks and web graphs. Nodes

there are typically user accounts or web pages, and links denote either connection

between corresponding users (friendship, following etc.), or relationship between

web pages (citation, re-posting etc.). One common characteristic that these

graphs share is the small distance between any given pair of nodes. The distance

between any two nodes is a factor of log |V |, where V is the set of all nodes [103];

it is also a known phenomena that the distance between any two nodes is

likely to decrease as the social graph grows (i.e., more nodes and connections

are added) [61]. Although the original data is owned by the online social

network service providers and is not generally available, the graph structure of

various networks have been crawled by specialized tools. One of the largest such

collections of crawled networks is the Stanford Network Analysis Project1.

A typical graph processing task over social media graphs is to find connections

between two nodes (users), that is to answer the question What is the shortest

1http://snap.stanford.edu/
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Figure 1.1.: Distance distribution for randomly sampled pairs of nodes (2000 pairs)

path between two individuals?. As an example, the LinkedIn social network uses

the path to a given user as a way to reach out that individual, starting from

friends. Shortest paths also serve as a building block for many graph mining

tasks, such as diameter and centrality computation. More general problem is

to connect several nodes of a graph, such that the induced subgraph minimizes

certain objective function. This task occurs, for example, when doing keyword

search over graphs. We study both of these problems in the thesis: we give

algorithms for approximate shortest path computation, and generalize them for

the Steiner tree problem (a variant of the keyword search in graphs).

Graph Characteristics

To illustrate some of the key properties of graph datasets of both classes,

we consider two datasets, the knowledge repository YAGO2 and an online

social network Slashdot (mined in 2008). We measure and report two network

characteristic: the degree distribution of the nodes and the distance distribution

for pairs of the nodes.

Distance Distribution. Let dist(u, v) be the length of the shortest path

between nodes u and v in graph G = (V,E). Then the diameter of G is defined

as the maximum length of the shortest path between any node pair:

d(G) = max
(u,v)∈V×V

dist(u, v)

15
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Figure 1.2.: Degree distribution of Slashdot and YAGO2 graphs. The mean degree is
marked with the dashed red line

Computing the exact diameter is prohibitively expensive, since it requires

computing all-to-all pairs shortest path. In order to get an idea of what the

diameter can be, we can draw a sample S of node pairs from V × V (uniformly,

at random) and compute an estimate (lower bound of the diameter)

de(G) = max
(u,v)∈S

dist(u, v)

We sample 2000 pairs for YAGO2 and Slashdot, and plot the distribution of

dist(u, v) in Figure 1.1. As we see, for both of the datasets the largest distance

between nodes from the sample is rather small: all the nodes from the Slashdot

sample are within at most 5 hops from each other, and for YAGO2 this number

is slightly higher (9 hops). The Slashdot social network (or at least its sample)

therefore indeed confirms to the ”six degrees of separation” theory of Stanley

Milgram.

Degree distribution. For an undirected graph G = (V,E), the degree of a

node u, denoted deg(u), is the number of adjacent nodes, i.e. nodes connected

to u with just one edge. For a directed graph, there are two properties, out- and

in-degree, computed separately for outgoing and incoming edges of u.

We plot the out-degree distribution of YAGO2 and the degree distribution of

nodes in Slashdot in Figure 1.2, marking the average degree with the red line

and using a logarithmic scale. In both cases it is a power-law distribution: very

few nodes have more than 100 neighbors (out-neighbors, respectively).

We are interested in degree distribution because it is a good indicator of the

”density” of the graph. Indeed, social networks tend to have high average degrees
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(Orkut has an average degree of 38.1, and for LiveJournal it is 14.2). This fact,

together with the small diameter of the network, implies that for any two given

nodes there likely are a lot of different shortest paths between them. Moreover,

if we have one shortest path between two nodes u, v, we can easily construct

many other shortest paths by looking at the neighborhoods of the nodes along

that path. We exploit this fact and formalize this procedure in Chapter 3 to

build indexes for approximate shortest path computation.

On the other hand, YAGO2 is a really sparse directed graph, which is very close

to being acyclic. It is a knowledge base, so its entities form an acyclic hierarchy

with a few exceptions (mostly caused by existing Wikipedia category system).

This ”sparsity” allows us to build efficient reachability indexes and support

reachability and shortest path queries as part of the SPARQL query language.

1.2. Data models

In order to be stored and queried in a database, the graph dataset needs to be

mapped to a specific data model. There are two alternatives for that: RDF and

Property Graph data models. This list is of course by no means exhaustive; for

instance, some of the industrial solutions map graph datasets onto the relational

model and store them in relational database systems. Note that most of the

contributions of the thesis do not in fact depend on the specific data model

in use. For example, one can use our approximate shortest path algorithms

from Chapter 3 even if the graph is mapped to the relational model. Similarly,

most of the query optimization problems do not depend on the data model,

since they stem from the innate characteristics of the data and not from the

way it is represented. To make the presentation concrete, however, we use two

specific data models that gained wide acceptance in the community and that are

arguably more intuitive for graph-shaped datasets than the relational model.

The formal mapping between two models is presented and illustrated in [41], we

adopt our example from there.

1.2.1. RDF

As we have discussed in the previous section, there is a very natural mapping

between pairs of connected nodes (together with the edge between them) in the

graph of YAGO2 and the facts of the knowledge base: the labels on nodes serve

as a subject and an object of the fact, while the label on the edge expresses a

predicate. This idea in fact lies behind the Resource Description Format (RDF),

which models the graph as a set of triples (S(ubject), P(redicate), O(bject)).

RDF has been standardized by the World Wide Web Consortium (W3C).
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UK
livedIn

"Stanley Kubrick"

"1928"

Country

"United Kingdom"

type

namebornIn

name

Kubrick

Figure 1.3.: Example of a graph in the RDF data model

According to the W3C standard, the entities are uniquely identified using URIs,

and can therefore be used across multiple triples and multiple datasets. URIs

can be used in any of the S, P or O positions. Additionally, we can use string

literals to identify properties of entities; string literals are therefore only allowed

in the O position of the triple.

Consider an example graph in Figure 1.3, where we mark URI nodes with circles,

and string literals are enclosed in quotes. This graph represents a few facts from

the knowledge base, and in RDF it can be expressed as follows:

(Kubrick, name, "Stanley Kubrick")

(Kubrick, bornIn, "1928")

(Kubrick, livedIn, UK)

(UK, name, "United Kingdom")

(UK, type, Country)

The main power of the RDF format is that it is schema-less: there are no schema

requirements that entities need to satisfy in order to be connected to each other.

In our example, we can easily add more triples that describe properties of the UK

entity (including the data from other datasets, e.g. census data), and connect

UK to other entities. This makes RDF a very attractive option (and the de-facto

standard) for storing heterogeneous Linked Data datasets.

Together with the data format, the W3C has standardized the declarative query

language SPARQL for it. A very basic SPARQL 1.0 query has a form

select ?v1 ?v2 where {pattern1. pattern2. ...}

where pattern1 is a query pattern, consisting of subject, predicate and

object (each of them is variable or constant). The body of the query is

interpreted as a conjunction of patterns, i.e. we are looking for the bindings of

variables that satisfy all of the patterns in the query. In database terms this is

equivalent to having joins between each pair of patterns that share at least one

variable. We will give a concrete example of a SPARQL query and its execution

in the database system in Section 1.3.2.

SPARQL is a rich graph pattern matching language; its latest version (SPARQL
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livedInKubrick UKbornIn=1928
name = Stanley Kubrick

Time=1962..1999

type=Country
name=United Kingdom

Figure 1.4.: Example of a graph in the Property Graph data model

1.1) includes aggregates, subqueries, abilities to update the data and to express

federated queries. In this thesis we will mostly consider the core graph pattern

matching features contained in the SPARQL 1.0 (adding reachability and path

queries constructs to it in Chapter 2).

1.2.2. Property Graph

The second graph representation format is given by the Property Graph (PG)

data model, which gains popularity among graph database users and vendors.

Although not standardized, the model is used by popular graph databases such

as Neo4j2 and Sparksee3.

According to one of the informal descriptions [87], graph in the PG model

consists of nodes, edges, and properties. Properties are arbitrary key-value pairs,

where keys are strings and values are of arbitrary data types. Both nodes and

edges can have multiples properties attached; in addition, an edge between two

nodes has a label and a specified direction.

We give an example graph in the PG model in Figure 1.4. It is similar to the

RDF example from the previous section, except one thing: the edge between

Kubrick and UK has a property that expresses the time interval in which Stanley

Kubrick lived in the UK. Note that the same information is not easy (although

not impossible) to express in RDF: one would need to extend triples to quadru-

ples or use reification to represent properties of predicates (statements about

statements) [42].

When it comes to querying graphs in the PG model, there is no universally

accepted solution, although Neo4j’s Cypher seems to be the most popular choice.

Note that most of the systems in this area do not have a declarative query

language, and provide various imperative APIs for data access instead. In

fact, Cypher, to the best of our knowledge, is the only declarative graph query

language supported by an available graph database system.

Defining the language formally is out of scope of this thesis; instead, we illustrate

its flavor. A simple Cypher query has the following structure:

2http://neo4j.org
3http://www.sparsity-technologies.com/
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MATCH path1 , path2 ,...

WHERE node.property=value

RETURN node

where MATCH and WHERE clauses specify the graph pattern as a conjunction of

conditions on edges (one- or many-hop paths). The WHERE clause may contain

conditions on properties of nodes and edges, and the RETURN clause lists the

nodes that the query yields as a result. Here is an example query that returns

all the people born in 1928 and living in the UK:

MATCH (p:Person) -[:LIVED_IN]->(c:Country)

WHERE p.bornIn =1928 AND c.name=’UK’

RETURN p

Cypher uses an ASCII-art style of specifying graph patterns, where nodes are

enclosed in parentheses, and edges in square brackets. Both nodes and edges

may have type conditions (labels), so a pattern for a node (or an edge) that

belongs to a fixed Type has a form of (variable:Type), where the variable

name may be missing for edges. Nodes are connected via dashes into paths;

several paths can be specified in a comma-separated list. The result of the query

contains nodes of the subgraph that confirms to the union of all path patterns,

and satisfies the key-value conditions on the nodes.

We will discuss the difference between Cypher and SPARQL in terms of semantics

and from the query optimization perspective in Chapter 5.

1.3. The RDF-3X System

The open-source RDF-3X system is the state-of-the-art research prototype for

RDF data management. It is a graph database in that it provides graph

pattern matching capabilities by querying the data in SPARQL. This engine will

serve as a testbed for further types of graph queries and some advanced query

optimization techniques, described in the thesis. Here we provide an overview

of the system’s architecture and design principles, highlighting the parts that

we will use and modify in the thesis. First we describe how the data is stored,

then we define the query graph and the SPARQL graph for a SPARQL query –

central concepts for the query optimization topics. This discussion is followed

by the description of join ordering, cardinality estimation and physical plan

construction techniques which are at the core of the RDF-3X’s query engine.

Parts of this description were previously published in [37] and [34].
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1.3.1. Storing RDF data

RDF-3X is a triple store, that means it puts all triples into a giant triple

table with the subject, predicate, object (S, P and O) attributes. The

engine follows an aggressive indexing strategy and stores all six permutations

of S, P and O in clustered B+-tree indexes: SPO, SOP, PSO, POS, OSP,

OPS. In addition, all subsets of (S, P, O) are indexed in all possible orders,

resulting in 9 additional indexes. In these indexes, the parts of a triple are

mapped to the cardinalities of their occurrence in the dataset. For instance,

the aggregated index on PO matches every pair of predicate and object to the

number of subjects with this predicate and object, i.e. every (p′, o′) maps

to |{s | (s, p′, o′) is in the dataset}|. These aggregated indexes are later used

to estimate cardinalities of partial results during query optimization and to

answer queries where full scans are not needed. The following query computes

all bindings of ?s that are connected with the specified predicate p to any object,

the actual value of the latter is not relevant. In this case the aggregated index

PS is used:

select ?s where {?s p ?o}
In order to make space requirements reasonable for such an aggressive indexing,

RDF-3X employs the delta compression of triples in the B+-tree leaves. Since

in the ordered triples table two neighboring triples are likely to share the same

prefix, instead of storing full triples only the differences between triples (deltas)

are stored. Every leaf is compressed individually, therefore the compressed index

is just a regular B+-tree with the special leaf encoding. Neumann and Weikum

[78] note that while compressing larger chunks of data would lead to a better

compression rate, the page-wise compression allows for faster seek and update

operations in the corresponding B+-tree.

Note that keeping multiple indexes of the same data is not at all unusual for triple

stores, although other solutions are less exhaustive: for example, Virtuoso [27,

28] triple store keeps only two full indexes on quadruples (PSOG, POGS). In

addition, three partial indexes SP, OP and GS are kept.

In order to keep space requirements reasonable for excessive indexing, triple

stores typically use the dictionary compression. Namely, each IRI and literal in

the dataset is mapped to a unique ID, and data is stored as triples of integers,

not strings. RDF-3X uses an incremental approach, where every new data item

gets an increased internal ID. The dictionaries themselves are stored as B+-trees.

1.3.2. Query Engine

In order to run declarative queries against stored data, the database has to

translate a query into an imperative execution plan, and then execute it. The
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engine first translates the query into intermediate algebraic representation (query

graph), then finds out the ordering of algebraic operations (most importantly,

joins). This ordering task is an optimization problem which uses specific cost

model for picking the best order. Finally, for the given join order the engine

also decides on the specific join and access methods (physical plan construction).

In this section we discuss all these steps in detail.

Query Representation

Given a SPARQL query, the query engine starts off with constructing its

representation called a query graph. Specifically, every triple pattern of the

query is turned into a node of the query graph, and two nodes are connected

if the corresponding triple patterns share a common variable (or, if there is a

FILTER condition relating variables of these two triple pattern). Conceptually,

the nodes of the query graph entail scans of the dataset with the corresponding

variable bindings, and the edges correspond to the join possibilities within the

query. Thus defined, the query graph of a SPARQL query corresponds to the

traditional query graph from relational query optimization, where nodes are

relations and join predicates form edges.

Another way to represent a SPARQL query is a graph structure that we call a

SPARQL graph. Its nodes denote variables of the query, while the triple patterns

form edges between the nodes. Intuitively, this structure describes the subgraph

that has to be extracted from the dataset.

Consider an example SPARQL query and its two representations (the SPARQL

graph and the query graph) depicted in Figure 1.5. The query of 8 triple

patterns finds a Nobel prize winning author from Germany that had written

a book related to an Italian city. The SPARQL graph (Figure 1.5b) describes

the pattern that has to be matched against the dataset: we are looking for two

star-shaped patterns (around variables ?p and ?city) that are connected via

the two-hop chain ?p - ?book - ?city. The equivalent query graph (Figure 1.5c)

consists of two four-node cliques (induced by variables ?p and ?city that appear

in four triple patterns each), and a chain between them.

Join Ordering

Given the query graph as input, the optimizer returns the query plan, which is

defined by the ordering of joins between triple patterns, and the type of each

join (merge or hash join). A cost-based query optimizer explores the search

space of different algebraically equivalent query plans, and selects the optimal

(cheapest) plan according to some cost function. Traditionally, the cost function

takes into account the amount of intermediate results produced by joins in the
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select *

where {
?p type German novellist.

?p hasWonPrize Nobel prize.

?p bornIn ?place.

?p created ?book.

?book linksTo ?city.

?city isLocatedIn Italy.

?city hasLongitude ?long.

?city hasLatitude ?lat. }

(a) SPARQL query

?p

German novellist

Nobel Prize ?place

?book ?city

Italy

?long ?lat

type

w
on

P
ri

ze born
In

created linksTo
located

In

ha
sL
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(b) SPARQL graph (nodes are variables and constants)

(?p, bornIn, ?place)

(?p, created, ?book)

(?p, hasWonPrize,Nobel)

(?p, type,Novellist)

(?city, locatedIn, Italy)

(?book, linksTo, ?city)

(?city, hasLong, ?long)

(?city, hasLat, ?lat)

(c) Query Graph (nodes are triples)

Figure 1.5.: Query graphs of a SPARQL query

query plan. For example, the RDF-3X cost functions for merge and hash joins

(MJ and HJ, respectively) are defined as follows:

costMJ =
lc+ rc

100
, costHJ = 300, 000 +

lc

100
+
rc

10
(1.1)

where lc and rc are the cardinalities of the left and right inputs of the join

operation (with lc < rc).

The classical search space exploration technique is Dynamic Programming. Its

variant employed by RDF-3X builds the optimal join tree bottom-up, increasing

the size of partial solutions at every step. We give a C++-like pseudocode of

the algorithm in Listing 1.1. Double for loop iterates over (already considered)

solutions and tries to combine them into a candidate solution. We keep the

mapping between covered triple patterns and candidate solutions (lookup).

Then, for a candidate solution we check that (i) it was not constructed before,

or (ii) it is cheaper than the one in lookup (lines 18-19). If either one of the

conditions is true, we add the candidate solution to dpTable.

Note that this algorithm can be extended by adding another binary operator ◦,
as long as it is associative (with respect to itself and to the join operator 1),

that is:

(R ◦ T ) ◦ V = R ◦ (T ◦ V )

(R ◦ T ) 1 V = R ◦ (T 1 V )

(R 1 T ) ◦ V = R 1 (T ◦ V )
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in the corresponding domains. The only part to change is canJoin function that

needs to take into account the ◦ operator. We will use this fact in Chapter 2,

where we will extend RDF-3X’s runtime system with other binary operators.

1 auto dpTable = vector <list <Problem >>();

2 auto lookup = unordered_map <Set , Problem >();

3 dpTable [0] = {R1 , ..., Rn};

4 lookup.init(dpTable [0]); // init with leaf plans

5 for (i = 1; i < dpTable.size(); i++){

6 for (j = 0; j < i; j++) {

7 for (leftRel in dpTable[j]){

8 for (rightRel in dpTable[i-j-1]){

9 if (! canJoin(leftRel , rightRel)){

10 continue;

11 }

12 auto rels = SetUnion(leftRel , rightRel);

13 // join trees covering leftRel and rightRel

14 auto left = lookup[leftRel ];

15 auto right = lookup[rightRel ];

16 // candidate solution

17 auto P = CreateTree(left , right);

18 if (! lookup.count(rels) ||

19 lookup[rels].cost > P.cost){

20 // found better solution

21 dpTable[i]. push_back(P);

22 lookup[rels] = P;

23 }

24 }

25 }

26 }

27 }

Listing 1.1: Dynamic Programming for Join Order Optimization

Cardinality Estimation

The cost function, mentioned in the previos section, operates on cardinalities

(result sizes) of subplans (left and right subplans of a join). Naturally, these

numbers are not known at the time of query compilation, and the optimizer

needs to estimate them. The state-of-the-art RDF-specific cardinality estimates

were introduced by Neumann and Moerkotte [76]. These estimates are computed

using characteristic sets.

Definition The Characteristic Set for a subject s is defined as

Sc(s) = {p | ∃o : (s, p, o) ∈ dataset R}. The set of Characteristic Sets for a

dataset R is Sc(R) = {Sc(s) | ∃p, o : (s, p, o) ∈ R}
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Essentially, the characteristic set for s defines the properties (attributes) of

an entity s, thus defining its class (type) in a sense that the subjects that

have the same characteristic set tend to be similar. For example, the class

of Person in the knowledge base can be defined by the characteristic set

{bornIn, livesIn, hasName, marriedTo, hasChild}. The authors of [76] note

that in real-world datasets the number of different characteristic sets is surpris-

ingly small (in order of few thousands), so it is possible to explicitly store all of

them with their number of occurrences in the RDF graph.

As an example, consider again the query in Figure 1.5a and suppose that we are

to estimate the cardinality of the join between the triple patterns containing

created and bornIn predicates. The natural way to do it is to iterate over all

characteristic sets, find those sets that contain both predicates, and sum up

their counts. More precisely, the cardinality is estimated as

card =
∑

S∈{S|S∈Sc(R)&{created,bornIn}⊆S}
count(S),

where count(S) is the number of occurrences of the characteristic set S, precom-

puted and stored together with S. Note that this type of computation works

for any number of joins within the same star subquery and delivers accurate

estimates.

This robust procedure works well for star-shaped SPARQL queries, however it

makes Dynamic Programming more expensive, since the cardinality needs to

be estimated for every considered subplan. In Chapter 4 we extend this data

structure for queries of a general shape.

Physical Plan

Since the data is available in several orderings, it is often beneficial to use a

merge join as a physical implementation of a join operation. For example, the

star subqueries typically are executed using the merge join. If we denote by

σorder the table scan in the given order (e.g., Object-Predicate-Subject) with

the specified constants, the star-shaped subquery around ?p from Figure 1.5b

can be transformed into the following sequence of merge joins:((
σOPS(O = Nobel Prize, P = hasWonPrize)

1MJ σOPS(O = German Novellist, P = type)
)

1MJ σPSO(P = created)
)

1MJ σPSO(P = bornIn)

The reason for selecting this execution plan are the following. First, in order

to determine the order of the scan (e.g., OPS in the first scan), the optimizer

takes into account the positioning of constants in that scan. Our first scan has
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constants in the Object and the Predicate position, therefore the order of the scan

is OPS (constants in the Object position are usually more selective, so we start

with them). Same holds for the second scan (looking up O = German Novelist

and P = type). Both of these scans produce results (bindings for the Subject

positions) in increasing order, so we can use merge join as a join method. The

two remaining scans have only one constant, in the Predicate position. In

principle, we can pick any of the two orderings, PSO or POS, but only the PSO

order will produce the results ordered by Subject. Since this allows us to keep

using merge join (as opposed to building the hash table and doing hash join),

this is the preferred order.

Runtime techniques like sideways information passing stress the importance of

merge joins even further [77]. Namely, the values of variable ?p encountered

during the index scans can be propagated to other (less selective) index scans

participating in the subquery with merge joins, such that the latter could skip

most of their pages on disk. Propagation is possible since the merge join keeps

the ordering of its input data intact.

1.4. Contributions and Overview

The exposition is structured around the types of the graph processing problems,

encountered in Linked Data and Social Media (Small-World) graphs.

• We start with describing efficient mechanisms for path and reachability

queries over Linked Data graphs in Chapter 2. There, the graphs are

represented in RDF and queries with SPARQL with extensions for paths

and reachability expressions. We demonstrate how the RDF-3X system

can be extended to efficiently support these kind of queries.

• For cases when exact shortest path discovery is computationally unfeasible

(e.g., large dense graphs), we formulate novel approximate algorithms for

shortest path estimation in Chapter 3. We also consider a more general

problem of connecting multiple nodes of the graph with the smallest

possible tree (Steiner tree problem), and present a scalable algorithm based

on our shortest path estimation methods.

• We then turn our attention to queries more complex than path extraction,

such as general pattern matching problems expressed in SPARQL over RDF

graphs in Chapter 4. We improve the query optimization capabilities of

RDF-3X in two ways: (i) better cardinality estimations for SPARQL query

graphs of a general shape, (ii) efficient heuristics of query simplifications
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for large query graphs, where exact Dynamic Programming can not be

applied.

• We then consider query optimization in Property Graph data model, and

present the architecture of the query optimizer for Cypher query language

in Chapter 5

• Finally, Chapter 6 presents our contribution to the recently proposed graph

database benchmark. Namely, we describe our solution for the parameter

selection problem for graph queries
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CHAPTER 2

Parts of this chapter were

published in [39] and [35]

In this chapter we describe how an RDF triple store (RDF-3X in our case)

can be extended to support two frequent types of graph queries – path and

reachability queries. Namely, we take two existing algorithms – the classical

Disjktra’s shortest paths algorithm [23] and the recently proposed FERRARI [92]

algorithm for reachability – and incorporate them into the RDF-3X engine. Our

focus here is therefore not on algorithmic challenges, but on the database aspects

of these two problem. In order to support new types of queries in a cost-based

query engine, we need to answer the following questions:

• What are the physical operators of the query engine that implement the

corresponding graph operations? To support path queries we reformulate

the Dijkstra’s algorithm using the merge joins of RDF-3X; for reachability

queries we directly employ FERRARI index to look up reachable nodes

for a given node. We also discuss further implementation details for both

cases.

• How to estimate the cost of these operators in the query plan? Query

optimizer chooses a specific imperative execution plan of a declarative

query based on its cost. The cost, in turn, depends on the cardinality

of the operators in the plan, therefore estimating the cardinality of the

shortest path and reachability operators is important.

As we deal with RDF data, the datasets in this chapter are taken from the

Linked Data domain (knowledge bases, biomedical data), and our solutions

exploit their key properties: the corresponding graphs are very sparse and are

structurally close to DAGs (albeit not exactly DAGs). Since we consider the

disk-based RDF-3X system, we will assume disk-resident graphs throughout this

chapter.
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2.1. Path Query Processing in RDF-3X

We first consider extracting shortest paths that match a pattern defined by

a SPARQL query. SPARQL syntax needs to be extended in order to make

shortest path matching possible (Section 2.1.1). Then, we describe a simple

modification of the Dijkstra’s algorithm that match shortest paths on a disk-

resident graph. We use this extension as a physical operator for path matching in

our query engine. Finally, we incorporate path expressions in our query optimizer

(Section 2.1.3), most importantly by providing a cardinality estimation method

that guides logical plan construction.

2.1.1. Extension of SPARQL for Path Queries

In this section we describe the extension of the SPARQL query language that

allows us to query paths in RDF database. This extension is non-standard, i.e.

it is not a part of W3C recommendation (which covers reachability queries only).

As we have discussed in Chapter 1, the RDF dataset can be viewed as a directed

graph, where nodes correspond to subjects and objects, and edges are labeled

with predicates. We define an RDF path of length n from a node x to a node

y as an ordered sequence of triples (x, p1, o1)(s2, p2, o2) . . . (sn+1, pn+1, y), where

oi = si+1 for 1 ≤ i ≤ n− 1.

Now, one can ask for the shortest RDF path between two given nodes x and y.

In order to allow such queries in SPARQL and in tune with previous work [8,

7, 57], we enrich the SPARQL syntax with a path triple pattern. Path triple

patterns resemble reguluar SPARQL triple patterns, but they contain a path

variable in the predicate position. We will distinguish between regular and path

variables by starting the latter with ’??’. A path variable in the path triple

matches the shortest path from a subject to an object in the RDF graph. For

example, the path pattern

<Athens> ??path ?var

matches all the objects reachable from <Athens> and the shortest paths from

<Athens> to all such objects.

Multiple triple patterns are combined in a conjunctive manner and can share

regular variables, thus implying joins. We recursively define any (regular or

path) triple pattern as bounded, if (i) either subject or object is constant, or (ii)

it shares at least one variable with a bounded pattern. For example, the path

pattern in the following group of patterns is bounded:

?person ??path ?city.

?city <isLocatedIn> ?country.

?country <isMemberOf> <European Union>.
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In this chapter we restrict ourselves to bounded path patterns. Informally this

means that the query engine always knows the set of values of either subject or

object in the path triple and thus does not have to consider all-to-all shortest

paths during query execution.

Similarly to [7], we also allow specification of filter conditions on path variables.

A filter condition can be constructed from several built-in functions, arithmetic

and boolean operators. Let V R and V P be the set of regular and path variables

correspondingly. We will support the following built-in function over path

patterns:

• containsAny(path, element), where path ∈ V P and element ∈ V R,

that checks whether path contains a node or edge element

• containsOnly(path, element) with the same domains, it checks whether

path consists only of element. In this case path can be seen as sequence

of zero or more elements.

• length(path) returns the length of path, and together with comparison

operations it allows us to restrict the length of the path.

Syntactically, the path filter conditions are used in the same way as FILTER in

SPARQL.

2.1.2. Join-based Dijkstra’s algorithm

In order to efficiently support the language construct introduced in Section 2.1.1,

we need a physical operator in our query engine that would yield shortest paths

between given nodes. We build our path query processor upon the classical

Dijkstra’s algorithm [23]. The algorithm finds the shortest path between two

nodes by traversing nodes in the graph in a breadth-first manner. Trivial

modifications to Dijkstra’s algorithm allow us to find the paths from the source

to every other node in the graph, or to construct shortest path trees with several

sources. Since the graph is disk-resident, for every visited node the algorithm

needs to retrieve the list of its successors from disk. We will call this operation

getNeighbors. A naive approach to perform getNeighbors for all visited nodes

is to execute it independently for every node. Namely, for every visited node u we

initiate a scan on the SPO index, look up the position of u in the corresponding

B+-tree, read the leaf and decompress it, and extract all triples that have u

as a subject from the decompressed leaf. We can get the reverse Dijkstra’s

algorithm simply by scanning the OPS index, in this case at every step we get

the predecessors of each processed node.
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(a) Dijkstra’s algorithm
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(b) Join-based getNeighbors

Figure 2.1.: Dijkstra’s algorithm for the disk-based system

However, this multiple-lookup based implementation becomes the bottleneck

of the algorithm for disk-resident graphs. Consider, for example, the graph in

Figure 2.1a. The start node is 1, and we enqueue all its successors. Then, we

issue three different requests to disk to get the successors of the nodes 2, 3, and

4. This results in three B+-tree lookups. Even if all three nodes reside on the

same leaf page, we will read and decompress it three times. Caching the page

would solve this particular problem, but it does not scale well since the number

of nodes (and pages) grows exponentially.

We can speed up this process by getting the successors of all three nodes in one

database request. Namely, let us think of a pseudo-scan operator that iterates

over nodes 2, 3 and 4. If we join this operator with the SPO-index scan of the

whole database, we will get all the triples that start with 2, 3 and 4 respectively,

i.e. exactly the successors of the nodes in consideration. Figure 2.1b gives an

illustration of this idea. We join on the S-column and return values from P and

O columns (labels of the edges and successors, respectively). The join (actually,

the merge join) is faster than the multiple lookups due to several reasons: First,

while merging, the RDF engine locates the B+-tree leaf containing the first node,

and then scans the sequence of leaves, occasionally skipping those that a priori

can not contain nodes of interest. Second, if the input nodes are located on the

same leaf page, we will read and decompress this page only once, as opposed to

multiple extractions done by the multiple-lookup approach. Third, by combining

several nodes in one request, we significantly reduce the number of total requests

to the disk.

Our join-based getNeighbors operation takes the set of nodes as input, therefore

we need to accumulate several visited nodes prior to calling it. This idea is

31



2. Querying Paths in RDF Graphs

Algorithm 1: Join-based Dijkstra Algorithm

Input: s, d – start and destination nodes in the graph
Result: path p from s to d

1 begin
2 Q← {s}
3 Vcur ← {s}
4 Vprev ← ∅
5 while Q is not empty do
6 n← Q.dequeue
7 n.status ← processed
8 if n = d then
9 p← reconstruct path from s to d

. requires keeping the predecessor for each node n

10 return p

11 if Vprev is empty then
12 S ← getNeighbors(Vcur) . see Figure 2.1b

13 Vprev ← Vcur
14 Vcur ← ∅
15 Vprev ← Vprev \ {n}
16 relax nodes from S
17 foreach v ∈ S, v.status 6= processed do
18 Vcur ← Vcur ∪ {v}

19 return [ ] . no path found
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leveraged by the Join-based Dijkstra’s algorithm, sketched in Algorithm 1. The

algorithm alters the standard Dijkstra’s algorithm in the following way:

1. We collect visited nodes in Vcur and later use them as an input for the

getNeighbors operation. The nodes that were used for the previous call

of getNeighbors are kept in Vprev.

2. As the traversal proceeds, new nodes are added to Vcur, and the scanned

nodes are deleted from Vprev.

3. Once Vprev becomes empty, we need to get the new portion of neighbors.

The nodes that were queued in Q since the last getNeighbors opera-

tion (we store them in Vcur) become an input for the new join-based

getNeighbors operation call.

Consider, for example, the graph in Figure 2.1a. We start the computation with

Vcur= {1}. Since we do not have any nodes in our buffer S, we get the successors

for the nodes in Vcur. Nodes 2, 3 and 4 are now enqueued and added to Vcur, and

node 1 is removed from Vprev (indicating that for the next loop we need to load

new portion of successors). Now, we request the successors for Vcur = {2, 3, 4}
and continue the usual Dijkstra processing until we reach node 4 and delete it

from Vprev. After that we again request the successors for Vcur = {5, 6, 7}, and

so on. Every time the set of nodes that are processed in the getNeighbors is

a new layer of the graph depicted with dashed lines in Figure 2.1a. Naturally,

these additional operations on Vprev and Vcur can be done in O(log n), thus

leaving the overall complexity O(n log n + m), where n and m is the number

of nodes and edges, respectively. As we show in Section 2.1.4, however, the

join-based Dijkstra’s algorithm is an order of magnitude faster than the original

one.

It is worth pointing out that the join-based technique of getting successors of

several nodes can be employed by other shortest paths algorithms, including A∗,

reach- and landmark-based approaches [3, 32]. There are two main advantages of

the Dijkstra’s algorithm: (i) it finds shortest paths and not only reachable nodes,

and (ii) it does not incur any preprocessing overhead. We therefore employ it as

the main physical operator for path queries in RDF-3X.

In the rest of the section we refer to this physical operator as DijkstraScan: it

takes source nodes and returns reachable nodes with paths to them. In order to

get additional speed up for the DijkstraScan, we consider dictionary encoding

tricks, described in the following subsection.
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Dictionary encoding

As discussed in Chapter 1, RDF-3X assigns an integer ID to every URI and

string constant, and operates on triples of integers. The ID-to-literal mapping is

maintained in the global dictionary, which can be implemented as a B+-tree or

a directed mapping index [78]. In both cases, strings with close IDs reside on

adjacent pages, or even within one page.

The assignment of IDs is done during the data loading on a First-Come, First-

Served basis. In this case, the successors of one node can get IDs that are far

away from each other. It can happen, for example, when the triples with the

same subject are scattered in the input file. Recall the example in Figure 2.1a.

