
Neural Networks for fast sensor data processing
in Laser Welding

Johannes Günther, Hao Shen, and Klaus Diepold

Dept. of Elecrical and Computer Engineering, Technische Universität München
80290 Munich, Germany

{johannes.guenther,hao.shen,kldi}@tum.de

http://www.ldv.ei.tum.de

Abstract. To address the need for robust and fast representation, we
introduce deep learning neural networks and parallel programming tech-
niques for laser welding. In order to deal with high-dimensional data
within real-time constraints, we use a deep autoencoder to extract robust,
meaningful and low dimensional features. The implementation is then
optimized, using parallel programming techniques and shown to perform
within the real-time requirements for laser welding. The performance, in
terms of reconstruction and capability for classification are later com-
pared with features, extracted by the principal component analysis. The
neural network demonstrates to extract more robust and meaningful fea-
tures, compared to a PCA.

Keywords: Laser welding, deep learning, fast sensor data processing

1 Introduction

To fit the upcoming requirements of modern industry [1], it is necessary to em-
power systems to learn and improve their own performance in order to be able
to ensure flexible and autonomous systems. Those systems would be able to deal
with changing process and environmental conditions, as they often occur in in-
dustry. Being inspired by the human capability of learning and adapting, a whole
branch of research has centered around the challenge of providing machines with
intelligence. This research is summarized with the term machine learning. By ap-
plying algorithms of machine learning, important concepts of intelligence, like
perception, reasoning, learning and planning can be imitated.
The basic for learning and autonomy is the ability for perception and abstrac-
tion. In industrial systems, the pure observation is usually done by sensors, e.g.
cameras, and the process of abstraction is provided by data processing. One way
of processing images is to extract meaningful features. This is comparable to the
term of abstraction. The transformation into features has two major advantages:
First, features are much less data, so they can be processed in less time. Second,
extracting features can make the representation much more robust. As during
this process, fluctuations and disturbances in the process are filtered out, only
the truly relevant information is retained in the features.



2 Neural Networks for fast sensor data processing in Laser Welding

One particular process that can benefit from these abilities is laser welding. Due
to its dynamics and uncertainty, inherent to the process, it can not be controlled
using a model. Therefore the application of machine intelligence is a feasible
approach. Especially the usage of neural networks has been topic of multiple
investigations. However, these approaches either use neural networks for clas-
sification [2], [3] or directly for control [4], [5] and not for features extraction.
Additionally, the networks, used so far only consist of a small number of neurons,
while the neural network in this paper has several thousand neurons.
A technique that has shown its capability for robust feature extraction is deep
learning, especially autoencoders [7]. However, large neural networks do require
a huge amount of computation. One approach to reduce the computational time
is to parallelize the algorithm in order to perform multiple computational steps
at the same time.
The combination of both approaches, neural networks and parallelization, promises
to provide a solution for real time feature extraction, using neural networks. This
is described in the remains of this paper as follows. Section 2 provides knowledge
about representation learning and neural networks in detail. Section 3 focuses
on the preprocessing, the design of the autoencoder and the parallelization de-
tails. The experiments are described and evaluated in Section 4 and discussed
in Section 5. The paper will be concluded in Section 6.

2 Representation Learning

It is well known that the performance of machine learning algorithms is mostly
dependent on the data. But not only the amount of data is crucial, but also the
representation. Different representations might capture different hidden informa-
tion and dependencies in the data. Being able to extract this data automatically
is an important step towards autonomous artificial intelligence [6].

2.1 Principal Component Analysis

The principal component analysis is arguably the most popular method, which
transforms the original data into a set of data representations, often in a lower
dimensional space compared to the original data space. By finding an orthogonal
transformation, original data, often assumed to be statistically correlated, is
transformed into a set of statistically uncorrelated data representations. The
new set of data representations are referred to as the principal components.
When the number of uncorrelated components is smaller than the dimension of
the original data space, PCA serves as a tool of dimensionality reduction, with a
great simplicity in terms of both computation and reconstruction of the original
data.
PCA has been successfully applied to a broad variety of applications, such as
medicine [9], chemistry [10], face recognition [11] and also laser welding [12].



Neural Networks for fast sensor data processing in Laser Welding 3

2.2 Artificial Neural Networks

The idea of artificial neural networks (ANN) to imitate the human capability
for recognition and generalization was introduced in 1958 [13]. The perceptron
is the smallest version of an ANN, consisting only of a single layer of neurons. A
neuron is modeled as a function σ(·), that takes an arbitrary number of inputs.
These inputs are multiplied by corresponding weights, summed up and shifted
by a bias. The activation or output of the neuron is then calculated by passing
the sum through the nonlinear function, called activation function. This can be
described by the following general equation:

yi = σ(

N∑
j=1

Wj,ixj + bi) (1)

where yi is the output of the i-th neuron and xj is the j-th input of that neuron.
Wj,i is the weight for the j-th input of the i-th neuron and bi is the bias for the
i-th neuron. N is equal to the total number of inputs for that neuron. This is
illustrated in figure 1.

