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Abstract—In many control applications, state and/or output
constraints need to be satisfied. For that purpose, artificial limits
are imposed using a specially designed control law. Among other
methods, invariance control has proven valuable for addressing
the problem of state and output constraints in nonlinear control
systems. However, invariance controlled systems often exhibit
undesirable chattering behavior in particular in digital imple-
mentation. In this work, we propose a novel invariance-based
control approach, which significantly reduces chattering. We
give a condition for stability and restrictions on the admissible
constraint configuration. The approach and the results are
illustrated in simulations.

I. INTRODUCTION

In some applications, limits on system states and outputs
are desired, for example to impose certain performance spec-
ifications, safety margins or to guarantee (practical) stability.
One application domain is human-machine interaction with
examples in driver assistance, rehabilitation, physical training
and assistive robotics in domestic and industrial settings,
cf. [1]. This requires a control scheme, which is applicable to
nonlinear systems, has real-time capabilities and influences
the system behavior only to the extent necessary to ensure
adherence to limits. Invariance control is such a control
scheme. It provides a straightforward approach for imposing
constraints on states and outputs of a nonlinear system. The
control mechanism switches between nominal control, when-
ever constraints are satisfied, and corrective control, when
constraint violation is likely. Since a switch to corrective
control only occurs on absolute necessity, the system is
mostly under nominal control for the desired control task
execution.

Model predictive control (MPC) [2] or receding horizon
control [3] are alternative, optimization-based approaches,
which may, in addition to state and output constraints, also
consider input constraints. They are, however, computa-
tionally expensive, which renders the application to high-
dimensional nonlinear systems with real-time requirements
difficult. Additionally, the behavior within the admissible set
is difficult to predict. As another alternative, the reference
governor approach [4] explicitly considers disturbances of
the system. However, determining the so-called “safe” sets
of the state space requires extensive numerical simulation.
The use of Barrier Lyapunov functions allows asymptotical
tracking of a reference while bounding all signals, but con-
siders only a single system output [5]. Invariance control, in
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contrast, is capable of handling multiple outputs and utilizes
analytic functions to define admissible configurations.
Invariance control is introduced in [6] for nonlinear,
control affine single-input single-output (SISO) systems. A
systematic approach of designing the invariance controller
as an addition to a nominal controller is introduced in [7].
The invariance control approach is extended to multi-input
multi-output (MIMO) systems in [8]. It is well-known that
the digital implementation of invariance control may induce
high-frequency oscillation at the boundaries [9]. This so-
called chattering is caused by the finite sampling time, which
delays the switching between nominal and corrective con-
trol. Although this effect decreases controller performance
and provokes undesired behavior at the constraints, it has
received very little attention in the existing literature so far.
In this paper, we present a novel invariance control ap-
proach for nonlinear, control affine MIMO systems, which
addresses the problem of chattering reduction for an output
tracking problem. Based on tools from Lyapunov theory, we
provide a condition for stability of the invariance controlled
system with chattering reduction. Furthermore, we investi-
gate admissible configurations for the set of constraints. The
results presented here generalize and improve our earlier
work [9] by allowing systems of arbitrary relative degree.
The efficacy of the proposed control approach is demon-
strated in simulations on a robotic application example.
The remainder of this paper is organized as follows:
Section II gives the necessary background of the control
strategy. The novel control scheme is introduced in Sec-
tion IIT and a sufficient condition for stability is derived. In
Section IV, possible restrictions on boundary definitions are
analyzed. The results of a numerical example are presented
in Section V. Conclusions are drawn in Section VI.
Notation: Bold small and capital characters are used for
vectors and matrices, respectively. Time derivatives of low
order are abbreviated by dots © = %, derivatives of higher
order by z(") = ‘(1;7?. The first order Lie-derivative, i.e. the
directional derivative of a scalar function ~(x) in direction f,
is denoted by
__ Oh