Suppose that the graph depicted there is a subgraph of a much larger graph, such

that the nodes 2, 3, 4 were assigned internal IDs 20, 50, and 100 respectively.

Suppose also that every leaf of the B+-tree SPO index contains 10 entries (every

entry is a triple). In this case, entries corresponding to the 2, 3, 4 nodes are far

away from each other in the SPO index, and the getNeighbors operation will be

likely to read three different B+-tree leaves from disk when applied to {2, 3, 4}.
The problem will become worse in the next iterations, when the number of input

nodes increases.

Another problem with First-Come, First-Served assignment is mapping the

results of the path query execution back from IDs to strings. If the successors of

the same node have IDs far away from each other, we are likely to read another

page for every next node. This leads to almost random ID-to-string lookups

from disk, which becomes extremely inefficient for unselective queries.

Both of these problems can be mitigated to a certain degree by assigning IDs to

nodes in the breadth-first order. Initially, we generate the temporary dictionary

in a First-Come, First-Served manner, so that we can operate on triples of

integers.

We propose a procedure, presented in Algorithm 2, that operates on top of the

temporary dictionary. It is a simple modification of the Breadth-First Traversal

that starts with finding all root nodes of the graph, i.e. nodes without incoming

edges. From every root node s we run a Breadth-First Search, assigning new

IDs in the order of the search. If the node already has an ID, we skip it. This

may happen if this node was processed during the Breadth-First Search from

a previous root. Final assignment of IDs is done before the strings are loaded,

and before any index is created so that created indexes already contain triples

with new, Breadth-First-based IDs.

We will show in the evaluation section that DijsktraScan is a very efficient way

to extract paths from RDF graphs. In order to fully support declarative queries

with paths, however, we also need to discuss query optimization (i.e., ordering
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Algorithm 2: BFS-based Dictionary mapping

Result: new mapping I[n] for every node in the graph
1 begin
2 I ← {}
3 S ← set of nodes with no incoming edges
4 c← 0 . current id

5 foreach s ∈ S do
6 I[s]← c
7 c← c+ 1
8 Q← {s}
9 while Q is not empty do

10 n← Q.dequeue
11 n.status ←processed
12 if n /∈ I then
13 I[n]← c
14 c← c+ 1

15 add all unprocessed neighbors of n to Q

16 return I

of path operators and regular joins), and we do it in the following section.

2.1.3. Query Optimization for Path Queries

As discussed in Chapter 1, the initial step in getting an optimal query plan for

the query is to transform it into a calculus representation (query graph) for

further optimizations. Since we extend the SPARQL syntax with the path triple

pattern, we need to map this pattern onto our query graph model. We illustrate

such a mapping with the following example. Consider a query that finds out

the areas (country, continent) where the city Athens is located, and the city’s

latitude:

select ?city ?lat ?area ??path where {

?city hasName "Athens ".

?city hasLatitude ?lat.

?city ??path ?area.

}

Each of the three triple patterns of this query (including the path triple pattern)

gets its own node in the query graph, depicted in Figure 2.2a. The first two

patterns (P1 and P2) are connected via a regular edge that denotes a join between

the patterns. Additionally, they both are connected to P3 with special p-edges.
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P1 = (?city, hasName,Athens)

P2 = (?city, hasLatitude, ?lat)

P3 = (?city, ??path, ?area) P1 P2

P3

pp

(a) Triple Patterns and Query Graph

DijkstraScan

1

P1 P2

(b) Join Tree

Figure 2.2.: Translating the path query into the join tree

Such edges denote the fact that bindings for the variable ?city (coming from

P1 and P2) will serve as an input to the DijkstraScan path operator, described

in Section 2.1.2 (recall that since we only consider bounded path triple patterns,

each DijkstraScan should have at least one such incoming edge).

If the subject or the object of the path triple is constant, then DijkstraScan is

executed as join-based Dijkstra (reversed Dijkstra) in an asynchronous manner,

like any other operator in RDF-3X. If both the subject and the object are query

variables, the optimizer picks one of them depending on the expected cardinality.

Then the DijkstraScan operator starts with computing the set of subjects

(objects), and performs Dijkstra’s algorithm from this set. This is the case in

our example, since both ?city and ?area are variables, and ?city becomes the

source for DijkstraScan, as it is bounded by the other triple patterns. We give

a plausible logical query plan in Figure 2.2b, where DijkstraScan correspond to

the P3 path triple pattern, i.e. it computes the bindings for ??path and ?area

in that pattern.

As it is always the case with query optimization, the correct placement of

DijkstraScan in the query plan (as part of join ordering) requires accurate

estimation of the cardinality of corresponding path triple patterns. In this section

we discuss estimators for individual path triples, which can be indexed when the

data is loaded. Then, the runtime selectivity estimation merely requires one or

two lookups in a small-sized B+-tree, which is neglible compared to the actual

query execution time.

We first consider the case when the path triple pattern (s, ??p, o) contains

one constant node (subject s or object o). Then, the cardinality estimation of

such a triple pattern boils down to computing the number of nodes visited by

Dijkstra’s algorithm starting from s or reversed Dijsktra’s algorithm starting

from o. The procedure estimating this number is given in Algorithm 3. We start

from the nodes in RDF graph that do not have any successors (’leaves’). Then,

we run breadth-first-traversal in the reversed edges direction (lines 6-11), that

is, going ’up’ the graph.
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Algorithm 3: Cardinality Estimation for Path Queries in RDF Graphs

Result: F [n], B[n] – cardinality of BFS and reversed BFS traversals for
every node in graph G

1 begin
2 foreach node n ∈ G do
3 F [n]← 0
4 B[n]← 0

5 S ← set of nodes with literal-only successors or without successors
6 while reversed Breadth-First Traversal from S do
7 foreach visited n do
8 Succ←list of successors for n

. nodes visited before n, since this is a reversed traversal

9 foreach i ∈ Succ do
10 F [n]← F [n] + F [i]

11 F [n]← F [n] + Succ.size

12 S ′ ← set of nodes with no predecessors
13 while Breadth-First Traversal from S ′ do
14 foreach visited n do
15 Pred← list of predecessors for n
16 foreach p ∈ Pred do
17 B[n]← B[n] + B[p]

18 B[n]← B[n] + Pred.size

19 return F , B
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For every visited node, we already know the forward selectivity of all its successors

since we visited them before processing the current node, so we just sum up

their estimations with the number of successors and get the estimation F [n]

(lines 9-11). We proceed with the backward estimation in the same manner

(lines 12-18). The results of this procedure are materialized in the B+-tree

indexed by the constant included in the pattern.

If both subject s and object o are constant, we approximate the cardinality with

|F [s]− B[o]|.
The last scenario is a triple pattern P1 with three variables. Since we only

consider bounded triples, there exists a (possibly long) join chain in the query

from P1 to a triple P2 with a constant subject or object. If we start the Breadth-

First traversal from the constant subject (object) of P2, it will naturally reach

the subject (object) of our triple. Therefore, the cardinality of P2 can serve as

an approximation of the cardinality of P1, and this scenario is reduced to the

previous one.

We measured the accuracy of Algorithm 3 by using the YAGO2 dataset and

comparing the estimated cardinalities with the real cardinalities. The test

workload contains 1000 random triple patterns with one constant element (subject

or object), the approximation error is given by the formula:

relative error =
max(real cardinality, estimation)

min(real cardinality, estimation)
− 1

The results are shown in Table 2.1. On average (the median error) we misestimate

the backward selectivity by 16% and the forward selectivity by 50%. Using an

off-the-shelf laptop, it takes 5 minutes to compute the new indexes (10% of the

database build time), and they increase the database size by at most 10%. On

the other hand, as a result, cardinality estimation allows us to incorporate path

query processing into the RDF-3X’s cost model and query optimization.

The main reason why such a simple procedure suffices is that Linked Data

graphs are usually quite sparse and similar to acyclic. Therefore, Breadth-First

expansions from S (roots) and S ′ (leaves) are likely to cover most of the edges

in the graph, and the counts collected during traversals accurately capture

the number of reachable nodes. Note also that this procedure ignores specific

edge labels along the path; if we are to take edges into accound, we have to

make the independence assumption and multiply the cardinality of the path

by the selectivity of the given edge predicate. We will relax this assumption in

Section 2.2, where we provide an accurate estimate based on the reachability

index.
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Direction min error 5% quantile median error 95% quantile max error mean error

forward 0 0 0.50 4.02 70534 170.6
backward 0 0.039 0.16 4.25 20.78 0.87

Table 2.1.: Path triple selectivity estimation error for the YAGO2 dataset

less than 1000 nodes returned more than 1000 nodes returned

Dictionary join lookup join lookup

new dict 4 ms 12 ms 32 ms 201 ms
old dict 18 ms 13 ms 78 ms 228 ms

Table 2.2.: Runtime of getNeighbors operation

2.1.4. Implementation and Evaluation

We run a set of mini-benchmark queries over two Linked Data datasets to study

efficiency of our techniques. All experiments were performed on a 2-core Dell

laptop with 4 Gb of memory using 64-bit Linux 2.6.35 kernel. We performed cold

cache experiments by dropping all file-system caches and running the queries.

We repeated this five times and measured the average response time for every

query. For warm cache results we ran queries five times without dropping the

caches. The SPARQL queries are given in the appendix. As the competitor

for our system, we used the regular path processing in Jena [48] (GRIN [101]

and BRAHMS [47] are not publicly available). We had to modify the syntax of

queries to meet the syntax requirements of Jena.

For the first experiment, we use the YAGO2 dataset [45]. First, we evaluated the

performance of the getNeighbors operation. We take 1000 random nodes, and

for every node compute its successors and run getNeighbors with the successors

as the input, thereby getting all nodes that are 2 hops away from the random

seed. We compared four different approaches: the join-based algorithm vs. the

multiple lookup algorithm with two types of dictionary – the traditional RDF-3X

dictionary and the one proposed in this chapter. We also divide results into

two groups, depending on how many nodes were returned by the operation.

The obtained running times are provided in Table 2.2. It clearly identifies that

the combination of the new dictionary and the join-based procedure yields the

best running time for both scenarios. For the large output, this combination

outperforms the naive approach (lookup with the old dictionary) by a factor of 10.

However, if the number of nodes obtained from the disk is relatively small, the

difference between different techniques is not that large due to the join execution

overhead. We also measured the runtimes of the Dijkstra’s algorithm in the

same four scenarios. Table 2.3 gives evidence that the proposed combination
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less than 1000 nodes returned more than 1000 nodes returned

Dictionary join lookup join lookup

new dict 5 ms 8 ms 120 ms 1052 ms
old dict 12 ms 8 ms 458 ms 1169 ms

Table 2.3.: Runtime of the Dijkstra’s algorithm

Dataset Query RDF-3X Jena

cold cache (warm cache)

YAGO2

Q1 0.18 (0.004) 0.45 (0.10)
Q2 1.09 (0.19) 34.54 (1.31)
Q3 1.21 (0.09) 28.17 (1.07)
Q4 1.12 (0.18) 29.98 (0.95)
Q5 2.49 (1.39) > 30 min (> 30 min)

geom. mean 0.92 (0.11) > 29.83 (> 2.99)

UniProt
Q1 0.52 (0.01)

> 30 min (> 30 min)Q2 4.01 (3.21)
Q3 11.54 (4.61)

geom. mean 2.88 (0.53) > 30 min (> 30 min)

Table 2.4.: Query runtimes in seconds for YAGO2 and UniProt datasets

of the clustered dictionary and the join-based getNeighbors yields the best

performance, outperforming the rest by an order of magnitude when the number

of visited nodes is large.

Then, we ran 5 different queries starting from the geographical hierarchy of

Ulm (Q1) to all people from Germany that died somewhere in France (Q4) and

all Mediterranean-born European scientists that are known for some physical

phenomenon (Q5). The full text of the queries can be found in Appendix A. In

general, the performance of Jena significantly degrades as the number of joins in

the query increases. As reflected in Table 2.4, our approach outperforms Jena

by a large margin, improving cold cache times by a factor of 32, and warm cache

times by a factor of 27 in the geometric mean. RDF-3X was consistently better

for all queries, gaining a factor of 1400 speed-up for the last query.

To quantify how our individual techniques affect performance, we ran the

experiments with the variants where only join-based Dijkstra and only new

dictionary are used. The results are also presented in Table 2.5. As we see,

both techniques play a significant role in ensuring high performance, gaining

the speedup of a factor of 4.7 and 3 correspondingly in the cold cache case.

For the second experiment, we use the UniProt dataset [102]. We ran three
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Technique Q1 Q2 Q3 Q4 Q5 geom mean

cold cache
baseline 0.18 1.09 1.21 1.12 2.49 0.92
only new dict 0.69 4.85 5.20 8.63 11.03 4.40
only join-based Dijsktra 0.18 7.71 3.82 3.86 8.64 2.81

warm cache
baseline 0.004 0.19 0.09 0.18 1.39 0.11
only new dict 0.04 0.99 0.75 0.54 5.87 0.62
only join-based Dijsktra 0.004 0.41 0.29 0.36 4.86 0.24

Table 2.5.: Effect of Individual Techniques for Path Processing, YAGO2 dataset

different queries with increasing number of joins in them. The full text of the

queries can be found in Appendix A. The results are given in Table 2.4. Jena

also performs very poorly in this scenario, in fact, it was not able to evaluate

any of the queries in 30 min., as opposed to the average response time of 2.88

seconds of RDF-3X.

2.2. Reachability Queries in RDF-3X

While the path queries described in the previous section are not part of the

SPARQL standard, the recent draft of SPARQL 1.1 offers a ”close enough”

replacement of them, namely property path expressions, which can be seen

simply as regular expressions over paths between two nodes in the RDF graph.

These expressions do not allow to query paths themselves, but rather to impose

connectivity conditions with paths consisting of given edge labels. In this section

we will describe efficient mechanisms to support reachability queries in RDF-3X.

2.2.1. Expressing reachability queries in SPARQL 1.1

The simplest SPARQL query with a regular path expression has the form

select ?s ?o where {?s path ?o}

and retrieves the nodes ?s and ?o connected via the path that matches a regular

expression path. In this work we consider regular expressions over constant

predicates with disjunction (denoted by ’|’), path concatenation (’/’) and Kleene

star (’*’) (corresponding to zero or more occurrences of a predicate) and its

variant ’+’ (one or more occurrences). The expression specifies a sequence of

predicates along the path from ?s to ?o in the RDF graph. We call a triple

pattern (?s, path, ?o) with regular path expression a regular path pattern.
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As an example, the following query retrieves the entities that can be reached

from Berlin by the path consisting of zero or more predicates isLocatedIn and

then gets the types of these entities. In other words, it looks up the geographical

hierarchy of Berlin (Berlin, Germany, Europe, Earth) and returns the types of

the corresponding objects (i.e., a state, a member of EU, a continent, a planet

etc.):

select * where {

<Berlin > isLocatedIn */type ?type.

}

The early version of the W3C SPARQL standard allowed asking how many paths

between two nodes matching the given regular expression exist. However, the

part of the W3C standard defining counting property paths was demonstrated to

be computationally intractable. It has been shown [9, 10, 66] that the problem

lies in using bag semantics for path queries, that is, in counting all the different

paths that can reach a given node via a specified sequence of predicates. Counting

paths leads to returning multiple copies of the same node if it is reachable by

several distinct paths. This results in a double exponential lower bound on the

result set size of a single query even for very small graphs and simple regular

expressions like predicate∗, rendering the original W3C semantics infeasible.

It is also known [9] that even restricting ourselves to simple paths (without

repeating nodes) does not make counting easier, neither does the acyclicity of

the underlying graph help.

For these reasons, the current W3C standard suggests (and our implementation

supports) an intuitive existential semantics that merely checks if there exists a

specified path between two nodes, without counting the number of such paths. In

other words, we treat the regular path pattern (?s, path, ?o) as a reachability

query that returns all pairs of nodes reachable by the given path. Naturally,

?s and ?o may appear in other triple patterns as well, thus restricting us to

subjects with specific properties that can reach objects with other properties

(of course, these properties can be expressed with arbitrary complex SPARQL

subqueries).

2.2.2. Reachability Query Planning

As with path queries (Section 2.1), we first need to define a translation of

SPARQL with property paths into our query graph model. We map new

regular path triples onto query graph nodes and edges in the following way.

First, if the regular expression on the path contains a sequence of steps (i. e.,

the path concatenation ’/’ is used), we replace such a triple pattern with a

sequence of patterns, introducing temporary variables. This way, the pattern ?s
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P1 = (?c, hasName,Berlin)

P2 = (?c, hasPopulation, ?p)

P3 = (?tmp, type, ?type)

P1

P2

P3

∗

∗

(a) Triple Patterns and Query Graph

P1 1 P2

P1 1R P3

P2 1R P3

(b) Potential
Joins

P1 P2

P3

R

(c) Join Tree

Figure 2.3.: Translating the reachability query into the join tree

isLocatedIn*/type ?o expands into two patterns ?s isLocatedIn* ?tmp .

?tmp type ?o, where the second pattern does not require any path processing.

From now on, we can assume that every regular path expression simply requires

matching a single predicate zero or more times (or one or more types for the ’+’

operator). Then, every such path triple pattern is expressing the reachability

requirement on its subject and object, that is, the subject should reach the

object via the given path. Such a requirement is encoded as a special reachability

edge between all the patterns containing subject and object of the given path

reachability triple.

select * where {

?city hasName "Berlin ".

?city hasPopulation ?p.

?city isLocatedIn +/type ?type.

}

Query 2.1: Reachability query retrieving the geographical hierarchy and population of
Berlin

For example, Query 2.1 will have its third triple pattern rewritten into

?city isLocatedIn+ ?tmp. ?tmp type ?type

The corresponding query graph, depicted in Figure 2.3a, therefore has three

nodes. The edge between P1 and P2 expresses the fact that these two patterns

share the variable ?c, while two reachability edges (depicted with *-label) mean

that there should exist a path between ?c defined in P1 and P2 and ?tmp in P3.
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Nodes and edges in the query graph correspond to logical operators in the query

plan. As usual, nodes are mapped to scans over the entire database (or the

corresponding index) with selections induced by literals. Edges are transformed

into joins, such that regular edges become equi-joins and reachability edges turn

into reachability joins. A reachability join 1R (?s, ?o) is conceptually a join with

the condition ?s reaches ?o as a join predicate (as opposed to ?s=?o condition

in an equi-join). For Query 2.1, the two reachability joins and an equi-join are

given in Figure 2.3b. Out of them, the join tree in Figure 2.3c is constructed.

Note that since the query graph is a clique, only two of the three potential

joins are used. Indeed, the equi-join between P1 and P2 and the reachability

join between their result and P3 guarantees that all three join conditions are

satisfied.

There are two special cases of reachability joins:

• Either subject or object in the corresponding reachability triple pattern is

constant (e.g., in the triple Berlin locatedIn* ?place). Then the reach-

ability join 1R (?s, ?o) turns into a reachability selection σR(const, ?o).

• Either subject or object is unbound, i.e. it does not occur in any other

triple pattern. In this case 1R becomes a reachability scan: for a bounded

variable it looks up all the reachable nodes via the specified path.

After we interpreted the query graph in terms of table scans, projections and

joins, we can run one of the classical join ordering algorithms to obtain the

optimal query plan. To be able to incorporate the new reachability join into

Dynamic Programming, we discuss the algebraic properties of the operator first.

Algebraic Properties of 1R

First, we need to refine our notation of the reachability join operator. Let F(P )

be the set of variables of an expression P . This expression can be a simple triple

pattern, or a result of an operator (e.g. a join) on several other expressions.

The reachability operator P1 1R(v→w,p) P2 is defined for expressions P1 and

P2, where v ∈ F(P1) and w ∈ F(P2). It returns all possible combinations of

bindings of variables in P1 and P2 (just like an equijoin), under the condition

that v reaches w via the path confirming to an expression p. For brevity, we

will omit the regular path expression p, since all the properties do not depend

on a specific regular expression.

Unlike equijoin, however, the reachability join has a fixed order of operands (v

has to reach w, not the other way round), since reachability in directed graphs

is not symmetric. We can not, therefore, talk about commutativity of 1R(v→w),

since reordering of operands can be undefined.
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The operator 1R is associative due to transitivity of reachability in directed

graphs:

(P1 1R(v→w) P2) 1R(w→t) P3 = P1 1R(v→w) (P2 1R(w→t) P3),

where v ∈ F(P1), w ∈ F(P2), t ∈ F(P3)

Additionally, it is associative with regards to the equijoin operator:

(P1 1 P2) 1R(v→w) P3 = P1 1 (P2 1R(v→w) P3),

with v ∈ F(P2) and w ∈ F(P3)

Associativity allows us to transparently incorporate 1R into the Dynamic Pro-

gramming algorithm of RDF-3X given in Chapter 1.

2.2.3. Reachability Operator

The physical operator that executes 1R is based on a reachability index; essen-

tially, for every pair of nodes such an index yields whether they are connected or

not via a path that confirms to a specified regular expression. In this section we

describe a state-of-the-art index FERRARI [92] that we used to support 1R in

RDF-3X. The index is constructed while bulk loading the data into the database

system.

To simplify the exposition, we assume that all edges in the graph have the same

label. We will later lift this artificial assumption and describe the reachability

index construction for graphs with multiple edge labels.

The first step in constructing the reachability index is to compute the Strongly

Connected Components: indeed, every node in one SCC can reach any other

node in this SCC. After that, we keep the mapping node→ SCC, which allows

us to give a positive answer to reachability question for nodes from the same

SCC. This mapping essentially merges all nodes from the same SCC into one

meta-node, so that the resulting graph is directed and acyclic (DAG). It is this

DAG that becomes an input for the reachability index construction.

FERRARI index is based on the classical reachability index by Agrawal et al. [2]

that assigns postorder numeric IDs to nodes of the graph as a result of the

depth-first traversal. Let π(v) denote this postorder ID of a node v, then the

set of nodes reachable from v in a subtree T rooted at v can be captured by a

single interval [92]:

IT (v) =
[

min
w∈T

π(w), π(v)
]

We can therefore answer whether a node w is reachable from v in this tree T by

simply testing the containment of π(w) in the interval IT (v). A single interval
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would only bring us reachability queries in the tree-like structures, so for DAGs

we need to store multiple intervals (as a set I(v)) to cover potential non-tree

edges. Specifically, Agrawal et al. [2] showed that it suffices to visit vertices of

the graph in reverse topological order, and for the current vertex v, the intervals

of its children are added into the interval set I(v). Reachability queries are then

resolved by checking whether a postorder ID π(w) is contained in any of the

intervals of the set I(v).

Since this classical interval-based reachability index is in fact a representation

of the transitive closure of the graph, it has the worst-case complexity of O(n3)

(both construction and space consumption). The main idea behind the FERRARI

index then is to merge some of the adjacent intervals in I(v) to create a more

compact representation. By merging we allow some false-positive results which

correspond to the ”gaps” between original intervals that got merged. Some

of the intervals in I(v) are kept as exact (subject to available space budget).

During runtime of the reachability query, there are three possibilities:

• if the target id is contained in an exact interval of the source node, yield a

positive answer

• if the target id is outside of any interval of the source, yield a negative

answer

• if the target id is in one of the approximate intervals of the source, start an

online search (a depth-first traversal with heuristics) to determine actual

reachability

The reachability index described above does not take into account different

predicate labels. Therefore, for every distinct predicate in the RDF dataset, we

create a separate index for the subgraph induced by edges with that predicate

label. In order to reduce the overhead, we only consider predicates that label

both incoming and outgoing edges from the same node, since these are the only

predicates that can form paths in the graph. In reality, the YAGO2 dataset (over

100 million triples) contains 15 such predicates, the sizes of the corresponding

induced subgraphs vary from few hundred nodes to 5 million nodes, and the

total indexing time amounts to roughly 90 seconds on an off-the-shelf laptop

computer. The total size of all FERRARI indexes for YAGO2 amounts to 210

MB (ca. 3% of the total database size), permitting to maintain them in main

memory.

Cardinality Estimation using FERRARI

In order to enable the cost-based query optimization, we need to extend the

cost model to account for reachability joins and selections. More specifically, the
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optimizer has to estimate the result sizes (cardinalities) of reachability selections

and reachability joins. To estimate the cardinality of σR(const, ?o) recall that

the FERRARI index for the const element contains sequence of exact and ap-

proximate reachability intervals corresponding to the set of nodes reachable from

a particular vertex. The intervals are approximate in the sense that all reachable

nodes are covered (i. e., nodes outside the intervals are not reachable from const),

while they admit false positive answers to the reachability query. The total

size of these intervals therefore serves as a fast and accurate approximation for

the cardinality of the σR(const, ?o) operator. In practice, a large fraction of

predicates in Linked Data graphs do not form cyclic paths, because they express

hierarchical dependencies (like childOf, locatedIn, subClassOf). In these

cases the labeling intervals in FERRARI are always exact, i.e. they correspond

exactly to the nodes reachable from const.

In order to estimate the cardinality of 1R (?s, ?o), for every predicate we

precompute and materialize the average number of nodes contained in the set of

intervals of a vertex in the FERRARI index, i.e. the total size of intervals for all

nodes divided by the number of nodes. This value provides a rough approximation

of the number of nodes reachable from the fixed node ?s. Then, to estimate

the result size of 1R (?s, ?o) we multiply this number by the cardinality of the

subplan yielding the ?s values (that is, by the expected number of start nodes).

2.2.4. Runtime Techniques

Once the optimal logical plan has been found, the physical operators are con-

structed. In the pipeline model, the reachability join operator is implemented

similarly to a hash join: in the build part, the more selective input subplan is

executed, and then in the probe part the output of the second subplan is checked

against the build part and FERRARI index, to find the nodes that are reachable

from any of the nodes in the build part. The reachability scan and reachability

filter simply probe the FERRARI index for every incoming node to filter those

that satisfy reachability constraints.

Even after the optimal query plan has been identified by the system, its exe-

cution suffers from the fact that individual triple patterns may be surprisingly

unselective, while their combinations (i. e., joins) rule out most of the scanned

data. In order to deal with these phenomena, RDF-3X employs the Sideways

Information Passing (SIP) mechanism [77]. The system keeps the information

about significant gaps occurred in scans and merges and about domains of

hash joins. All this information is passed between different index scans via

shared-memory variables.

Unlike merge joins and index scans, our reachability join operator does not keep
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Figure 2.4.: Sideways Information Passing for reachability joins

the order of the input join variables values, so we can not identify potential gaps

in its output and pass it to the next operators. However, we can still leverage the

SIP mechanism to speed up the reachability join itself. Recall that the intervals

of the FERRARI index contain all the reachable nodes for all the ?s values of

the left side. By keeping these reachability intervals in the shared memory for

the ?o variable of the right side, we can notify the right side about the potential

gaps in the values of ?o. Intuitively, during the build time we identify for every

?s value the nodes that can not be reached from ?s, thus allowing to skip these

values in the right side subplan execution.

Instead of keeping in the shared memory the intervals themselves, we encode

these potentially reachable nodes in a Bloom filter. As the Bloom filter will be

probed for absence of certain ranges of values, we use the range-preserving hash

function of the form h(x) = ax mod m [77]. We also keep the minimum and

maximum values of potentially reachable nodes, since they can also guide the

underlying index scans of the right side to skip some fractions of the data.

The SIP mechanism for the reachability join is illustrated in Figure 2.4. Suppose

that the inputs to the reachability join are two index scans, and during the

probe time we identify that the left scan yields the values 3 and 4. Then, by

looking up the corresponding intervals in the reachability index, we figure that

the potential domain for ?o variable has values 1, 8, 9. We encode these values

in a Bloom filter, and now during the right scan we know that we can skip all

values between 1 and 8 (not inclusive, showed in gray in Figure 2.4), potentially

also skipping several disk pages between these values.

As a concrete example, consider again Query 2.1 and its optimal plan in Fig-

ure 2.3c. The left side (build part) of the reachability join gets a very selective

subplan (effectively, its a single tuple lookup), whereas the right side (probe
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part) entails a very expensive index scan that touches a large portion of the

database. The SIP mechanism provides the right side the hints to skip the most

part of the scanned data, thus significantly improving the performance: on a

commodity laptop the running time has decreased from 2193 ms to just 75 ms.

2.2.5. Evaluation

In our experiments we formulate queries against YAGO2 [45]. The full text of

the queries is given in Appendix B. We run the modified RDF-3X system on a

dual-core laptop equipped with 4 GB of main memory using 64-bit Linux (2.6.35

kernel). For comparison, we take the commercial open-source Virtuoso 7 system.

The Virtuoso system is run on a server with two quad-core Intel Xeon CPUs

(2.93GHz) and with 64 GB of main memory using Redhat Enterprise Linux 5.4.

Table 2.6 reports the warm cache results of seven queries against YAGO2. As we

see, our approach (RDF-3X with SIP) outperforms Virtuoso by a large margin,

providing the runtime that is 3-5 times faster than the competitor’s. Virtuoso

could not execute the last query, the query execution process has reported ”out

of memory” exception. Note also that the Virtuoso instance has allocated 20 Gb

of main memory, whereas RDF-3X used less around 1 Gb of main memory for

query execution. We additionally quantify the effect of Sideways Information

Passing, by switching it off and running the same queries in RDF-3X. As the

last row of Table 2.6 shows, the impact of SIP is very significant, reaching an

order of magnitude improvement for Query 4. Note that the biggest effect of

SIP is achieved on the queries where the difference between cardinalities of the

probe and the build sides of the reachability join is the largest, so SIP helps

skipping most of data on the probe side (e.g., just a few tuples on the probe and

a large IndexScan on the build). This happens, for instance, when we traverse

geographical hierarchies of a specific place (small probe side), and return certain

properties (names) of all traversed objects (large right side).

Q1 Q2 Q3 Q4 Q5 Q6

RDF-3X (with SIP) 1 188 1 75 350 253
Virtuoso 7 8 452 4 418 946 –

RDF-3X (w/o SIP) 13 973 14 2193 401 560

Table 2.6.: Reachability queries in RDF-3X (with and without Sideways Information
Passing) and Virtuoso 7, ms
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2.3. Related Work

Algorithms for reachability and shortest path problems have been intensively

studied in the database community; a survey of this research can be found in [1].

The problem that we pursue in this chapter is orthogonal to this line of work.

We take the classical Dijkstra’s shortest path algorithm and the state-of-the-art

reachability index FERRARI [92], and build a full-fledged path and reachability

query processing system on it. Besides, we propose low level database techniques

which speed up Dijkstra’s algorithm on disk-resident graphs, that can be applied

to other shortest-path algorithms as well.

Our cardinality estimation problem is related to counting different structures

(paths, subgraphs, simple and Hamiltonian cycles) in graphs — a well-developed

field in discrete mathematics [6, 5, 85, 26]. Query optimization, however,

imposes strict requirements to the runtime of the estimator. In particular,

the nature of the cardinality estimation problem requires that the solution be

of an almost constant runtime complexity: during the compilation time of a

query the optimizer needs to estimate the cardinality of every subquery in the

exponentially growing search space. This forces us to develop robust heuristics

that are simpler and more robust than existing ones, but probably do not have

any worst-case error bounds on random graphs.

The languages for path queries over graph-structured data have been the subject

of much investigation in the theoretical community, see for example the survey

done by Barcelo et al. [12]. The focus there, however, is on expressivity and

complexity of the query language, and not on its efficient implementation.

Several frameworks and prototypes for RDF path queries have been described

in the literature. Namely, Anyanwu et al. [7] propose a path query evaluation

framework that relies on expensive matrix decomposition for the precomputation

step (O(n3), where n is the number of nodes in the RDF graph) and therefore

cannot scale to large graphs. The GRIN engine [101] concentrates on providing

an index for graph queries utilizing graph partitioning, but the construction

time for such an index is also prohibitively long (O(n4 log n)). BRAHMS [47] is

another example of an engine that supports graph traversal queries. However,

it only finds the paths with a predefined (fixed) length. DOGMA [18] is a

disk-based graph pattern matching index, but it does not support path query

processing.

Finally, adoption of SPARQL 1.1 standard has led commercial systems like

Virtuoso to support reachability queries, in a manner similar to recursive SQL

support. We have shown that specialized algorithms and indexes significantly

outperform such an approach.
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CHAPTER 3

Parts of this chapter were

published in [40] and [38]

In the previous chapter we discussed the Dijkstra’s algorithm over RDF graphs

such as YAGO2. Unfortunately, the algorithm’s performance degrades quickly

as the average node degree in the graph increases: indeed, as we show in this

chapter, the queue of nodes used in the algorithm frequently contains most of

the graph’s nodes when run against a dense small-world graph. Therefore, an

application that needs to compute shortest paths over large dense graphs, has to

rely on heuristics. An example scenario may include: (i) social network analysis,

where computing shortest paths is a building block for centrality computation

and other analytical algorithms, (ii) interactive applications such as How You’re

Connected feature of LinkedIn that shows a path between two persons in the

network.

• We first consider the shortest path estimation problem, i.e. finding a path

between two given nodes that is as close to the shortest path as possible

(we discuss the notion of ”closeness” for paths in Section 3.1). We take

the classical distance oracle by Thorup and Zwick [97] (or Sketch [22])

and augment it with paths between the nodes in the oracle. The goal

is to precompute and store an O(n) sized sketch of the graph so that

any shortest path query can be answered approximately but with high

accuracy.

• We then turn to a general problem of connecting k nodes in the graph

such that an induced subgraph has the smallest size (the Steiner tree

problem). We show that our augmented Sketch index can be used to

efficiently approximate Steiner trees in a procedure that combines the

index use with limited local search on the original graph.

In both cases we have implemented our algorithms inside the RDF-3X engine,

and compared them to the state-of-the-art approaches.
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3.1. Shortest Path Estimation

3.1.1. Problem Difficulty

What makes the shortest path computation particularly hard on large graphs?