Σ Φ
w0

w1

wn

b0

y

1

X0

x1

xn

⋮

Fig. 1. A single neuron

However, the simple perceptron has limitations. Its capabilities are con-
strained to linear calculations. To overcome these limitations, several percep-
trons can be connected in a way, that the output of one perceptron is the input
for the next one. This is called a multi-layer perceptron (MLP) or feed-forward
network. A general MLP can have an arbitrary number of neurons and layers.
By introducing more than one layer, the network is able to learn hidden rep-
resentations for the input. To update the weights of the hidden representations
the backpropagation algorithm was invented [14]. It passes the error backwards
through the MLP and therefore allows the hidden layers to adapt their weights
in order to improve the performance[15].

2.3 Deep Autoencoder

The autoencoder was introduced by Hinton and Salakhutdinov in 2006 as a
nonlinear generalization of the PCA [16]. An autoencoder uses a MLP to encode



4 Neural Networks for fast sensor data processing in Laser Welding

the input into a lower dimensional representation, according to equation 2.

h = σ(

N∑
j=1

Wjxj + b) (2)

This representation is later decoded by a similar MLP to reconstruct the original
input.

y = σ(

N∑
j=1

W>
j xj + b′) (3)

As it is difficult to optimize the weights in a nonlinear autoencoder with
several layers, the learning process is done layer-wise. For this purpose, first an
autoencoder with only one hidden layer is trained. After the training is com-
pleted, the weights are fixed and another layer is stacked on top. The represen-
tation of the first, already learned, autoencoder serves as input for the second
autoencoder. Using this technique, it is possible to learn a better representation
than by learning the whole autoencoder at once [15].
The training is done by optimizing an appropriate cost function, using a gradient-
based approach. For autoencoders, a typical loss function is the mean-squared
error of the reconstruction, as it can be seen in equiation 4

L(θ) =
1

2N

N∑
i=1

(xi − yi(θ))
2 (4)

where N is the number of training examples, xi is the i-th input und yi is
the i-th reconstruction. According to the backpropagation algorithm, this loss
function is then used to calculate the error for each neuron and the weights are
then updated, using gradient descent.

3 Implementation

Directly using the full image, provided by the process camera, is not feasible
due to the fact that it provides images in the QCIF resolution (177 × 144) and
therefore a single image consists of 25344 pixels. As the computational time of an
ANN is dependent on the number of neurons, this would lead to an unreasonable
high run time for the algorithm. We therefore use only a region of interest of the
size 105 × 105, which is then subsampled to reduce to the final size of 32 × 32.
Figure 2 shows the preprocessing for two in-process images.



Neural Networks for fast sensor data processing in Laser Welding 5

Fig. 2. Image preprocessing and reconstructed Image.The first steps shows the region of
interest and the new, interpolated image. The third row shows the image, reconstructed
by the autoencoder.

3.1 Autoencoder

As described in section 2.3, the autoencoder consists of two parts, the encoder
and the decoder. A schematic illustration can be seen in figure 3. The first layer
consists of 1024 neurons, which act as input neurons. Each neuron takes the
value of its corresponding value in the image and passes it into the autoencoder.
The second layer is made of 2048 neurons. To enlarge the first hidden layer is a
common approach to allow the network to create a more general representation
of the input. The following hidden layers decrease in their number of layers
consistently until the bottleneck is reached. In the bottleneck, there are only
16 neurons. Therefore, all the information is now encoded in these 16 features.
From here, the architecture is mirrored to be able to reconstruct the output,
corresponding to equation 3. In total, the autoencoder consists of 11 layers. As
the autoencoder is used as a feature extractor, the decoder is only used during the
training. Once the autoencoder is learned, only the encoder up to the bottleneck
is implemented.

Training an ANN involves the choice of many hyper parameters, such as
learning rates, momentum etc. for improving the backpropagation algorithm.
These parameter have a huge influence, not only on the learning time, but also
on the final performance. We have therefore applied different techniques and



6 Neural Networks for fast sensor data processing in Laser Welding

?
features

1

Fig. 3. Schematic illustration of training an autoencoder. The image is fed into the
network on the left side, compressed into the feature space and then reconstructed.
The weights are adjusted such that the output matches input.

approaches, but going into detail is beyond the scope of this paper, so we refer
to [17] for further information.

3.2 Parallelization and Cache-Efficiency

As no shortcut or lateral connections are built in the network, the output com-
putation of each neuron can be performed layer-wise and independent of the
other neurons of the corresponding layer. Each layer can be computed by two
nested for loops of where the outer loop which iterates over the current layer,
can be parallelized as illustrated by figure 4.