The Lie-derivatives of higher order L}h(w) are defined
recursively. The Euclidean vector norm (2-norm) is denoted
by |z|2 = VaTx for * € R™ and the cross product



of two vectors x,,zs € R® is denoted by x; X x. The
expression 1 < xo denotes the element-wise inequality
of two vectors z1,z> € R". Matrix A = [a]] € Rk*"
and vector b = [b;] € R¥*! are derived by stacking the k
row vectors aj, ... ,a% € R'™™ and scalars by,...,b, € R,

respectively, in a column

a{ b1
A=lajl=1] : | . b=b]=] :
aj b

II. INVARIANCE CONTROL

In this section, a brief overview on invariance control is
given and the problem setting is introduced. For a more
detailed introduction, the reader is referred to [6]—[8].

Invariance control monitors states and outputs of a system
with respect to predefined boundaries. The basic structure
of an output tracking problem with invariance control is
depicted in Fig. 1. The nominal controller processes the
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Fig. 1. Structure of an invariance controlled system

output values and determines a control signal. For the in-
variance control to be stable, the nominally controlled system
without invariance control is assumed to be stable [8]. The
invariance controller checks the system states, whether a
boundary is about to be violated. If this is the case, it emits a
corrective control output, which ensures the adherence to the
boundaries. Otherwise, the output of the nominal controller is
passed through. Therefore, at a distance from the boundaries,
the system follows the commands of the nominal controller
and whenever it closes in on the constraints, no violation
occurs.

In this paper, we consider a nonlinear, control affine
MIMO system of the form

&= f(z)+ Gx)u
Your = hOUl(w)

with the state vector x € R”, sufficiently smooth vector
fields f : R® — R", g, : R™ — R" with G = [g;...9g,,]
the input vector u € Uy, C R™, where U, is the admissible
set for the nominal control output, and the vector of output
functions hyy : R™ — RY%. The nominal control is chosen to
ensure a stable system with respect to the tracking error

(D

2)

Assumption 1: There exists a positive definite Lyapunov
function V (e) for the nominally controlled system © = o,
satisfying

€ = Yout — Ydes -

V(e,u) <0 fore#0,u=1uy €Uy, ,
V(e,u):O for e = 0,u = Uy, € Uy

3)
“4)
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certifying stability (or with strict inequality V(e, Uno) < 0
asymptotic stability) in the sense of Lyapunov of the tracking
error.
Naturally, the introduced concepts are straightforwardly ap-
plicable to systems with single input and/or single output.
The constraints on states and outputs are formulated as
continuous output functions
yi = hi(x) <0 forl <i<l, 5)
which equal zero right on the constraint and are negative
within the admissible set. These output functions y; are used
to derive the invariance control law. There is no upper limit
for the number of defined constraints. The entire admissible
set H of the system is given by the set of those state vectors,
for which all output functions are non-positive
H={xeR"|hi(x) <0 V1<i<l}. (6)
Assumption 2: The admissible set is non-empty.
Extending the admissible set, the invariant set takes the sys-
tem dynamics into account to determine the set to which the
states need to be confined. An invariance function ®;(x, ;)
of each constraint determines this set. The invariant set of
the entire system is the set of state vectors, for which each
invariance function takes a non-positive value
G={xeR"|D;(x,v) <0 VI<i<lI}. 7
The boundary 0G of the complete invariant set G is given by
all state vectors, for which at least one invariance function
equals zero and the others take a non-positive value.
Definition 1: The system (1) is controlled positive invari-
ant, if the controlled system remains within the invariant
set (7) for all future times.
We choose the invariance function from [7], which allows
the design of the invariance controller as an add-on to a
nominal controller. It depends on the relative degree r; of
the ¢-th artificial output functions (5), which is determined
by input-output linearization
®)

si=y" =al(x)u+bi(z)

with a!(z) = [,agl./:;flhi(x) .. ,cgmc;:*hi(x)] :

al(x) =07 Vr<r;,al(zx)#0" for r=r;,

and b;(z) = L hy(z) .