Dijkstra’s algorithm, the classical technique to compute the shortest path between

two nodes in a graph has the asymptotic runtime complexity of O
(
m+ n log n

)
,

where n is the number of nodes and m is the number of edges [21]. On one of

the benchmark datasets that we use in this chapter – the Orkut social network

comprising about 3 million nodes and 220 million edges – a straightforward

implementation of Dijkstra’s algorithm takes more than 500 seconds on average.

The reason for this is that Dijkstra’s algorithm has to construct and maintain

shortest paths to all nodes in the graph whose distance to the source node

is smaller than the distance from the source node to the destination node.

Consequently, the memory consumption of Dijkstra’s algorithm is very high,

requiring to maintain a number of 2.5 million nodes in the heap for the Orkut

dataset, which is prohibitively expensive for simultaneous execution of many

queries.

The näıve alternative of precomputing all-pairs shortest paths distances and

maintaining them on disk for quick lookups is practically infeasible, requiring

O
(
n2
)

space and the time proportional to the output size [91]. For general

graphs, it has been shown that constant query time for exact shortest path

distance queries is only achievable with super-linear space requirements during

preprocessing [97]. Relaxing the exactness requirement, a number of distance

oracles have appeared which aim at providing a highly accurate estimate of the

node distances [20, 89, 93, 97, 106]. The main application for these approaches

occur in geographic information systems (GIS) or, specifically, in route planning

over transportation networks. Techniques developed in this domain exploit

in a crucial way special properties of transportation networks such as their

near planarity, low node-degree and the presence of a hierarchy based on the

importance of roads [13, 14]. These properties also help in devising faster

variants of Dijkstra’s online algorithm by combining it with A∗-search and other

goal-oriented pruning strategies [31].

On the other hand, the social networks that we consider in this chapter do

not exhibit the same properties as road networks. It is well known that social

networks contain many high degree nodes, are nowhere close to planar, and

typically have no hierarchical structures that can be exploited for improving

shortest path queries. Potamias et al. [80] make the important observation

that even a 2-approximation, which is considered highly competitive for general

graphs, is insufficient in the case of social networks as the distances are already
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very small. Further, none of the prior work has explicitly addressed the problem

of providing the shortest paths themselves, not just the node distances, as we

do in this work.

We also briefly mention here that database research has considered queries over

different forms of graph databases apart from road networks, such as XML

graphs and biological networks [49, 50, 90, 99]. The focus, however, has been

primarily on answering reachability queries, not in computing the shortest path

distance or the shortest path itself.

Contributions. We build upon the recently proposed sketch-based frame-

work [22], which in turn is based on the classical landmark-based approach used

in distance oracles [97]. The goal is to precompute and store a O(n)-sized sketch

of the graph so that any distance query can be answered approximately but

with high accuracy. The prior work considered maintaining only the distance

information as part of the sketch. However, we observe that for social network

graphs (and actually for any real-world graph data apart from road networks),

the path lengths are small enough to be considered almost constant [72], and

thus propose to store the complete path information (i. e. the information about

constituent nodes and edges) as part of the sketch. Based on the availability of

such path-sketches (as opposed to the distance-sketches in [22]) we develop a set

of lightweight algorithms that can approximate shortest paths between any two

nodes with at most 1% error. Additionally, we can also generate a set of paths

(i. e. the identity of nodes in the path) that correspond to the estimated shortest

path distance with no additional overhead – a feature hitherto not available.

Organization. The remainder of this section is organized as follows: First

we explain the previously proposed distance oracle algorithm devised by Das

Sarma et al. [22] (in the following referred to as the sketch algorithm) and show

how simple yet powerful modifications to it yield shortest path estimates of

higher quality. Subsequently, we describe a new algorithm that uses the data

obtained in the precomputation step of the sketch algorithm and returns paths

whose accuracy beats the previous approaches by an order of magnitude at the

expense of only a marginal time overhead. In Section 3.1.5 we describe the

implementation details of our algorithms within RDF-3X. Section 3.1.6 comprises

a comprehensive experimental evaluation that shows the practicability of our

algorithms both in terms of query response time as well as in the approximation

quality of the returned results.

3.1.2. Sketch Algorithm

We start with providing a concise introduction to the algorithm devised by Das

Sarma et al. [22] and its modified version, which lays the groundwork for our
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approach.

Preliminaries

Let G = (V,E) denote a directed graph with vertex set V and edge set E.

Paths and Distances. A path p of length l ∈ N in the graph is an ordered

sequence of l+ 1 vertices, such that there exists, for every vertex in the sequence,

an edge to its subsequent vertex, except the last one:

p = (v1, v2, . . . , vl+1) with vi ∈ V, 1 ≤ i ≤ l + 1, (3.1)

(vi, vi+1) ∈ E, 1 ≤ i < l. (3.2)

For a node v ∈ V of the graph we denote by S(v) the set of the successors of v

in G, that is the set of vertices w ∈ V with (v, w) ∈ E. Thus, we can express

requirement (3.2) equivalently as vi+1 ∈ S(vi), 1 ≤ i < l.

We write |p| = l to denote the length of the path p. For vertices u, v ∈ V , let

P(u, v) be the set of all paths that start in u and end in v. The distance from u

to v, denoted by dist(u, v), is the number of edges in the shortest such path –

or infinity if v is not reachable from u:

dist(u, v) :=

{
arg minp∈P(u,v) |p| if P(u, v) 6= ∅,
∞ else.

(3.3)

Path Approximation. Given two vertices u, v ∈ V , let p denote a shortest

path (note that there could be many) from u to v, that is, a path starting in u

and ending in v with length |p| = dist(u, v). Furthermore, let q be an arbitrary

path from u to v. By regarding q as an approximation of the shortest path p,

we can define the approximation error of this path as

error(q) :=
|q| − |p|
|p|

=
|q| − dist(u, v)

dist(u, v)
∈ [0,∞]. (3.4)

Path Concatenation. Let p = (u1, u2, . . . , ul1 , ul1+1) and q = (v1, v2, . . . , vl2+1)

denote paths of lenghts l1 and l2 respectively. Suppose ul1+1 = v1, that is, the

last node in path p equals the first node in path q. Then, we can create new

path, denoted by p ◦ q, of length l1 + l2 by concatenating the paths p and q:

p ◦ q = (u1, u2, . . . , ul1 , ul1+1) ◦ (v1, v2, . . . , vl2+1)

:= (u1, . . . , ul1 , v1, . . . , vl−2+1). (3.5)
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Sketch Algorithm

The sketch algorithm [22] approximates the shortest path distance between two

given nodes in general graphs using a landmark-based approach. In order to

answer a distance query for a pair of nodes (s, d) in real time, the algorithm

employs a two-staged approach: a precomputation step to generate sketches

(distances from all vertices to so-called landmark nodes) beforehand, and an

approximation step that uses this precomputed data to provide a very fast

approximation of the node distance at query time. It works by combining

the two distances dist(s, l) , dist(l, d) of the query nodes to/from a selected

landmark node l into the approximated distance

d̃(s, d) ≤ dist(s, l) + dist(l, d) .

Therefore, in the original paper [22], the authors suggest to store for every node

v the distances dist(v, ·) and dist(·, v) from (to) the node to (from) certain

landmark nodes as the result of the precomputation. This set of node-landmark

distances is called sketch of a node.

Instead of keeping just the distances, we modify the precomputation step to store

the distances along with the actual paths. Since we consider small-world graphs,

the paths are expected to be relatively short. Therefore, the storage overhead of

maintaining full path information as part of the sketch is not substantial – our

experiments show that it is no more than twice the sketch with only distance

information. Obviously, we do not incur any additional computational overhead

during the precomputation step, since we require no more information than

generated by the breadth-first search and reverse breadth-first search steps of

sketch computation.

Also note that while the original algorithm returns an estimate of the distance

between the query nodes, our algorithm returns more than just one approximate

path between the query nodes, namely a queue of such paths (sorted in ascending

order by path length). By providing many candidate paths, this modification

could prove useful in scenarios where – for example – constraints on certain

nodes/edges must be satisfied.

In the following subsections we explain these two building blocks of the (modified)

sketch algorithm in detail.

Sketch: Precomputation

The precomputation step involves sampling some sets of nodes, computing for

every node in the graph a shortest path to and from a member of this set

and storing the thus obtained set of paths on external memory. These paths
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Figure 3.1.: Sketch precomputation example

will be used in the approximation step later. The preprocessing, illustrated in

Figure 3.1, works as follows:

1. Seed Set Sampling

Let r := blog (n)c where n = |V |. We uniformly sample r+ 1 sets of nodes

(called seed sets) of sizes 1, 2, 22, . . . , 2r respectively. The selected sets are

denoted by S0, S1, . . . , Sr.

2. Shortest Path Computation

For each of the sampled seed sets Si and every node v ∈ V we compute

a shortest path pSi→v that connects any member of the seed set to v

(note that there could be more than one such path). We use breadth-first

expansion from Si and build the complete shortest path tree. For every

node v, we thus obtain the closest seed node, denoted by l1. Likewise,

we compute a shortest path pv→Si that connects v to the seed set, using

breadth-first expansion from Si on reversed edges, terminating at the first

seed node, denoted by l2. The nodes l1, l2 are called landmarks of Si for

the vertex v.
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This precomputation routine – that is, seed set sampling and shortest path

computation – is repeated k times, thereby generating for each vertex v ∈ V
a number of 2rk landmarks and paths (at costs of the same number of BFS

expansions from the seed sets). Note that the set of selected landmarks might

be different for every node. The data (sketch) gathered for node v, consisting

of the 2rk landmarks and paths, is denoted by Sketch(v). As a result of the

precomputation step, we store the sketches of all nodes on disk.

Sketch: Shortest Path Approximation

In the second stage, the algorithm receives a pair of nodes, (s, d), as input. The

goal is to compute, in real time, a path ps→d from s to d that provides a good

approximation of the shortest path, that is, a path with small error(ps→d).

The sketch algorithm, presented in Algorithm 4, performs the following steps to

generate such a path:

1. Load the sketches of nodes s and d from disk

2. Let L be the set of common landmarks in the sketches. Note that for

undirected graphs we can guarantee (for nodes in the same component)

that there exists at least one such landmark, because the sketches of both

s and d contain a path from (respectively to) the only member of the

singleton seed set S0. In directed graphs this guarantee can only be given

for nodes contained in the same strongly connected component.

3. For each common landmark l ∈ L, let ps→l be the path from s to l

and pl→d the path from l to d. Construct (by concatenation) the path

ps→d := ps→l ◦ pl→d from s to d through l, and add it to a priority queue

(sorted in ascending order by path length).

4. Return the priority queue of paths obtained in step 3.

3.1.3. Improving the Accuracy

In this section we explain our modifications to the original sketch algorithm to

obtain better approximations. As a first step, we eliminate cycles in the paths

found by the sketch algorithm and as a second improvement we try exploit

existing shortcuts within the paths. While these two modifications to the original

algorithm are simple, they provide considerable improvements in terms of the

approximation quality, as we will show in the experimental evaluation.
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Algorithm 4: Sketch(s, d)

Input: s, d ∈ V
Result: Q – priority queue of paths from s to d, ordered by path length

1 begin
2 Load sketches Sketch(s),Sketch(d) from disk
3 L← common landmarks of Sketch(s) and Sketch(d)
4 foreach l ∈ L do
5 p← path from s to d through l
6 Add p to queue Q

7 return Q

Algorithm 5: SketchCE(s, d)

Input: s, d ∈ V
Result: Q – priority queue of paths from s to d, ordered by path length

1 begin
2 Q← Sketch(s, d)
3 foreach p = (p1, p2, . . . , pl) ∈ Q do
4 for i = 1 to l − 1 do
5 for j = 0 to l − i− 1 do
6 if pi = pl−j then
7 Q← Q ∪ {(p1, . . . , pi, pl−j+1, . . . , pl)}
8 break . continue in line 3

9 return Q

Cycle Elimination

The paths returned by Algorithm 4 approximate the shortest path for the

two query nodes and thus might be suboptimal, i. e. longer than the true

shortest path. Some of the returned paths can however be easily improved,

because they contain cycles. Consider the example shown in Figure 3.2: Suppose

l ∈ V is a common landmark for the nodes s, d ∈ V and the sketches Sketch(s)

and Sketch(d) contain the paths ps→l = (s, v1, v2, l) and pl→d = (l, v3, v1, d)

respectively. Then, the queue Q returned by Algorithm 4 contains the path

ps→l ◦ pl→d = (s, v1, v2, l, v3, v1, d).

Obviously, we can obtain a shorter path by removing the cycle (v1, v2, l, v3, v1),

thus obtaining the path (s, v1, d). The modified sketch algorithm, named

SketchCE, is described in Algorithm 5.
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Figure 3.2.: Cycle elimination example

For a path of length l, our näıve cycle elimination routine performs at most

O(l2) node comparisons. In theory, we could make use of more advanced cycle

elimination/detection approaches [56]. However, the diameters and thus the

shortest paths in social networks are usually bounded by a small constant [72],

thus we can assume constant time complexity for the cycle elimination routine on

a single path. Furthermore, the number of paths in Q is bounded by the choice

of precomputation rounds, k, and the number of seed sets, r. We eventually

obtain the upper bound |Q| ≤ 2rk for the queue size because for each vertex

we store two paths for every seed set (forward and backward paths). With the

standard choice r = log n this leads to a time overhead of O
(
k log n

)
for the

cycle elimination enhancement. We can keep the queue Q in main memory,

as a result the increase in running time with respect to the basic algorithm

(Algorithm 4) is negligible (as we will show in the experimental evaluation).

Shortcutting

The second modification we propose is path shortcutting: Suppose the queue Q

returned by the algorithm contains a path ps→l→d from s to d via a landmark l.

Two nodes u, v in the path might actually have a closer connection than the one

contained in the respective subpath of ps→l→d. Consider the example depicted

below: While the nodes u and v are connected by a subpath of ps→l→d of length
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3, the original graph contains the edge (u, v). We can then easily substitute

this subpath by the single edge (u, v). Note that in all cases that allow for this

shortcutting optimization, the landmark l will be located on the subpath from

u to v.

s

u l

v

d

(a) Path from s to d. The
original graph contains
the arc (u, v)

s

u l

v

d

(b) Path from s to d after
shortcutting

In order to find out whether any two nodes in a given path ps→l→d = ps→l ◦pl→d
are neighbors, we start at the first vertex, s, and load the list S(s) of its successors

in the original graph. Then we check if any of the successors of s is contained

in the path pl→d from the landmark l to the destination vertex d. If this is the

case, we can substitute the subpath from s to this node by the single edge. If

no successor of s is contained in the path from l to d, we proceed to the second

node in the path ps→l, load the set of its successors and repeat the procedure.

We can terminate this routine if we either

• find a shortcut or

• arrive at the last vertex of the path ps→l, the landmark node l. In this case,

the original path ps→l→d cannot be improved by shortcutting, because the

path pl→d from l to d is already guaranteed to be a shortest path (obtained

using BFS in the preprocessing step).

The complete algorithm (cycle elimination + shortcutting), called SketchCESC,

is depicted in Algorithm 6.

3.1.4. TreeSketch Algorithm

In this section we describe our third contribution, a new algorithm for shortest

path approximation that also utilizes the precomputed sketches.

The sketch Sketch(v) of a node v contains two sets of paths: (1) the set of

paths connecting v to landmarks (called forward-directed paths) and (2) the

set of paths connecting landmarks to v (called backward-directed paths). In the

undirected setting, both sets would correspond to trees having landmarks as

leaves and v as a root. Every inner node of each tree corresponds to a vertex

contained in one of the paths in the sketch. In the directed setting, only the
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Algorithm 6: SketchCESC(s, d)

Input: s, d ∈ V
Result: Q – priority queue of paths from s to d, ordered by path length

1 begin
2 Q← SketchCE(s, d)
3 foreach p = (p1, p2, . . . , pi−1, pi, pi+1, . . . , pl) ∈ Q do

. pi denotes the landmark in path p

4 for j = 1 to i− 1 do
5 S ← set of successors of pj
6 for k = 0 to l − i+ 1 do
7 if pl−k ∈ S then
8 Q← Q ∪ {(p1, . . . , pj , pl−k, . . . , pl)}
9 break . continue in line 3

10 return Q

forward-directed part of the sketch (from v to landmarks) forms a tree, while the

backward-directed paths yield a tree with “reversed edges” (see Figures 3.3a+b).

Our new algorithm, named TreeSketch, takes the two query nodes s, d as

input, loads the sketches Sketch(s), Sketch(d) from disk and constructs the tree

Ts, rooted at s, that contains all the forward paths stored in Sketch(s). Likewise,

the “reversed tree” Td, rooted at d, containing all the backward directed paths

from the landmarks to d is being created from Sketch(d). Then, the algorithm

starts two breadth-first-expansion on the trees simultaneously: BFS(Ts, s) from

s in Ts and RBFS(Td, d) (BFS on reversed edges) from d in Td. At any point

of time during execution, let VBfs and VRBfs denote the sets of visited nodes

during the respective BFS runs.

For every vertex u ∈ VBfs encountered during BFS(Ts, s), the algorithm loads

the list S(v) of its successors in the original graph. Then, it checks whether any

of the vertices discovered during RBFS(Td, d) is contained in the list S(u). If

such a vertex v ∈ S(u) ∩ VRBfs exists (see Figure 3c), we have found a path p

from s to d, given by

p = ps→u ◦ (u, v) ◦ pv→d,

where ps→u and pv→d denote the paths from s to u in Ts and from v to d in Td
respectively (Figure 3d). An equivalent procedure is executed for every vertex

encountered during reverse BFS from d.

We continue this procedure of BFS expansions and successor list checks, adding

paths discovered along the way to the queue Q. Let lshortest denote the length of

the shortest path in Q. The algorithm terminates if there is no further chance
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Figure 3.3.: TreeSketch algorithm example

to find a path that is shorter than the current shortest path in Q. This is the

case when the sum of depths of both BFS runs exceeds lshortest.

The complete algorithm is depicted in Algorithm 7.

3.1.5. Implementation

We implemented all methods – Dijkstra’s online shortest-path algorithms as

well as the sketch-based techniques – within RDF-3X [78]. The Dijkstra’s

implementation is close to the one described in Chapter 2.

For our experiments, we store our social network graphs in RDF-3X edge-wise

with each edge represented as a triple (s, e, t). We do not restrict RDF-3X

from building all the 12 indexes automatically, although we do not use all of

them in this work – in fact, we exploit only SPO and OPS ordered indexes.

Sketch as an Index

We devise an additional index for storing the Sketch data structure as part of

RDF-3X. Recall that the Sketch(v) of a node v consists of landmarks and paths.
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Algorithm 7: TreeSketch(s, d)

Input: s, d ∈ V
Result: Q – priority queue of paths from s to d, ordered by path length

1 begin
2 Load Sketch(s), Sketch(d) from disk
3 Ts ← tree of paths from s . taken from Sketch(s)

4 Td ← tree of paths to d . taken from Sketch(d)

5 Q← ∅
6 lshortest ←∞
7 VBfs ← ∅
8 VRBfs ← ∅
9 foreach u ∈ Bfs(Ts, s) and v ∈ RBfs(Td, d) do

10 VBfs ← VBfs ∪ {u}
11 pv→d ← path from v to d in Td
12 foreach x ∈ VBfs do . iteration in order of visits

13 if v ∈ S(x) then . S(x) is set of successors of x in G

14 p← ps→x ◦ (x, v) ◦ pv→d
15 Q← Q ∪ {p}
16 lshortest ← min{lshortest, |p|}

17 VRBfs ← VRBfs ∪ {v}
18 ps→u ← path from s to u in Ts
19 foreach x ∈ VRBfs do . iteration in order of visits

20 if x ∈ S(u) then . S(u) is set of successors of u ∈ G
21 p← ps→u ◦ (u, x) ◦ px→d
22 Q← Q ∪ {p}
23 lshortest ← min{lshortest, |p|}

24 if dist(s, u)+dist(v, d) ≥ lshortest then break

25 return Q

Therefore it may be represented as a set of triples of a form

〈v〉〈l〉〈p1 . . . pm〉,

where p1, . . . , pm constitute the path between v and the landmark l. Since G

is directed, in order to take the direction of the path into account, our index

structure encodes the binary dir value in the last bit of the landmark ID l. We

treat paths as strings, map them to internal IDs, and store the sketches for

all v ∈ V in a B+-tree index ordered by v. Then, loading of a sketch for a

node basically boils down to one lookup of this node in our index followed by

scan to get all the landmarks alongside the corresponding paths’ IDs from disk.
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Dictionary lookup of the IDs concludes the sketch loading.

Note that in our original work [40] we stored sketches directly as RDF data, thus

allowing RDF-3X to create all permutations of the data on disk. Our current

approach is more economical. It was shown that the disk space consumption

can be further improved by avoiding dictionary mapping and storing the paths

directly alongside nodes in the leaves of the B+-tree.

3.1.6. Experimental Evaluation

In this section we provide an experimental evaluation of our algorithms. First,

we give an overview of the datasets used. Afterwards, we describe the generation

of test instances used in the subsequent evaluation. The experimental results

include: the approximation quality of the different approaches, query running

time measurements, path diversity, and the space and time requirements for

sketch precomputation.

Datasets

We prove the practicability of our approach by a number of experiments on the

following real-world networks:

Slashdot — a network of users of the technology-news website Slashdot, intro-

duced in 2002. In this network, users can tag each other via friend and

foe links. The data was crawled in 2008 [63].

Google Webgraph — a fraction of the webgraph released by Google for the

Google Programming Contest in 2002. This network has the largest

diameter of the datasets we consider [63].

YouTube — a 2007 crawl of the social network consisting of roughly 1 million

users of the video-sharing community YouTube [72],

Flickr — a social network of about 1.7 million users of the photo-sharing website

Flickr, crawled in 2007 [72],

WikiTalk — network of Wikipedia members commenting on each other’s Talk

pages. An edge exists from user a to user b if a has commented on b’s user

page. This network is not very well connected, only about 5% of the users

belong to the largest strongly connected component [60],

Twitter — parts of the social network of the microblogging community Twitter,

crawled in 2009 [82], and
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Dataset |V | |E| δ | S|/|V | d0.9

Slashdot 77,360 905,468 23.4 90.9 % 5.59
Google 875,713 5,105,039 11.7 49.6 % 9.02
YouTube 1,138,499 4,945,382 8.7 44.7 % 7.14
Flickr 1,715,255 22,613,981 26.4 69.5 % 7.32
WikiTalk 2,394,385 5,021,410 4.2 4.6 % 4.98
Twitter 2,408,534 48,776,888 40.5 57.5 % 5.52
Orkut 3,072,441 223,534,301 145.5 97.5 % 5.70

Datasets with no. of vertices |V |, no. of edges |E|, average degree δ, percentage of
nodes in the largest strongly connected component S and effective diameter d0.9 [62].

Table 3.1.: Used Datasets

Orkut — the “pure” social network Orkut, containing more than 3 million users.

This network exhibits a very high average node degree [72].

The networks and their properties are listed in Table 3.1.

Methodology

In order to evaluate the approximation quality and running times of our algo-

rithms, we use a set of test triples of the form(
x, y, dist(x, y)

)
, (3.6)

consisting of a pair of nodes x, y ∈ V and the actual distance dist(x, y) (length

of shortest path) of these nodes in the graph. We generate these triples by

uniformly sampling one hundred vertices and computing shortest path trees

(forward and backward direction) for each vertex, using Dijkstra’s algorithm

[21]. As output we obtain for every sampled vertex v one tree connecting the

vertex to every other reachable node and one “reversed” tree, connecting every

node for which a path to the sampled vertex exists to v.

As a result we obtain a set of triples of the structure shown in equation (3.6).

Then, we group these triples into categories corresponding to the distance

dist(x, y). From every such category, we sample at most 50 triples (tests) as our

test set. The actual number of tests varies for every network because both the

number of groups as well as the number of contained triples might be different.

Approximation Quality

In order to assess the approximation quality of the paths generated by the

different algorithms, we run for every triple
(
s, d, dist(s, d)

)
contained in the

test set a shortest path query for all 4 proposed algorithms: Sketch, SketchCE,
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Dataset Tests Sketch SketchCE SketchCESC TreeSketch

Slashdot 910 46.0 % 26.0 % 0.6 % 0.00 %
Google 3,526 50.5 % 24.9 % 9.7 % 1.00 %
YouTube 758 30.0 % 12.0 % 0.6 % 0.06 %
Flickr 934 28.0 % 11.0 % 0.3 % 0.04 %
WikiTalk 780 55.0 % 31.0 % 0.2 % 0.00 %
Twitter 897 51.0 % 38.0 % 0.8 % 0.03 %
Orkut 385 71.0 % 48.0 % 0.6 % 0.10 %

Table 3.2.: Approximation quality of the shortest path algorithms
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66



3. Approximate Paths in Small-World Graphs

SketchCESC, and TreeSketch. For every shortest path query (s, d), we

compare the length lshortest of the shortest path ps→d in the returned queue with

the true node distance dist(s, d) specified in the test triple. Then, we obtain

the approximation error, error(ps→d), for the path:

error(ps→d) =
lshortest − dist(s, d)

dist(s, d)
∈ [0,∞].

For every algorithm we record the average approximation error over all the

test triples. The obtained error values are provided in Table 3.2 and plotted in

Figure 3.4, using a logarithmic scale to display the error values.

As these results clearly demonstrate, the approximation quality of the algorithms

we propose in this chapter turns out to be superior to the previously proposed

method (denoted as Sketch). For all datasets under consideration, we are

able to return a shortest path for the query nodes with an average estimation

error of 1% in the worst case, while providing exact solutions in almost all cases

for the Slashdot and WikiTalk networks (using the TreeSketch algorithm).

Compared to the paths returned by the basic Sketch algorithm of [22], for

several datasets we are able to provide two orders of magnitude improvement

in approximation quality using SketchCESC and TreeSketch. The simple

cycle elimination enhancement also leads to a considerable decrease of estimation

errors to the order of close to 1.7-2 factors for the datasets under consideration.

Query Execution Time

The second important evaluation category we are assessing is query execution

time. We compare the results of our methods, averaged over the test triples,

to the average running time of Dijkstra’s algorithm. The results are listed in

Table 3.3, a semilogarithmic plot of the cold cache execution times is depicted

in Figure 3.5.

Observe that, using algorithm SketchCESC, we are able to answer shortest

path queries with excellent accuracy within on average 190 milliseconds for

the smallest dataset (Slashdot) to 4 seconds in the large Twitter dataset (cold

cache). Warm cache results are all below 50 ms. Using algorithm TreeSketch

we can provide even better path estimations at an negligible additional time

overhead, providing the results between one and two orders of magnitude faster

than the classical Dijkstra’s algorithm (cold cache). Note that for the Slashdot

and Wikitalk datasets, the query is executed extremely fast while achieving an

approximation error of 0% for almost all of the test triples.

All query execution measurements have been carried out on an out-of-the-box

laptop with a 2.0 GHz Intel Core 2 Duo processor and 4 GB of RAM, running
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Cold Cache Warm Cache

Dataset Sketch SketchCE SketchCESC TreeSketch Dijkstra (Queue) Sketch SketchCESC TreeSketch

Slashdot 140 ms 140 ms 198 ms 193 ms 4 s (46K) 1 ms 4 ms 5 ms
Google 932 ms 932 ms 1,270 ms 1,339 ms 35 s (157K) 3 ms 9 ms 11 ms
Youtube 872 ms 872 ms 1,282 ms 1,318 ms 48 s (380K) 5 ms 15 ms 16 ms
Flickr 1,217 ms 1,217 ms 2,177 ms 1,951 ms 73 s (696K) 5 ms 17 ms 17 ms
WikiTalk 703 ms 703 ms 1,400 ms 1,680 ms 101 s (2M) 2 ms 12 ms 13 ms
Twitter 1,932 ms 1,932 ms 3,900 ms 4,000 ms 119 s (1.1M) 5 ms 45 ms 49 ms
Orkut 1,090 ms 1,090 ms 2,595 ms 2,751 ms 503 s (2.5M) 5 ms 32 ms 37 ms

Table 3.3.: Runtime of the shortest path algorithms
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Figure 3.5.: Shortest path query execution times (cold cache)

Ubuntu Linux 10.04. For the cold cache experiments we have dropped the cache

between each query.

Path Diversity

In many application settings it is not only important to quickly generate an

accurate approximation of the shortest path, but also crucial to return as many

candidate paths as possible. Our algorithms are designed in such a way that

this goal can be satisfied.

They return an ordered queue of paths which can – for example – be used to

filter out candidates based on some user-specified constraints. The average

number of generated shortest paths is given in Table 3.4.

Slashdot Google YouTube Flickr WikiTalk Twitter Orkut

SketchCESC 15.0 2.4 19.3 33.3 18.6 45.5 9.5
TreeSketch 31.5 3.1 40.8 55.6 50.7 92.0 29.6

Table 3.4.: Number of paths obtained
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Dataset Database Sketch tprecomp [s]

Slashdot 26 Mb 36 Mb 245
YouTube 0.19 Gb 0.31 Gb 2960
Flickr 0.67 Gb 0.81 Gb 2671
Orkut 5.70 Gb 6.82 Gb 29031
Twitter 1.30 Gb 2.93 Gb 10733

Table 3.5.: Sketch Space and Time Consumption

The number of candidate paths created by TreeSketch is always greater than

the number of paths generated by the other variants. For the Twitter dataset,

we able to generate 92 paths on average, more than twice as much as provided

by our SketchCESC algorithm.

Preprocessing

Finally, we evaluate the space and time requirements for the preprocessing step

(the sketch computation).

Space Requirements. We evaluate the space consumption of the sketches by

comparing their size against the size of the orginal database. See Table 3.5 for a

detailed overview over the necessary disk space for the different datasets. The

path sketches surpass the original database size by a factor of at most 4.

Precomputation Time. We measure the running time of the preprocessing stage

for all datasets. Table 3.5 provides an overview over the required times for k = 2

preprocessing iterations. Note that the required time increases linearly in k. For

small datasets like Slashdot, the sketches can be obtained within five minutes,

while the largest dataset (Orkut) requires about 8 hours of preprocessing.

The time measurements were conducted on Dell PowerEdge M610 servers, each

of which has two Intel Xeon E5530 CPUs, 48 GB of main memory, a large

iSCSI-attached disk array, and runs Debian GNU/Linux with SMP Kernel

2.6.29.3.1 as an operating system.

3.2. Steiner Tree Estimation

The Steiner tree problem, that is, the problem of connecting a given set of nodes

(also called keywords, or terminals) in a graph such that the total length is

minimized with respect to some predefined cost function, is a problem with

long academic history. Its importance is based on a variety of applications

ranging from VLSI design to the study of phylogenetic trees. In this chapter we

concentrate on three application scenarios in the area of knowledge management:
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Figure 3.6.: Example of an Entity-Relationship graph

Keyword search in graphs. Keyword search is the most popular informa-

tion discovery method because it does not require the knowledge of the query

language or the underlying schema. Consider the entity-relationship graph

where nodes are entities (e.g., extracted from Wikipedia) and edges represent

relationships between entities. The keyword search problem in this setting can

be formulated as: Given a few input entries, discover the relationships between

them. Due to the proliferation of large web-scale knowledge bases like YAGO [96],

DBpedia [74] or Freebase, the keyword search in graphs receives great attention

for information discovery beyond traditional relational databases. As a concrete

example, consider the query asking for the relationships between Angela Merkel,

Richard Wagner and Johann W Goethe (see Figure 3.6). A bigger (and less in-

formative) subtree of the graph would describe them all as belonging to the

class Person. However, if we look for the minimal subtree connecting these

three entities (the Steiner tree), we discover that all of them graduated from

University of Leipzig.

Keyword search in relational databases. Since tuples can be treated as

nodes connected with foreign-key relationships, the keyword search on this type

of data can be again modelled as finding the Steiner trees in graphs.

Social networks. In the Social Network setting, it is important to identify

familiar strangers (Stanley Milgram, 1972), i.e. the individuals who do not

know each other, but share some attributes or properties in common. Here, the

Steiner tree that spans the individual and its familiar strangers consists of the

minimal number of edges that one needs to traverse in order to discover all of

the familiar strangers.
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3.2.1. Problem Difficulty

The Steiner tree problem is one of Karps 21 NP-complete problems [53]. More-

over, it is in the APX class, i.e. an arbitrarily good approximation can not

be achieved in polynomial time: Cheb́ıkov and Cheb́ıkova [19] show that no

(96
95 − ε)-approximation can exist for any positive ε unless P = NP. We have

to, therefore, consider approximation heuristics with rather poor theoretical

guarantees.

Most of the practical approximation algorithms for this problem estimate the

Steiner tree using the shortest paths between the input keyword nodes. Doing

this, existing approaches usually follow one of these extreme lines:

• No index: Use the graph as is, and do not perform any precomputation on

it. In this case, one has to follow a Breadth-First Search (or similar, e.g.

Bidirectional search) expansion strategy starting from every input node

of the query. While many effective heuristics on guiding and speeding up

the Breadth-First Search in this setting have been proposed (BANKS [15],

Bidirectional [51], STAR [54]), their performance is still poor on very large

instances of graph data.

• Index only: Perform extensive indexing of the graph, and after that do not

use the original graph at all. This, for example, includes precomputation

of all keyword-to-node distances in the original graph (or, within every

partition of the graph [43]). Another proposed index is based on the

computing of high powers of the adjacency matrix [64]. As we see, these

techniques can not easily be applied for graphs with millions of nodes

Our shortest path estimation techniques described in Section 3.1 can be viewed

as a compromise between these two approaches. There, the algorithms use the

precomputed index to come up with the rough approximation of the distance,

and later refine it using the local search on the original graph.