⋮

⋮
Σ

⋮
Σ

⋮
Σ

Partition 1

Partition 2

Partition n2

Layer 2

⋮

⋮
Σ

⋮
Σ

⋮
Σ

Partition 1

Partition 2

Partition nk

Layer k

⋮

⋮
Σ

⋮
Σ

⋮
Σ

Partition 1

Partition 2

Partition n1

Layer 1 …

Fig. 4. Partitioning the network calculation into multiple sub tasks.

As each outer loop cycle has to compute an inner loop of a few hundred to
thousand iterations, parallelization of this task seems reasonable. Indeed, the
parallel computation resulted in a 3.5 times faster execution of the network
on an Intel Quad-Core i7 with 3.2 GHz CPU speed, compared to the serial
computation. On this platform, the calculation took about 8 to 9 milliseconds



Neural Networks for fast sensor data processing in Laser Welding 7

after implementing the parallel structure, while it took about 29-30 milliseconds
with the serial solution.

w0

w3

w1

w2

0

1

2

3

w0

w3

w2

w1

0

1

2

3

Fig. 5. Cache inefficient (left) vs. cache efficient sorting (right) by reordering weight
w1 and w2

However, 8 milliseconds is still too slow to perform real-time capable image
processing. Therefore, the weights were re-arranged in memory such that they
could be accessed in a cache efficient way. The weights should be stored in a
sequence container (like std::vector) and be iterated over in steps by 1. This
can be achieved by sorting the weights based on their input neuron, not on
their connection. Figure 5 shows a comparison of these two sort methods. After
changing the sort method from method 1 to method 2, the performance of the
network increased by a factor of 5, resulting in a total execution time of 1.6
milliseconds for one complete network computation.

4 Experiments

The experiments were conducted on industrial laser welding. The material is
zinc-coated steel and the configuration is a classical overlap weld. The dataset is
divided into two processes, where the used sensor hardware is slightly different.
For the first setup, a collimation lens of 150mm and a focusing lens of 300mm
were used, which results in a zoom factor of 3 : 2 - this dataset will be referred
to as process 1. In the second setup, the collimation lens was 125mm and the
focusing lens was 250mm, which results in a zoom factor of 2.5 : 2. The images,
taken with this setup will be referred to as process 2. Therefore the image, taken
by the camera is slightly different, which has an influence on the data processing.
To compare the two algorithms for dimensional reduction, the following approach
was taken: The measure for the performance of both algorithms was the recon-
struction error, which indicates how well the algorithm is able to reconstruct the
original image from the new representation. Both algorithms transformed the
original data into a new representation of 16 features. First, the two datasets
were learned and reconstructed independently, in a second step both algorithms
learned both datasets. The reconstruction errors for both approaches can be seen
in table 1.



8 Neural Networks for fast sensor data processing in Laser Welding

Table 1. Mean reconstruction error

Algorithm Trained on Process Tested on Process Mean reconstruction error

PCA

1 1 0.006
2 2 0.005

1 + 2 1 0.002
1 + 2 2 0.004

DNN

1 1 0.024
2 2 0.011

1 + 2 1 0.012
1 + 2 2 0.014

The results indicate that the PCA performs better in terms of reconstruct-
ing the original image. However, as the purpose of the dimensional reduction is
not the reconstruction, this error measure alone is not sufficient to evaluate the
performance of both algorithms. We therefore trained a support vector machine
(SVM), using a MLP-kernel, which functions according to equation 1, to classify
the images, regarding the quality of the corresponding welding seam. This mea-
sure is far more informative, as it compares the meaningfulness of the features.
The results can be seen in table 2.

Table 2. Mean classification error

Algorithm Trained on Process Tested on Process Mean classification error

PCA
1 2 0.9 ± 0.003
2 1 0.57 ± 0.08

DNN
1 2 0.59 ± 0.14
2 1 0.67 ± 0.04

For both algorithms, the representation was learned over both processes, then
the SVM was learned for one process, using this representation and applied to
the other process. The results show that if the SVM is learned on the process
1 and applied on process 2, the neural network representation is performing
significantly better. For the reverse case, both SVMs perform almost equally—
however it has to be noted that learning the SVM on process 2 did fail to
converge, if the complete dataset has been used. Therefore, the outcome of this
particular experiment has limited significance.