The variable z; is called the pseudo input of the linearized
system. If the output functions are chosen such that the
systems is not completely linearized, the remaining zero-
dynamics are assumed to be stable for the controlled system
to be stable.

Assumption 3: The system (1) is input-output linearizable
with stable zero-dynamics.
The corresponding invariance function to each output func-
tion depends on the output function and the respective



relative degree r; [7]

ri=1:®;(x,v:) =y
.2 .
——Y: + Y i >0
ri=2:0;(x,vi)=¢ 2% yerb v
Yi 7 <0 ©)
max p; (7,&;,%) Pi>Yi
T1'>2Z(I)i($,")/i): T>t ( ’7)
Yi else
with &, = [y; ... yf”_l)]T and the polynomial
R et
pilt:€nmi) = vt ) v (10)
k=0

The maximization of the polynomial is carried out with
respect to future times, i.e. 7 > t. The parameter y; < 0 is a
controller parameter. A larger value of ~; decreases the time
during which corrective control is applied. As shown in [7],
the system is made controlled invariant with respect to the
invariant set (7), if the invariance function (9) is decreasing
on the boundary of the invariant set. As stated there, this is
fulfilled, if one of the two conditions

Y
(12)

@) <0 vi<r<r-1
(@) <

Yi
holds, which is achieved by an invariance control law with
a fixed parameter ~;. Since we concentrate on chattering
reduction in this paper, we make the following assumption.

Assumption 4: The original invariance control is designed,
such that it renders the system controlled invariant.

A constraint is active and requires a corrective control
action if its invariance function ®;(x,~y;) has a positive
value. If no constraints are active, nominal control is applied.
Therefore, only the set of active constraints

K={ie{1,2,...,1}|®; >0}. (13)

is used for determining the corrective control input. Resulting
from (8) and (12), the system is positively invariant with
respect to the invariant set (7) of an active constraint 4, if

2 <% (14)

holds for as long as ®; > 0 [8]. Therefore, the pseudo input
is bounded by the control parameter 7; < O and a value
of z; = ~; < 0 suffices to render the system invariant.

By combining the pseudo inputs (8) corresponding to
active constraints with (14), a condition on the control
output w is derived [8]

Ak(z)u+be(z) <7 (15)

The condition has to hold element-wise with the ma-
trix Ax(z) = [al(z)], the vector b (z) = [bi(z)], the
controller parameter vector v = [y;] and ¢ € K.

The corrective control output u, is determined by solving
the constrained minimization problem

min||ue — U ||3
U

(16)
s.t. A (z)u + bic(x) < v
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This ensures that corrective control equals the nominal con-
trol u,,, whenever no constraint is active and that corrective
control is as close as possible to the nominal control in the
sense of the Euclidean distance.

Assumption 5: At any instant of time, the number of
active constraints (13) is not larger than the dimension of
the system input, i.e. dim(u) > dim(bx()).

Assumption 5 enables an analytical solution of (16)

ue = Af(2e — (A (T)tno + bic () + Uno ,  (17)
Zno
where the so-called corrective pseudo input z. is
i if i i) N (P >
Zcﬂ' — ly ? (Zno, > ly ) ( 0) (18)
Zno,i if (Zno,i < 'Yi) V (q)i < 0)

and Ay = Ap(AxcAg)~! is the Moore-Penrose pseudo
inverse of Ak [8]. However, due to the finite sampling time
in real systems, a system, which is controlled using this
approach, shows distinct chattering effects at the boundaries.

III. CHATTERING REDUCTION

In discrete time implementations of invariance control the
invariance function is no longer continuously evaluated in
time, but only at the sampling instants. As a result, the switch
between nominal and corrective control does not happen
immediately, resulting in high-frequency oscillation at the
boundaries. This causes a deviation from the desired behavior
at the constraints and decreases the controller performance.