Contribution. In this section we propose a mixed approach of no index

and only index that allows for efficient approximation of Steiner trees for both

in-memory and disk-resident graphs. The idea is to use the sketch index for

the fast approximation of distances between the keywords, and then to run

the (very limited) local search on both the index and the graph in order to

minimize the approximation error. In other words, the goal is to generalize

the approximation scheme of Section 3.1 from the case of just 2 keyword nodes

(shortest path problem) to the general case of k nodes (Steiner tree problem). To

show efficiency of our approach, we perform an extensive evaluation study on

large real-world graphs, both in-memory and disk-resident, including YAGO (35

mln nodes) and Twitter (40 mln nodes).
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Organization. After the related work overview, we describe the immediate and

naive way to use the sketch index for Steiner tree approximation. Subsequently,

in Section 3.2.3 we describe the new algorithm combining the sketch index with

the online search on the graph. Section 3.2.4 contains extensive experiments on

the real-world graphs and comparisons with other approaches.

3.2.2. Related Work

The problem has a very rich history, here we will briefly review the work done

in three major directions: (i) exact methods and approximation bounds, (ii)

no-index (exploration) heuristics, (iii) index-based heuristics.

Exact methods and theoretical approximations: Dreyfus and Wagner [25]

and recently Ding et al. [24] exploit the dynamic programming approach to the

Steiner tree problem by computing optimal results for all subsets of terminals.

Both methods are naturally applicable only to moderate size graphs.

One of the first approximation algorithms is the minimum-spanning tree (MST)

heuristic [58]. This heuristic builds a complete graph (a distance network)

on terminals, where edges are attributed with the shortest distances between

corresponding terminals. At the second step, the minimum spanning tree of the

distance network is computed and returned as an approximation of the Steiner

tree. This heuristic is guaranteed to yield the 2-approximation of the Steiner tree;

this factor remained the best known until the 1990s when Zelikovsky obtained a

11/6 factor, and later the 1.55-approximation algorithm [86].

Exploration heuristics: The MST heuristic has been emulated by BANKS [15],

Bidirectional [51] and [33]. BANKS operates with k iterators (one per input

keyword) which are expanded in a breadth-first manner along incoming edges

(i.e., in backward direction) until they meet, and then the result subtree is

constructed. Bidirectional [51] improves on this method by adding the forward-

directed traversal, reducing the number of iterators, and prioritizing nodes with

low degrees for expansion. Both methods have an O
(
k
)

approximation ratio,

where k is the number of input keywords.

STAR [54] follows the intuition of heuristic local search. Initially, a candidate

tree is constructed by similar breadth-first expansions. Then, this candidate

tree is improved by replacing the longest path in the tree with a shorter one.

The algorithm terminates when no further replacement is possible. This greedy

replacement strategy was demonstrated to achieve an O
(
log k

)
approximation

factor while significantly outperforming other exploratory heuristics.

The performance of all the exploration-based heuristics deteriorates significantly

in the disk-based scenario, since the edge traversal of a disk-resident graph

results in random I/O operations.
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Index-based heuristics: BLINKS [43] operates on two indexes: First, for

every keyword the list of nodes that can reach it is stored in the keyword-node

index. Second, a node-keyword index contains the set of keywords reachable

from each node, along with the corresponding distances. To avoid the expensive

computation of the indexes for the large graph, the input graph is partitioned

into blocks, and the top level block index as well as the intra-block indexes for

each block are maintained. The keyword search then proceeds with backward

expansion within multiple blocks. If the boundary of a block is reached, new

iterators are created to explore the adjacent blocks. BLINKS greatly depends

on the partitioning of the graph, which is quite an expensive operation in itself.

Moreover, the performance of BLINKS suffers in case of relatively dense graphs

(such as social networks), where two adjacent blocks may have many boundary

nodes in common, and one boundary node may be shared by many blocks. This

happens because BLINKS needs to create separate iterators for every such node

and the block.

EASE [64] creates an index of r-radius graphs for every possible keyword of

the graph. This is done by computing the r powers of the adjacency matrix

of the original graph. In the online part, the precomputed r-radius graphs are

retrieved and merged together, and certain nodes are pruned from the result to

minimize its size. Due to inherent complexity of large matrix multiplication, we

envision certain difficulties in scaling this approach for large graphs.

As we see, these methods need to have both the graph and the index in main mem-

ory and are not applicable for large, disk-resident graphs, while our techniques

allow both the graph and the index to be stored on disk.

We note that some of the techniques mentioned above were designed with goals

broader or different than just Steiner tree computation: BANKS, BANKS II

and DPBF can also deliver the solution of the Group Steiner Tree; many of the

algorithms return top-k results and rank them. A number of existing papers

solve closely related problems, such as finding r-cliques [52], r-radius Steiner

tree problem with EASE [64], and keyword search on RDF graphs [98].

The database community has also considered keyword queries over relational

databases using the schema-based approaches: DPXplorer [4], DISCOVER [46],

SPARK [68] and others (e.g.,[65]) provide algorithms based on presence of the

schema. While aiming to minimize the same objective function (i.e., the size of

the extracted subtree), none of these approaches can be applied directly in our

schema-less graph database setting. A survey of this line of work can be found

in [105].
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3.2.3. Algorithms for Steiner tree estimation

We present two heuristic algorithms for the Steiner tree computation. First one

is a simple extension of the Sketch algorithm for shortest paths to the setting

with k input nodes. The second algorithm can be seen as a generalization of

our TreeSketch algorithm from Section 3.1.4 for k nodes. Throughout the

discussion we assume that the input graph G is connected, unweighted and

undirected. The case of directed and weighted graphs is discussed at the end of

the section.

Sketch algorithm for Steiner tree problem

Our first contribution, the Sketch algorithm for the Steiner tree problem, is a

generalization of the sketch-based shortest path approximation to the case of k

input nodes. It is depicted in Algorithm 8. There, after loading the sketches

and finding common landmarks between them, we construct the Steiner tree

approximation by merging the paths from the input nodes to the landmarks.

Figure 3.7 illustrates this idea: l3 is the common landmark for three sketches,

so we yield the tree consisting of three paths-branches: (q1, . . . , l3), (q2, . . . , l3)

and (q3, . . . , l3)

Statement 1. Algorithm 8 always finds at least one approximate Steiner tree.

This observation immediately follows from the fact that G is connected: the

seed set S0 has the single node-landmark, and this landmark is shared between

all sketches, so the set L defined in line 3 of the algorithm is not empty.

Since the diameters and thus the path lengths in the considered graphs are

bounded (small world phenomena in social networks [72]), we can assume the

constant time of adding a path to the tree T (line 8 of Algorithm 8). Furthermore,

the number of iterations (lines 4-8) does not exceed the number of different seed

sets used for the sketch computation. We get |Res| ≤ k log |V |, and therefore

the complexity of the Sketch algorithm is O(k log |V |).

SketchLS Steiner tree algorithm

In this section we describe a new algorithm, coined SketchLS, for the Steiner

tree approximation based on sketches and local search (LS).

As outlined in Section 3.1.2, the Sketch(v) data structure consists of paths from

v to the landmarks, so that this collection can be viewed as a tree with the root

in v and landmarks as leaves. Every inner node in this tree belongs to some

shortest path obtained during the precomputation stage, and the whole tree

therefore is a subgraph of G.
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Figure 3.7: Sketch Algorithm for Steiner tree Problem

The algorithm, depicted in Algorithm 9, starts with loading sketches and initial-

izing k instances of Breadth-First Search that will run on sketches (lines 6-7).

For every BFS process we keep the set of frontier nodes, that is, the nodes that

are currently at the maximum distance from the source node. The BFS instances

are called in a round-robin manner (lines 8-26), and the current process makes

one step in the sketch (line 9). The currently visited node v may be connected

in the original graph G with the nodes visited by other processes. We check

whether this is the case, i.e. whether the node v is in fact a neighbor of any

previously visited node (lines 14-20), by looking up the neighbors of v in the

original graph G, and if this is the case, we construct the path between qi and

qj (line 18). We keep track of the connected pairs of nodes in Scover, and as

soon as all the nodes are covered, stop the procedure. The set Scover can be

viewed as an edge list of the graph with nodes q1, . . . , qk, since at every step we

add to it an edge of a form (qi, qj). The condition in the lines 15-16 makes sure

that this graph does not have cycles and that the result T is thus a tree.

The Figure 3.8 illustrates this algorithm. In the beginning, we load the sketches

(Figure 3.8a) and initialize three BFS processes. After few iterations, the bold

edges (Figure 3.8b) denote the edges already visited by Breadth-First iterators.

The current node v is in the frontier of the first process, and it is connected to

the node l2 from the frontier of the third process. We immediately get the path

(q1, v, l2, q3). At the next step (Figure 3.8c), the remaining processes BFS1 and

BFS2 meet via the edge (v, l3). In this case, we also discover that v1 and l4 are

neighbors, but that would create a cycle in Scover: (q1, q2) and (q2, q1), so we

skip this step and conclude: now Scover covers all three input nodes.
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Algorithm 8: Sketch(q1, . . . , qk)

Input: Q = {q1, . . . , qk} ∈ V
Result: Res – priority queue of trees containing q1, . . . , qk ordered by tree

size
1 begin
2 Load sketches Sketch(q1), . . . ,Sketch(qk)
3 L← common landmarks of Sketch(q1), . . . ,Sketch(qk)
4 foreach l ∈ L do
5 T ← ∅
6 foreach qi ∈ Q do
7 Add path between qi and l to T

8 Add T to queue Res

9 return Res

Using the same argument as in case of the Sketch algorithm, we see that the

solution T always exists. Let us estimate the complexity of this algorithm. The

size of the subgraph on which we perform our BFS processes, is the sum of k

sketch sizes, i.e. O(k log |V |) (As always with small-world graphs, we assume

that the diameter of the graph is bounded). So, we perform O(k log |V |) requests

for neighbors in the graph G, and O(k2 log2 |V |) set intersections for every pair of

visited nodes in the worst case (line 14). If the maximal degree of G is Dmax, then

the hash-intersection of F [j] and N (v) has the complexity of O(Dmax+k log |V |),
and the overall complexity of SketchLS is O(k2 log2 |V |(Dmax+k log |V |)). As

we see, the asymptotic behavior of SketchLS is worse than that of Sketch.

However, in the evaluation section we will show that it is compensated by

exceptional quality of solutions found by SketchLS, and that both algorithms

are still orders of magnitude faster than their state-of-the-art competitors. For

now, we will point out the following inequality:

Statement 2. Let Ta(Sketch), Ta(SketchLS) and Ts be the outputs of the Sketch,

SketchLS and the exact Steiner tree algorithms, respectively. Then |Ts| ≤
|Ta(SketchLS)| ≤ |Ta(Sketch)|.

Proof. In the worst case, if the SketchLS algorithm does not find any shortcuts

(lines 14-20, Algorithm 9), then the Breadth-First Search iterators will stop

in the leaves of the sketch trees, that is in the landmarks. So, the worst-case

result of SketchLS is equivalent to the result of Sketch: simply combine the

paths between the common landmark and all the input nodes. The statement

follows.
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Algorithm 9: SketchLS(q1, . . . , qk)

Input: Q = {q1, . . . , qk} ∈ V
Result: T –the tree containing q1, . . . , qk

1 begin
2 Load sketches Sketch(q1), . . . ,Sketch(qk)
3 BFS ← new vector(k) . vector of BFS processes

4 F ← new vector(k) . frontiers of processes

5 Scover ← ∅ . set of covered nodes

6 foreach qi ∈ Q do
7 BFS[i]← Breadth First Search from qi

8 foreach BFSi ∈ BFS do
9 v ← BFSi.next()

10 if new level of BFSi then
11 F [i]← ∅
12 F [i].insert(v)
13 foreach F [j] ∈ F, j 6= i do
14 if N (v) ∩ F [j] 6= ∅ then . N (v) = neighbors of v ∈ G
15 if {qi, qj} creates a cycle in Scover then
16 continue

17 n← any node in N (v) ∩ F [j]
18 p← (qi, . . . , v, n, . . . , qj) . new path

19 T .insert(p)
20 Scover.insert({qi, qj});

21 if ¬BFSi.hasNext then
22 BFS.remove(BFSi)

23 if BFSi = BFS.end then
24 BFSi ← BFS.begin

25 if Scover covers all q1, . . . , qk then
26 break

27 return T
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Figure 3.8.: SketchLS algorithm example

Analysis of SketchLS

In this section we will give a theoretical justification of our heuristic algorithm

SketchLS. Namely, we will connect it with the minimum spanning tree in the

distance network [58]. We start with a few definitions.

The distance network Dn of the nodes {q1, . . . , qk} is a complete weighted graph

where edge weights represent the distances between the nodes in our original

graph G. Let us construct a subgraph Tspan in the distance network Dn as

follows: the nodes of Tspan are {q1, . . . , qk}, and the edges are all the pairs

of nodes in Scover at the moment when the SketchLS algorithm finishes its

work. Every edge (qi, qj) in Tspan is assigned with a weight wij which is equal

to the distance (i.e., the number of edges) between qi and qj in the approximate

tree Ta. The total weight of Tspan is denoted by w(Tspan), and by definition

|Ta| ≤ w(Tspan). Note that the weight of Tspan is computed from the result Ta
of the SketchLS algorithm.

Statement 3. The subgraph Tspan is a spanning tree in Dn.
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Proof. It follows from the fact that Tspan has all the nodes ofDn and contains only

the edges that do not create cycles in Dn (due to the condition in Algorithm 9,

line 15). Besides, it connects all the nodes in Dn (Algorithm 9, line 25).

In addition to the spanning tree Tspan we consider the minimum spanning tree

Tmst in the distance network Dn. We have constructed two pairs of objects so

far: a spanning tree Tspan with the minimum spanning tree Tmst in the distance

network Dn, and the approximate Steiner tree Ta with the exact Steiner tree Ts
in the original graph G. The following statement connects them by stating that

if Tspan is a good approximation of Tmst, then Ta is a good approximation of Ts:

Statement 4. If
w(Tspan)
w(Tmst)

≤ 1 + ε, then |Ta||Ts| ≤ 2(1 + ε)

Proof. As demonstrated in [58], the minimum spanning tree Tmst is a 2-

approximation of Ts, that means w(Tmst)
|Ts| ≤ 2. Now,

|Ta|
|Ts| ≤

w(Tspan)
|Ts| ≤ (ε+1)w(Tmst)

|Ts| ≤ 2(1 + ε)

This statement does not give a theoretical upper bound for the approximation

error for all types of graphs, since ε can be arbitrarily large. Empirically,

however, the premise of this statement is easy to check, because Tspan and Tmst
are computed in polynomial time by SketchLS and Dijkstra’s with Prim’s

algorithms, respectively. In other words, since the landmark-based techniques

are demonstrated to perform extremely well in shortest path approximation on

small-world graphs (see results in Section 3.1, but also other landmark-based

approaches [22, 83, 84]), and the ε – i.e., the sum of the errors of k shortest path

approximations – is very small (in our experiments it lies within [0, 0.01] for all

datasets), then our sketch-based algorithms should perform well for the Steiner

tree approximation. In the evaluation section we will show that this is indeed

the case.

We note that the worst-case theoretical bound for ε follows from the distance

oracle’s worst-case bound O(2c − 1), where c is constant [22, 97]. Our ε is

therefore upper-bounded by O(k · c) (k times shortest path approximation

error). The discrepancy between the extremely good empirical results for ε (and

consequently, for our Steiner tree approximation heuristics) and poor theoretical

bounds is an interesting topic for future theoretical research.

Weighted and directed graphs

Although our techniques are described for the case of undirected and unweighted

graphs, they can be easily carried over to a more general setting.

Directed graphs. If G is a directed graph, then the precomputation procedure

should distinguish between paths of two opposite directions: from the node
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to the seed set and to the node from the seed set. It is achieved by running

the Dijkstra’s algorithm in two directions, on regular edges and on ”reversed”

edges. Later, the SketchLS algorithm runs the BFS on both the regular and

”reversed” paths from sketches.

Weighted graphs. For the Steiner tree problem in a weighted graph G the

objective function that one needs to minimize is the weight of the tree, i.e. the

sum of weights of its edges. The precomputation procedure and the online

heuristics remain the same, but every path now has the weight, so the sketch

data structure has to contain all the weights of edges together with the sequence

of nodes.

3.2.4. Experiments

In this section we present an experimental study conducted to compare our ap-

proximate Steiner tree algorithms with other approximate and exact approaches.

We start with describing the competing algorithms and the datasets used for

the evaluation. This is followed by the assessment of the approximation quality

of different approaches and the analysis of the query size influence. Finally, we

report the query runtime measurements.

Systems

We implement our algorithms for the main-memory scenario in C++ using

the GNU-C++ STL library. We use the C++ implementation of DPBF [24]

provided by the authors, and re-implement the Bidirectional algorithm [51] in

C++ following the reference implementation in Java that was kindly provided by

Heo He [43]. We also implement the minimum spanning tree heuristic (MST) and

the STAR algorithm [54]. We do not consider BANKS, since its successor, the

Bidirectional algorithm, outperforms it [51], and BLINKS, because it optimizes

a different objective function and we are not able to measure the approximation

quality.

Datasets

We examined our approach in comparison with other systems for three classes

of real-world graphs:

Relational databases. We experiment with IMDb [43], a dataset derived from

the popular website. It contains tuples from different tables such as Movie,

Person, Role, connected via the foreign-key relationships.

Entity-relationship graphs. We use the YAGO dataset [96], populated with

Wikipedia entities and relationships between them. With over 35 million nodes
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and 40 million edges, it is the second biggest datasets that we considered.

Social networks. We consider (partial) crawls of the following networks:

Slashdot, Youtube, Flickr, Orkut — same as in Section 3.1.6

Twitter — a 2010 crawl of 40 million users of the micro-blogging network. It is

the biggest graph that we considered [59].

Approximation quality

We assess our algorithms by using them for 1000 randomly generated queries

per dataset. Each query has 3 to 7 keywords sampled from the graph uniformly

at random. In case of smaller graphs (Slashdot, IMDb) we were able to com-

pute an exact Steiner tree Ts using the DPBF algorithm. Then, the relative

approximation error is computed as

error(Ta) =
|Ta| − |Ts|
|Ts|

= error(Ta)− 1,

where Ta is the size of the approximate Steiner tree returned by different

heuristics in use, and error(Ta) is the approximation ratio as defined in Section

3.1. We prefer an relative approximation error over the error ratio, since all the

obtained error ratios of compared algorithms are between 1 and 2 (that is, the

relative approximation error is less than 100%).

Dataset Sketch SketchLS MST Bidirect. STAR

Slashdot 12% 4.4% 12.2% 23% 11%
IMDb 10.5% 4.1% 12% 37.9% 6.9%

Table 3.6.: Approximation error of the Steiner tree algorithms

For bigger datasets, however, the exact algorithm does not scale. The metrics of

comparison is the relative difference

diff(Ta) =
|Ta| − |Tls|

Tls
,

where Tls stands for the tree yielded by the SketchLS algorithm, and Ta is the

size of the tree returned by the heuristic in use. Theoretically speaking, this value

can be negative. However, as in our experiments the resulting trees returned

by the SketchLS algorithm are the smallest among competing algorithms, it

remains non-negative for all the test cases. The obtained approximation errors

are given in Table 3.6, relative difference between SketchLS and competing

algorithms is provided in Figure 3.9.
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Dataset Sketch SketchLS MST Bidirect. STAR

Slashdot 7.2% 0 7.5% 17.8% 2.7%
IMDb 6.1% 0 7.6% 32.4% 5.9%
YouTube 5.6% 0 7.1% 18.7% 5.9%
Flickr 5.3% 0 6.9% 19.2% 5.1%
Orkut 7.9% 0 10.1% 25.8% 8.9%
YAGO 8.4% 0 8.3% 19.2% 8.6%
Twitter 7.4% 0 7.9% 21.5% 8.0%
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Figure 3.9.: Relative difference between SketchLS and other approaches

Query size influence

For the two datasets, Slashdot and IMDb, for which we were able to compute

the exact Steiner tree, we have also measured the influence of the query size on

the approximation quality. Namely, we computed the average approximation

error error(Ta) separately for test queries of sizes 3..7. As Tables 3.7 and 3.8

show, the SketchLS algorithm is consistently better than any other algorithm,

with the quality of approximation slightly deteriorating when the query size

increases.

Query size Sketch SketchLS MST Bidirect. STAR

k = 3 5.6% 2.8% 7.2% 6.8% 8.2%
k = 4 7.3% 3.1% 11.6% 15.9% 10.9%
k = 5 10.7% 4.9% 13.6% 23.8% 12.1%
k = 6 12.9% 5.4% 14.0% 32.9% 11.9%
k = 7 14.2% 5.9% 15.2% 35.5% 13.5%

Table 3.7.: Approximation error for different query sizes k, Slashdot

Query size Sketch SketchLS MST Bidirect. STAR

k = 3 6.4% 3.2% 7.5% 20.5% 4.1%
k = 4 9.4% 4.1% 11.9% 31.7% 8.8%
k = 5 11.8% 5.1% 12.9% 38.5% 7.6%
k = 6 14.9% 6.1% 16.0% 41.2% 7.9%
k = 7 16.3% 6.7% 16.8% 47.7% 8.9%

Table 3.8.: Approximation error for different query sizes k, IMDb
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Dataset Sketch SketchLS MST Bidirect. STAR

Slashdot 180 359 189 K 22 K 2 K
IMDb 104 670 97 K 472 K 1862
YouTube 130 439 1.7 Mln 1.4 Mln 501 K
Flickr 133 451 1.7 Mln 1.4 Mln 659 K
Orkut 190 922 4.3 Mln 3.8 Mln 2.1 Mln
YAGO 184 1264 8 Mln 5.1 Mln 3.1 Mln
Twitter 174 1363 19.2 Mln 18.7 Mln 9.5 Mln

Table 3.11.: Number of visited nodes for Steiner tree algorithms

Time

Another important factor that we measure is the number of nodes visited

(touched) by the algorithms, presented in Table 3.11. Since Bidirectional and

STAR are designed to return top-K results, we set that K parameter to 1 for

them, so that only one result is required. We see that the Local Search done

on the original graph G is limited in all cases to exploring of few hundreds of

nodes. On the other hand, the no-index strategy of Bidirectional, STAR and

MST leads to extremely large number of nodes that they visit during the query

processing. This, in turn, explains the prohibitively large running times for

the in-memory and especially disk-resident graphs, presented in Table 3.9 and

plotted in Figure 3.10 using a logarithmic scale on the vertical axis. Note that

our runtime system uses caching, that makes the difference between in-memory

and on-disk performance smaller than it could be, but the effects of random

disk access (e.g., when reading a list of neighbors) are still significant.

Two of our biggest datasets, YAGO and Twitter, are only used for the disk-based

evaluation. The rest of the datasets is included in both in-memory and on-disk

evaluation.

As the numbers demonstrate, our algorithms’ running times are clearly superior

to all existing approaches: the simple Sketch algorithm is up to 3 orders of

magnitude faster than any other existing algorithm under consideration, the

new SketchLS algorithm is up to two orders of magnitude faster, in both the

main-memory and disk-based scenarios.

All the algorithms were run on a commodity server with the following specifi-

cations: Dual Intel X5570 Quad-Core-CPU, 8 Mb Cache, 64 Gb RAM, 1 Tb

SAS-HD, Redhat Enterprise Linux with 2.5.37 kernel.
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3. Approximate Paths in Small-World Graphs

Table 3.9.: Running Times

In-memory On-disk

Dataset DPBF MST Bidirect. STAR Sketch SketchLS Bidirect. STAR Sketch SketchLS

Slashdot 38.2 s 1.59 s 547 ms 990 ms 1 ms 8 ms 6.5 s 2.3 s 20 ms 71 ms
IMDb 21.5 s 747 ms 10 s 438 ms 1 ms 9 ms 12.1 s 8.5 s 23 ms 92 ms
Youtube – 5.1 s 3.4 s 3.5 s 2 ms 12 ms 14.9 s 12.4 s 31 ms 125 ms
Flickr – 5.8 s 3.6 s 3.4 s 2 ms 15 ms 15.3 s 12.9 s 31 ms 133 ms
Orkut – 9.4 s 5.1 s 4.9 s 2 ms 34 ms 25.8 s 21.3 s 48 ms 301 ms
YAGO – – – – – – 15.6 s 11.3 s 39 ms 237 ms
Twitter – – – – – – 39.6 s 31.6 s 56 ms 900 ms
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Table 3.10.: Running times of the Steiner tree approximations
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Optimization of Complex Graph
Queries

CHAPTER 4

Parts of this chapter were

published in [37]

In the previous two chapters we have discussed the two specific types of graph

queries, shortest path and reachability queries. Now we will consider a very

general class of graph pattern matching problems expressed as SPARQL queries,

and the query optimization problems related to this class of queries.

As the quality of the existing graph datasets improves, users tend to formulate

interactive graph pattern matching queries of increasing complexity, just like it is

commonplace with SQL in modern RDBMSs. For example, the query log of the

interactive DBpedia endpoint has SPARQL queries with up to 10 joins [11], and

analytical queries in the biomedical domain can include more than 200 joins [88].

Of course, queries of this size do not usually come from users directly, but are

rather generated by user-facing interactive tools (e.g., large provenance queries

of [88] are generated from a higher lever declarative language), and therefore

their size can be arbitrarily large.

In this section we describe a novel join ordering algorithm aimed at large

SPARQL queries. Essentially, it is a SPARQL-tailored query simplification

procedure that decomposes the query graph into star-shaped and chain-shaped

subqueries; these subqueries correspond to matching star-shaped subgraphs and

chains of stars. For these subqueries we introduce a linear-time heuristical join

ordering algorithm that takes into account the underlying data correlations

to construct an execution plan. The simplified query graph typically has a

much smaller size compared to the original query, thus allowing to run Dynamic

Programming on it. In order to estimate the cardinalities in the simplified query,

we introduce new statistical synopsis coined Characteristic Pairs.

We start with considering the query optimization challenges of graph pattern

matching queries; most of these challenges are caused by the nature of RDF

data (Section 4.1). Section 4.2 describes our novel algorithm for star-shaped

SPARQL query optimization. In Section 4.3 we show how this algorithm can be

incorporated into the query optimizer for queries of a general shape, as well as

present a novel statistical synopsis for accurate cardinality estimations beyond
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star-shaped queries. To validate the effectiveness and efficiency of our join

ordering strategy, we run our join ordering algorithms on thousands of generated

queries over real-world datasets, and compare them with the state-of-the-art

SPARQL query optimization algorithms in Section 4.4. Finally, Section 4.5

discusses related work.

4.1. Motivation

Finding the right execution plan (basically, the right join order) is known to be

a challenging task for any query optimizer. In RDF systems, additionally, the

optimizers are faced with extremely large sizes of queries due to verbosity of

the data format, and with the lack of schema that challenges the cardinality

estimation process, an essential part of any cost-based query optimizer. It is easy

to construct a query with less than 20 triple patterns whose compilation time

(dominated by finding the optimal join order) in the high-performance RDF-3X

system [78] is one order of magnitude higher than the actual execution time.

Query 4.1 contains a SPARQL formulation of such a query against the YAGO2

knowledge base; it returns the information about a German writer, the novels

he created, and further art works linked to them. On the other hand, another

popular high-performance triple store, Virtuoso 7, seems to spend much less

time finding the join order (probably employing some kind of greedy heuristics),

but pays a high price for the (apparently) suboptimal ordering. For that specific

Query 4.1 we have measured the following compile and runtimes in two systems:

System Query Compilation Query Execution
(dominated by query optimization)

RDF-3X 78 s 2 s
Virtuoso 7 1.3 s 384 s
This work 1.2 s 2 s

Ideally, we would like to have a hybrid of two approaches: a heuristics that

spends a reasonable amount of time optimizing the query, and yet gets a decent

join order.

This problem becomes even more pressing, as emerging applications require

the execution of queries with 100+ triple patterns [88]. One of the popular

alternatives for Dynamic Programming for such queries – Greedy heuristics -

faces a hard challenge of greedily selecting even the first pair of triples to join

due to structural correlations between different triple patterns [76]. Indeed, a

triple pattern can be quite selective itself (e.g., people born in France), but not
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select * where {

?s a wikicategory_German_people_of_Brazilian_descent.

?s a wikicategory_Nobel_laureates_in_Literature.

?s a wikicategory_Technical_University_Munich_alumni.

?s diedIn ?place. ?place isLocatedIn ?country.

?s created ?piece. ?piece linksTo ?movie.

?movie a wikicategory_1970s_drama_films.

?director directed ?movie.

?director hasWonPrize ?prize.

?piece linksTo ?city. ?city isLocatedIn Italy.

?piece linksTo ?opera. ?opera a wikicategory_Operas.

?s influences ?person2.

?person2 a wikicategory_Animal_rights_advocates.

?s created ?piece3. ?piece3 linksTo New_York_City.

}

Query 4.1: Complex graph pattern matching query over YAGO2. We use the standard
shortcut a for rdf:type

within the considered group of triple patterns (that could describe, e.g., French

Physicists).

In the following section we present a detailed analysis of query optimization

challenges caused by large graph pattern matching SPARQL queries.

Analysis of challenges

Finding the optimal join order of a SPARQL query is very challenging due to

the nature of RDF data. The origins of the technical problems can be roughly

split into two parts: the size of the search space, and the lack of schema.

Search space size. The RDF triple format is very verbose. Thus, for example,

the TPC-H Query 2 written in SPARQL contains joins between 26 index scans

(as opposed to joins between 5 tables in the SQL formulation!). The number of

possible query plans is in the order of factorial of the table number, i.e. 5! = 120

plans in SQL vs 26! = 4 · 1026 plans in SPARQL. This is a price that the engine

has to pay for the flexibility of the data schema. Therefore, the sheer size of the

search space for large SPARQL queries does not allow the standard Dynamic

Programming exploration of equivalent query plans, since it has to look at all

the valid plans in order to find the cheapest one.

Lack of schema. The lack of schema – a typical situation for any graph

database – leaves the optimizer without essential information that is readily

available to any relational optimizer, such as the set of tables, their attributes,

primary and foreign keys. For example, a relational system would have informa-

tion that an entity of a type Person has attributes Name, Birthday, Birthplace
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?s

?piece ?city

?latcreated
linksTo

has
Lat

(a) SPARQL subgraph

Partial Plan Est.Size

(?s, created, ?piece) 1 (?piece, linksTo, ?city) 1.5 Mln
(?piece, linksTo, ?city) 1 (?city, hasLatitude, ?lat) 1.3 Mln

(b) Entries of the DP table

Figure 4.1: Part of the Dynamic Programming table for Query 4.1

etc., and foreign key relationships to other entities (Places, Companies etc).

The relational optimizer can therefore keep the statistics on these attributes and

foreign keys (e.g., an average person has lived in 3 different places) and use it

for result size estimation. All this information is only implicitly present in RDF

data, where attributes and foreign keys create structural correlations in the RDF

graph. In other words, some of the predicates tend to occur together as labels

of outgoing edges of the same node (e.g., bornIn, hasName and created), and

some subgraphs tend to occur together in RDF graphs (e.g.,writers and books).

The simplest of these correlations – corresponding to the attributes of the

same entity – are captured by Characteristic Sets (CS) of the RDF graph [76],

described in Chapter 1. However, the Dynamic Programming (DP) algorithm

for join ordering requires computing the CS-based cardinality estimates for every

non-empty subgraph of the query. It significantly increases the (already high)

runtime of the DP algorithm, as we will demonstrate in the evaluation section.

Moreover, CS do not capture correlations between different subgraphs in the

RDF graph. In the absense of this information, the optimizer has to rely on the

independence assumption and fails to estimate the result sizes of most of the

partial plans.

One more issue with Dynamic Programming is that, even for the mid-sized

query graphs, the algorithm ignores the structure of the query, and therefore

considers a lot of a priori suboptimal subplans during the plan construction.

To illustrate the last point, consider a subgraph of Query 4.1, given in Figure 4.1a,

and some of the corresponding subplans, generated by the DP (depicted, together

with estimated result sizes, in Figure 4.1b).

Here, the independence assumption leads to a significant underestimation of the

size of the result, since the optimizer merely multiplies the frequencies of two

predicates. Take the first partial plan given in Figure 4.1b. Its cardinality —

given the independence assumption – is computed based on multiplication of

of the frequencies of created and linksTo, and results in a somewhat modest

amount of 1.5 million tuples. In reality, however, these two predicates are not

independent: artifacts created by people (books, movies, songs) tend to link to

multiple entities mentioned in them or related to them. The real cost of the
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partial plans is therefore much worse than what the optimizer expects. Indeed,

the first partial plan returns all the people that have created anything that links

to any entity (hundreds of millions of entities), and the second subplan yields

all the entities linked to each other, such that one of them has a latitude as

an attribute. Clearly, performing these chain-shaped joins earlier during query

execution would produce enormous intermediate results. However, completely

avoiding chain joins can not be made the ”rule of a thumb” either, since some of

the chains may yield extremely small results. The (nearly optimal) join ordering

strategy is to split the query into star- and chain-subqueries while still keeping

the correlations between different subqueries, and this is the strategy that we

pursue in this chapter.

The solution described in this chapter, the Dynamic Programming-based heuris-

tics overcomes these challenges as follows. It decomposes the SPARQL graph

into the disjoint star-shaped subqueries and the chains connecting them. Hav-

ing done that, we no longer need to consider joins between individual triple

patterns of star- and chain-shaped subqueries (like in the table above) and

thus drastically reduce the search space while keeping the plans very close to

optimal. Furthermore, the plans for the star-shaped subqueries are found using

the novel linear-time join ordering algorithm. This way, only the join possibilities

between different subqueries contribute to the problem’s exponential complexity,

therefore reducing the search space size to the SQL level (e.g., down to 5! plans

instead of 26! plans for TPC-H Query 2). To capture the correlations between

different star subqueries, we introduce a generalization of characteristic sets

(coined the characteristic pairs). This statistics helps estimating the cardinalities

of joins between different stars, which in turn are used to order subqueries in

the overall query plan.