5 Discussion

In this paper the usage of a deep autoencoder for real time feature extraction in
laser welding has been shown. By making use of parallelization, a network with
in total 4884 neurons and 4, 858, 640 connections has been shown to process
the inputs within 1.6 ms. The reconstruction error of the autoencoder has been



Neural Networks for fast sensor data processing in Laser Welding 9

compared to the performance of classical approach, namely the PCA. It has been
shown, that while the PCA has a lower reconstruction error, the autoencoder
outperforms the classical approach if the features are later used for classification,
which indicates the features from the neural network contain more information.
As small deviations in the inputs are a common problem in laser welding, due
to the setup procedure and different hardware setups, the autoencoder can be
considered superior for feature extraction. It further has been shown, that even
a neural network with thousands of neurons can be implemented to perform
within our real time requirements of 2 ms.

6 Conclusion

This work provides knowledge on how to use neural networks for image process-
ing in laser welding. As the neural network is able to be trained unsupervised
and has shown its capability of extracting meaningful features in a robust and
fast way, it promises to address key issues in modern industrial production and
image processing. We described the architecture of the deep autoencoder and
the implementation details to ensure the computation to be fast enough. To our
knowledge, this is the first demonstration of a neural network, consisting of sev-
eral thousand neurons, to be used for feature extraction in laser welding within
real time constraints. However, as robust representation is a key attribute for
intelligent systems, we do not want to limit this approach to laser welding. The
results indicate that this approach is transferable to other industrial processes,
using camera based process observation.

Acknowledgments

The project CCLW is performed within the framework of the European funding
program Eurostars and is funded by the Federal Ministry of Education and
Research. We also would like to thank all project partners, namely the Precitec
GmbH & Co. KG, Germany and IREPA LASER, Illkirch, France, who provided
the data. The authors would also like to thank Elias Reichensdörfer for many
interesting discussions his assistance on the parallelization.

References

1. P. Zipkin, “The limits of mass customization.” Harvard Business Review, vol. 75,
pp. 91-101, 1997.

2. J. Shao and Y. Yan, “Automated inspection of micro laser spot weld quality using
optical sensing and neural network techniques,” Proceedings of the IEEE Instru-
mentation and Measurement Technology Conference, pp. 606–610, 2006.

3. I. Wersborg, K. Schorp, T. Bautze, and K. Diepold, “Multiple sensors and artifi-
cial neural networks in a cognitive technical system for laser welding,” 2009 5th
International Conference on Intelligent Sensors, Sensor Networks and Information
Processing , pp. 109–114, 2009.



10 Neural Networks for fast sensor data processing in Laser Welding

4. A. I. Gavrilov, “Development of automatic control system for laser welding using
neural network technology,” International Conference on Control, vol. 1, pp.278–
283, 1998.

5. L. Nicolosi, R. Tetzlaff, F. Abt, A. Blug, and H. Hofler, “Cellular neural net-
work (CNN) based control algorithms for omnidirectional laser welding processes:
Experimental results,” 2010 12th International Workshop on Cellular Nanoscale
Networks and Their Applications , pp. 1–6, 2010.

6. Y. Bengio, A. Courville, P. Vincent, “Representation Learning: A Review and New
Perspectives,” Pattern Analysis and Machine Learning, vol. 35, no. 8, p. 1798–1828,
2013.

7. P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked
denoising autoencoders: Learning useful representations in a deep network with
a local denoising criterion,” Journal of Machine Learning Research, vol. 11, p.
33713408, 2010.

8. L. J. P. v. d. Maaten, E. O. Postma, and H. J. v. d. Herik, Dimensionality Reduc-
tion: A Comparative Review, 2008.

9. Z. J. Daruwalla, P. Courtis, C. Fitzpatrick, D. Fitzpatrick, and H. Mullett, “An
application of principal component analysis to the clavicle and clavicle fixation
devices,” Journal of Orthopaedic Surgery and Research, vol. 5, no. 1, p. 21 – 28,
2010.

10. I. Gergen and M. Harmanescu, “Application of principal component analysis in the
pollution assessment with heavy metals of vegetable food chain in the old mining
areas,” Chemistry Central Journal, vol. 6, no. 1, p. 156 – 168, 2012.

11. K. I. Kim, K. Jung, and H. J. Kim, “Face recognition using kernel principal com-
ponent analysis,” IEEE Signal Processing Letters, vol. 9, no. 2, pp. 40–42, 2002.

12. M. Jager, S. Humbert, and F. Hamprecht, “Sputter tracking for the automatic
monitoring of industrial laser-welding processes,” IEEE Transactions on Industrial
Electronics, vol. 55, no. 5, pp. 2177–2184, 2008.

13. F. Rosenblatt, “The perceptron: A probabilistic model for information storage and
organization in the brain,” Psychological Review, vol. 65, no. 6, pp. 386–408, 1958.

14. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

15. Y. Bengio, “Learning deep architectures for ai,” Journal Foundations and Trends,
vol. 2, no. 1, pp.1–127, 2009.

16. G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

17. Y. Bengio, “Practical recommendations for gradient-based training of deep archi-
tectures,” Lecture Notes in Computer Science, vol. 7700, 2012.