A. Adaptation of the Controller Parameter

In the following, we derive a novel approach for invariance
control with chattering reduction. Inspired by [9], the idea is
to adapt the controller parameters ~y; to avoid the overshoots.
We consider the 1 < ¢ < [ output functions (5) and
invariance functions (9) at the k-th discrete time step t; =
k - T4 with the sampling interval T4

19)
(20)

Yik = yi(x(tr))
;1 (2, 7i) = Pi(x(th),vi) -
While [9] assumes the relative degree to equal 2, we consider
an arbitrary relative degree. We use (9) and (10) to determine

the invariance function in the (k 4 1)-th time step. As an
example, for a system with relative degree 2, it evaluates to

{yi,k+ 1) Ui k+1(2:) <0

D 1@, vi,z)= ikl @D

Yi k1) o Yik12)>0

The output functions in the following time step depend on
the current pseudo control input z;. The goal is a non-positive
value for the invariance function for the entire sampling
interval.

Assumption 6: During one sampling interval, the pseudo
control input is constant, i.e. 2(t) = z(ty) Vt € [tr, tht1)-
For a system with relative degree r; this means that ylm_
changes linearly during one time step

(ri—1) (rs

te+Ta
Yikr1 — yi,k_l)"'—/ yfr"’) dt = yi(f,;_l)—kTAzi,k . (22)
tk SN~~~
=Zik



A finite Taylor series determines the values of the lower order

derivatives Y114, - - - ,y,(;;l_?)
r — TA J r+j
1(,13+1 = Z (L) E,I:—]) ) (23)

)

=0

r .
where yl( i) — z; 1. There are three cases to consider:

) @ x(x,7:)>0

2) ®; x(x,7:)<0, ®; pt1(x, Vi, 2i,k)>0

3) @ x(x,7:)<0, @i py1(, i, 2i1)<0, pi(t,€; 1>2ik)>0

for t)<t <ty4; with p; from (10),

where z; j, is the currently applied pseudo control input. In
case 1, the system is not in the invariant set. To enter the
invariant set, standard corrective control (18) is applied. In
case 2, the application of z;; leads to a violation of the
invariant set in one time step. In 3, the system is within the
invariant set at the current and the following time step. Due
to p;(zi ) > 0 for ¢, < T < tx41, however, the invariance is
violated in between the sampling instants. Therefore, case 2
and 3 require corrective control.

To minimize the divergence from the nominal system
dynamics, the corrective control output is chosen as close to
zero as possible, while still being non-positive. The largest,
possible value is z.; = 0. Therefore, we distinguish two
more cases:

a) @i,k(w,O) <0

b) ®; 1,(x,0) > 0.

For case a, the value z.; = 0 suffices to render the system
invariant and is used as the corrective output. In case b, a
value of z; is determined, which fulfills the two conditions

Cl) @ip(x,2,:) <0,

C2) <I>Z-,k+1(:c, 07 Zc,i) S 0
Condition C1 ensures the invariance of the system, where

®; 1(x,201:) =0 (24)

determines the largest value z.; = 2., which guarantees
invariance. Condition C2 ensures the shortest possible cor-
rective intervention. At the next time step, z.; = 0 suffices
to render the system invariant, i.e. z.; < O is applied only
for one time step. We choose the largest value of 2. ; = 2c2 4,
which fulfills condition C2, to minimize the divergence

Ze2,i ==n%%X(zgi)- (25)
In order to fulfill both conditions C1 and C2, the minimal
value from (24) and (25) is used for corrective control. The
final law for the corrective control input is given by

min (i, Zno.i) case 1

min (0, Zno,;) case 2aV 3a
case 2b V 3b

else

(26)

Ze,i = .
min (ch,i7 2e2,i5 Zno,i)

Zno,i

with 21 ; and 2z ; from (24) and (25), respectively. As an
example, the corrective pseudo input for a relative degree 2
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system is given by

min (7, 2no,i) case 1

min (0, 2no,;) case 2aV 3a

Zei = 2, 27)

. hi
min (— Lqu TR Zno,i) case 2b \ 3b

Zno,i else.