Note that, although we concentrate on triple stores in this chapter, the problem

of join ordering is orthogonal to the underlying physical storage and is therefore

common to all the RDF systems. The sources of this problem lie in verbosity

of the RDF data model and high irregularity of real-world datasets. Our

solutions (join ordering algorithms and statistical data structures for cardinality

estimation) do not assume any particular organization of a triple store (i.e.,

specific indexes, data partitioning etc.) and are therefore applicable to a wide

range of systems.

4.2. Star Query Optimization

We first consider finding the optimal join order for queries of a particular shape,

namely the star-shaped queries. We start by introducing a statistical data

structure coined the hierarchical characterisation of the RDF graph, and then
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describe the algorithm that employs it to find an ordering of joins in star queries.

Hierarchical Characterisation

A characteristic set, defined in [76] as a set of outgoing edge labels for the

given subject, tend to capture similarity between entities described in the

RDF dataset. Thus, entities with the characteristic set {hasTitle, hasAuthor}
usually describe books. While the lack of fixed schema prevents us from assigning

these entities a type ”Books” (e.g., we are not going to store such entities in a

separate table), the characteristic sets allow us to predict selectivities for given

sets of query triple patterns.

In real-world RDF datasets, set inclusion between different characteristic sets

also bears some semantic information. Consider the following Characteristic Set

(CS) that describes a type Writer: S1 = {hasName, bornIn, wroteBook}, and

another CS that characterizes entities of type Person: S2 = {hasName, bornIn}.
Note that S2 ⊆ S1, and at the same time Writer is a subtype of Person. We

find this situation to be extremely frequent in knowledge bases. For instance, the

majority of characteristic sets in YAGO [45] are subsets of each other, reflecting

the class hierarchy of YAGO entities.

Along with the set of predicates, the CS keeps the number of occurrences of this

predicate set in the dataset [76] (denoted as count(CS)). Here we introduce

a generalization of this measure, namely the aggregate characteristic of CS

cost(CS). It is defined as the sum of occurrences of all the supersets of the

given CS:

cost(CS) =
∑

S is a char.set & CS⊆S
count(S)

The difference between cost(CS) and count(CS) is twofold. First, count(S)

merely reflects the number of the star-shaped subgraphs of dataset R that have

those and only those edge labels mentioned in S. At the same time, cost(S) is

the number of subgraphs that have all the labels from S plus some other labels.

In other words, cost(S) for S = {p1, . . . , pk} provides an estimate for the result

size of the query

select distinct ?s

where {?s p1 ?o1. ... ?s pk ?ok.}

Second, cost can be applied to any set of predicates that does not form the CS.

For example, the set of two predicates S = {hasName, wroteBook} is not charac-

teristic, since these two predicates are always accompanied by bornIn. However,
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cost(S) still can be used to estimate the size of the join of two corresponding

triple patterns, namely (?s, hasName, ?name) with (?s, wroteBook, ?book).

The following obvious property holds for two sets S1, S2 such that S2 ⊆ S1:

count(S2) ≥ count(S1). For instance, the number of entities of type Person is

clearly not smaller than the number of Writers. Same holds for the costs of

sets in this situation: cost(S2) ≥ cost(S1).

At the same time, some subsets of the predicate set S may be cheaper than

others. Consider again S = {hasName, bornIn, wroteBook} and all its two-

element subsets along with their costs listed in the table below:

Subset is CS? cost(Subset)

{hasName, bornIn} yes 74 K

{hasName, wroteBook} no 43 K

{bornIn, wroteBook} no 39 K

Notice that the last subset is the rarest occurring in the dataset (i.e., with the

minimal cost), and it does not form the characteristic set. From the query

optimizers perspective, this means that, when given a query joining triples with

these three predicates, the best strategy is to first join bornIn and wroteBook

triple patterns, since the amount of intermediate results (i.e., cost of that two-

element set) is the smallest. In order to make such kind of decisions possible,

every characteristic set should have a pointer to its cheapest (in terms of cost)

subset.

We capture these observations in the following formal definition.

Definition A Hierarchical Characterisation of a dataset R is a collection

{H0, . . . ,Hk} of sets Hi, such that

1. H0 is the set of all characteristic sets of R

2. Hi = { arg max
∀C⊂S∧|C|=|S|−1

cost(C) | ∀S ∈ Hi−1}. In other words, for every set

S in Hi−1 we find the cheapest (w.r.t. cost) subset of S of size |S| − 1,

and include it into Hi.

3. every S ∈ Hi−1 stores a pointer to its cheapest subset C ∈ Hi

4. ∀S ∈ Hk : |S| = 2

Informally, the Hierarchical Characterisation of the dataset is a forest-like data

structure of sets, where there is a link from S1 to S2, if S2 is the cheapest subset

of S1 among all the subsets of S1 that are just one element smaller than |S1|.
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ID: 154
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created
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cost: 1025

cost: 2399

ID: 27
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bornIn
created

hasName
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Figure 4.2.: Hierarchical Characterisation

An example of the part of the Hierarchical Characterisation for the YAGO2

dataset [45] is given in Figure 4.2. There, two characteristic sets in H0 (IDs 195

and 154) point to the same cheapest subset from H1.

As we have noted, in real RDF datasets most of characteristic sets are subsets

of each other. This leads to the same sets appearing in different levels of the

HC: both as leaves in the H0 level, and as subsets of other sets in some Hi level.

Naturally, we do not need to store the same set twice, so this ambiguity stays

only on conceptual level. In theory, if H0 level has m different sets drawn from

n distinct elements, we can get up to m · n distinct subsets in HC. In practice,

however, due to the fact that the same sets are shared between different levels,

and different sets can get the same cheapest subsets, this number is quite close

to m.

Computing Hierarchical Characterisation

A straightforward computation of Hierarchical Characterisation could be orga-

nized as follows: starting with Characteristic Sets, at each iteration for every set

we find all its subsets (that are one element smaller), get the cheapest one, pass

all the cheapest subsets for each set to the next iteration. The iterations should

repeat until all the newly generated sets are of size 2. This however, generates

the same set many times, since (a) the sets may appear in multiple levels of HC,

(b) two different sets may have the same cheapest subset, as it is the case with

sets 195 and 154 in Figure 4.2.

The computation that avoids this pitfall is sketched in Algorithm 10. It works

as follows. First, the Characteristic Sets are computed [76]. They are ordered by

increasing size, starting with one element sets. Then, the iterations computing

subsets run until no new subsets appears (lines 3-5 in Algorithm 10). At every
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iteration, we run two iterators S1 and S2 over the sets under consideration.

For every pair of S1, S2 we check if S2 ⊂ S1 and |S2| = |S1| − 1, and keep the

cheapest Sbest of all such subsets (lines 10-16). Additionally, we need to consider

the subsets of S1 that are not in our list of sets, i.e. the subsets that are not

characteristic sets. In order to enumerate such subsets, we employ the Bankers

enumeration of sets [67]. The Bankers enumeration iterates over subsets of the

set of all predicates in graph R, and emits the ones that are not characteristic

sets. The reason we choose the Banker’s enumeration is that it lists all the

subsets in monotonically decreasing size, so our enumeration can stop earlier

(we only need the subsets that are one element smaller than the set S1).

Algorithm 10: Computing Hierarchical Characterisation

Input: RDF Graph R
Result: H – Hierarchical Characterisation of R

1 begin
2 Sets← computeCharSets() . see algorithm in [76]

3 H ← ∅
4 while Sets 6= ∅ do
5 H ← H ∪ Sets
6 Sets← computeSubsets(H)

7 return H

8 Precomputation
9 SubsetIterator si← init Banker’s iterator

10 res← ∅
11 foreach S1 ∈ Sets do . iterate in increasing set size

12 Sbest ← ∅
13 foreach S2 ∈ Sets : |S2| ⊂ |S1| & |S2| = |S1| − 1 do
14 if cost(S2) < cost(Sbest) then
15 Sbest ← S2

16 while si 6= S2 do . get all subsets of S1 that are not in Sets

17 Si ← si
18 if |Si| = |S1| − 1 & cost(Si) < cost(Sbest) then
19 Sbest ← Si

20 si← si.next

21 store the pointer to Sbest in S1

22 if Sbest /∈ Sets then
23 res.insert(Sbest)

24 return res
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Consider the following fragment of computation, where sets are listed in order

of increasing size; sets printed in bold are characteristic, the other sets are the

”missing” sets generated by the Bankers iterator si:

1 2 3

1 3 5

1 3 6

1 3 7

1 3 5 6

...

...

...

Suppose that the iterator si is enumerating sets from {1, 2, 3} to {1, 3, 5}, until

it reaches S2 (line 15 of Algorithm 10). The last encountered set is {1, 3, 5},
which is not characteristic (i.e., does not belong to the input Sets), but is a

subset of S1. If it is cheaper than the previously considered S2, we update the

Sbest variable (line 16).

Although the Bankers iteration potentially enumerates all the subsets of all

predicates in the dataset, in reality it stops relatively early, since it is always

bounded by the largest set in Sets (see condition in line 13). This largest set

gets smaller with every iteration, since every iteration considers subsets of sets

generated in the previous iteration. Additionally, the biggest portion of the HC

is identified during the first iteration, and the process converges really quickly.

We also note that the set inclusion check in the innermost for loop (lines 13-20)

is implemented extremely efficiently using Bloom filters. In our experiments,

computing the Hierarchical Characterisation of the UniProt dataset (with over

850 million tripes stored on disk) is done within 6 iterations and takes ca.700

ms.

Join Ordering for Star Queries

We first focus on finding the optimal join order in (sub)queries of the form

select *

where {?s p1 ?o1. ... ?s pk ?ok.}

Let S = {p1, . . . , pk} be the corresponding set of predicates. Our main idea is to

extract the part of the Hierarchical Characterisation of the dataset starting with

the set S. Namely, we find the set S1 ∈ H0 such that S1 = S, get its cheapest

subset S2 (remember that S1 has a pointer to S2) and find out the predicate p in
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S1 \ S2. This predicate p corresponds to one of the triple patterns of the query

(?s, p, ?o); we put this triple pattern to be the last in the join order. The

procedure repeats with S2: follow the pointer to its cheapest subset S3, put the

triple pattern with the predicate from S2 \ S3 to be the last but one predicate

in the join order. The process terminates when the current set Sk has only two

elements: these predicates correspond to triple patterns that will be joined first.

Algorithm 11: Join Ordering for Star Queries

Input: SPARQL star-shaped graph QR

Result: O – Join Ordering for QR

1 begin
2 P ← {p1, . . . , pk} . set of predicates in QR

3 S ← getHierarchicalChar(P)
4 O ← [ ]
5 while S.size > 2 do
6 Ssub ← S.subset . pointer to the cheapest subset

. must hold: |Ssub| = |S| − 1, by definition of HC

7 p← S \ Ssub . most ”expensive” predicate in S

8 O.append(p) . append to the front of the list

9 S ← Ssub
. the two elements left in S = {p1, p2}

10 if QR has constants : ∃(si, pi, ci) ∈ QR then
11 if one of the constants is a ”key” then . see definition of a ”key” in text

12 swap the corresponding predicate pi in O with the O.front
13 else
14 keep pushing pi to the front of O, while
15 cost(IndexScan) < cost(1)

16 return O

The pseudo-code of the algorithm is depicted in lines 1-9 of Algorithm 11. We

note that if there is no set in H0 that contains all the predicates from P (i.e.,

the lookup in line 3 fails), then the corresponding query yields an empty result.

The intuition behind this approach is the following: starting from the set of triple

patterns, we find out what is the most expensive triple pattern, and schedule

it to be the last in the join order. This expensive triple pattern is exactly the

one that does not appear in the cheapest subset (w.r.t. our cost function) of

the predicate set. Following this logic at each step, we construct the join tree

top-down.

An illustration of this algorithm is given in Figure 4.3. The set with ID 154 (see

Figure 4.2) has the predicates from all four given triple patterns. Its cheapest

subset in the HC is the set with ID 27. Therefore, the triple pattern with the
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(?p, created, ?o1)

(?p, bornIn, ?o2)

(?p, livedIn, ?o3)

(?p, type, ?o4)

1ID: 154

1ID: 27

1ID: 6

(?p, created, ?o1) (?p, livedIn, ?o3)

(?p, bornIn, ?o2)

(?p, type, ?o4)

Figure 4.3.: Triple patterns and their optimal ordering (joins are annotated with IDs
of corresponding Char.Sets from Figure 4.2, page 92)

predicate type will be the last one in the join order (the upper-most triple

pattern in the join tree). Similarly, the cheapest subset of the set with ID 27 is

the set with ID 6, and the missing predicate in it is bornIn. Since the last set

has two predicate, they form the first join in the join ordering (lower-most level

in the tree).

We note that this strategy yields the optimal join ordering for star-shaped queries

in linear time. Besides, it does not assume independence between predicates in

different triple patterns (unlike Dynamic Programming and the bottom-up greedy

heuristics). It is therefore best suited for dealing with structural correlations

that are so common in RDF data.

Unfortunately, this no longer holds if the query has constant objects, i.e. when

some of ?o1, . . . , ?ok are replaced with literals or URIs. We have to, therefore, rely

on a heuristics. It seems impossible to precompute all the correlations between

constant objects and predicates in all sets of Hierarchical Characterisation.

However, in real datasets we observed that some predicates in the sets of HC are

extremely selective (like keys in relational world), and then all other predicates

nearly functionally follow the selective ones. In our example with books and

people, the name of the author is nearly the key (same with the title of a book).

This can be captured while constructing the HC, if we track the multiplicity

of each predicate in the sets. Then, the key predicates are those with the

multiplicity of 1. Note that we only need to store this multiplicity information

for the sets from H0, i.e. the characteristic sets.

Now, to construct the join ordering for triples with bounded objects, we first

order the joins as if all objects were unbound. Then, we distinguish between

two cases:

1. one of the bounded objects is in the triple with the key predicate (lines

11-13). The entire star query is therefore a lookup of properties of a specific

entity. We push down this triple pattern (basically by appending it at the

front of our join ordering), and stop.
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2. otherwise, we keep pushing down the constants in the join tree and stop

when the cost of the corresponding index scan is bigger than the cost of

the join on that level of the tree (lines 14-15)

We do not want to simply push down all constants, since some of the object

constants (especially for the type predicate) are quite unselective and it is

possible that the lowest join in the tree produces less tuples than the index scan

on such an unselective constant alone.

So far we have considered star queries centered around subject. Such patterns

are extremely common in RDF datasets and are prevalent among the queries.

However, the same techniques work for stars around objects (i.e., based on the

object-object join). Since these queries are still valid SPARQL, the system

derives and stores Hierarchical Characterisations for object-centered stars, too.

4.3. Query Optimization of General Queries

In this section we describe the algorithm for join ordering in general queries

expressed in SPARQL 1.0. Our main idea is to decompose the query into

star-shaped subqueries connected by chains, and to collapse the subqueries

into meta-nodes. The star-shaped subqueries are optimized by Algorithm 11

from Section 4.2. Then, the Dynamic Programming algorithm is run on top

of the simplified query. In order to enable accurate cardinality estimations in

the simplified query, we introduce a novel synopsis (Characteristic Pairs) that

captures structural correlations in the RDF graph beyond star subqueries.

Characteristic Pairs

While some of the correlations between triples are captured by Characteristic Sets

(define types in the RDF dataset) and consequently Hierarchical Characterisation

(inheritance between different types, subject to a specific cost function), we are

still missing other relationships between different types.

Let us illustrate it with an example. Consider the triples describing the person

and its birthplace:

(s1, hasName, "Marie Curie"), (s1, bornIn, s2),

(s2, label, "Warsaw"), (s2, locatedIn, "Poland")

There, the object id s2 in the triples describing the person is used to link it to

the city. In a way, this correspond to the ”foreign key” concept in relational

databases, except that of course RDF does not require to declare any schema.

Mining these foreign keys thus becomes a challenge for the system. Knowledge

of such dependencies is, on the other hand, extremely useful for the query
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optimizer: without it, the optimizer has to assume independence between two

entities linked via bornIn predicate, thus almost inevitably underestimating the

selectivity of the join of corresponding triple patterns. In reality, almost every

person has information about the place of birth, so the selectivity of the join is

close to 1.

In order to capture these ”foreign key”-like relationships between nodes in the

RDF graph, we will store pairs of characteristic sets that occur together (i.e., are

connected by an edge) in the RDF graph, along with the number of occurrences.

Definition Let Sc(s) denote a characteristic set of edges emitting from a subject

s (in other words, Sc(s) is a type of s). We define a Characteristic Pair between

two characteristic sets for s and o in the dataset R as

PC(Sc(s), Sc(o)) = {(Sc(s), Sc(o), p) | Sc(o) 6= ∅ ∧ ∃p : (s, p, o) ∈ R}

The condition Sc(o) 6= ∅ includes only those objects that appear as subjects in

other triples, and therefore have non-empty characteristic sets. The set of all

characteristic pairs in the dataset R is then defined as

PC(R) = {PC(Sc(s), Sc(o)) | ∃(s, p, o) ∈ R}

Additionally, we define the number of occurrence of a characteristic pair P ∈ PC(R)

to be count(P ) = |{(s, o) | PC(Sc(s), Sc(o)) = P}|. Using this aggregate we can

distinguish between ”one-to-one” and ”one-to-many” relationships. Namely, the

proportion

count(PC(Sc(s), Sc(o)))

count(Sc(s))
,

(where the denominator captures the number of occurrences of Characteristic

Set for s), tells us, to how many objects of the same type does the subject s

connect.

Although in theory, with n distinct characteristic sets we can get up to n2

characteristic pairs, in real datasets only few pairs appear frequently enough to

be stored. For the YAGO-Facts dataset (the core of YAGO2), out of ca. 250000

existing pairs, only 5292 pairs appear more than 100 times in the dataset. This

way, the frequent characteristic pairs for YAGO-Facts consume less than 16 KB.

We do not store the pairs with count being smaller than 100. For such pairs,

the independence assumption provides a ”close enough” estimate of the result

size. The optimizer will, most likely, underestimate the size to be just 1 tuple,

but we found that misestimation in such cases does not lead to a plan whose

performance would differ from the optimal one.
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Estimating Cardinalities using Characteristic Pairs

We start with considering the simplest example of a query that joins two star-

shaped subqueries:

select distinct ?s ?o

where { ?s p1 ?x1.
?s p2 ?x2.
?s p3 ?x3.
?o p4 ?y1.

}

In order to estimate the result size of the query, we simply need to find all the

characteristic pairs consisting of sets that contain the predicates p1, p2, p3 and

p4:

cardinality =
∑

{{p1,p2,p3}⊆C1,{p4}⊆C2}

count(PC(C1, C2))

where C1 and C2 are the characteristic sets that contain p1, p2, p3 and p4,

respectively.

Note that this computation does not assume independence between any predi-

cates, and works for stars of arbitrary size. However, this simple estimation is

only possible due to the distinct keyword: in general, the query can produce

duplicate results for ?s and ?o for two reasons: first, there may be multiple

bindings for ?x1, ?x2 and ?y1; second, there may exist multiple bindings of ?o

for the same ?s.

In order to cope with the first issue (multiple bindings for objects), predicates

in characteristic sets are annotated with their number of occurrences in entities

belonging to this set [76]. Similarly, we annotate the predicate that connects

two entities in the characteristic pairs with its number of occurrences. Formally,

for P = (Sc(s), Sc(o), p) we compute count(p) = |{(s, p, o) | (s, p, o) ∈ R ∧
PC(Sc(s), Sc(o)) = P}|. In other words, based on count(p) we can derive

whether the ”foreign key” relationship between s and o is a ”one-to-one” or

”one-to-many”. Namely, if count(p) = count(PC(Sc(s), Sc(o))), it is one-to-one,

and with count(p) > count(PC(Sc(s), Sc(o))) it is one-to-many.

Consider again the query above but without the distinct modifier, and suppose

that characteristic sets for ?s and ?o, and the characteristic pair are as depicted

in Figure 4.4. The first column of each table gives us the number of distinct

stars and pairs of stars. The rest of the columns contain the counts (number of

occurrences) of predicates in characteristic sets and characteristic pairs. This

means that, on average, one entity of type Sc(s) has 1000
1000 = 1 predicate p1,

3000
1000 = 3 predicates p2 and 2000

1000 = 2 predicates p3, and on average for every s
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distinct p1 p2 p3

1000 1000 3000 2000

(a) CS for ?s

distinct p4

5000 5100

(b) CS for ?o

distinct p3

1000 2000

(c) PC(?s, ?o)

Figure 4.4.: Representation of two Characteristic Sets and one Characteristic Pair

there are 2000
1000 = 2 occurrences of o connected to it via p3. We can therefore

estimate the cardinality of the query without the distinct keyword as:

1000︸︷︷︸
distinct

· 1000

1000
· 3000

1000
· 2000

1000︸ ︷︷ ︸
?s

· 5100

5000︸ ︷︷ ︸
?o

· 2000

1000︸ ︷︷ ︸
count(p3)

= 12240

This computation has to be corrected in case some of xi or yi are bounded.

Specifically, for every constant xi (yi, respectively), we multiply our estimate by

the selectivity of an object given the fixed predicate sel(?o = xi|?p = pi), i.e.

the probability of the object restriction given the adjacent predicate restriction.

Join Ordering for General SPARQL Queries

Our join ordering strategy for general SPARQL queries is given in Algorithm 12.

The algorithm starts with clustering the query into disjoint star-shaped sub-

queries (lines 12-24). In order to do it, we order the triple patterns in the query

by subject (line 14), and group triple patterns with identical subjects (line 15).

These groups potentially form star-shaped subqueries. Then, for every group of

triple patterns we estimate its cardinality using characteristic sets. If its small

enough (in our experiments we used a cutoff of 100K tuples), the group is turned

into star subquery and the corresponding edges are removed from the query

graph (lines 18-20).

Consider the query from Figure 4.5a as an illustration. Its triple patterns after

grouping look as follows:

?p type German novellist.

?p hasWonPrize Nobel prize.

?p bornIn ?place.

?p created ?book.

?book linksTo ?city.

?city isLocatedIn Italy.

?city hasLongitude ?long.

?city hasLatitude ?lat.

star1

star2

The corresponding subgraphs of the SPARQL query graph are denoted as P1
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Algorithm 12: General SPARQL join ordering algorithm

Input: SPARQL graph QR

Result: O – Join Ordering for QR

1 begin
2 stars← getStars(QR)
3 DPTable ← [ ] . stores covered nodes, corresponding partial plan and its cost

4 foreach s ∈ stars do
5 add meta-node for s to QR

6 remove joins covering s from QR

7 p← getStarJoinOrder(s) . see Algorithm 11

8 DPTable.append(s, p, cost(p))

9 add edges between adjacent meta-nodes
10 estimate selectivities using Char.Pairs
11 run DP algorithm on DPTable

12 getStars(QR)

13 stars← ∅
14 order triple patterns in QR by subject
15 foreach distinct subject s ∈ QR do
16 star ← triples with subject s
17 card← getCardinality(star) . using Char.Sets

18 if card < budget then
19 stars.add(star)
20 remove edges within star from QR

21 order triple patterns QR by object
22 foreach distinct object o ∈ QR do
23 star ← triples with object o
24 .... similar to lines 17-20

and P2 in Figure 4.5a. Note that we don’t form a star query around the variable

?book, although syntactically it is a star with one edge. The reason is, based

on our characteristic set estimation, we see that this star would return a lot of

intermediate results (in fact, all the triples with the linksTo predicate). The

algorithm stays conservative and does not ”oversimplify” the query, leaving more

choices to the later Dynamic Programming stage.

After the stars around subjects have been formed, we attempt to form star

around objects on remaining edges. We give preference to subject-centered stars

since in our experience they are more frequent in queries, and it is often more

beneficial to execute them before object-centered stars.

The algorithm then considers all the stars formed by the GetStars subroutine;

101



4. Optimization of Complex Graph Queries

?p

German novellist

Nobel Prize ?place

?book ?city

Italy

?long ?lat

P1

P2

type
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on

P
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ze born
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created linksTo
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at

(a) SPARQL graph

P1 ?book P2
created linksTo

(b) Simplified SPARQL
graph

Entities Partial Plan Cost

{P1} (wonPrize 1 type) 1 bornIn 3000
{P2} (locatedIn 1 hasLong) 1 hasLat 5000
{book} IndexScan(P = linksTo, S =?book) 0
{P1, book} ((wonPrize 1 type) 1 bornIn) 1 wrote 3500

(c) Entries of the DP table (predicate names denote the corresponding triple
patterns)

Figure 4.5.: Query Graph Decomposition

for every star it adds the new meta-node to the query graph and removes the

intra-star edges (lines 5-6). The plan for the star subquery is computed using

the Hierarchical Characterisation (see Algorithm 11) and added to the DP table

along with the meta-node (lines 7-8).

After all the star subqueries have been optimized, we add the edges between

meta-nodes to the query graph, if the original graph had edges between the

corresponding star sub-queries (line 9). The selectivities associated with these

edges are computed using the Characteristic Pairs synopsis, and the regular

Dynamic Programming algorithm starts working on this simplified graph (lines

10-11).

An example of the simplified query graph is given in Figure 4.5b. There, two

meta-nodes P1 and P2 are connected with the chain. Although the ?book

variable did not form the star subquery, we can still use its emitting predicate

linksTo to estimate the cardinality of the remaining joins in the query. For

instance, in order to estimate the size of the join of P1 and ?book, we look up

all Characteristic Pairs such that the first set in the pair has predicates from

P1 (type, wonPrize, bornIn and wrote), and the second contains the linksTo

predicate.

Finally, the first four entries of the DP table are depicted in Figure 4.5c. The
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optimal plan for the book entity is an index scan, at the same time for P1 and

P2 we have plans for the corresponding star queries. Since the complexity of

DP grows exponentially, even a small reduction of the query graph can greatly

improve the runtime of the overall join ordering strategy. In our case, simplifying

the query graph from 8 nodes to 3 nodes gives a reduction from 8! = 40320 plans

to 3! = 6 plans.

4.4. Experiments

In this section we evaluate the quality of our join ordering strategy, both in

terms of its own runtime and the runtime of the produced query plans. We use

three large real-world RDF datasets, and generate a large number of random

queries (star-queries and queries of arbitrary shape) against them.

Algorithms and the Runtime System

To study the performance of our algorithm, we implemented it in the RDF-3X

system [78], and compared it with original RDF-3X optimizer (which in turn

we studied in two variants: with and without Characteristic Sets [76], denoted

DP and DP-CS). In addition, we implemented in RDF-3X the greedy heuristics

of [29] (Greedy), and the heuristics SPARQL planner (HSP) [100].

All join ordering algorithms have access to full stack of RDF-3X indexes (includ-

ing all six permutations of S, P and O, and aggregated indexes). All produced

plans are run with the same runtime settings (including the Sideways Information

Passing [77]), so the difference between different running times is solely due to

the quality of different optimizers. For all the plans, we disable the dictionary

ID mapping, since its runtime depends only on the result size (and is the same

across all algorithms).

Our prototype is run on a server with two quad-core Intel Xeon CPUs (2.93GHz)

and with 64GB of main memory using Redhat Enterprise Linux 5.4.

Datasets and Workload Generator

We used three large Linked Data graphs: YAGO2 [45] with over 110 million

triples, LibraryThing [78] with 36 million triples and UniProt [102] consisting of

around 850 million triples.

In order to test the scalability and robustness of the query optimization algo-

rithms, we generate the query workload for these three datasets. The generated

queries are of two kinds, the star-shaped queries, and the arbitrary (complex)

queries.
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To generate the star-shaped queries, we first extracted a set of ”central” nodes.

In graph theory, the centrality of the node is typically defined based on its

distance to all other nodes. Since our graphs are simply too large to compute

exact centrality according to any of the definitions from literature, we rely on a

very simple heuristic node selection. Namely, we collect all the pairs of nodes

(ls, ro) as a result of the join operation (ls, lp, lo) 1lo=rs (rs, rp, ro) over the

entire triple store. Since we are only interested in ls and ro, the join is actually

performed on the aggregated indexes and is quite efficient. These pairs (ls, ro)

define all the two-hop chains in the graph. We then select all the nodes n that

appear as ls in one pair and as ro in some other pair. Intuitively, these are

the nodes that participate in long chains, and are somewhere in the middle of

these chains. The intuition behind such selection is that the nodes participating

in long chains allow us to form complex queries around them, by combining

star-shaped subqueries with chains connecting them.

As a result of the node selection procedure we are left with the handful of ”central”

nodes (from few hundreds in YAGO2 to tens of thousands in LibraryThing). We

then form the star-shaped queries around a subset of these nodes by randomly

choosing the attributes of these nodes (i.e., the objects connected to it) and

replacing some of them with variables. At the end we also replace the central

node with the variable itself, so the query gets a form of a natural question ”find

all the entities with given attribute values, and extract some of their attributes”.

In order to form arbitrary queries from the star-shaped queries, we expand some

of variables (that replaced attributes of a central node) with either a chain, or

another star. For example, if ?s is a central node in the star query and ?x is

one of its attributes (so that there is a triple pattern (?s p ?x) in the query), we

either attach a chain starting with ?x, or another star centered around ?x. The

actual decision between a star and a chain is made at random; it also depends

on whether ?x can actually form a chain or a star.

At the end, we group the star and arbitrary queries based on their size. The

star queries have sizes from 5 to 10 triples (we filter out the smaller queries,

since they are typically trivial to optimize), and the arbitrary queries contain

from 10 to 50 triple patterns. For every group we collect 100 distinct queries.

Obviously, such a strategy could choose some very unselective queries (e.g., find

the names and addresses of all the people in the US). In order to prevent these

queries in the workload, we run the candidate queries against the RDF-3X engine

and rule out those that take more than 30 seconds to finish. The plans for this

candidate selection run are compiled using the DP and the greedy heuristics for

large queries.
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Methodology

For every query and every optimization strategy we run the optimizer under

test 11 times, and record an average of all runs except the first one (this way

we bring the system to the warm cache state). We call this number a planning

time of the query; we excluded from it the (common for all optimizers) parsing,

string-to-ID mapping and code generation time for SPARQL queries.

In theory, the Dynamic Programming strategy is supposed to yield the optimal

plan, so we could just record how much slower the other techniques are (including

ours, which is also a heuristics for general-shaped queries). But in reality the

DP strategy sometimes fails to find the best solution, because of cardinality

misestimations during the cost function computation. Besides, sometimes the

plan with the best cost function value does not yield the best runtime (although

these two quantities are highly correlated).

Therefore, to measure the quality of output plans for different query optimizers,

we define the fitness function F (Ai, q) of the join ordering algorithm Ai for the

given query q as a proportion of the runtime of its output plan(Ai, q) to the

best runtime for that query among all algorithms Ai:

F (Ai, q) =
runtime(plan(Ai, q))

mini runtime(plan(Ai, q))
, (F1)

where runtime(plan(Ai, q)) is in turn the smallest among 10 warm cache runs

of the plan(Ai, q) in the system. For the group of queries (e.g., all star queries

of size 8), we report the geometric mean of F (Ai, q) taken accross all queries qi
in that group for each algorithm separately. This indicates the ”average quality”

of the query optimization strategy for the given group of queries (ranging from

1 to infinity, lower values are better).

Computing Statistics

First we measure the time and space needed to store our hierarchical char-

acterisation – the data structure used for the star queries optimization (and

subsequently for optimizing arbitrary queries). Table 4.1 presents the numbers

observed while loading the three datasets in RDF-3X. As we see, the Hierarchical

Characterisation has the smallest footprint in UniProt dataset. The reason for

this small size is probably the well-structured nature of UniProt which basically

has a regular schema. This is the ideal case from the indexing standpoint, and

the HC works very well in such a setting. The other two datasets are less regular,

with more different entities types, but still the overall impact on the database

size and loading time is rather small.
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Space Time

Dataset Mb % of Total Size s
% of Total
Loading Time

YAGO2 5 0.1% 91 3%
UniProt 0.6 0.0001% 10 0.001%
LibraryThing 15 0.5% 62 4%

Table 4.1.: Hierarchical Characterisation: Indexing Space and Time

Space Time

Dataset Mb % of Total Size s
% of Total
Loading Time

YAGO2 0.6 0.01% 1.2 0.008%
UniProt 0.01 0.00001% 0.7 0.004%
LibraryThing 0.18 0.0003% 1.5 4%

Table 4.2.: Characteristic Pairs: Indexing Space and Time

Similarly, the time and space needed to index and store all the frequent Char-

acteristic Pairs is very modest comparing to the overall loading time and the

database size. As Table 4.2 shows, the extreme case here is again represented

by UniProt, which is a very structured RDF dataset. YAGO2 and LibraryThing

are somehow less structured, but still the amount of additional information is

less than 0.01% of the overall database size, and the indexing time is practically

negligible.

Query Optimization: Star Queries

We start with the summary of our experiments with star query optimization.

First of all, Table 4.4 reports the total running time (i.e., optimization and

plan execution time) for 300 randomly generated star queries per dataset. The

queries are grouped by size, from small (5-6 joins) to large (9-10 joins). The

reported time is the sum of the join ordering time and plan execution time, with

join ordering time also being reported separately in the brackets. We see that, in

terms of the overall runtime, our algorithm outperforms even the exact DP and

DP-CS strategies. When it comes to just the query optimization time, the clear

winner is the HSP planner with all compile times being much less than 1 ms.

However, it pays a high price for that speed, since most of the time the generated

plans are far from optimal. The Greedy strategy and our query decomposition
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take comparable amount of time, while the DP and DP-CS are the slowest, as

expected. Note that the significant difference between planning times of DP

and DP-CS is due to usage of Characteristic Sets for cardinality estimations.