The complete corrective pseudo input and the set of active
constraints is determined iteratively. In a first step, the
conditions for z; = z,, are checked, the constraints, which
require a corrective action, are added to the set of active
constraints and wu, is determined using (17) for this set of
active constraints. Then we choose z = A(x)u. + b(x)
and repeat the previous steps for the remaining inactive
constraints, adding them to the active constraints if necessary.
This process is repeated until no new constraints are added
to the active set. The set of active constraints (13) is now
given by

K:{ie{l,...,l}

B. Stability of Invariance Control with Chattering Reduction

J iteration of z; , s.t. 28)
case 1 V2aVv3aVv2bVv3b|"’

The derivation of a sufficient condition for stability is
based on Lyapunov methods.

Proposition 1: Let V(e) be a Lyapunov function for the
nonlinear control affine system (1) with nominal control w,,
for which Assumption 1 holds. Let Assumptions 2—6 hold.
Further assume that the invariance control law (17) with (26)
is employed and the stationary point of the reference trajec-
tory Yues lies within the admissible set lim; o0 (Yges) € H-
If the element-wise condition

OV Yoy

de Oz
holds, then the tracking error is stabilized in the sense of
Lyapunov. If (3) holds with strict inequality, then the tracking
error is asymptotically stabilized in the sense of Lyapunov.
Proof: Using (1) and (2), condition (3) transforms into

> al Y out
— Oe oz

If the corrective control output fulfills (30) or the stricter
condition

G(z)AT(x) =0 (29)

0

(F(@) + Cla)un) y) @)

Vie,ue) < V(e ) <0, 31)

the invariance controlled system is (asymptotically) stable in
the sense of Lyapunov. This is re-written using (30)

OV 0y
—— - <0.
Se D G(x) (ue — upy) <0
Since Assumption 5 holds, it is possible to use (17)
al Y out

G(x)A™ (x) (zc — 2n0) <0 . (32)

de Oz
Element-wise satisfaction of (29) and a non-positive value
of each element of z. — z,, is sufficient for (32) to hold.
Therefore, condition (29) is sufficient for stability, if

(33)

Zei — Znoyi < 0



holds for every possible value of z; in (26).
In the first three cases of (26), 2z.; < 2no,; holds,

since zc,; = min(+, zy,;). The left side of the inequation (33)
is therefore given by

Ze,i T 2no,i < Zno,i — Zno,i — 0.
If the forth case applies, zc; = Zno,; is used and

Zc,i T ”no,i — “no,i — 2no,i — 0

holds. Therefore, (33) applies in each case and (29) is
sufficient to show stability in the sense of Lyapunov for
invariance control with chattering reduction as in (26). M
Note: The Lyapunov function V' (e) gives rise to the inter-
pretation as a common Lyapunov function for the switched
system. In consequence, arbitrary switching sequences are
allowed.

IV. ANALYSIS OF THE INVARIANCE PROPERTIES

The stability of the controlled system does not guarantee
adherence to the constraints. It remains to show that the novel
control law (17) with (26) also renders the system controlled
positive invariant. First, we consider the single constraints.

Proposition 2: Let the nonlinear, control affine system (1)
be controlled by the nominal control wu,,. Let Assump-
tions 1-3, 6 hold. Further, assume there is a sampling
instant t;, = kT4, at which the system is within the invariant
set (7). Then, the pseudo corrective control (26) renders the
system controlled positive invariant with respect to the set (7)
for all t > ty.

Proof: The system is within the invariant set (7)
at t, = kT4, meaning that ®; (x, ;) < 0 holds. We show
that during the next time step, the system stays within the
invariant set, by considering each possible corrective control
output. In case 2a and 3a, the output 2.; = 0 is applied
and ®; (2, 0) < 0 holds. Since «; < 0 holds, we receive

Qi(x,vi) < Pi(x,0) <0 .

In case 2b and 3b and for z.; = 240, €ither z.; > ~;
or z.; < -y is possible. For z.; < -y, the standard
invariance condition (14) is fulfilled, ensuring ®;(x, ;) < 0.
Otherwise, for case 2b and 3b, condition C1 holds and

Qi(x,7i) < Pi(x, 2,i) <0 .

Nominal control z.; = 2no,; is applied if p;(t,&;, Znoi) < 0
for t, < 7 < tp41 and D, g y1(x, Vi, Znos) < 0. Therefore

CI)Z‘(ZE,’)/Z*) < pi(tvgiaznmi) <0

holds for ¢, < 7 < tj41 and 2,,; > ;. Since in each
case, the output is applied for one time step, ®;(x,~;) < 0
holds at least for ¢, < t < tp41 in all of the cases
and @; 11(, Vi, 2c;) < 0 is true. By mathematical induc-
tion, the reasoning is true for all following time steps and
therefore the system is rendered controlled positive invariant
with respect to (7) for all ¢ > ¢y. ]
This result shows that the linearized dynamics are rendered
controlled positive invariant when (26) is applied. It remains
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to show that for the actual corrective control input u. (17)
the corrective pseudo inputs are combined such that the
nonlinear system (1) is rendered controlled positive invariant.
Therefore, examine the set of p linear, active constraints

T
nx+c

h(x) (34)

T
n,T +cp

with the parameters ¢; € R and the vectors n; € R". Input-
output linearization (8) of system (1), with respect to the
output functions (34) yields matrix Ax and vector by

A;(;:[nl
bc = Nby,,, .

n, |' A, = NAg,, (35)

(36)

with A1 = G(x), bx1 = f(x) and

Aiy, = L, L5 2 F (@) Ly, L5 F ()|
i, = L5 f(w) forr; >2.

Assumption 7: The constraint normals m! are linearly
independent and rank(Ax) = p with Ay from (35).

Proposition 3: Consider the invariance controlled, nonlin-
ear, control affine system (1) with the nominal control wg,
and let Assumptions 1-6 hold. Further assume that the set of
active constraints /C (28) consists of p linear constraints (34),
for which Assumption 7 holds. Then, the corrective con-
trol (17) with (26) does not cause constraint violation at any
instant of time, if

ze— b <0 (37)

with bi from (36) holds element-wise.

Proof: For the calculation of the pseudo inverse (38),
a full rank of A,CA% is necessary. This is the case, if
rank(Ax) = p holds, which requires the linear independence
of the vectors n] of the active constraints

Af = A (AcAR) = n vy, | . (38)
Since the constraints in /C (28) are active,
Ze; <0 Vie K 39

holds. With (35), (36), the corrective control (17) transforms
into

U, = A,'g(zC -b)+ (I - A;A;g)uno . (40)
————
A
Using (38), corrective control is re-written
Ue = V1 (Zc,l _bIC,l)+- . -+vp'(zc,p_blC,p)+Auno . (41)

For p = dim(u), A = A" holds for the pseudo inverse
and consequently Ax = I — A,ElA;C = 0. Therefore, the
corrective control output (41) is a sum of p components
for p = dim(u) and a sum of p + 1 components in the
case p < dim(w). The first p summands consist of a column
of the (pseudo) inverse, multiplied by a non-positive number.



For the column vectors v; of A} and the row vectors a)

1
of Ay, the relationship

1 1=
alv,={~ '~/ (42)
0 i#]
holds due to A;gAz = I;. The maximum increase of

the i-th output function in the active set (28) is in direction
of a;. Hence, the positive scalar product implies that in
direction of w;, the output function h;(x) also increases.
The value of zero for a;vi with ¢ # j indicates that the
output functions h;(x) in the active set remain unchanged
in direction of v;. Therefore, each v; is admissible to p — 1
constraints. To reach constraint admissibility with the i-th
constraint, the vector has to be multiplied by a non-positive
number, which is achieved by condition (37). For & <
dim(u), there is additionally the component A i u,,. Because
of the special form of Ax (40),