Indeed, for any particular query the CS-based cardinality estimation is rather

fast, but it has to be performed for every subquery of the query graph. This

renders usage of Characteristic Sets in the standard DP algorithm unfeasible for

large query graphs.

The values of the fitness function F (Algo, q) for different algorithms are given in

Table 4.3. Somewhat surprisingly, our algorithm actually produces better plans

than the basic Dynamic Programming strategy even without considering the

join ordering time. This should be attributed to misestimations of cardinalities

(and therefore the cost function) that the DP strategy makes during the join

order construction. Note that DP-CS produces the best query plans here due to

its accurate (and expensive, as we have discussed above) cardinality estimation

procedure based on Characteristic Sets alone. We also found that while for

small queries (5 and 6 triple patterns), especially if they have constants, the

performance of HSP is comparable with the rest of the algorithms, the large

queries can get unpredictably bad plans from the HSP planner. The reason

lies in the fact that HSP ignores all the available statistics and makes ”blind”

decisions that lead to extremely suboptimal plans.

To conclude, for simple star-shaped query graphs our query simplification

approach yields the plans that are very close to the best ones, and it does so in

a very reasonable amount of time.

Query Size (number of joins)
YAGO2 UniProt LibraryThing

Algo [5,6] [7,8] [9,10] [5,6] [7,8] [9,10] [5,6] [7,8] [9,10]

DP 1.20 1.24 1.31 1.19 1.21 1.24 1.18 1.17 1.20
DP-CS 1.15 1.13 1.19 1.18 1.16 1.18 1.13 1.13 1.15
Greedy 1.34 1.38 1.31 1.21 1.33 1.35 1.19 1.21 1.20
HSP 1.22 1.30 2.31 1.22 1.39 3.80 1.18 1.19 2.73
Our 1.15 1.18 1.20 1.18 1.17 1.19 1.15 1.17 1.18

Algorithms: Dynamic Programming (DP), DP with Char.Sets (DP-CS), Greedy Operator
Ordering (Greedy), Heuristic SPARQL Planner (HSP), Algorithm 11 on p.95 (Our)

Table 4.3.: Fitness function F (Algo, q) (Formula F1 on page 105) for five different
algorithms, average over 300 random star queries
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Query Runtime (including Optimization Time), ms

Dataset
Query Size
(# joins)

DP DP-CS Greedy HSP Our

YAGO2
[5, 6] 92 (2) 103 (17) 98 (1) 90 (0.2) 87 (1)
[7, 8] 129 (2) 170 (57) 142 (4) 130 (0.2) 120 (2)
[9, 10] 241 (45) 393 (215) 186 (8) 345 (0.3) 184 (4)

UniProt
[5, 6] 94 (2) 110 (18) 94 (1) 95 (0.2) 91 (1)
[7, 8] 142 (8) 186 (58) 151 (4) 157 (0.2) 132 (3)
[9, 10] 257 (45) 421 (220) 239 (9) 703 (0.3) 207 (4)

Library-
Thing

[5, 6] 95 (2) 105 (16) 95 (1) 93 (0.2) 91 (1)
[7, 8] 140 (8) 188 (61) 140 (4) 134 (0.2) 135 (3)
[9, 10] 266 (44) 404 (208) 230 (8) 499 (0.3) 222 (4)

Algorithms: Dynamic Programming (DP), DP with Char.Sets (DP-CS), Greedy Operator
Ordering (Greedy), Heuristic SPARQL Planner (HSP), Algorithm 11 on p.95 (Our)

Table 4.4.: Total execution time for star queries, average over 300 random queries per
dataset

Query Optimization: General Queries

In Table 4.5 we present the total execution times for queries of the general

shape over three datasets. As for star queries, we report the average execution

time over a large number of randomly generated queries per dataset (400 in this

experiment). The queries (and corresponding runtimes) are grouped by the query

size: from small (10 to 20 joins) to large (40 to 50 joins). Again, the reported

time is a sum of both optimization and execution time; the optimization time

is also given separately in brackets after the total time. The exact algorithms,

DP and DP-CS did not scale for the queries with more than 20 triple patterns

(DP-CS takes more than 60s on average for the queries with 10 to 20 joins, so

we exclude it from this experiment).

The total execution time of our algorithm is consistently the best among all the

competitors: it outperforms the exact DP algorithm for small queries due to more

efficient search space enumeration, and gives better approximate solutions to the

join ordering problem than any other heuristics (Greedy and HSP). Additionally,

unlike the Greedy algorithm, the proposed algorithm scales well in the size of the

query. Note that here again HSP is the fastest algorithm to get a query plan,

although the quality of its output is the worst among all competitors, so the

total execution time for plans yielded by the HSP planner is the largest among

all the heuristics, and it quickly gets unacceptably bad as the query size grows.

In order to study the quality of output plans in more detail, in Table 4.6

we report the observed values of the fitness function F (Algo, q) for all the

considered algorithms. The plans produced by our algorithm outperform the
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Query Runtime (including Optimization Time), ms

Dataset
Query Size
(# joins)

DP Greedy HSP Our

YAGO2

[10, 20) 7745 (7130) 857 (133) 1025 (2) 660 (150)
[20, 30) — 1236 (413) 3189 (3) 967 (315)
[30, 40) — 2204 (838) 4102 (4) 1211 (348)
[40, 50) — 4145 (1194) 10720 (5) 2174 (890)

UniProt

[10, 20) 9823 (9323) 739 (155) 1160 (2) 566 (153)
[20, 30) — 1220 (422) 2094 (3) 838 (330)
[30, 40) — 2092 (927) 1952 (4) 1356 (701)
[40, 50) — 2840 (1180) 7228 (5) 1755 (820)

Library-
Thing

[10, 20) 8603 (7809) 912 (142) 2187 (2) 742 (148)
[20, 30) — 1615 (414) 3852 (3) 1105 (302)
[30, 40) — 2644 (918) 9415 (4) 1656 (697)
[40, 50) — 3885 (1201) 8970 (5) 2177 (813)

Algorithms: Dynamic Programming (DP), Greedy Operator Ordering (Greedy), Heuristic
SPARQL Planner (HSP), Algorithm 12 on p.101 (Our)

Table 4.5.: Total execution time of general queries, average over 400 random queries
per dataset

Dataset
Query Size
(# joins)

DP Greedy HSP Our

YAGO2

[10, 20) 1.81 2.13 3.01 1.50
[20, 30) — 1.83 7.08 1.45
[30, 40) — 1.98 5.94 1.25
[40, 50) — 3.17 11.51 1.38

UniProt

[10, 20) 1.43 1.67 3.31 1.18
[20, 30) — 1.90 4.98 1.21
[30, 40) — 2.01 3.36 1.13
[40, 50) — 2.05 8.91 1.15

LibraryThing

[10, 20) 1.93 1.88 5.33 1.45
[20, 30) — 1.96 6.28 1.31
[30, 40) — 2.15 11.72 1.19
[40, 50) — 2.44 8.15 1.24

Algorithms: Dynamic Programming (DP), Greedy Operator Ordering (Greedy),
Heuristic SPARQL Planner (HSP), Algorithm 12 on p.101 (Our)

Table 4.6.: Fitness function F (Algo, q) (Formula F1 on page 105) for general-shaped
queries, average over 400 random queries per dataset
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Query Size
Algo [ 10, 20) [ 20, 30) [ 30, 40) [ 40, 50)

Total Execution Time (Optimization Time), ms
Only CP 95876 (95332) — — —
Only HC 715 (120) 1102 (300) 1503 (332) 2309 (875)
HC + CP 660 (150) 967 (315) 1211 (348) 2174 (890)

Table 4.7.: Evaluation of individual techniques: total runtime of 400 random queries
over YAGO2 dataset, ms

competitors almost for all queries. For smaller queries (less than 20 triple

patterns) it approaches the quality of the exact DP-based algorithms, and

frequently outperforms them, since our Characteristic Pairs data structure

captures correlations that are not available to the DP-based algorithms. For

larger queries, it is up to 11 times better than the HSP algorithm. Note that

using Characteristic Pairs with DP or DP-CS is not really feasible, since it would

increase the query compile time of these strategies even more: the Pairs would

have to be used to estimate the cardinality for every subplan under consideration,

as opposed to our strategy to use it only between certain star-shaped ”blocks”

of the query.

Effect of Individual Techniques

Finally, we quantify the effect of two techniques presented in the chapter when

they are used individually. Namely, we consider a query optimizer that (i) uses

only Hierarchical Characterisation (Only HC); (ii) uses only Characteristic Pairs

(Only CP); and (iii) uses both of them (HC + CP). Table 4.7 reports the total

execution time of 400 random queries of arbitrary shape over the YAGO2 dataset

for these three setups.

We see that using Characteristic Pairs in isolation from the query simplification

and Hierarchical Characterisation is infeasible: indeed, without simplification

the CP structure has to be used to estimate the cardinality of all the partial

subplans during the query optimization (and their number grows exponentially).

Using Hierarchical Characterisation alone seems more promising, as the query

optimization time goes down a bit. However, without Characteristic Pairs the

optimizer sometimes misses the optimal ordering of the star-shaped subqueries,

resulting in suboptimal query plans. Finally, the combination of both techniques

yields the best performance of the resulting plans.
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4.5. Related Work

While query optimization in general (and join ordering in particular) is an old

and well-established field, the SPARQL-specific issues have not yet attracted a

lot of attention.

The original RDF-3X [78] employs the exact Dynamic Programming algorithm,

which, as we have seen, faces computational problems when the query size

grows. Its variant, DP with Characteristic Sets, uses more accurate selectivity

estimations at the expense of even slower query compile time. The Jena opti-

mizer [95] relies on the greedy join ordering heuristical algorithm, but it tends

to underestimate intermediate result sizes [76], which can degrade the query

execution time by orders of magnitude. A variant of the greedy algorithm that

operates on the data flow graph of the query and takes into account different

SPARQL constructs (like OPTIONAL and UNION) is proposed in [17].

Presented approach differs from the original Characteristic Set approach [76]

in three main points: first, we extend the CS to the hierarchy and propose a

linear-time join ordering heuristics based on the Hierarchical Characterisation;

second, we introduce a novel statistical structure to capture the ”foreign-key”-

like relationships in RDF graph; finally, we suggest the query simplification

algorithm for general SPARQL queries. Apart from the cardinality estimation

problem, the Characteristic Sets can be used as a foundation for the physical

layout of the RDF store [70].

The recently proposed Heuristical SPARQL Planner [100] introduces several

heuristical rules of ordering the joins based merely on the structure of the

SPARQL query. However, completely ignoring the data statistics leads to

unpredictably bad query plans, as we have demonstrated in out evaluation.

Another approach towards SPARQL optimization is to translate the SPARQL

query to its SQL equivalent, and then optimize this intermediate SQL query [28].

This, however, prevents the optimizer from using RDF-specific information

about correlations between predicates in star subqueries and chains. Besides, a

straighforward translation of all SPARQL joins to SQL joins leaves the relational

optimizer with the search space of enormous size.

Our query simplification techniques are inspired by the query simplification

mechanism for SQL queries [75]. We also reduce the search space size by making

some simplification before the DP algorithm starts. However, our simplification

is driven by the query structure: namely, we are using the SPARQL-specific

star-subqueries as building blocks for the DP algorithm.
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CHAPTER 5

In this chapter we turn our attention to query optimization problems for Prop-

erty Graphs, an emerging graph representation model, and Cypher, the only

declarative graph query language implemented in an available database sys-

tem. Cypher is a query language supported by the open-source Neo4j database

system, and here we describe the query optimizer for that system. Although

general ideas of query optimization for Cypher are quite similar to the ones

already implemented for SPARQL in RDF-3X, it is still interesting to consider

their application in another data model. Specifically, this chapter discusses the

following technical issues:

• We propose a new algebra for Cypher that matches both the graph pattern

matching capabilities of the language and the features of the runtime

system. In particular, we will prefer expansions over edges (as opposed

to index scans and merge joins in RDF-3X) as a basic operator in the

language.

• Within this algebra we present a customized version of the greedy heuristics

that yields an approximation to the optimal logical plan for a query in

polynomial time.

• We discuss how one can estimate cardinalities of subqueries in Cypher,

employing some basic statistics provided by the storage engine.

• We compare the query optimizer based on the principles described in

the chapter with the old query processor of Neo4j in a comprehensive

experimental study involving three different datasets and workloads of

different complexity.

The work presented in this chapter is a result of a collaboration with Neo Tech-

nology, the company behind the popular open-source Neo4j graph database1. All

of the described concepts and algorithms were prototyped and/or implemented

1The author thanks the Neo Techology’s team, in particular Andres Taylor, Jakub Wieczorek,
Stefan Plantikow, Davide Grohmann and Alex Averbuch
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in the Neo4j database system. The experiments were conducted on a prototype

query optimizer implemented on top of the Neo4j’s runtime system.

The chapter is structured as follows. We begin with pointing out the difference

in graph pattern matching in SPARQL and Cypher. We will then describe the

algebra for Cypher in Section 5.2, and then turn to the two main problems

of query optimization: ordering of logical steps and cardinality estimation

(Section 5.3). We conclude with description of experiments.

5.1. Graph Pattern Matching in SPARQL and Cypher

Both SPARQL and Cypher, albeit very different in syntax, essentially allow to

formulate graph pattern matching queries over graphs in the RDF and Property

Graph data model, respectively. There is, however, a subtle yet important

difference in the types of matching for the two languages.

To describe this difference in a formal way, we would need a formal definition of

Cypher’s semantics, which is outside of the scope of this thesis. Instead, we will

illustrate the essence of the issue with a simple example. Consider a small graph

depicted in Figure 5.1a, and the two (seemingly) similar queries, in SPARQL

and in Cypher, that extract neighbors x and y of a given node A. The graphical

representation of both queries is given in Figure 5.1b.

select ?x ?y

where {

A link ?x.

A link ?y. }

MATCH (A)-[:LINK]->(x),

(A)-[:LINK]->(y)

RETURN x, y
LIN

K

LI
NK

B C

A

(a) Data graph

A

?x ?y

LIN
K

LI
NK

(b) Query pattern

A

x=B y=C

LIN
K

LI
NK

A

x=B

LIN
K

y=B

G1 G2

(c) Answer subgraphs

Figure 5.1.: Graph homomorphism vs Graph isomorphism in pattern matching queries

The SPARQL query returns, among other answers, the subgraphs G1 and G2

shown in Figure 5.1c, which are both homomorphic to the original graph G in a

sence that a pair of connected nodes in Gi can be mapped to a connected pair in

G. However, graph homomorphism allows two distinct nodes of G to be mapped

to a single node in G1, thus changing the shape of the graph. This is not the case

for graph isomorphism, where the mapping has to be a bijection. For example,
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G2 is isomorphic to G, since any two distinct nodes from G are mapped to two

distinct nodes from G2. Cypher query semantics, unlike SPARQL’s, operates in

terms of graph isomorphism, therefore the Cypher query only returns G2 as an

answer.

From the query processing point of view this means that the Cypher query

processor needs to make sure that different variables are mapped to distinct

nodes, and a straightforward way to do so is to add the selection x 6= y on top

of the query plan.

5.2. Cypher Algebra

We start with defining an algebra for Cypher. Our goal is to have a set of

algebraic operations that (i) closely corresponds to the Cypher’s constructs, such

as matching nodes and edges based on various conditions, and (ii) matches Neo4j’s

runtime system, in that the edges of the graph can be traversed (”followed”)

efficiently.

Basic operators

At the foundation of the algebra there is an operator that yields all nodes in the

graph, N . The rest of the operators is defined recursively. Let F(P ) denote the

set of node and edge variables in the algebraic expression P .

On top of an expression P we can define selections that filter out nodes with

specified properties (or labels): operator σf (P ) where f is a boolean expres-

sion involving variables from F(P ). Physical implementations of selections

naturally differentiate between selection by node ID (in this case we apply

NodeIdSeek), access to nodes of a particular label (the selection is implemented

with NodeLabelScan), and selection of nodes with specified indexed properties

(realized with the NodeIndexSeek operator). From the algebraic point of view,

of course, all of these methods are not distinguishable.

In order to match edges, we introduce a unary Expand operator E la→b(P ). It

describes all nodes b that are reachable via one outgoing edge with the given

label l from any node a (whose bindings are defined by the expression P , in

other words a ∈ F(P )). The operator introduces new variable b, and we require

that b /∈ F(P ). To simplify our notation, we will omit the label l when it can be

deduced from the context. Expand can also produce bindings for edges, if the

edge label is not given (i.e., for query constructs of a form (n)-[e]-(m), where

e is a variable). To denote expansion on incoming edges, we write Ea←b(P ).

Note that fundamentally this is just a way of expressing a join between the

source nodes a and the entire graph; the join condition is a reaches b via one
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edge. We found it more intuitive to model it as a specialized operator, since it

fits both the Cypher syntax, where paths are first-class citizens, and the Neo4j

storage system, where following one-hop paths from a given set of nodes can be

done extremely efficiently.

Additionally, we use traditional relational operators like joins, outer joins and

aggregates. For the two joined expressions P1 and P2, the join conditions between

them may be specified both in terms of node bindings (i.e., certain node bindings

should be the same in both expressions), or in terms of properties of certain

nodes (e.g., v.p1 < w.p2 for v ∈ F(P1) and w ∈ F(P2))

These operators are already enough to translate a substantial portion of Cypher’s

pattern matching queries into their algebraic representations. Consider the query

given in Figure 5.2a. This query performs a triangle matching, where the type of

one of the nodes (identified by b) is set to :T. As usual with declarative queries,

there are multiple equivalent algebraic representations, so we depict two of them

in Figure 5.2b. One way to answer this triangle query is to keep expanding from

nodes b to nodes a and c, and then find all a′ reachable from c. Final selection

is necessary to ”close” the triangle at a. Another possible way is to break this

chain of Expands into two independent chains of expansions that are later joined.

Note that even in this tiny example there are two ways of splitting the chain

of Expands and placing a join, after Eb←a (shown in Figure 5.2b) or after Eb→c.
This, of course, hints at the exponential search space — a typical feature of

query optimization problems.

In the example above we have implicitly used certain algebraic properties of the

Expand operator. Let us now formulate them.

First, two Expand operators can be re-ordered as long as they are both defined:

Eb→a(Eb→c(P )) = Eb→c(Eb→a(P )) with b ∈ F(P ), (E1)

where directions of edges do not matter.

Second, an Expand and a join are also reorderable:

Eb→a(P1 1 P2) = Eb→a(P1) 1 P2 with b ∈ F(P1), b /∈ F(P2), (E2)

Eb→a(P1 1 P2) = Eb→a(P1) 1 Eb→a(P2) with b ∈ F(P1), b ∈ F(P2) (E3)

Note that, as with relational joins, all the constraints on the variables (such as

b ∈ F(P1)) are automatically guaranteed by the shape of the query graph.

Property (E3) also holds for the left outer join p if the join predicate p rejects

null values, that is if p evaluates to false whenever any of its free variables is set

to NULL.
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MATCH (a)-[:LINKS]->(b:T),

(b)-[:LINKS]->(c),

(c)-[:LINKS]->(a)
RETURN a, b, c

(a) Cypher query

σa=a′

Ec→a′

Eb→c

Eb←a

σ:T (b)

1b=b′,a=a′

Eb←a

σ:T (b)

Ec→a′

Eb′→c

σ:T (b)

(b) Two equivalent algebraic representations

Figure 5.2.: Cypher query and its two algebraic expressions

These properties of our algebraic operators mean that we can directly apply

the Dynamic Programming algorithm from Chapter 1, or any bottom-up plan

construction heuristics, to find the optimal ordering of operators for a Cypher

query.

Advanced operators

There are a few other Cypher constructs that require additional algebraic

operators. For completeness, we briefly describe them in this section.

OPTIONAL match. Similarly to SPARQL, it is also possible to mark some

patterns as optional in the query. If there are no nodes or edges that satisfy the

optional pattern, NULL values will be used as the corresponding bindings. The

following query illustrates this concept:

MATCH (a:Label1)

OPTIONAL MATCH (a) -[:LINKS]->(b)

RETURN a, b

The query will return all nodes a with the given label Label1, and all their

neighbors b (connected via LINKS) or NULL, if there is no such neighbor. This

behavior corresponds to the relational outer join operator.

Shortest paths. Cypher allows to explicitly address the shortest path between

two nodes by using shortestPath function in the query text, as well as to list all

shortest paths between a given pair of nodes with allShortestPaths. Paths are

also the first class citizens of the language, in particular a query can formulate

conditions on the path length or nodes along the path. Algebraic handling of the

shortestPath operator (including cardinality estimates and operator ordering)
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is similar to the DijkstraScan operator, discussed in Chapter 2.

Subqueries. A Cypher query can have nested subqueries, where some of the

bindings defined in the outer query are passed to the nested MATCH clauses. Take

Query 5.1 as an example, where bindings of p (path) and b (node) are passed to

the second MATCH clause, where we match the node c and filter out some nodes

b based on their property values.

MATCH p = (a:Label) <-[:LINKS]-(b)

WITH p, b

MATCH (b) -[:LINKS]->(c)

WHERE b.x > 0

RETURN p, b, c

Query 5.1: Cypher query with a subquery

Subqueries are a convenient mechanism of splitting graph pattern into several

parts that allows the user to manipulate the results of the first part (by computing

aggregations, ordering and limiting the number of result entries etc.) before

passing it to the further MATCH clauses.

As we have seen in the example above, the semantics of Cypher subqueries is

similar to that of SQL subqueries: for every node binding from the first query

in the chain we need to evaluate all the further queries (recursively apply the

same rule to the rest of the chain). In order to reason about subqueries on the

algebraic level, we use the Apply operator A, introduced in [30]. Apply gets two

expressions as input, P and E(r) (with r ∈ F(P )). The operator evaluates the

expression E(r) for each value of r. Note that we have slightly modified the

original A definition: in [30] it takes a relational table as a source of parameter

bindings, whereas we allow arbitrary expressions P as binding sources. Since

the second input of our Apply is a parametrized expression E(r) with r as a

parameter, we will use (r) as a leaf expression in the right sub-expression of

Apply.

There is a physical operator that executes A in the Cypher’s runtime system,

which is essentially a form of nested-loop join. In order to enable more pow-

erful join techniques, Apply has to be unnested, using the following algebraic

equivalences (we omit the parameter in the right side when it is not important):

L A (r) = L (A1)

L A ((r) A R) = L A R (A2)
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L A σf (R) = σf (L A R) (A3)

L A Ea→b(R) = Ea→b(L A R) (A4)

Similar to [30], we push down Apply until the right child does not have the

parameter whose bindings are supplied by the left side. Note that un-nesting does

not introduce equi-joins, but rather relies on Expands: our goal is to construct

some equivalent algebraic expression without A, this way joins can be later

considered during the logical plan construction (operator ordering procedure).

As an example, consider Figure 5.3 which depicts an initial expression with

Apply for Query 5.1 and how it can be un-nested.

A

Ea←b

σ:Label(a)

Eb→c

σb.val>0

(b)

⇒
(A4)

Eb→c

A

Ea←b

σ:Label(a)

σb.val>0

(b)

⇒
(A3)

Eb→c

σb.val>0

A

Ea←b

σ:Label(a)

(b)

⇒
(A1)

Eb→c

σb.val>0

Ea←b

σ:Label(a)

Figure 5.3.: Unnesting of the Apply operator. Arrows are annotated with the rule
number

Pattern predicates. Along with predicates on properties, mapped to the reg-

ular selection operator, it is also possible to specify existential predicates on path

patterns. In other words, when the pattern of a form (node1)-[:edge]-(node2)

occurs in the WHERE clause of the query, it becomes a predicate that checks

the existence of the corresponding pattern in the graph, without creating new

bindings for the nodes. In this case, of course, bindings for at least one of node1

or node2 have to come from outside of the pattern predicate. The negation on

the path predicate denotes the absence of the path.

Pattern predicates therefore resemble relational EXISTS/NOT EXISTS sub-

queries, and we represent them with SemiApply and AntiSemiApply, respec-

tively. Naturally, the path pattern may have more than one edge (and therefore

more than one Expand in the algebraic expression), so it is a non-trivial sub-

query, not just one operator. When unnested, SemiApply and AntiSemiApply

correspond to the semi- and anti-semi-join. Full unnesting of all types of A
(together with aggregation) is subject of future work.
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5.3. Query Optimization

Since we have already discussed the general architecture and specific problems

of a cost-based query optimizer for graph databases in Chapter 1 and Chapter 4,

we will only briefly overview the query optimization for Cypher, highlighting the

parts that differ from RDF-3X. This general overview is presented in Section 5.3.1.

We will then dive into details of the algorithm for the logical plan construction,

i.e. join ordering, in Section 5.3.2, and discuss the cost model and cardinality

estimations in Section 5.3.3.

5.3.1. General Architecture

Given a query, the Cypher optimizer performs the following steps:

1. Turns it into an Abstract Syntax Tree (AST), checks semantics (e.g., that

all labels exist), normalizes it (collects together different path matches and

predicates)

2. Builds a query graph representation of a query. The graphical represen-

tation of a query is essentially a query graph (cf. Figure 5.1b). Unlike

SPARQL, however, edges in the query graph do not correspond to joins,

but rather to expansions. As we have discussed in the previous section,

two plans P and Q can be joined iff F(P ) ∩ F(Q) 6= ∅, or – in terms of

the query graph – if the corresponding subgraphs share at least one node.

3. Deals with subqueries and then finds the optimal operator order (for joins,

Expands and Apply operators that may be left after partial unnesting).

We will describe the algorithm for that in Section 5.3.2.

4. Translates the optimal plan into the database API methods for data access.

Note that the original version of Neo4j’s query processor (i.e., prior to version

2.0) followed a similar logic of query execution, except that step 4 was performed

by following several ”hard-coded” transformation rules that were meant to

translate AST into imperative plan. We will quantify the difference between the

cost-based optimizer and the rule-based one in Section 5.4.

5.3.2. Operator Ordering

In this section we describe a greedy algorithm that constructs a logical plan

for the query graph in a bottom-up manner. Constructed plans are kept in

a PlanTable whose structure is quite similar to the table employed by the

Dynamic Programming algorithm. Here, an entry of PlanTable contains a
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Algorithm 13: Greedy operator ordering for Cypher

Input: Query graph Q
Result: Logical plan P that covers all nodes from Q

1 P ← [ ] . PlanTable

2 foreach n ∈ Q do . every node in the query graph

3 T ← constructLeafPlan(n) . take selections into account

4 P.insert(T )

5 do
6 Cand ← [ ] . candidate solutions

7 foreach P1 ∈ P do
8 foreach P2 ∈ P do
9 if CanJoin(P1, P2) then

10 T ←constructJoin(P1, P2)
11 Cand.insert(T )

12 foreach P1 ∈ P do
13 T ←constructExpand(P1)
14 Cand.insert(T )

15 if Cand.size ≥ 1 then
16 Tbest ←pickBest(Cand) . pick the plan with the smallest cost

17 foreach T ∈ P do
18 if covers(Tbest, T) then
19 P.erase(T ) . delete plans covered by Tbest

20 Tbest ←applySelections(Tbest)
21 P.insert(Tbest)

22 while Cand.size ≥ 1
23 return P[0]

logical plan that covers certain part of the query graph (identified by IDs of

nodes in that subgraph), along with the cost of the plan and its cardinality.

As usual, we assume that a query graph is connected; for unconnected graphs

we first find the optimal plan for every connected component and then combine

them with cross-products.

In order to describe the algorithm, we need to define a specific relationship

between a pair of logical plans. We say that a logical plan P (essentially, an

algebraic expression) covers another logical plan Q, if F(Q) ⊂ F(P ), in other

words if the plan P covers all the nodes from the plan Q. In terms of a query

graph it means that Q contains solution for a subgraph of the query graph of P .

Note that Q itself does not have to be a subexpression of P , but rather contain

a solution to a subproblem of P .
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The algorithm starts off by seeding the PlanTable P with leaf plans that cover

individual nodes in the query graph (Algorithm 13, lines 1-4). At every step, we

collect the candidate solution that are formed by either joining a pair of plans

from the PlanTable (lines 7-11) or by expanding a single plan via one of the

edges of the query graph (lines 12-14). Note that the actual implementation also

considers shortest paths and aggregates that are left out in the pseudocode. The

algorithm then picks the candidate plan with the best cost, and deletes all the

plans from P that are covered by it (lines 16-19). We then apply all syntactically

possible selections, and put the plan into P. The procedure is stopped as soon

as there are no candidates to consider. At this point, since the query graph is

connected, the PlanTable has to contain a single plan that covers all the nodes,

which we return as a result.

The main loop (lines 5-22) is repeated at most n times (with n being a number of

nodes in the query graph), since we start with n plans in P and remove at least

one plan at every step. Then, assuming that canJoin utilizes the Union-Find

data structure for disjoint sets, the complexity of the entire algorithm becomes

O(n3).

As an example of the Greedy operator ordering algorithm, consider the following

Cypher query with its query graph:

MATCH (A:L)-[:LINK]->(B:L),

(A:L)-[:LINK]->(C:L),

(B:L)-[:LINK]->(C:L)
RETURN A, B, C

A:L

B:L

C:L
:LINK

:LIN
K

:L
IN
K

We give the step-by-step trace of the algorithm for this query in Figure 5.4,

displaying the PlanTable together with the candidate list and the best plan

Tbest. In the beginning (Step 1), the table is initialized with the plans that

provide the best access to single nodes. In our case these are three label scans

σ:L that extract nodes of the given label L. At Step 1, the only way to extend

these three plans is to form various expansions from the nodes along the edges of

the query graph. There are in total 6 expansion possibilities, and based on the

cost calculation (not shown in Figure 5.4) we pick Tbest, eliminate all the plans

from P that are covered by Tbest (namely, plans for nodes A and B), and proceed

to Step 2. There again, only expansions from existing plans are possible, with

the best candidate being EB→C(σ:L(B)). This plan replaces the plan for {B},
but leaves the plan for {A,C} since it does not fully cover it.

At Step 3 we get the first chance to join two subproblems, since now there are
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Step 1:

Cand:

:

Cand:

:

Step 2:

Cand:

:

Step 3:

Cand:

Step 4:

Step 5:

Figure 5.4.: Greedy Operator ordering for Cypher

two plans P and Q in the PlanTable with overlapping sets of variables. The

resulting plan turns out to be better than any other candidate, and replaces all

partial plans in P . At the next step, however, we find out that there is one more

possibility to expand from this plan, namely to take the edge A → B, which

leads to the plan depicted in P at Step 5. Note that the last Expand operator

should produce bindings B′ and it should be followed by a selection that ensures

B = B′, but we omit this selection for the sake of brevity.

Naturally, the presented greedy algorithm only yields an approximation to

the optimal plan. Future work includes exploiting Dynamic Programming-like

algorithm with query graph simplification when needed.

5.3.3. Cardinality Estimation

In this section we discuss cardinality estimation for some simple and frequent

types of Cypher subqueries. Our goal is to derive robust estimates based on the

statistics extracted from the storage engine.

The engine provides us with with the following base cardinalities (which, in turn,
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are coming from the underlying Lucene index):

• Number of nodes with a given label L

• Number of nodes with a given label L and the fixed value of one of the

properties. In other words, we know the exact cardinality of the following

(sub)query:

MATCH (a:L)

WHERE a.prop = value

• Probability distribution of the type of outgoing/incoming edges for nodes

with a label L, i.e. the result size of the following query (for fixed L and

LINK):

MATCH (n1:L)-[:LINK]->(n2)

RETURN n1, n2

• Number of edges with a given label LINK:

MATCH (n1)-[:LINK]-(n2)

RETURN n1, n2

Compared to typical RDF engines, the set of these base cardinalities is actually

quite rich: since the Property Graph model is less verbose than RDF, it is

possible to get as base cardinalities values that would be resulting from many

joins and aggregates in SPARQL (e.g., the probability distribution of a given

property for a given node type).

Single edge pattern cardinality. We derive the estimate for the important

case of edge matching, where the pattern has a general form (a:X:Y)-[:T1 |

T2]->(b:W:Z). This matches all the node pairs (where node a has both labels X

and Y, and node b is labeled with W and Z) that are connected via an edge with

the label T1 or T2. We want to compute an upper bound of the cardinality of

the match, rather than rely on the independence assumption leading to severe

under-estimation. The number of edges labeled T1 and starting from nodes with

labels X and Y is bounded by t1 = min(X− [: T1]→ (), Y− [: T1]→ ()), both of

the values under min are base cardinalities. Similar formula can be used to get

an upper bound t2 for edges with the T2 label. Now, t1 + t2 gives an upper

bound to the number of results of the following (sub)query:

MATCH (a:X:Y)-[:T1|:T2]->()

Using the same argument and the base cardinalities for incoming edges, t′1 + t′2
bounds the number of matches for
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MATCH ()-[:T1|:T2]->(b:W:Z)

Now, in order to get an upper bound of the entire pattern, it is enough to take

min(t1 + t2, t
′
1 + t′2), since the entire pattern is an intersection of the two partial

patterns.

Our formula easily generalizes to the case of multiple node and edge labels.