AICA)Cuno = AIC(I - AEAIC)'U/HO = Op><1 (43)

holds, meaning that Ajcu,, influences none of the output
functions and the vector is compliant with the admissible
set. Therefore, with condition (37) fulfilled, all of the p
or p + 1 summands are compliant with the admissible
set, which holds also for the sum. Since this relationship
is independent from the choice of constraint parameters,
the sole necessary condition for compliance is the linear
independence of the vectors m; and the capability of the
system to generate motion in the required direction, which
is ensured by rank(Ax) = p. [ |

V. NUMERICAL EXAMPLE

In order to illustrate the findings from the previous sections
a simulation is carried out in Matlab/Simulink. We compare
the proposed novel method to the standard invariance con-
troller [8] and the chattering reduction method presented in
our earlier work [9] for different sets of boundaries.

A. Simulation Setup

We consider a trajectory following problem for a robotic
system. The simulation model is shown in Fig. 2. The system

Q» System
Yges_ | Nominal Controller|%no_| Invariance | Uc y“ T Yout
— My,& =u >

(45) Controller -

Yout = T
Fig. 2. Structure of the simulation model
is a simplified Cartesian robot model
M, =mu, You = & (44)

where M, € R**? is the mass matrix and = € R? the state
vector consisting of the translational Cartesian directions.
The impedance control law [10]

Uno = fext + Dp(ydes - 'yout) + K;D(ydes - yout) ’ (45)

which is used for nominal control, is widely used in robotic
applications whenever compliance to exerted forces f., €
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R3 is desired. For f., = O, the control law imitates a
spring-damper behavior with the spring constant K, € R3*3
and the damping constant D, € R3*3, which enforces
the desired motion y,4,. The force input f.,, generates a
deviation from the desired motion and ensures compliance.
As long as the nominally controlled system is stable, this
force does not influence the stability of the invariance
controlled system. Then, the external force simply adapts
the desired trajectory. The invariance controller ensures that
the output y is consistent with predefined constraints. This
controller combination allows a compliant reaction to exerted
forces within the admissible set and a stiff behavior at the
boundaries. The reference trajectory of the system y,. is a
single circular movement starting and ending in the same
point. No external force is simulated. Three constraints are
defined by minimum ;- and x,-values and a maximum x-
value. The fourth constraint is given by a tilted plane. The
simulation is carried out for three different tilted planes. The
simulation parameters are listed in Table I.
TABLE 1
SIMULATION PARAMETERS

Sampling time Ta 0.001s
Simulation time Tend 60.000s
Cartesian impedance K, 600N/m - I3
Cartesian damping D, 80Ns/m - I3
Mass matrix M, 15kg - I3
External force Fext ON
Lower position constraints Z1,min 0.57m
T2, min 0.13m
Upper position constraint T1,max 0.70 m
Tilted plane constraints hy h1 = +0.86x1 +x2 — 1.0m
ho hs = +0.00x1 + x2 — 0.4m
hs hs = —2.00x1 + 22 + 1.0m
Control parameters ¥ —18
Parameters for [9] a1 0.25
«qQ 0.75
k 50

B. Results

The simulation is carried out three times for each control
law, once for every set of constraints. The results are shown
in Fig. 3. Fig. 3a)-c) depicts the complete trajectory in ;-
and zs-coordinates, the corresponding reference trajectory
and the boundaries. In Fig. 3d)-f), the behavior of the system
in the right upper corner of the admissible set is shown in
more detail. In order to illustrate, that the configuration of
the boundaries does not impair the invariance as long as the
active constraints are linearly independent, the constraints are
chosen such that three significantly different angles occur in
the upper right corner.

In Fig. 3a)-c), the trajectories generated by the three
control laws almost coincide. The figures show that the
boundaries are overall followed by each control law. It can
also be observed, that the trajectory starts and ends in the
same point in all three cases. This result highlights the
stability of the controlled system (Proposition 1).

In Fig. 3d)-f), we observe the differences between the
control schemes. The novel control law almost eliminates
the chattering effect and the trajectory follows the boundaries
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almost exactly. It also shows no violation of the constraints,
emphasizing that the system is made controlled invariant
(Proposition 2). The standard control scheme and the chatter-
ing reduction method from our earlier work, show chattering
effects, even despite of the reduction and do slightly violate
the constraints. While the standard invariance controller
ignores the discrete time implementation of the controller,
in our previous work, we use Euler’s method to approximate
the invariance function in the following time step. Here, we
explicitly consider the effects of the discrete implementation
of the controller in combination with a continuous system,
which yields a more accurate solution and achieves a better
controller performance.

VI. CONCLUSION

In this work, we consider a novel control law for invari-
ance control with chattering reduction. It is analyzed with
respect to stability, invariance and applicability with different
sets of constraints. We derive a stability condition and
additionally, we analyze the controller output with respect
to its compliance with the constraints. We show that with
linear constraints on the states and/or outputs, the control
output renders the system controlled invariant, bounding
the states and/or outputs to the admissible set. Simulations
illustrate the theoretical results. These findings encourage the
use of invariance control a variety of control applications.
A remaining challenge is the consideration of time-varying
constraints.

ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the European Union Seventh Framework Programme
FP7/2007-2013 within the ERC Starting Grant Control based

74

on Human Models (con-humo) under grant agreement no.
337654.

REFERENCES

[1] J. Medina, M. Lawitzky, A. Mortl, D. Lee, and S. Hirche, “An
Experience-Driven Robotic Assistant Acquiring Human Knowledge to
Improve Haptic Cooperation,” in /EEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2011, pp. 2416-2422.

D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained model
predictive control: Stability and optimality,” Automatica, vol. 36, no. 6,
pp. 789-814, 2000.

H. Michalska and D. Mayne, “Robust Receding Horizon Control of
Constrained Nonlinear Systems,” IEEE Transactions on Automatic
Control, vol. 38, no. 11, pp. 1623-1633, Nov 1993.

E. Gilbert and I. Kolmanovsky, “Nonlinear tracking control in the
presence of state and control constraints: a generalized reference
governor,” Automatica, vol. 38, no. 12, pp. 2063-2073, 2002.

Z.-L. Tang, K. P. Tee, and W. He, “Tangent Barrier Lyapunov Func-
tions for the Control of Output-Constrained Nonlinear Systems,” in 3rd
IFAC International Conference on Intelligent Control and Automation
Science, P. M. Ferreira, Ed., vol. 3, no. 1, Chengdu, China, 2013, pp.
449-455.

J. Mareczek, M. Buss, and G. Schmidt, “Sufficient Conditions for
Invariance Control of a Class of Nonlinear Systems,” in 39th IEEE
Conference on Decicion and Control, Sydney, Australia, Dec. 2000,
pp. 1436-1442.

J. Wolff and M. Buss, “Invariance Control Design for Nonlinear Con-
trol Affine Systems under Hard State Constraints,” in NOLCOS’2004
Symposium on Nonlinear Control Systems, Stuttgart, Germany, Sept.
2004, pp. 711-716.

M. Scheint, J. Wolff, and M. Buss, “Invariance Control in Robotic Ap-
plications: Trajectory Supervision and Haptic Rendering,” in American
Control Conference (ACC), Seattle, USA, 2008, pp. 1436-1442.

M. Kimmel, M. Lawitzky, and S. Hirche, “6D Workspace Constraints
for Physical Human-Robot Interaction using Invariance Control with
Chattering Reduction,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2012, pp. 3377-3383.

A. Albu-Schaffer and G. Hirzinger, “Cartesian Impedance Control
Techniques for Torque Controlled Light-Weight Robots,” in Pro-
ceedings of the IEEE International Conference on Robotics and
Automation, vol. 1, 2002, pp. 657-663.

[2]

[3]

[4]

[5]

[6]

[7

—

[8]

[9]

[10]