This formula corresponds to estimating cardinality in SPARQL queries with

Characteristic Pairs, proposed in Chapter 4. Here, labels (i.e., node types)

correspond to Characteristic Sets in RDF (labels are given by the user, as

opposed to CS that are discovered by the engine). The cardinality of a connection

(a foreign key in relational terminology, a Characteristic Pair from Chapter 4)

between two labels is estimated by the optimizer using essentially the same

principle. Similar to relational and RDF engines, at some point the Cypher

optimizer has to ”flee from knowledge to ignorance” [69], assuming independence

between types of nodes and edges on one hand and values of properties on the

other hand, for instance in queries of a form

MATCH (a:L) -[:T1]-(b:M)

WHERE a.prop = value

RETURN a, b

Patterns of multiple edges. We consider a pattern of a form

(a:X)-[:T*1..l]->(b:Y), where l is a constant. This matches all the paths of

length up to l, where start and end nodes have given labels, and all the edges

along the path have label T. For l = 1, this pattern is identical to a simple edge

match, considered above. For l = 2, we split the pattern into two components:

L: (a:X)-[:T]->()

R: ()-[:T]->(b:Y)

We know the cardinalities of both L and R, since they are given by our base

statistics. Since there are no restrictions on the middle node, the cardinality of

the whole pattern can be estimated as |L| · |R|.
If l is larger than 2, however, we again start to ”flee to ignorance”: the

pattern can be split into three parts, L, R (similar to the case l = 2) and

M = ()-[:T*1..l-2]->(). Since there are no restrictions on nodes from M, its

cardinality can be estimated as (l−2)deg(:T), where deg(: T) is an average number

of edges with the label :T outgoing from a single node (similar to the average

node degree, and can be computed from our base statistics). This results in the

total estimate of |L| · |M| · |R|. This number grows very quickly, and makes the

optimizer very cautious about considering the corresponding pattern too early

in the plan construction.
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Shortest path cardinalities. Estimating the number of shortest path

matches in the Property Graph model can in fact be done in the same manner

as for RDF graphs (Chapter 2).

5.4. Evaluation

In this section we describe our experiments with the new query optimizer of

Neo4j.

The numbers displayed here do not necessarily represent the performance of

Neo4j’s most recent version. They also do not necessarily represent the best

performance achievable with the system, since we have not done any tuning.

The only goal that we pursue with this experimental study is to quantify

effectiveness of techniques presented in the chapter. For this reason we report

on the performance of two versions of the system: Neo4j-RBO (with the old rule-

based optimizer) and Neo4j-CBO (with the new cost-based optimizer, described

in this chapter). Both versions share the same query execution layer and storage

system, therefore the numbers will indicate strengths and limitations of our

new optimizer. All our experiments were run on a EC-2 machine of the type

M3.large, with 7.5 Gb of RAM and Intel Xeon 2.6 Ghz processor.

Our first experiment is running simple graph pattern matching queries (up to

three edge patterns) over a large music encyclopedia MusicBrainz that contains

music metadata. The corresponding graph has 35.7 Million nodes and over 146

Million edges, and occupies 18.85 Gb on disk.

We run 6 queries (their full text is available in Appendix C) and record Runtime

and Compile time for both optimizers, numbers are reported in Table 5.1. We

report an average warm cache time for every query. We compute the Improvement

score as a ratio of total runtime of the new optimizer divided by the total time

of the old optimizer. The score ranges from 0.85 (this is the query whose total

time actually got slower) to 1.8. As we look closer at these numbers, however,

we see that the large share of time is spent compiling the query plan for both

Neo4j-RBO and Neo4j-CBO, while the runtime of the plans of Neo4j-CBO is up

to 12 times better. The fact that compile time dominates the execution time is

a typical situation for interactive queries.

We now turn to more complex graph pattern matching queries, this time over

the AccessControl graph with 6 Million nodes and 12 Million edges (total size

1.54 Gb). We construct 4 queries with 12 to 18 edge patterns (see Appendix

C for their full text), and report their performance (warm cache) in Table 5.2.

Now the difference between the old and the new optimizers is quite significant.

Note that the compile time has on average increased. This was expected, since

the Greedy operator ordering is more time consuming that the simple rule-based
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Query Neo4j-RBO Neo4j-CBO Improvement

Time, ms
Runtime Compile Runtime Compile

Q1 366 1360 31 912 1.8
Q2 11 64 1 63 1.17
Q3 28 288 6 367 0.85
Q4 20 44 6 55 1.04
Q5 83 158 31 113 1.67
Q6 149 513 85 361 1.48

Table 5.1.: Runtime and compile time of basic pattern matching queries over the
MusicBrainz dataset

Query Neo4j-RBO Neo4j-CBO Improvement

Time, ms
Runtime Compile Runtime Compile

Q1 24592 41 1116 195 18.7x
Q2 3191 468 1235 540 2.0x
Q3 3537 454 1019 493 2.6x
Q4 411 54 1 187 2.5x

Table 5.2.: Runtime and compile time of complex pattern matching queries over the
Access Control dataset

compilation. This effort, however, clearly pays off, as the runtime numbers for

the new optimizer have decreased by up to two orders of magnitude.

Finally, we consider the recently proposed Social Network Benchmark (SNB)

by the Linked Data Benchmark Council. We will provide the background

information on SNB in Chapter 6, where we describe related benchmarking

issues. For now it is sufficient to note that these are 13 queries (see Appendix

D) over the synthetic social network dataset (we have generated 1 Gb of data).

LDBC queries are extremely challenging for the query optimizer, surpassing the

challenges of the classical TPC-H benchmark. This is not an official (audited)

LDBC benchmark run, but we follow the spirit of its rules, in that there are no

precomputed partial or complete query results. We report the runtime of the

queries in Table 5.3. There are four queries that performed much worse with

the new optimizer. In all four cases the reason was subqueries that were not

unnested and instead executed with the nested loop-style operator. Specifically,

the following situations are currently not handled by the prototype, causing

very suboptimal performance of the generated plans: complex subqueries with

negations, and the combination of aggregation and outer joins in subqueries.
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Query Neo4j-RBO Neo4j-CBO Improvement

Time, ms
Runtime Runtime

Q1 12028 2069 5.8
Q2 1117 486 2.30
Q4 713 695 1.02
Q5 7894 68811 0.11
Q6 485 3690 0.13
Q7 558 179 3.11
Q8 378 197 1.91
Q9 74406 141977 0.52
Q10 8915 1348753 0.006
Q11 484 228 2.12
Q12 14447 210 68.48
Q13 1 1 1

Table 5.3.: Runtime and compile time for SNB LDBC Benchmark, Scale Factor 1

These shortcomings are the subject of future work.
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CHAPTER 6

Parts of this chapter were

published in [36]
Throughout the thesis we studied specific techniques that improve query per-

formance for graph databases. In this final chapter we consider a problem of

creating a query workload that facilitates comparison of different graph database

systems, i.e. a problem of benchmarking for graph technology.

Benchmarking in general raises a number of issues — from data generation to

audit — that we will not discuss here. We will focus our attention on a very

specific technical problem that helps comparing different query engines (and in

particular, different query optimizers), namely: given a specific query template,

how do we create a set of parameters such that all the invocation of this query

have stable runtime behavior for any cost-based query processor.

In this chapter we show that this requirement of runtime stability becomes a

hard challenge when the underlying data features correlations and non-uniform

value distribution. We have already seen that these correlations and skewed

distributions are commonplace in graph datasets, and in fact our main motivation

for this problem is parameter selection for the recently proposed Social Network

Benchmark by the Linked Data Benchmark Council. In this chapter we present

our solution to the problem, a scalable procedure coined Parameter Curation that

creates sets of parameter bindings for queries that guarantee runtime stability.

We start with the background information on the Social Network Benchmark

and its design principles in Section 6.1. Then, we present examples of anomalies

in query runtime behavior caused by data correlation and non-uniform value

distributions in Section 6.2. We give a formal problem definition in Section 6.3

and then describe our solution in Section 6.4. Experimental results on queries

from the SNB benchmark, presented in Section 6.5, will point out effectiveness

and efficiency of our approach.
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6.1. Background

In this section we will give a brief overview of the LDBC Social Network

Benchmark (SNB); this will facilitate the exposition of advanced benchmarking

issues. We concentrate on the principal components of the benchmark: its

synthetic dataset, underlying methodology for query design, and the set of

queries.

SNB dataset

The underlying dataset is a synthetic social network with rich metadata about

users and user activities, based on the S3G2 generator [71]. Its core is the social

graph between users, the users have various interests (hashtags), they create

content (posts, pictures, comments) that is also annotated with hashtags and

locations. We provide a subset of the schema, including all the entities that

are used in this chapter in Figure 6.1. Throughout the chapter we are going to

use SQL formulation of queries for brevity, so we use a relational schema of the

dataset (for example, rows in the Knows table in graph databases would become

edges with attributes). The main entities are the following:

• Person: contains information about names, location, birthday of a user

and a creation date of the online profile. Friendship between users is

captured in table Knows

• Forum: represent an online group of people that discuss some topics. Each

forum has a moderator, a title, a creation date and a set of tags.

• Post: users create Posts in Forums, which then can receive Replies

(stored in the same table). Posts can also contain Pictures.

• Tag: denote the topics of posts and comments, as well as interests of users.

The actual names of tags are drawn from DBPedia.

• Organization: is used for universities and companies. The fact that a

user went to a certain university is stored in the corresponding table (the

schema for users and companies is exactly the same).

The main property that distinguishes the SNB dataset from other synthetic

graph datasets is realistic dependencies (correlations) between properties of the

users and the friendship graph structure, for example:

- with high probability friends have studied or worked together
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Person

p personid
p firstname
p lastname
p gender
p birthday
p creationdate
p locationip
p browserused
p placeid

Forum

f forumid
f title
f creationdate
f moderator

Forum Person

fp forumid
fp personid
fp creationdate

Post

ps postid
ps imagefile
ps creationdate
ps locationip
ps browserused
ps language
ps content
ps length
ps creatorid
ps locationid
ps forumid
ps replyof

Tag

t tagid
t name
t url

Post Tag

pst postid
pst tagid

Person Tag

pt personid
pt tagid

Knows

k person1id
k person2id
k creationdate

Likes

l personid
l postid
l creationdate

Organisation

o organisationid
o type
o name
o url
o placeid

Person University

pu personid
pu organisationid
pu classyear

Figure 6.1.: Part of LDBC schema, used in this chapter
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- the interests and geolocations of friends are correlated: users that are

connected in the graph are likely to live nearby and have similar interests

- additionally, the interests of a user depend on her location; these interests

also define the hashtags of posts that she creates

- the user’s location determines with high probability her language, first

and last names (common in that area), the university she attended and

the company she works in (nearby institutions).

There is also a number of ”trivial” (but not obvious to query optimizers) time

constraints such as: users start posting messages in a forum only after they have

joined it (which in turn only happens after that forum is created), replies to a

message are created only after the message itself is published, etc. Moreover,

the distributions of global properties of the dataset (e.g. frequency of names in

any country, node degrees in the social graph) follow empirically observed laws

(exponential distribution).

The number of such data correlations is fixed by the designers of the benchmark:

the idea here is not to represent all of the real-world dependencies (that would

be impossible), but to use this fixed set of correlating properties to construct

challenging queries.

Methodology

LDBC benchmark development is driven by the notion of a choke point. A

choke point is an aspect of query execution or optimization which is known

to be problematic for the present generation of various DBMS (relational,

graph and RDF). This concept is inspired by the classical TPC-H benchmark.

Although TPC-H design was not based on explicitly formulated choke points, the

technical challenges imposed by the benchmark’s queries have guided research

and development in the relational DBMS domain in the past two decades [16]. A

detailed analysis of all choke points used to design the SNB Interactive workload

is outside the scope of this brief description, the reader can find it in [81].

In general, the choke points cover the “usual” challenges of query processing

(e.g., subquery unnesting, complex aggregate performance, detecting dependent

group-by keys etc.), as well as some hard problems that are usually not part

of synthetic benchmarks. Here we list a few examples of essential graph query

processing challenges:

1) Estimating cardinality in graph traversals with data skew and correlations.

As graph traversals are in fact repeated joins this comes back at a crucial open

problem of query optimization in a slightly more severe form. SNB queries stress
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cardinality estimation in transitive queries, such as traversals of hierarchies (e.g.,

made by replies to posts) and dense graphs (paths in the friendship graph). This

problem is especially challenging given the correlations and skewed distributions

in the SNB dataset, discussed above.

2) Choosing the right join order and type. This problem is directly related to

the previous one, cardinality estimation. Moreover, as we have discussed in

Chapter 4, there is an additional challenge for RDF systems where the plan

search space grows much faster compared to equivalent SQL queries.

3) Handling scattered index access patterns. Graph traversals (such as neighbor-

hood lookup) have random access without predictable locality, and efficiency of

index lookup is very different depending on the locality of keys. Also, detecting

absence of locality should turn off any locality dependent optimizations in query

processing.

4) Parallelism and result reuse. All SNB queries offer opportunities for intra-

and inter-query parallelism. Additionally, since most of the queries retrieve one-

or two-hop neighborhoods of persons in the social graph, and the Person domain

is relatively small, it might make sense to reuse results of such retrievals across

multiple queries. This is an example of recycling: a system would not only cache

final query results, but also intermediate query results of a “high value”, where

the value is defined as a combination of partial query result size, partial query

evaluation cost, and observed frequency of the partial query in the workload.

Example. In order to illustrate the choke point-based design of SNB queries,

we will describe technical challenges behind one of the queries in the Interactive

workload, Query 9. Its definition in English is as follows:

Query 9: Given a start Person, find the 20 most recent Posts/Comments created

by that Person’s friends or friends of friends. Only consider the Posts/Comments

created before a given date.

This query looks for paths of length two or three, starting from a given Per-

son, moving to the friends and friends of friends, and ending at their created

Posts/Comments. This intended query plan, which the query optimizer has to

detect, is shown in Figure 6.2. Note that for simplicity we provide the plan

and discussion assuming a relational system. While the specific query plan for

systems supporting other data models will be slightly different (e.g., in SPARQL

it would contain joins for multiple attributes lookup), the fundamental challenges

are shared across all systems.

Although the join ordering in this case is fairly straightforward, an important

task for the query optimizer here is to detect the types of joins, since they are
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sort

1hash
3

1inl2

union

σ(knows)
card:120

1inl1

σ(knows)
card:120

knows
card: 4.6Mln

person
card: 70K

σ(post)
card: 15.9Mln

Figure 6.2.: Intended execution plan for Query 9

highly sensitive to cardinalities of their inputs. The lower most join 11 takes

only 120 tuples (friends of a given person) and joins them with the entire Knows

table to find the second degree friends. This is best done by looking up these

120 tuples in the index on the primary key of Knows, i.e. by performing an

index nested loop join. Same holds for the next 12, since it looks up around a

thousand tuples in an index on primary key of Person. However, the inputs

of the last 13 are too large, and the corresponding index is not available in

Post, so Hash join is the optimal algorithm here. Note that picking a wrong

join type hurts the performance here: in the HyPer database system, replacing

index-nested loop with hash in 11 results in 50% penalty, and similar effects are

observed in the Virtuoso RDBMS.

Determining the join type in Query 9 is of course a consequence of accurate

cardinality estimation in a graph, i.e. in a dataset with power-law distribution.

In this query, the optimizer needs to estimate the size of second-degree friendship

circle in a dense social graph.

Finally, this query opens another opportunity for databases where each stored

entity has a unique synthetic identifier, e.g. in RDF or various graph models.

There, the system may choose to assign identifiers to Posts/Comments entities

such that their IDs are increasing in time (creation time of the post). Then, the

final selection of Posts/Comments created before a certain date will have high

locality. Moreover, it will eliminate the need for sorting at the end.

Interactive Workload

Three workloads are supposed to constitute the Social Network Benchmark:

Interactive Workload, Business Intelligence, Graph Analytics, although at the

time of writing, only the first workload is finalized, the two remaining are under
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development. All three of them will be based on the same dataset and use the

common benchmark infrastructure such as the benchmark driver and validation

tools. We will describe the Interactive workload here.

The Interactive Workload mimics a user’s behavior on the online social network

site. Users browse the content, add friends, write posts or comments and

occasionally ask user-centric read queries, such as What are the new trends

that my friends have been posting about in the last days?. From the database

perspective, the Interactive Workload tests ability of the System Under Test

(SUT) to cope with a transactional workload, composed from short updates, short

lookups and relatively long read queries. The latter type of queries distinguishes

this benchmark from purely transactional benchmarks like TPC-C. An important

characteristic of all queries and updates is that they touch only limited parts of

the dataset: at the very maximum it is information about friends of friends of a

given user (required by some of the user-centric read queries), and typically it is

just properties of a given user (touched by updates and short reads).

The core query optimization challenges in the workload are represented by 14

read queries, shown in the Appendix. They retrieve information about the social

environment of a given user (one- or two-hop friendship circle), such as new

groups that the friends have joined, new hashtags that the environment has

used in recent posts etc. Although they represent plausible questions that a

user of a real social network may need, their complexity is typically beyond

the functionality of modern social network providers due to their online nature

(e.g., we do not assume any pre-computation). These queries present the core

of query optimization choke points in the benchmark. LDBC website1 and [81]

have formulations of these queries in SQL, SPARQL, Cypher and APIs of two

graph databases (Neo4j and Sparksee).

6.2. Motivation for Parameter Curation

A typical benchmark consists of two parts: (i) the dataset, which can be either

real-world or synthetic, and (ii) the workload generator that issues queries

against the dataset based on the pre-defined query templates. A query template

is an expression in the query language (e.g., SQL or SPARQL) with substitution

parameters that have to be replaced with real bindings by the workload generator.

For example, a template of LDBC-Interactive Query 5 that finds new groups

that friends and friends of friends of a given user have joined recently, looks like

this:

In a query workload, the workload driver would execute this query template in

1ldbcouncil.org/developer/snb
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select top 20 f_title , f_forumid , count (*)

from forum , post , forum_person ,

( select k_person2id

from knows

where k_person1id = %Person%

union

select k2.k_person2id

from knows k1 , knows k2

where k1.k_person1id = %Person%

and k1.k_person2id = k2.k_person1id

and k2.k_person2id <> %Person%

) f

where f_forumid = ps_forumid and f_forumid = fp_forumid

and fp_personid = f.k_person2id

and ps_creatorid = f.k_person2id

and fp_creationdate >= ’%Date0%’::date

group by f_forumid , f_title

order by 3 desc , f_title

Query 6.1: LDBC-Interactive Query 5

one experiment potentially multiple times (e.g., 100) with different bindings for

the %Person and %Date0 parameters. It would report an aggregate value of

the observed runtime distribution per query (usually, the average runtime per

query template). This aggregated score serves two audiences: First, the users

can evaluate how fit a specific system is for their use-case (choosing, for example,

between systems that are good in complex analytical processing and those that

have the highest throughput for lookup queries). Second, database architects

can use the score to analyze their systems’ handling of choke points, discussed in

Section 6.1, like handling multiple interesting orders or sparse foreign key joins.

In “throughput” experiments, the benchmark driver may also execute the above

experiment multiple times in multiple concurrent query streams. For each

stream, a different set of parameters is needed.

Desired Properties. In order for the aggregate runtime to be a useful mea-

surement of the system’s performance, the selection of parameters for a query

template should guarantee the following properties of the resulting queries:

P1: the query runtime has a bounded variance: the average runtime should

correspond to the behavior of the majority of the queries

P2: the runtime distribution is stable: different samples of (e.g., 10) parameter

bindings used in different query streams should result in an identical

runtime distribution across streams
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P3: the optimal logical plan (optimal operator order) of the queries is the same:

this ensures that a specific query template tests the system’s behavior

under the well-chosen technical difficulty (e.g., handling voluminous joins

or proper cardinality estimation for subqueries etc.)

The conventional way to get the parameter bindings for %Person is to sample

the values (uniformly, at random) from all the possible person IDs in the dataset

(the “domain”). This is, for example, how the TPC-H benchmark creates its

workload. Since the TPC-H data is generated with simple uniform distribution

of values, the uniform sample of parameters trivially guarantees the properties

P1-P3. The TPC-DS benchmark moved away from uniform distributions and

uses ”step-shaped” frequency distributions instead [79, 94], where there are large

differences in frequency between steps, but each step in the frequency distribution

contains multiple values all having the same frequency. This allows TPC-DS to

obtain parameter values with exactly the same frequency, by choosing them all

from the same step.

However, these techniques do not work for LDBC SNB, since it uses a dataset

with skewed value distribution and close-to-realistic correlations between values.

Also, uniform sampling does not perform well for benchmarks that use real-world

datasets (we provide an example against IMDB schema in Section 6.2.1), since

by their nature they frequently feature non-uniform distributions of values. In

our example above, the behavior of the query changes significantly depending

on the selection of the parameter. We present a detailed picture of its runtime

behavior in Section 6.2.1, but most notably, if %Person is a highly connected

user (with hundreds of friends), the query features a voluminous join between

friends of friends and Forum, while for ”less popular” users the join is rather

sparse. As we see, two very different scenarios are tested for these two parameter

choices, and they should ideally be reported separately. The %Person parameter

bindings for these two scenarios would be drawn from two buckets of persons,

with large number of friends and with a few friends.

We clarify that our intention is not to obviate the interesting query optimization

problems related to the real-world distributions and correlations in the dataset,

but to make the results within one query template predictable by choosing

the parameters that satisfy properties P1-P3, in order to guarantee that the

behavior of the System Under Test (SUT) and of the benchmark results is

understandable. In case different parameters have very different runtimes and

optimal query plans (e.g. due to skew or correlations) this can still be tested in

a benchmark by having multiple query variants, e.g., one variant with persons

with many friends, another with users that have few friends. The different

variants would behave very differently and test whether the optimizer makes
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good decisions, but within the same query variant the behavior should be stable

and understandable regardless the substitution parameter.

Parameter Curation. In this section we present an approach to generate

parameters that yield similar behavior of the query template, which we coin

“Parameter Curation”. We consider a setup with a fixed set of query templates

and a dataset (either real-world or synthetic) as input for the parameter generator.

Our approach consists of two parts:

• for each query template for all possible parameter bindings, we determine

the size of intermediate results in the intended query plan. Intermediate

result size heavily influences the runtime of a query, so two queries with the

same operator tree and similar intermediate result sizes at every level of

this operator tree are expected to have similar runtimes. This analysis on

result sizes versus parameter values is done once for every query template

(remember that we consider benchmarks with a fixed set of queries).

• we define a greedy algorithm that selects (“curates”) those parameters

with similar intermediate result counts from the dataset.

Note that Parameter Curation depends on data generation in a benchmark: we

are mining the generated data for suitable parameters to use in the workload. As

such, Parameter Curation constitutes an new phase that follows data generation

in a typical database benchmarking process.

6.2.1. Examples

For all examples in this section, we use the SNB-Interactive workload, where

we generated a social network of scale factor 30 (ca. 30 GB of CSV files).

For both datasets we use Virtuoso 7 database (Column store) and run our

experiments on a commodity server with the following specifications: Dual Intel

X5570 Quad-Core-CPU, 64 Gb RAM, 1 TB SAS-HD, Redhat Enterprise Linux

(2.5.37).

In the following examples (E1-E4), we illustrate our statement that uniform

selection of parameters leads to unpredictable behavior of queries, which makes

interpretation of benchmark results difficult.

E1: Runtime distribution has high variance. When drawing parameters

uniformly at random, we encounter a very skewed runtime distribution for queries

over real-world datasets. We plot the runtime of Query 6.1 (SNB-Interactive

Query 5) for a uniform sample of 100 %Person parameters in Figure 6.3b. As

we see, the difference between the fastest and slowest query is more than 100
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Figure 6.3.: Correlations cause high runtime variance (LDBC Query 5)

times. The reason for this is the distribution of the size of two-hop friendship

environment in the SNB graph: since the number of friends has a power-law

distribution, the number of friends of friends follows a multimodal distribution

with several peaks, see Figure 6.3a. This translates into highly variable amount

of data that the query needs to touch depending on the parameter %Person,

which in turn influences the runtime.

E2: Different plans for different parameters. The uniformly generated

parameter bindings can lead to completely different plans for the same query

template. This happens because the cardinalities of the subqueries naturally

depend on the parameter bindings, and sometimes on the combination of the

parameters. To illustrate this case, we consider the following query for IMDB

dataset, finding all the movie producing companies from the country %Country

that have released more that 20 movies:

Query 6.2: IMDB Query

select cn.name , count(t.id) cnt

from title t, movie_companies mc , company_name cn

where t.id = mc.movie_id and cn.id = mc.company_id

and cn.country_code = ’%Country%’ and t.kind_id = 1

group by mc.company_id , cn.name

having count (*) > 20

order by cnt desc

limit 20

Two optimal plans for Query 6.2 (as found by the PostgreSQL database) are
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depicted in Figure 6.4a) and b), where leaves are marked with table aliases

from the query listing. Picking ’US’ – the country with the largest number of

companies – as a parameter not only changes the join order, as compared with

the ’UK’ parameter, but also results in applying a different group-by method

(by sorting as opposed to hash-based grouping for the ’UK’ parameter).
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Figure 6.4.: IMDb Query 6.2 plans and runtime distribution for different parameters

As another example, we consider LDBC Query 3 that finds the friends and

friends of friends that have been to countries X and Y. The optimal plan for this

query can start either with finding all the friends within two steps from the given

person, or from extracting all the people that have been to countries X and Y: if

X and Y are Finland and Zimbabwe, there are supposedly very few people that

have been to both, but if X and Y are USA and Canada, this intersection is very

large. In the SNB benchmark, correlations that might not even be detected by

the optimizer aggravate the execution picture beyond plain frequency differences.

As discussed in Section 6.1, there is a correlation between the location of each

user and her friends (they often live in the same country) and travel destinations

are correlated so that nearby travel is more frequent. Hence combinations of

countries far from home are extremely rare and combinations of neighboring

countries frequent.

We note that the plan variability is not a bad property per se: indeed, this query

forces the query optimizer to accurately estimate the cardinalities of subqueries

depending on input parameters. However, the generated parameters should be

sampled independently for two different variants (countries that are rarely and

frequently visited together), to allow a fair and complete comparison of different

query optimization strategies.

E3: Average runtime is not representative. In addition to being far from

139



6. Selecting Parameters For Graph Queries

uniform (E1), the query runtime distribution can also be ”clustered”: depending

on the parameter binding, the query runs either extremely fast or surprisingly

slow, and the average across the runtimes does not correspond to any actual query

performance. To illustrate this issue, we consider again the IMDB Query 6.2.

Figure 6.4c shows the runtime distribution of that query over the entire domain

of %Country parameter bindings. We see that the average runtime (red line on

the plot) falls outside of the larger group of parameter bindings, so in fact very

few actual queries have the runtime close to the mean.

E4: Sampling is not stable. A single query in the benchmark is typically

being executed several times with different randomly chosen parameter bindings.

It is therefore interesting to see how the reported average time changes when we

draw a different sample of parameters. In order to study this, we take Query 2 of

the LDBC benchmark that finds the newest 20 posts of the given user’s friends.

We sample 4 independent groups of parameter bindings (100 user parameter

bindings in each group), run the query with these parameters and report the

aggregated runtime numbers within individual groups (q10 and q90 are the 10th

and the 90th percentiles, respectively).

Time Group 1 Group 2 Group 3 Group 4

q10 0.14 s 0.07 s 0.08 s 0.09 s
Median 1.33 s 0.75 s 0.78 s 1.04 s
q90 4.18 s 3.41 s 3.63 s 3.07 s

Average 1.80 s 1.33 s 1.53 s 1.30 s

We see that uniform at random generation of query parameters in fact produces

unstable results: if we were to run 4 workloads of the same query with 100

different parameters in each workload, the deviation in reported average runtime

would be up to 40%, with even stronger deviation on the level of percentiles

and median runtime (up to 100%). When TPC-H benchmark record results

are improved, this often only concerns minor difference with the previous best

(e.g. 5%). Hence, the desired stability between different parameter runs of a

benchmark should ideally have a variance below that ballpark.

6.3. Problem Definition

Here we define the problem of generating the parameter binding for benchmark

queries. In order to compare two query plans formulated in logical relational

algebra, we use the classical logical cost function that takes into account the

sum of intermediate results produced during the plan’s execution [73]:
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Cout(T ) =

{
|Rx| if T is a scan of relation Rx

|T |+ Cout(T1) + Cout(T2) if T = T1 ./ T2

The above formula is incomplete and just here for argumentation; a more

complete version of this logical cost formula naturally should include all relational

operators (hence also selection, grouping, sorting, etc). The main idea is that for

every relational operator Ty it holds the amount of tuples that pass through it.

In our experiments, the cost function Cout, which is computed using the de-facto

result sizes (not the estimates!), strongly correlates with query running time

(ca. 85% Pearson correlation coefficient). Therefore, if two query plan instances

have the same Cout, or even better if all operators in the query plan have the

same Cout, these plans are expected to have very similar running time.

In order to find k parameter bindings that yield identical runtime behavior of

the queries, we could:

a: enumerate the set of all equivalent logical query plans LQ for a query

template Q.

b: for each possible parameter p from domain P , and each subplan Tlq of LQ
compute Cout(Tlq(p)).

c: find subset S ⊂ P , with size |S| = k, such that the sum of all variances∑
∀Tlq∈LQ

Variance∀p∈S Cout(Tlq(p)) is minimized.

Note that this generic problem of parameter curation is infeasibly hard to solve.

The amount of possible query plans is exponential in the amount of operators

(e.g. 2|LQ|, just for leftdeep-only plans, and |LQ| being the amount of operators

in plan LQ), and all these plan costs would have to be calculated very many

times: for each possible set of parameter bindings (whose size is 2|P |, where |P |
is the product of all parameter domain sizes – a typically quite large number),

and for all |LQ| subplans of LQ.

Instead, we simplify the problem by focusing on a single intended logical query

plan. Since we are designing a benchmark, which consists of a relatively small set

of query templates (the intended benchmark workload), and in this benchmark

design we have certain intentions, this is feasible to do manually. We can,

therefore, formulate a more practical problem of Parameter Curation as follows:

Parameter Curation: For the Intended Query Plan QI and the pa-

rameter domain P , select a subset S ⊂ P of size k such that
∑
∀Tqi∈QI

Variance∀p∈S Cout(Tqi(p)) is minimized.

Since the cost function correlates with runtime, queries with identical optimal
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plans w.r.t. Cout and similar values of the cost function are likely to have

close-to-normal distribution of runtimes with small variance. Therefore, the

properties P1-P3 from Section 6.2 hold within the set of parameters S and

effects mentioned in Section 6.2.1 are eliminated.

The Parameter Curation problem is still not trivial. A possible approach would

be to use query cardinality estimates that an EXPLAIN feature provides. For

each query template Q we could fix the operator order to the intended order

QI, run the query optimizer for every parameter p and find out the estimated

Cout(QI(p)), and then group together parameters with similar values. However,

it seems unsatisfactory for this problem, since even the state-of-the-art query

optimizers are often very wrong in their cardinality estimates. As opposed

to estimates we will therefore use the de-facto amounts of intermediate result

cardinalities (which are otherwise only known after the query is executed).

6.4. Algorithms for Parameter Curation

In this section we demonstrate how the problem of Parameter Curation for a

given query plan is solved in several important cases, namely:

• a query with a single parameter

• a query with two (potentially correlated) parameters, one from discrete

and another from continuous domain. Such a combination of parameters

could be: Person and Timestamp (of her posts, orders, etc).

• multiple (potentially correlated) parameters, such as Person, her Name

and the Country of residence.

Note that our solution easily generalizes to the cases of multiple parameters

(such as two Timestamp parameters etc); we consider the simplest cases merely

for the purposes of presentation.

Our solution is divided into two stages. First, we perform data analysis that

aims at computing the amount of intermediate results produced by the given

query execution plan across the entire domain of parameter(s). The output of

the analysis is a set of parameter(s) values and the corresponding intermediate

result sizes produced by every join of the query plan. Second, the output of the

data analysis stage is processed by the greedy algorithm that selects the subset

of parameters resulting in the minimal variance across all intermediate result

sizes.
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6.4.1. Single Parameter

Data Analysis The goal of this stage is to compute all the intermediate results

in the query plan for each value of the parameter. We will store this information

as a Parameter-Count (PC ) table, where rows correspond to parameter values,

and columns – to a specific join’s result sizes.

There are two ways of computing that table. First, given the query plan tree

we can split it into a bottom-up manner starting with the smallest subtree that

contains the parameter. We will then remove the selection on the parameter

value from the query, and add a Group-By on the parameter name with a Count,

thus effectively aggregating the result size of that subtree across the parameter

domain. In our experiments with SNB-Interactive we were generating group-by

queries based on the JSON representation of the query plan.

The second way of computing the Parameter-Count table is to compute the

corresponding counts as part of data generation. Indeed, in case of the SNB

benchmark, for instance, all the group-by queries boil down to counting the

number of generated entities: number of friends per person, number of posts

per user etc. These counts are later used to generate parameters across multiple

queries.

As an example, consider a simplified version of LDBC Query 2, given in List-

ing 6.3, which extracts 20 posts of the given user’s friends ordered by their

timestamps. The generated plans with Group-By’s on top are depicted in

Figure 6.5a and b. The first subquery plan counts the number of friends per

person, the second one aggregates the number of posts of all friends by user.

The resulting Parameter-Count table is given in Figure 6.5c, where columns

named |Γ1| and |Γ2| correspond to the results of the first and second group-by

queries, respectively. In other words, when executed with %ParameterID =

1542, Query 2 will generate 60 + 99 = 159 intermediate result tuples.

select p_personid , ps_postid , ps_creationdate

from person , post , knows

where

person.p_personid = post.ps_creatorid and

knows.k_person1id = %Person% and

knows.k_person2id = person.p_personid

order by ps_creationdate desc

limit 20

Query 6.3: LDBC Query 2
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Figure 6.5.: Preprocessing for the query plan with a single parameter

Greedy Algorithm. Now, our goal is to find the part of the Parameter-Count

table with the smallest variance across all columns. Note that the order of the

columns matters; in other words, variance in the first column (result size of the

bottom-most join of the query plan) is more crucial to the runtime behavior

than variance in the last column (top-most join). Following this observation,

we construct a simple greedy algorithm, depicted in Algorithm 18. It uses an

auxiliary function FindWindows that finds the windows (consecutive rows of

the table) of size at least k on a given column i with the smallest possible

variance (lines 3-4). In our table in Figure 6.5c such windows on the first column

(|Γ1|) are highlighted with red and green colors (they consist of parameter sets

[1542, 1673, 7511] and [958, 1367], respectively). Both these sets have variance 0

in the column |Γ1|.
The algorithm starts with finding the windows W with the smallest variance on

the entire first column (line 9). Then, in every found window from W we look

for smaller sub-windows (but of size at least than k, see line 3) that minimize

variance on the second column (lines 12-16). The found windows with the

smallest variance become candidates for the next iteration, based on further

columns (line 17). The process stops when we reach the last column or the

number of candidate windows reduces to 1.

In the example from Figure 6.5c, the first iteration brings the two windows

mentioned above (red and green). Then, in every window we look for windows of

k rows, they are [99, 102], [102, 103] and [120, 101]. Out of these three candidates,

[102, 103] has the smallest variance (highlighted in blue), so our solution consists

of two parameters, [1673, 7511].
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Algorithm 14: Parameter Curation (single parameter)

FindWindows
Input: PC – Parameter-Count table, i – column, start, end – offsets in the

table
1 begin
2 scan the PC table on the ith column from start to end rows
3 W ← generate Windows of size K
4 merge overlapping windows with the same variance
5 return w ∈W with the smallest variance of PC[i] values

6 ParameterCuration
Input: PC – Parameter-Count table, n – number of count columns in PC
Result: W – window in PC table with the smallest variance of counts

across all columns
7 begin
8 i← 1 . corresponds to the column number in the table, i.e. |Γi|
9 W← FindWindows(PC, 1, 0, |PC|) . find windows on the entire first column

10 while |W > 1| and i < n do
11 i← i+ 1
12 Wnew ← list()
13 for w ∈W do
14 w′ ← FindWindows(PC, i, w.start, w.end)
15 Wnew.add(w′)

16 sort Wnew by variance asc
17 W← all w ∈Wnew with the smallest variance

18 return W

6.4.2. Two Correlated Parameters

Here we consider the case when a query has two parameters, discrete and

continuous, e.g. PersonID and Timestamp. The continuous parameter is

involved in a selection, e.g. specifying the time interval. We focus on the

situation when these two are correlated, otherwise the solution of the Parameter

Curation problem is a straightforward generalization of the previous case: one

would follow the independence assumption and find the bindings for the discrete

parameter using Parameter-Count table, and then select intervals of the same

length as bindings of the continuous parameter.

However, if parameters are correlated, the independence assumption may lead to

a significant skew in the Cout function values. We take the LDBC Query 2 as an

example again, which in its full form also includes the selection on the timestamp

of the posts ps creationdate < %Date0% (i.e., the query finds the top 20 posts
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Figure 6.6.: Preprocessing for the query plan with two correlated parameters

of friends of a user written before a certain date). In the LDBC dataset, the

PersonID and Timestamp of the user’s posts are naturally correlated, since

users join the modeled social network at different times; moreover, their posting

activity changes over time. Therefore, if we choose the Timestamp parameter in

LDBC Query 2 independently from the PersonID, the amount of intermediate

results may vary significantly (even if ParameterIDs were curated such that the

total number of posts is the same).

Data analysis. In order to capture the correlation between two parameters, we

need to include the second one (Timestamp in our example) in the grouping key

during the Parameter-Count table construction. Grouping by the continuous

parameter may lead to a very large and sparse table, so we ”bucketize” it (e.g., by

months and years for Timestamp). We then store the results of the aggregation

as a Parameter-Count table, along with the bucket boundaries.

Our example from Figure 6.5 is extended with the Timestamp parameter in

Figure 6.6. The partial join trees are complemented with additional Group-By on

Month and Year of the timestamp as soon as the corresponding table containing

the Timestamp (in our case Posts) is added to the plan (in this example, at

Step 2 when we consider the second join). Assuming that our dataset spans 4

months of 2014, the resulting table may look like Figure 6.6b.

Greedy algorithm. The first stage of the Parameter Curation for two parame-

ters ignores the continuous parameter (e.g. Timestamp). As a result, we get

the bindings for the first (discrete) parameter that have similar intermediate

result sizes across the entire domain of the continuous parameter. Now for these

curated parameter bindings we find the corresponding continuous parameters

such that the Cout function values are similar across all the curated parameters.
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For the purpose of presentation we consider the solution for the %Date0 pa-

rameter that appears in the selection of a form timestamp < %Date0. In our

example from the previous section, we have found two PersonID parameters

that have the smallest variance in Cout. Let PCTime[i, j] denote the count

in the Parameter-Count table for the parameter i in bucket j, and N be the

number of buckets for continuous parameter. For example, in Figure 6.6b

PCTime[1673,Mar′14] = 30 is the number of posts made by friends of the user

1673 in March 2014, and N = 4.

• We compute the partial sums of the monthly counts Sum[i] =∑
j=1..N−M

PCTime[i, j] for all the discrete parameter bindings i for all

the months except the last M (where M is typically 1..3). In the table

in Figure 6.6b for M = 1 these partial sums are 60 and 80 for PersonIDs

1673 and 7511, respectively.

• We determine the average A across these sums Sum[i] (70 in our example)

• For every discrete parameter i we pick the bucket J such that∑
j=1..J

PCTime[i, j] is as close as possible to the global average A. More

precisely, we pick the first bucket such that the sum exceeds the global

average. In our example, for i = 1673, J is the fourth bucket (Apr’14 )

• Finally, since our buckets represent continuous variable (time), we can

split the bucket J so that the sum of counts is exactly A. For i = 1673

we need to get 10 posts in April 2014 (60 are covered by previous months,

and we need to reach the global average of 70). We pick April 42·10
30 = 14

as Date0.

In order to perform the last step in the above computation, we have assumed

that within one bucket the count is uniformly distributed (e.g., every day within

one month has the same number of posts). Even when this assumption does not

hold precisely, the effects are usually negligible.

The timestamp conditions of a different form, e.g. Timestamp > Date0, or

Timestamp ∈ [Date0, Date1] are handled in the same manner. For example, the

Timestamp ∈ [Date0, Date1] condition leads to finding for every PersonID the

median of its post-per-time distribution, that is the median of the PCTable[i, j]

for every row i. Then, the median of those medians is identified across all

PersonIDs, and finally every individual PersonID ’s median is made as close as

possible to the global median by extending/reducing the corresponding bucket.
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6.4.3. Multiple Correlated Parameters

Parameter Curation for multiple (more than two) parameters follows the scheme

of two parameters: one is selected as a primary (PersonID), the other ones are

”bucketized”. This way we get sets of bindings, each of those results in identical

query plan and similar runtime behavior.

In case of correlated parameters, however, it may be interesting to find several

sets of parameter bindings that would yield different query plans (but consistent

within one set of bindings). Consider the simplified version of LDBC Query 3

that is finding the friends of a user that have been to countries %C1 and %C2

and logged in from that countries (i.e., made posts), given in Query 6.4 and its

query plan in Figure 6.7a.

select k.k_person2id , ps_postid , ps_creationdate

from person p, knows k, post p1 , post p2

where p.person_id = k.k_person1id

and k.k_person2id = p1.p_personid

and k.k_person2id = p2.p_personid

and p1.place = ’%C1%’

and p2.place = ’%C2%’

order by ps_creationdate desc

limit 20

Query 6.4: LDBC Query 3

Since in the generated LDBC dataset the country of the person is correlated with

the country of his friends, and users tend to travel to (i.e. post from) neighboring

countries, there are essentially two groups of countries for every user: first, the

country of his residence and neighboring countries; second, any other country.

For parameters from first group the join denoted 12 in Figure 6.7a becomes

very unselective, since almost all friends of the user are likely to post from that

the country. For the second group, both 12 and 13 are very selective. In the

intermediate case when parameters are taken from the two different groups, it

additionally influences the order of 12 and 13.

Both these groups of parameters are based on counts of posts made by friends

of a user, i.e. based on the counts collected in the Parameter-Count table (with

additional group-by on country of the post). Instead of keeping the buckets

of all countries, we group them into two larger buckets based on their count,

Frequent and Non-Frequent as shown in Figure 6.7b.

Now we can essentially split the LDBC Query 3 into three different (related)

query variants (a), b) and c)), based on the combination of the two %Country

parameters: a) %C1 and %C2 from the Frequent group, b) both from Non-
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Figure 6.7.: Case of multiple correlated parameters

Frequent group, c) combination of the two above.

6.5. Experiments

In this section we describe our experiments with curated parameters in the

SNB-Interactive workload. First, we compare the runtimes of query templates

with curated parameters as opposed to randomly selected ones. Then we proceed

with an experiment on curating parameters for different intended plans of the

same query template in Section. All experiments are run with Virtuoso 7 Column

Store as a relational engine on a commodity server.

Curated vs Uniformly Sampled Parameters

First experiment aims at comparing the runtime variance of the LDBC queries

with curated parameters with the randomly sampled parameters. For all 14

queries we curated 500 parameters and sampled randomly the same amount of

parameters for every query. We run every query template with each parameter

binding for 10 times and record the mean runtime. Then, the compute the

runtime variance per query for curated and random parameters. The results,

given in Table 6.1, indicate that Parameter Curation reduces the variance of

runtime by a factor of at least 10 (and up to several orders of magnitude). We

note that some queries are more prone to runtime variability (such as Query

4 and 5), that is why the variance reduction is different accross the query set.

For Query 4 we additionally report the runtime distribution of query runs with

curated and random parameters in Figure 6.8.

Groups of Parameters for One Query

So far we have considered the scenario when the intended query plan needs to be

supplied with parameters that provide the smallest variance to its runtime. For

some queries, however, there could be multiple intended plan variants, especially
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Query Curated Random

1 13 773
2 31 2165
3 243 444174
4 0.6 184 · 106

5 1300 52 · 106

6 6931 278173
7 33 362
8 0.18 403
9 99269 880287
10 4073 102852
11 1 39
12 95 1535
13 2977 26777
14 5107 155032

Table 6.1.: Variance of runtimes: Uniformly sampled parameters vs Curated
parameters for the LDBC Benchmark queries

when the query contains a group of correlated parameters. As an example,

take LDBC Query 11 that finds all the friends of friends of a given person P

that work in country X. The data generator guarantees that the location of

friends is correlated with the location of a user. Naturally, when the country X

is the user’s country of residence, the amount of intermediate results is much

higher than for any other country. Moreover, if X is a non-populous country,

the reasonable plan would be to start from finding all the people that work at

organizations in X and then figure out which of them are friends of friends of

the user P.

As described in Section 6.4.3, our algorithm provides three sets of parameters

for the three intended query plans that arise in the following situations: (i) P

resides in the country X, (ii) country X is different than the residence country

of P , (iii) X is a non-populous country that is not a residence country for P . As

a specific example, we consider a set of Chinese users with countries (i) China,

(ii) Canada, (iii) Zimbabwe. The corresponding average runtimes and standard

deviations are depicted in Figure 6.9. We see that the three groups indeed have

distinct runtime behavior, and the runtime within the group is very similar. For

comparison, we also provide the runtime distribution for a randomly chosen

country parameter, which is far from the normal distribution.
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Figure 6.8.: LDBC Query 4 runtime distribution: curated vs random parameters

10K 50K 1M

Parameter Extraction Time 17 s 125 s 4329 s
% of Total Generation Time 7% 11% 12%

Data size, Gb 1 5.5 227

Table 6.2.: Time to extract parameters in the LDBC datasets of different scales

Parameter Curation time

Finally, we report the runtime of the parameter curation procedure for the

LDBC Benchmark. Note that we have incorporated the data analysis stage in

our case is implemented as part of data generation, e.g. we keep the number of

posts per person generated, number of replies to the user’s posts etc. This is

done with a negligible runtime overhead. In Table 6.2 we report the runtime of

the greedy parameter extraction procedure for the LDBC dataset of different

scales (as number of persons in the generated social network). We additionally

show the size of the generated data; this is essentially an indicator of the amount

of data that the extraction procedure needs to deal with. We see that Parameter

Curation takes approximately 7% to 12% of the total data generation time,

which looks like a reasonable overhead.

Our results show that Parameter Curation in the skewed and correlated datasets

transforms chaotic performance behavior for the same query template with

randomly chosen substitution parameters into highly stable behavior for curated
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Figure 6.9.: LDBC Query 11 with four different groups of parameters (for countries
China, Canada, Zimbabwe, Random)

parameters. Parameter Curation achieves its purpose: all the instances of queries

from the same template get approximately equal runtimes (and therefore equal

CPU share and contribution to the benchmark score). It retains the possibility

for benchmark designers to test the ability of query optimizers to identify

different query plans in case of skew and correlation, by grouping parameters

with the same behavior into a limited number of classes which among them

have very different behavior; hence creating multiple variants of the same query

template. Our approach to focus the problem on a single intended query plan

for each template variant reduces the high complexity of generic parameter

curation. We experimentally showed that group-by based data analysis followed

by greedy parameter extraction that implements Parameter Curation in the case

of LDBC SNB is practically computable and can form the final part of the

database generator process.
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Conclusions
In this thesis we have covered multiple graph-related problems, from efficiently

discovering shortest paths to optimizing declarative graph pattern matching

queries. The major contributions of this work include novel techniques for query

processing and query optimization in RDF databases (shortest path queries,

complex graph pattern matching queries), as well as new indexes for approximate

shortest path for the small-world graphs.

Apart from RDF data model, we have considered query optimization for the

Property Graph data model. Its growing popularity is caused by its intuitive

yet expressible query language and data format. In order to fully exploit the

expressive power of a graph query language in an efficient manner, however, a

major query optimization effort is required. Our work on a basic query optimizer

for Cypher, described in Chapter 5, can serve as a foundation for full-fledged

query optimizers for property graphs.

Future work should cover several directions: First, the cardinality estimation

techniques can be significantly improved. In general, we only capture some

significant structural phenomena in the graph (cf. indexing reachable nodes

and paths in Chapter 2, star-shaped and chain-shaped subgraphs in Chapter

5). More subtle, yet sometimes crucial, correlations occur between the graph

structure and the attributes of the nodes. We believe that the SNB benchmark

described in Chapter 6 will motivate system architects to pay more attentions

to these cases. Second, some applications for graph algorithms (in particular

social network analytics) should be considered in more detail, since they may

greatly benefit from specialized graph indexes and algorithms. Finally, some use

cases do require distributed graph databases, and we believe that it is possible

to extend our query optimization techniques (detecting structural correlations

in graphs, query simplification, path indexing) into a distributed setup.
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APPENDIX A

Queries for the YAGO2 dataset

All queries use the following prefix:

yago: <http://yago-knowledge.org/resource/>

Query 1

select ?loc ??path

where {yago:Ulm ??path ?loc.

pathfilter(containsOnly(??path, yago:isLocatedIn))

}

Query 2

select ?obj ??loc

where {?obj ??loc yago:Germany.

?obj rdf:type yago:wordnet_mountain_109359803.

pathfilter(containsOnly(??loc,yago:isLocatedIn))

}

Query 3

select ?person

where {?place ??loc yago:Germany.

?person yago:wasBornIn ?place.

?person yago:diedIn ?place.

pathfilter(containsOnly(??loc,yago:isLocatedIn))

}

Query 4

select ?person

where {?place1 ??loc1 yago:Germany.

?place2 ??loc2 yago:France.

?person yago:wasBornIn ?place1.

?person yago:diedIn ?place2.

pathfilter(containsOnly(??loc1, yago:isLocatedIn) &&
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containsOnly(??loc2,yago:isLocatedIn))

}

Query 5

select ?person ??loc

where {?person yago:isKnownFor ?smth.

?smth ??related yago:wordnet_physical_phenomenon>.

?place ??loc ?country.

?country rdf:type yago:wikicategory_European_countries.

?country rdf:type yago:wikicategory_Mediterranean.

?person yago:wasBornIn ?place.

pathfilter(containsOnly(??loc,yago:isLocatedIn))

}

Queries for the UniProt dataset

Query 1

select ?a ?mod ??inf

where {?a <mnemonic> ?vo.

?a <replacedBy> <P62965>.

?a <type> <Protein>.

?a <modified> ?mod.

?b <modified> "2005-08-30".

?b <replacedBy> <P62964>.

?b <type> <Protein>.

?a <replacedBy> ?ab.

?ab ??inf ?b .

}

Query 2

select ?a ?vo

where {?a <mnemonic> ?vo.

?a <replacedBy> <P62965>.

?a <type> <Protein>.

?a <modified> "1990-11-01".

?a <replacedBy> <P62966>.

?a ??p ?b.

?b <modified> "2005-08-30".

?b <replacedBy> <P62964>.

?b <reviewed> "false".

?b <obsolete> "true".

?b <type> <Protein>}

Query 3

select ?a ?vo
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where {?a <annotation> ?vo.

?a <seeAlso> <interpro/IPR000842>.

?a <annotation> <540A71>.

?a <seeAlso> <geneid/945772>.

?a <annotation> <540A7D>.

?a <citation> <9298646>.

?b <obsolete> "true".

?b <replacedBy> <P0A718>.

?b <reviewed> "true".

?b <mnemonic> "KPRS ECOLI".

?b <type> <Protein>.

?a ??p ?b }

156



Reachability queries

APPENDIX B

Queries for the YAGO2 dataset

All queries use the following prefix:

yago:<http://yago-knowledge.org/resource/>

Query 1

select ?country ?area where {

yago:Berlin yago:isLocatedIn* ?country.

?country yago:dealsWith ?area.

?area rdf:type yago:wikicategory_Member_states_of_NATO }

Query 2

select ?city ?b ?area where {

?city rdf:type yago:wikicategory_Capitals_in_Europe .

?city yago:isLocatedIn* ?b.

?b yago:dealsWith ?area }

Query 3

select ?a ?b ?area where {

?a yago:isLocatedIn* ?b.

?b yago:dealsWith ?area.

?a yago:isPreferredMeaningOf "Berlin"@eng}

Query 4

select ?a ?b ?type where {

?a yago:isPreferredMeaningOf "Berlin"@eng.

?a yago:isLocatedIn* ?b.

?b type ?type.

}

Query 5

select * where {
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?person yago:isMarriedTo* ?spouse.

?spouse yago:owns ?entity.

?entity yago:isLocatedIn* yago:United_States }

limit 100

Query 6

select * where {

?airport1 a yago:wikicategory_Airports_in_the_Netherlands.

?airport1 yago:hasLongitude ?long.

?airport1 yago:hasLatitude ?lat.

?airport1 yago:isConnectedTo* ?place.

?place a yago:wikicategory_Mediterranean_port_cities_and_towns_in_Spain.

?place yago:wasCreatedOnDate ?date.

?place yago:hasNumberOfPeople ?people. }

limit 10
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APPENDIX C

MusicBrainz Query 1

MATCH (a:Artist)-[r]-(b)

WITH r,b

LIMIT 10000

RETURN type(r),labels(b),count(*)

ORDER BY count(*) desc

MusicBrainz Query 2

MATCH (a:Artist {name:’John Lennon’})-

[r:MEMBER_OF_BAND*3..6]-(o:Person)

RETURN o.name,count(*)

ORDER BY count(*) DESC

LIMIT 10

MusicBrainz Query 3

MATCH (x:Country {name: {name_1}}),

(y:Country {name: {name_2}}),

(a:Artist)-[:FROM_AREA]-(x),

(a:Artist)-[:RECORDING_CONTRACT]-(l:Label),

(l)-[:FROM_AREA]-(y)

RETURN a,l,y,x

MusicBrainz Query 4

MATCH (a:Artist {name: ’John Lennon’})-

[:CREDITED_AS]->(b)-

[:CREDITED_ON]->(t:Track)

RETURN t.name

MusicBrainz Query 5

MATCH (a:Song)-[r]-(b)

WITH r,b

LIMIT 10000

RETURN type(r),labels(b),count(*)
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ORDER BY count(*) DESC

MusicBrainz Query 6

MATCH (gb:Country {name:’United Kingdom’}),

(usa:Country {name:’United States’}),

(a:Artist)-[:FROM_AREA]-(gb),

(a:Artist)-[:RECORDING_CONTRACT]-(l:Label),

(l)-[:FROM_AREA]-(usa)

RETURN a,l,usa,gb

AccessControl Query 1

MATCH (admin:Administrator {name:{adminName}})

MATCH (admin)-[:MEMBER_OF]->(group)-[:ALLOWED_INHERIT]->

(company:Company)<-[:CHILD_OF*0..3]-(subcompany)<-

[:WORKS_FOR]-(employee)-[:HAS_ACCOUNT]->(account)

WHERE NOT ((admin)-[:MEMBER_OF]->()-[:DENIED]->()<-

[:CHILD_OF*0..3]-(subcompany))

RETURN account.name AS account

UNION MATCH (admin:Administrator {name:{adminName}})

MATCH (admin)-[:MEMBER_OF]->(group)-[:ALLOWED_DO_NOT_INHERIT]->

(company:Company)<-[:WORKS_FOR]-(employee)-[:HAS_ACCOUNT]->(account)

RETURN account.name AS account

AccessControl Query 2

MATCH (admin:Administrator {name:{adminName}})

MATCH (admin)-[:MEMBER_OF]->(group)-[:ALLOWED_INHERIT]->

(company:Company)<-[:WORKS_FOR]-(employee)-

[:HAS_ACCOUNT]-> (account)

WHERE NOT ((admin)-[:MEMBER_OF]->()-

[:DENIED]->(company))

RETURN account.name AS account

UNION MATCH (admin:Administrator {name:{adminName}})

MATCH (admin)-[:MEMBER_OF]->(group)-[:ALLOWED_INHERIT]->

(company:Company) <-[:CHILD_OF]-(subcompany)<-

[:WORKS_FOR]-(employee)-[:HAS_ACCOUNT]->(account)

WHERE NOT ((admin)-[:MEMBER_OF]->()-[:DENIED]->()

<-[:CHILD_OF]-(subcompany))

RETURN account.name AS account

UNION MATCH (admin:Administrator {name:{adminName}})

MATCH (admin)-[:MEMBER_OF]->(group)-

[:ALLOWED_DO_NOT_INHERIT]->(company:Company)

<-[:WORKS_FOR]-(employee)-[:HAS_ACCOUNT]->

(account)

RETURN account.name AS account
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AccessControl Query 3

MATCH (admin:Administrator {name:{adminName}})

MATCH paths=(admin)-[:MEMBER_OF]->()-[:ALLOWED_INHERIT]->

(company)<-[:WORKS_FOR]-(employee)-

[:HAS_ACCOUNT]->(account)

WHERE NOT ((admin)-[:MEMBER_OF]->()-[:DENIED]->(company))

RETURN employee.name AS employee, account.name AS account

UNION MATCH (admin:Administrator {name:{adminName}})

MATCH paths=(admin)-[:MEMBER_OF]->()-[:ALLOWED_INHERIT]->

()<-[:CHILD_OF]-(company)<-[:WORKS_FOR]-(employee)-

[:HAS_ACCOUNT]->(account)

WHERE NOT ((admin)-[:MEMBER_OF]->()-[:DENIED]->

()<-[:CHILD_OF]-(company))

RETURN employee.name AS employee, account.name AS account

UNION MATCH (admin:Administrator {name:{adminName}})

MATCH paths=(admin)-[:MEMBER_OF]->()-[:ALLOWED_DO_NOT_INHERIT]->

()<-[:WORKS_FOR]-(employee)-[:HAS_ACCOUNT]->(account)

RETURN employee.name AS employee, account.name AS account

AccessControl Query 4

MATCH (admin:Administrator {name:{adminName}}),

(resource:Resource {name:{resourceName}})

MATCH p=(admin)-[:MEMBER_OF]->()-

[:ALLOWED_INHERIT]->()<-[:CHILD_OF*0..3]-(company)-

[:WORKS_FOR|HAS_ACCOUNT*1..2]-(resource)

WHERE NOT ((admin)-[:MEMBER_OF]->()-

[:DENIED]->()<-[:CHILD_OF*0..3]-(company))

RETURN count(p) AS accessCount

UNION MATCH (admin:Administrator {name:{adminName}}),

(resource:Resource {name:{resourceName}})

MATCH p=(admin)-[:MEMBER_OF]->()-

[:ALLOWED_DO_NOT_INHERIT]->(company)-

[:WORKS_FOR|HAS_ACCOUNT*1..2]-(resource)

RETURN count(p) AS accessCount
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APPENDIX D

Query 1

MATCH (:Person {id:{1}})-[path:KNOWS*1..3]-(friend:Person)

WHERE friend.firstName = {2}

WITH friend, min(length(path)) AS distance

ORDER BY distance ASC, friend.lastName ASC, friend.id ASC

LIMIT {3}

MATCH (friend)-[:IS_LOCATED_IN]->(friendCity:City)

OPTIONAL MATCH (friend)-[studyAt:STUDY_AT]->(uni:University)-[:IS_LOCATED_IN]->(uniCity:City)

WITH friend,

collect(CASE uni.name

WHEN null THEN null

ELSE [uni.name, studyAt.classYear, uniCity.name]

END) AS unis,

friendCity,

distance

OPTIONAL MATCH (friend)-[worksAt:WORKS_AT]->

(company:Company)-[:IS_LOCATED_IN]->(companyCountry:Country)

WITH friend,

collect(CASE company.name

WHEN null THEN null

ELSE [company.name, worksAt.workFrom, companyCountry.name]

END) AS companies,

unis,

friendCity,

distance

RETURN

friend.id AS id,

friend.lastName AS lastName,

distance,

friend.birthday AS birthday,

friend.creationDate AS creationDate,

friend.gender AS gender,

friend.browserUsed AS browser,

friend.locationIP AS locationIp,

friend.email AS emails,

friend.languages AS languages,

friendCity.name AS cityName,
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unis,

companies

ORDER BY distance ASC, friend.lastName ASC, friend.id ASC

LIMIT {3}

Query 2

MATCH (:Person {id:{1}})-[:KNOWS]-(friend:Person)<-[:HAS_CREATOR]-(message)

WHERE message.creationDate <= {2} AND (message:Post OR message:Comment)

RETURN

friend.id AS personId,

friend.firstName AS personFirstName,

friend.lastName AS personLastName,

message.id AS messageId,

CASE has(message.content)

WHEN true THEN message.content

ELSE message.imageFile

END AS messageContent,

message.creationDate AS messageDate

ORDER BY messageDate DESC, messageId ASC

LIMIT {3}

Query 3

MATCH (person:Person {id:{1}})-[:KNOWS*1..2]-(friend:Person)<-[:HAS_CREATOR]-(messageX),

(messageX)-[:IS_LOCATED_IN]->(countryX:Country)

WHERE not(person=friend) AND

not((friend)-[:IS_LOCATED_IN]->()-[:IS_PART_OF]->(countryX))

AND countryX.name={2}

AND messageX.creationDate>={4}

AND messageX.creationDate<{5}

WITH friend, count(DISTINCT messageX) AS xCount

MATCH (friend)<-[:HAS_CREATOR]-(messageY)-[:IS_LOCATED_IN]->(countryY:Country)

WHERE countryY.name={3}

AND not((friend)-[:IS_LOCATED_IN]->()-[:IS_PART_OF]->(countryY))

AND messageY.creationDate>={4}

AND messageY.creationDate<{5}

WITH friend.id AS friendId,

friend.firstName AS friendFirstName,

friend.lastName AS friendLastName,

xCount,

count(DISTINCT messageY) AS yCount

RETURN

friendId,

friendFirstName,

friendLastName,

xCount,

yCount,

xCount + yCount AS xyCount
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ORDER BY xyCount DESC, friendId ASC

LIMIT {6}

Query 4

MATCH (person:Person {id:{1}})-[:KNOWS]-(:Person)<-[:HAS_CREATOR]-(post:Post)

-[HAS_TAG]->(tag:Tag)

WHERE post.creationDate >= {2} AND post.creationDate < {3}

OPTIONAL MATCH (tag)<-[:HAS_TAG]-(oldPost:Post)

WHERE oldPost.creationDate < {2}

WITH tag, post, length(collect(oldPost)) AS oldPostCount

WHERE oldPostCount=0

RETURN

tag.name AS tagName,

length(collect(post)) AS postCount

ORDER BY postCount DESC, tagName ASC

LIMIT {4}

Query 5

MATCH (person:Person {id:{1}})-[:KNOWS*1..2]-(friend:Person)

<-[membership:HAS_MEMBER]-(forum:Forum)

WHERE membership.joinDate>{2} AND not(person=friend)

WITH DISTINCT friend, forum

OPTIONAL MATCH (friend)<-[:HAS_CREATOR]-(post:Post)<-[:CONTAINER_OF]-(forum)

WITH forum, count(post) AS postCount

RETURN

forum.title AS forumName,

postCount

ORDER BY postCount DESC, forum.id ASC

LIMIT {3}

Query 6

MATCH (person:Person {id:{1}})-[:KNOWS*1..2]-(friend:Person),

(friend)<-[:HAS_CREATOR]-(friendPost:Post)-[:HAS_TAG]->(knownTag:Tag {name:{2}})

WHERE not(person=friend)

MATCH (friendPost)-[:HAS_TAG]->(commonTag:Tag)

WHERE not(commonTag=knownTag)

WITH DISTINCT commonTag, knownTag, friend

MATCH (commonTag)<-[:HAS_TAG]-(commonPost:Post)-[:HAS_TAG]->(knownTag)

WHERE (commonPost)-[:HAS_CREATOR]->(friend)

RETURN

commonTag.name AS tagName,

count(commonPost) AS postCount

ORDER BY postCount DESC, tagName ASC

LIMIT {3}
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Query 7

MATCH (person:Person {id:{1}})<-[:HAS_CREATOR]-(message)<-[like:LIKES]-(liker:Person)

WITH liker, message, like.creationDate AS likeTime, person

ORDER BY likeTime DESC, message.id ASC

WITH liker, head(collect({msg: message, likeTime: likeTime})) AS latestLike, person

RETURN

liker.id AS personId,

liker.firstName AS personFirstName,

liker.lastName AS personLastName,

latestLike.likeTime AS likeTime,

not((liker)-[:KNOWS]-(person)) AS isNew,

latestLike.msg.id AS messageId,

latestLike.msg.content AS messageContent,

latestLike.likeTime - latestLike.msg.creationDate AS latencyAsMilli

ORDER BY likeTime DESC, personId ASC

LIMIT {2}

Query 8

MATCH (start:Person {id:{1}})<-[:HAS_CREATOR]-()<-[:REPLY_OF]-

(comment:Comment)-[:HAS_CREATOR]->(person:Person)

RETURN

person.id AS personId,

person.firstName AS personFirstName,

person.lastName AS personLastName,

comment.id AS commentId,

comment.creationDate AS commentCreationDate,

comment.content AS commentContent

ORDER BY commentCreationDate DESC, commentId ASC

LIMIT {2}

Query 9

MATCH (:Person {id:{1}})-[:KNOWS*1..2]-(friend:Person)<-[:HAS_CREATOR]-(message)

WHERE message.creationDate < {2}

RETURN DISTINCT

message.id AS messageId,

CASE has(message.content)

WHEN true THEN message.content

ELSE message.imageFile

END AS messageContent,

message.creationDate AS messageCreationDate,

friend.id AS personId,

friend.firstName AS personFirstName,

friend.lastName AS personLastName

ORDER BY message.creationDate DESC, message.id ASC

LIMIT {3}
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Query 10

MATCH (person:Person {id:{1}})-[:KNOWS*2..2]-(friend:Person)-[:IS_LOCATED_IN]->(city:City)

WHERE ((friend.birthday_month = {2} AND friend.birthday_day >= 21)

OR (friend.birthday_month = ({2}+1)%12 AND friend.birthday_day < 22))

AND not(friend=person)

AND not((friend)-[:KNOWS]-(person))

WITH DISTINCT friend, city, person

OPTIONAL MATCH (friend)<-[:HAS_CREATOR]-(post:Post)

WITH friend, city, collect(post) AS posts, person

WITH

friend,

city,

length(posts) AS postCount,

length([p IN posts WHERE (p)-[:HAS_TAG]->(:Tag)<-[:HAS_INTEREST]-(person)])

AS commonPostCount

RETURN

friend.id AS personId,

friend.firstName AS personFirstName,

friend.lastName AS personLastName,

friend.gender AS personGender,

city.name AS personCityName,

commonPostCount - (postCount - commonPostCount) AS commonInterestScore

ORDER BY commonInterestScore DESC, personId ASC

LIMIT {4}

Query 11

MATCH (person:Person {id:{1}})-[:KNOWS*1..2]-(friend:Person)

WHERE not(person=friend)

WITH DISTINCT friend

MATCH (friend)-[worksAt:WORKS_AT]->(company:Company)-

[:IS_LOCATED_IN]->(:Country {name:{3}})

WHERE worksAt.workFrom < {2}

RETURN

friend.id AS friendId,

friend.firstName AS friendFirstName,

friend.lastName AS friendLastName,

worksAt.workFrom AS workFromYear,

company.name AS companyName

ORDER BY workFromYear ASC, friendId ASC, companyName DESC

LIMIT {4}

Query 12

MATCH (:Person {id:{1}})-[:KNOWS]-(friend:Person)

OPTIONAL MATCH (friend)<-[:HAS_CREATOR]-(comment:Comment)-

[:REPLY_OF]->(:Post)-[:HAS_TAG]->(tag:Tag),

(tag)-[:HAS_TYPE]->(tagClass:TagClass)-
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[:IS_SUBCLASS_OF*0..]->(baseTagClass:TagClass)

WHERE tagClass.name = {2} OR baseTagClass.name = {2}

RETURN

friend.id AS friendId,

friend.firstName AS friendFirstName,

friend.lastName AS friendLastName,

collect(DISTINCT tag.name) AS tagNames,

count(DISTINCT comment) AS count

ORDER BY count DESC, friendId ASC

LIMIT {3}

Query 13

MATCH (person1:Person {id:{1}}), (person2:Person {id:{2}})

OPTIONAL MATCH path = shortestPath((person1)-[:KNOWS]-(person2))

RETURN CASE path IS NULL

WHEN true THEN -1

ELSE length(path)

END AS pathLength
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